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Théoreme de Kaplansky effectif et uniformisation locale des
schémas quasi-excellents

Résumé

a résolution de singularités des courbes sur C est connue depuis longtemps et pos-
L séde de nombreuses preuves. L'une d’entre elles consiste a utiliser le théoréme de
Newton-Puiseux pour obtenir I'uniformisation locale d’une valuation centrée sur 1’an-
neau de départ. Ce théoreme fournit une série de Puiseux permettant de paramétrer les
branches de la courbe ainsi qu'un ensemble de polynémes décrivant completement la
valuation.

Dans cette these, nous généralisons cette méthode a 'aide des polyndmes-clés in-
dexés sur un ensemble bien ordonné qui deviennent, apres éclatements, des coor-
données. Notre premier résultat fournit une généralisation effective du théoreme de
Newton-Puiseux pour une valuation de rang 1, centrée sur un anneau local régulier et
complet, ainsi que des résultats de dépendance intégrale sur les séries tronquées. Dans
un second temps, nous montrons qu’il n'y a pas de polynémes-clés limites en caractéris-
tique nulle et proposons une méthode pour obtenir I'uniformisation locale des schémas
quasi-excellents. Cette méthode consiste a désingulariser I'idéal premier implicite, en-
gendré par un polyndme, en monomialisant les polyndmes-clés. Enfin, en caractéristique
positive ou mixte, nous montrons que, pour obtenir I'uniformisation locale, il suffit, sous
certaines conditions, de monomialiser le premier polynome-clé limite.

Mots-clés. Uniformisation locale, polynomes-clés, séries de Puiseux, valuations, ca-
ractéristique nulle et mixte, idéal implicite, éclatements locaux, monomialisation.

Effective Kaplansky’s theorem and local uniformization of
quasi-excellent schemes

Abstract

he resolution of curves singularities over C has long been known and has many
T proofs. One of them consists in using the Newton-Puiseux theorem to obtain the
local uniformization of a valuation centered on the starting ring. This theorem provides
a Puiseux expansion to parametrize the branches of the curve and a set of polynomials
describing completely the valuation.

In this thesis we generalize this method using key polynomials indexed by a well-
ordered set which become coordinates after blowings up. Our first result provides an
effective generalization of the Newton-Puiseux theorem for valuation of rank 1 centered
on a complete regular local ring and integral relations on the truncation of the series.
In the next chapter, we show that there is no limit key polynomials in characteristic
zero and we propose a method for the local uniformization of quasi-excellent schemes.
This method consists in resolving the singularities of the implicit prime ideal generated
by a polynomial and monomializing key polynomials. Finally, in positive or mixed
characteristic, we show that, under certain conditions, to obtain the local uniformization
it is sufficient to monomialize the first limit key polynomial.

Keywords. Local uniformization, key polynomials, Puiseux expansions, valuations,
zero and mixed characteristic, implicit ideal, locals blowings up, monomialization.

MSCz2o010. 13A02, 13A18, 13F25, 13F30, 13F40, 13Ho5, 14Bos, 14E15, 14H20, 14]17.
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Introduction

ette these est consacrée a 1'étude de l'uniformisation locale des schémas quasi-
C excellents de caractéristique nulle et mixte ainsi qu’a la construction effective
d’un plongement d’un anneau local régulier complet, muni d’une valuation de rang
1, dans un anneau de séries de Puiseux généralisées. Les polynomes-clés développés
par Spivakovsky dans [HGOAS] et [S1] forment l'outil principal d’approche de ces
problémes.

Les premiers résultats en résolution des singularités sont attribués a Newton
au XVII*™ siécle ainsi qu’a Puiseux au XIX®™® siecle. Leur résultat permet de résoudre
les singularités des courbes définies sur C.

Considérons un élément irréductible f € C [[u1,up]] \ {0}, a 'aide de la méthode de
Newton, il existe d, m € Z, m > d et deux séries de Puiseux :

w(t) =1
Mz(t) = Z Lljt]
jzm

telles que :
f (u1(t), uz(t)) = 0.

Cette méthode nous permet de paramétrer une branche de la courbe f = 0; pour para-
métrer les autres branches, il faut remarquer que :

flur(t),u2(7)) =0,0<j<d—1,

ol { est une racine primitive d-ieme de 1'unité dans C. Comme f est irréductible, on
obtient :

f = ]1‘[ (12— @) ).

ot z € C[[uy,ua]] ™.
On obtient également une tour d’extensions galoisiennes de corps cycliques :

1
KlzC(ul)<—>K2<—>...<—>Kg<—>Kg+1:C(uf).

Notons Q1 = up et Q; € C((u1)) [u2] le polyndme minimal de l'extension K; — K;,
2 <1 < g+ 1. Soit v une valuation de C [[u1, u]], vérifiant vic = 0, de groupe des va-
leurs T'. On considére v comme la composée d’une valuation p centrée en C [[u1, uz]] /(f)
de groupe des valeurs I'1 ~ Z, premier sous-groupe isolé non-nul de I', et d"une valua-
tion 6 centrée en C[[u1,uz]] ) de groupe des valeurs I'/I'1. Supposons de plus que
v(f) ¢ T1. Alors, 'ensemble de polynomes {Q;}1<i<g+1 est tel que pour tout élément
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h € C[[u1,up]], il existe un développement de la forme :

_ o Xgt1
h - Z aal,.‘.,agHQ]l'"anH/

finie
vérifiant :

v(h) = min {1/ <a .. ’Xg“) }
< ) (&1eeeptg 1) ENET MNAgHQl Qg+l
L’ensemble {Q;}1</<¢+1 est un premier exemple d"un ensemble complet de polynomes-clés
pour l'extension C ((u1)) <= C ((u1)) (u2).
Finalement, si on note R = C[[uy, uz]] /(f), la paramétrisation précédente nous
donne un morphisme injectif d’anneaux :

1R C[[H],

défini par :

{ t(ur) = up(t)

(uz) = up(t)

En notant v la valuation t-adique sur C [[t]], on montre que, pour touth € R :

p(h) = v(u(h)).

De plus, on peut montrer que le corps des fractions de R est C ((t)) et que l'idéal
maximal de R est (#) N R. On dit alors que le morphisme ¢ est birationnel et dominant. On
obtient ainsi une uniformisation locale de y définie sur R. Le morphisme :

¥ : Spec (C [[t]]) — Spec(R)

est alors propre et birationnel, c’est une résolution des singularités de la courbe f = 0.

Cette méthode n’est pas généralisable en dimensions plus grandes et surtout, elle ne
s’étend pas en caractéristique positive. Par exemple, si k est un corps de caractéristique
p > 0, la méthode de Newton ne peut s’appliquer pour résoudre des hypersurfaces de
la forme :

XP — g 1X + f =0,

ou f,g € kl[u, ..., un)], g # 0 et f,g & k[[u1,...,un)]”. L'équation précédente est dite
d’Artin-Schreier.

En 1939, Zariski montre qu’il existe une résolution des singularités des sur-
faces sur un corps de caractéristique nulle en démontrant 1'uniformisation locale des
valuations et en recollant au niveau de la variété de Riemann-Zariski (voir [Z1]).
L'uniformisation locale apparait donc comme un probléme essentiel dans la résolution
des singularités.

En 1964, Hironaka ([H1]) prouve que l'on peut résoudre les singularités de toute
variété algébrique définie sur un corps de caractéristique nulle. Ce résultat a permis
a Grothendieck de donner des conditions minimales pour obtenir une résolution des
singularités via la proposition suivante :

Proposition 1 — ([Gz], Proposition (7.9.5)) Soit X un schéma localement noethérien,
tel que, pour tout schéma Y intégre et fini sur X, on puisse résoudre Y. Alors les anneaux des
ouverts affines de X sont quasi-excellents.
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Grothendieck conjecture alors que la réciproque de la Proposition 1 est vraie. Il
remarque que, par le résultat d’"Hironaka, cette conjecture est vraie pour les schémas
noethériens réduits dont le corps résiduel est de caractéristique nulle. Sans hypothése
sur la caractéristique, il propose de se ramener au cas des anneaux locaux noethériens
integres et complets. Si le corps résiduel k est de caractéristique p > 0, seule une
hypothese de la forme [k : kP] < +co n’est valable pour lui, si un contre-exemple vient
un jour mettre en défaut sa conjecture.

Dans certains cas, plusieurs résultats 1’ont confirmée : Abhyankar a démontré 1’exis-
tence d'une résolution des singularités pour des surfaces en caractéristique positive
([A1]) ainsi que pour des variétés de dimension 3 sur des corps de caractéristique
supérieure ou égale a 7 ([A3]) ; résultat redémontré en 2009 par Cutkosky ([Cug]). Enfin,
Cossart et Piltant ont démontré ce dernier résultat sans condition sur la caractéristique
([CP1] et [CP2z]) et ont des résultats partiels en caractéristique mixte ([CP3]).

D’autres preuves du théoréme d’Hironaka sont apparues depuis les années 1990,
elles ont permis de mettre a jour de nouvelles techniques. On peut citer Villamayor
en 1989 ([Vi]), Bierstone et Milman en 1990 ([BM]), Encinas et Villamayor en 2001
([EV]), Encinas et Hauser en 2002 ([EH]), Wlodarczyk en 2005 ([W]) ou Temkin en 2008
([Tem1]) qui a démontré la conjecture de Grothendieck en caractéristique nulle.

Ces derniéres années, une nouvelle approche a été proposée par Spivakovsky
([S1]) et Teissier ([Teiz]) pour résoudre cette conjecture. La premiere étape est de
démontrer l'uniformisation locale d’une valuation en étudiant 1’algebre graduée qui lui
est naturellement associée.

Les travaux de cette thése viennent s’insérer dans le cadre de cette nouvelle
approche. L'objectif est d’utiliser les séries de Puiseux et les polynomes-clés, outils
indépendants de la caractéristique, pour proposer une preuve de l'uniformisation
locale des valuations définies sur un anneau quelconque. Dans un premier temps, nous
proposons une généralisation des séries de Puiseux définies par Spivakovsky ([S1]) a
un anneau local régulier complet de caractéristique mixte muni d’une valuation de rang
1, ainsi que des résultats de dépendance intégrale pour les séries tronquées. Dans un
deuxiéme temps, nous reprenons la méthode de Spivakovsky pour donner une nouvelle
preuve de l'uniformisation locale des schémas quasi-excellents de caractéristique nulle.
Enfin, nous montrons que, sous certaines hypothéses, on peut utiliser cette démarche
dans le cas mixte et qu'il suffit de monomialiser le premier polynome-clé limite.

Détaillons un peu plus le contenu de cette thése. Le Chapitre I est consacré
aux préliminaires. Nous y introduisons la notion de quasi-excellence pour les anneaux
et les schémas, notion qui impose deux conditions, 1'une locale et I’autre globale.

Définition 2 — Un anneau noethérien R est quasi-excellent si les deux conditions sui-
vantes sont vérifiées :

(1) Pour tout P € Spec(R), le morphisme de complétion Rp — Rp est régulier ;
(2) Le lieu régulier de toute R-algebre de type fini est ouvert.

Un schéma localement noethérien est dit quasi-excellent s'il existe un recouvrement formé d’ou-
verts affines (Uy), Uy = Spec(Ry), tel que, pour tout a, R, soit un anneau quasi-excellent.

Remarquons que dans le cas des anneaux locaux, la quasi-excellence est équivalente
a (1). Comme on l'a vu précédemment, ces anneaux sont le cadre le plus général pour
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étudier le probleme de la résolution des singularités.

Apres quelques généralités sur les valuations, la composition de valuations et les
algébres graduées associées, on définit la notion essentielle de valuation monomiale.
En effet, un élément dont sa valuation est égale a sa valuation monomiale, peut étre
monomialisé. Dans le cas ou 'anneau est k [[u1, ..., 11,]], cette valuation est :

sz?éo}/

ott f =Y cqu® € k[[ur, ..., tn]], u = (un, ..., uty) et u® = uft.ulr,

Par la suite, nous présentons les différentes notions d uniformisation locale pour les
schémas et les anneaux. Comme le probléme est local, on n’étudie que les anneaux lo-
caux. L'uniformisation locale d'une valuation v de K, le corps des fractions d'un anneau
local intégre R ou est centrée la valuation, revient essentiellement a trouver un anneau
R’ régulier qui domine birationnellement R et tel que R’ C R, C K. On rappelle que :

Ry = {f € K|v(f) > 0}.

Plus précisément, la propriété d’'uniformisation locale plongée dans le cadre des an-
neaux locaux integres est la suivante :

vou(f) = min { é(xiv(ui)

Propriété 3 — Soient (R, m) un anneau local noethérien integre et v une valuation de K, le
corps des fractions de R, centrée en R. On dit que v admet une uniformisation locale plongée
si, pour un nombre fini d'éléments de R, fi, ..., f; € R tels que v(f1) < ... <v(fy), il existe une
suite d’éclatements locaux par rapport a v :

R0 py o P2 pey L R

telle que R soit régulier et telle qu'il existe un systeme réqulier de parametres uh) =
(ugl),...,ug)> de RY tel que les f; soient des mondmes en u'!) pour 1 < i < q et f; divise
fi+1 dans R(l), 1<i<g—1.

Cette propriété est celle que nous voulons obtenir lorsque R est quasi-excellent et
de corps résiduel k de caractéristique nulle. Si k et R sont de caractéristique p > 0, il
faut ajouter ’hypothese [k : k”] < +o0. Enfin, si R est de caractéristique mixte et I est le
groupe des valeurs de v, nous rajoutons comme hypotheses [k : k] < +oo et v(p) ¢ pT.

La méthode proposée dans cette these est la suivante : d’apres [NS], pour obtenir la
Propriété 3, il suffit de la démontrer pour des valuations de rang 1, valuations qui sont
archimédiennes. On introduit alors un idéal de R appelé idéal premier implicite défini
dans [HGOAST] comme suit :

Définition 4 — Soient R un anneau local noethérien intégre et v une valuation archimé-
dienne de K, corps des fractions de R, centrée en R. On appelle idéal premier implicite de R
associé a v, noté H(R,v) ou plus simplement H s'il n'y a pas d’ambiguité, I'idéal de R défini
par :

H= () PR
pev(R\{0})
o Py = {f € R|v(f) = B}

Cet idéal permet de décrire les éléments de R de valuation infinie. II possede les
propriétés suivantes :



(1) HNR = (0);

(2) R — R/H;

(3) H est un idéal premier de R;

(4) v s’étend de maniere unique en une valuation v centrée en R/H;

(5) Si R est un anneau local integre quasi-excellent, alors Ry est régulier.

Cette derniere propriété est essentielle pour montrer que R est régulier. Comme 1'on
suppose R local et noethérien, il suffit de démontrer que R est régulier. Grace au Lemme
I11.18, pour montrer que R est régulier il faut montrer que Ry et R/H le sont. Or, par
la propriété (5), il suffit de montrer que R/H est régulier. Dans le Chapitre III, nous dé-
montrons ce résultat en caractéristique nulle. Dans le Chapitre IV, nous montrons que,
pour l'obtenir en caractéristique mixte, il suffit de démontrer la Conjecture 12, conjec-
ture qui reste ouverte et non-démontrée a ce jour.

Dans la derniére partie du Chapitre I, nous développons la notion d’éclatements lo-
caux encadrés définie dans [S1]. Ces éclatements sont de la forme :

t:(Ru)— (R(l),u(l)) ,

ol 'on impose des conditions de compatibilité entre u et uM Leur propriété essentielle
est que, pour une suite d’éclatements de ce type :

(R,u) = <R(o)lu(0)) T, (Rm,u(l)) oy e <R<l>,u<l>> )

chaque u;j peut s’exprimer comme un mondme en u(d) multiplié par une unité de RO,
De plus, cette suite fait décroitre les deux invariants suivants :

e(R,v) = emb.dim <1/2\/H) ,

r(R,u,v) = dimg (Zn; Qv(ui)> .

i=1

Enfin, nous énongons un premier théoreme de monomialisation pour des éléments
dont leur valuation est égale a la valuation monomiale (Théoreme 1.99) dont la preuve,
issue de [S1], repose sur un cas particulier du jeu d’'Hironaka (voir [Hz] et [Sz]). Nous
terminons le Chapitre I par la construction d'une suite élémentaire uniformisante per-
mettant d’obtenir 1'uniformisation locale d"une valuation attachée a une hypersurface
quasi-homogene satisfaisant certaines conditions vis-a-vis de l'algebre graduée. Cette
suite élémentaire uniformisante est la piece fondamentale de 1’algorithme proposé dans
les Chapitres III et IV afin d’obtenir la Propriété 3 d’uniformisation locale plongée pour
des anneaux locaux integres.

Dans le Chapitre II, nous essayons d’obtenir, pour les séries de Puiseux, le
méme type de résultats que dans le cas des courbes sur C. Plus précisément, si R
est un anneau local régulier complet muni d’une valuation de rang 1, on le plonge
dans un anneau de séries généralisées de Puiseux. Ce résultat a déja été démontré par
Kaplansky ([Ka]) ainsi que par Poonen ([P]). Ici, on reprend la méthode proposée par
Spivakovsky ([S1]) pour la généraliser au cas de caractéristique mixte. L'intérét de cette
méthode est que le plongement est construit de maniere explicite. Le résultat principal

est le suivant :
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Théoréme 5 — Soient (R, m, k) un anneau local régulier complet et v une valuation de K
le corps des fractions de R, de rang 1 centrée en R. Si R est de caractéristique mixte, on suppose
de plus que p ¢ w?. Il existe alors un anneau Ag et un monomorphisme d’anneaux :

1:R— Ag,
tels que v soit la restriction a R de la valuation de Mal cev-Neumann associée a Ag.

Ici, la valuation de Mal’cev-Neumann est la valuation t-adique (ou p-adique) et :
k| [&| si car(R) = car(k)

AR = j— r/ .
Wilp si car(R) # car(k)

ott W est un anneau local d’idéal maximal engendré par p (la caractéristique de k) et de
corps résiduel k,, une cloture algébrique de k,. On rappelle que :

m, ={f € K|v(f) >0} etk, = R,/my,.

La preuve de ce théoréme utilise de maniere cruciale les polynomes-clés introduits dans
[HGOAS] et [S1] et dont on rappelle ici la définition :

Définition 6 — Soit K — K(x) une extension de corps simple et transcendante. Soit '
une valuation de K(x), notons p := . On note G le groupe des valeurs de p' et Gy celui

de p. On suppose de plus que u est de rang 1 et que y'(x) > 0. Un ensemble complet de
polyndmes-clés pour y' est une collection bien ordonnée :

Q = {Qi}iea CK[x]
telle que, pour tout B € G, le groupe additif Pg N K[x] soit engendré par des produits de la forme

S S
aHQZ’, a € K, tels que Y yip' <Qij) +u(a) = B.
j=1 j=1
L’ensemble est dit 1-complet si la condition a lieu pour tout p € G;.

Avec cette définition, les polynémes introduits dans le cas des courbes sur C sont
bien des polynomes-clés. De plus, on remarque qu’ils sont en nombre fini ce qui n’est
pas toujours le cas. D’apres [HGOAS] et [S1], on sait qu’il existe toujours un ensemble
complet de polyndmes-clés. La construction se fait par récurrence transfinie et le type
d’ordre de I'ensemble est au plus w X w, il existe donc des polyndmes-clés limites.

Par le théoreme de structure de Cohen, on sait que R est de la forme

R— k([[u1,...,un+1]] si car(R) = car(k)
W [[u1,...,un]] si car(R) # car(k)
ol W est un anneau complet de valuation discrete de parametre régulier p et de corps ré-
siduel k. La preuve du Théoréme 5 consiste a construire par récurrence transfinie la série
de Puiseux de u;, en utilisant une méthode de Newton via les polyndomes-clés {Q;;}ic Aj
de l'extension Kj_1 — Kj_q(u;), ot Kj_q = k ((uy,...,uj—1)) ou W ((uy,.., uj_1)) et, la
suite croissante (¢;;)c A; définie par :

Bii = v(9; 1, Qi)
&ji = b ,
p
. o . Byi—v(9,» Qi) 10
ou bj; est le plus petit élément b de IN qui maximise b et djs = Ea_ui'

seN,je{r,.,n}etr=r(R uv).
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Une autre généralisation du cas des courbes sur C est le fait que les séries de Puiseux
tronquées sont algébriques. Notons A le sous-anneau de Ar engendré par (1), ..., t(1y)
et toutes leurs troncatures et A 5 le sous-anneau de A engendré par toutes les tronca-
tures ouvertes de la forme u;(B'), ott (j/, B') <iex (j, B) pour I'ordre lexicographique. On
a alors la proposition suivante :

Proposition 7 — Soient j € {r,..,n} et B € T U{co}. S'il existe i € A; tel que B < g,
alors u;(B), la série de Puiseux de u; tronquée en B, est entiere sur Ajg.

Nous terminons ce chapitre en introduisant la notion de séries de Puiseux univer-
selles, notion qui ne dépend pas de l'ordre des variables contrairement a la construction
faite dans la preuve du Théoréme 5 qui dépend des polyndmes-clés.

Le Chapitre III traite uniquement de l'uniformisation locale en caractéristique
nulle. Nous reprenons la méthode proposée dans [S1] pour 'adapter a ce cas. Considé-
rons (R, m, k) un anneau local régulier complet et de dimension n avec m = (uy, ..., Uy,).
Soient v une valuation de K = Frac(R), centrée en R, de groupe des valeurs I, et I'; le
plus petit sous-groupe isolé non-nul de I'. On note :

H=A{feR|v(f) ¢ T1}.
H est un idéal premier de R (voir Preuve du Théoréme III.17). On suppose de plus que :
n=-e(R,v)
c’est-a-dire que :
HC m?

On note également r = r(R, u,v).
La valuation v considérée est la composée de la valuation u : L* — T'; de rang 1 centrée
en R/H, ou L = Frac(R/H), avec la valuation 6 : K* — I'/Ty, centrée en Ry, telle que
kg ~ K(H) = RH/HRH.
L’objectif étant de rendre régulier R/H, on doit désingulariser H. La méthode consiste
a utiliser des suites locales encadrées, puis de compléter a chaque étape afin d’utiliser
l'idéal premier H. Ces suites sont appelées des suites formelles encadrées. On montre alors
que l'idéal premier implicite est principal, engendré par un polyndme en u, et que sa
hauteur est au plus 1. Cette propriété reste vraie pour tous les transformés de H via des
éclatements formels. On obtient alors un premier théoreme de monomialisation :
Théoréme 8 — Deux cas se présentent :

(1) Ou bien H # (0) et il existe une suite formelle encadrée :
(R,u) —2 (Rm,um) _m L (Ra—l),u(l—l)) T (Ra),u(l))
telle que :
<e (R(l),v(l)) ,e (R(l),v(l)> —7r (R(l),u(l),v(l)>) <jex (e(R,v),n—r1).
(2) Ou bien H = (0) et pour tout f € R, il existe une suite formelle encadrée :

(R, u) —2> (Ru),u(l)) e (R(l—l),u(l—l)) Y (Ra),u(l))

telle que f soit un monome en u'") fois une unité de R™.
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La preuve de ce théoreme se fait par récurrence sur n — r. Comme H est engendré par
un polyndme, il suffit d’obtenir le résultat pour les polyndmes en u,,. Celui-ci est obtenu
par récurrence sur le degré et par développement standard d’éléments de R en fonction
des polyndmes-clés. I faut donc monomialiser les polyndmes-clés; en utilisant les suites
locales uniformisantes du Chapitre I, on se rend compte qu’il suffit de les monomialiser
uniquement jusqu’au premier polyndme-clé limite, s’il existe. Or en caractéristique nulle
on a le résultat suivant :

Proposition 9 — Si car (k,) = 0, il existe un ensemble 1-complet de polyndmes-clés
{Qi}iea tel que A est, soit un ensemble fini, soit IN*. En particulier, il n’y a pas de polyndmes-
clés limites pour des valuations de rang 1 en caractéristique nulle.

Ce résultat repose sur le fait qu’en caractéristique nulle, la suite formée par les va-
luations des polyndmes-clés n’est jamais bornée. Ainsi, le Théoreme 8 est vrai en carac-
téristique nulle mais aussi dans les cas de caractéristique positive ou mixte, chaque fois
qu’il existe un ensemble 1-complet de polyndmes-clés n’ayant pas de polynomes-clés
limites.

Par la suite, on obtient un deuxiéme théoréeme de monomialisation mais cette fois
avec des suites locales encadrées et non plus formelles encadrées. La preuve se fait par
approximations m-adiques. Enfin, dans la derniere partie, on démontre la Propriété 3
pour des anneaux locaux integres quasi-excellents dont le corps résiduel est de caracté-
ristique nulle, ainsi que le théoreme :

Théoreme 10 — Soit (S,m, k) un anneau local, non nécessairement integre, quasi-
excellent. Soient P un idéal premier minimal de S et v une valuation du corps des fractions
de S/ P centrée en S/ P et de groupe des valeurs T telle que car (k,) = 0.

1l existe alors un éclatement local 7t : S — S’ par rapport a v tel que S,,,; soit régulier et Spec(S')

soit normalement plat le long de Spec(S,,,;).

Dans le Chapitre IV, nous reprenons la méthode du Chapitre III en essayant de la
généraliser au cas des anneaux de caractéristique mixte grace au lemme suivant :

Lemme 11 — On suppose que :

R=W/{u,..un)] /(p—g),

avec § € W [[uy, ..., un|] a coefficients dans W* et m = (uy, ..., u,) son idéal maximal. Si
v(p) & pI, alors, a une suite formelle encadrée pres, on peut supposer R de la forme :

R = R[] [[urs1, o tn]],

oit R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et tel que
V|R[y] S0it monomiale par rapport au systeme régulier de parametres de R[r| et de rang rationnel
maximal.

On obtient les mémes résultats sur I'idéal H et on applique la méme méthode afin
de démontrer le Théoreme 8. Or, dans les cas de caractéristique positive ou mixte, il
existe des polyndmes-clés limites (voir [Mah]). Pour conclure il faut donc monomialiser
le premier polynome-clé limite ; on propose alors la conjecture suivante :

Conjecture 12 — On suppose que (R, m, k) est de la forme R[r] [[t+1, ..., Un]] 0it R[r]
est un anneau local régulier complet de dimension r et tel que v|g, soit monomiale par rapport
au systeme régulier de parametres de R[r] et de rang rationnel r. Supposons que le premier
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polyndme-clé limite Qy, ., de l'extension K,_1 — Ky,_1(uy) s’écrit sous la forme :

enw—1

en,w j
Qn,w = uf’; + Z Cpfuﬁ + COI
j=0

oit co, ¢y € R[] [[ttr41, ..., un-1]], 1 < j < enw — 1. On suppose de plus que :
[l k™ | < oo,
11 existe alors une suite formelle encadrée :
(R,u) = (R',u),
oit u = (Uy, ..., uy), u' = (U, ..., u},), telle que :
(1) Q. est un mondme en u' fois une unité de R’ ;
(2) Dans R, ul, divise Q,, ., mais u/* ne divise pas Q, ..

Plus précisément, a une suite formelle encadrée pres, il existe j € {r+1,..,n —1} et e € N,
e < en, tels que :

(3) Il existe g, h € R[r|[[ty+1, ..., un—1]] tels que co = g+ h;
(4) vou(h) > pe"fwﬁnlw, en particulier, h = 0 si Bn,w = 00;

e
(5) g contient un mondme de la forme cDu]’.’ oll @ est un mondme en uy, ..., U, et, pour

tous les autres mondmes de la forme w’u;l avec @' mondme en uy, ..., Uj 1, Ujy1, -y Un,

apparaissant dans Q o, v(@') > v(®@);
(6) SiB,, =ooalorsj=n—1.

Remarquons que l'on s’est ramené a une forme bien particuliere de polynome-clé
limite, on appellera cette forme un polyndme d’Artin-Schreier généralisé. Une fois de
plus, comme dans le cas des courbes sur C, le cas Artin-Schreier pose probleme et doit
concentrer toute notre attention.

Enfin, le Chapitre V reprend les théoremes du Chapitre III pour obtenir les
résultats d’uniformisation locale plongée pour des valuations centrées en des an-
neaux locaux quasi-excellents de caractéristique mixte dont le corps résiduel vérifie
[k : kP] < +oo et tels que v(p) ¢ pT'; en supposant que la Conjecture 12 soit vraie.
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CHAPITRE 1
Préliminaires

Tous les anneaux considérés sont supposés commutatifs et unitaires.
Si R est un anneau, I un idéal de R, on notera R le complété I-adique de R. Lorsque
(R, m) est un anneau local on dira plus simplement le complété de R au lieu du complété
m-adique de R.
Pour tout P € Spec(R), on note k(P) = Rp/PRp le corps résiduel de Rp.
Pour « € Z" et u = (uy, ..., u,) un ensemble d’éléments de R, on note :

&y

« _ K
u = Lll Uy

n .

Pour P,Q € R[X] avec P = ) "4;Q’ et a; € R[X] tels que le degré de a; est strictement
i=0

inférieur a celui de Q, on note :

dy(P) = n.

Si Q = X, on notera plus simplement d°(P) au lieu de dx(P).
Enfin, si R est un anneau integre, on notera Frac(R) son corps des fractions.

1. Structure des anneaux locaux réguliers complets

1.1. Caractéristique d’un anneau.

Le but de cette section est d’énoncer le théoreme de structure de Cohen pour des
anneaux locaux réguliers et complets. Par la suite, nous aurons souvent besoin de ce
théoreme dans les deux cas suivants : le cas équicaractéristique et le cas de caractéris-
tique mixte. La preuve repose sur la notion de lissité formelle, on pourra consulter [G1],
[ILO], [Mat1] et [Mat2] pour plus de détails.

Définition I.1 — Soit (R, m, k) un anneau local. On note car(R) sa caractéristique.
On dit que R est un anneau équicaractéristique si car(R) = car(k), sinon, on dit que c’est un
anneau de caractéristique mixte.

Remarque I.2 — Les seuls cas possibles sont les suivants :
(1) R est équicaractéristique :
(@) car(k) = car(R) =0;
(b) car(k) = car(R) = p, p un nombre premier;
(2) R est de caractéristique mixte :
(@) car(R) =0 et car(k) = p, p un nombre premier;
(b) car(R) = p" et car(k) = p, p un nombre premier, n > 2.
Exemples 1.3 — Un corps ou un anneau de séries formelles sur un corps sont des

anneaux équicaractéristiques; Z,), p un nombre premier, est un anneau de caractéris-
tique mixte.



Chapitre I. Préliminaires.

Pour les anneaux de caractéristique mixte, il se peut que p soit un parametre régulier.
Il est souvent utile de faire la distinction entre les deux cas, pour cela, nous introduisons
la définition suivante :

Définition 1.4 — Soient (R, m, k) un anneau local de caractéristique mixte et p = car (k).
On dit que R est ramifié si p € m?, sinon on dit qu'il est non-ramifié.

1.2. Le théoréme de structure de Cohen.

Théoreme L5 — Soit (R, m, k) un anneau local régulier complet de dimension n.

(1) Si R est équicaractéristique alors :
R >~ k[[u1, ..., ttn]] -

(2) Si R est de caractéristique mixte, il existe un anneau complet de valuation discrete W,
d’idéal maximal pW et g € W [[u1, ..., uu]], § € (U1, ..., u,) a coefficients inversibles
tels que :

R~ Wuy, ... u,l] /(p—g).

Définition 1.6 — Un anneau de Cohen est soit un corps de caractéristique nulle, soit
un anneau complet de valuation discréte, de corps résiduel de caractéristique p > 0 et d’idéal
maximal engendré par p.

Exemple 1.7 — Le corps k et I'anneau W du Théoreme 1.5 sont des anneaux de
Cohen.

Remarque 1.8 — Dans le cas (2), si k est parfait alors, I'anneau de Cohen W est
isomorphe a I'anneau des vecteurs de Witt de k (voir [G1], Remarques (21.5.3), (ii)). Si
de plus, R est non-ramifié alors R ~ W [[uy, ..., u,_1]].

2. Anneaux quasi-excellents

Dans [Gz], Grothendieck montre que tout schéma localement noethérien X, tel que
tout schéma intégre et de type fini sur X admette une résolution des singularités, est
quasi-excellent. De plus, il conjecture que la réciproque est probablement vraie et il
avance méme qu’elle est vraie en caractéristique nulle via le théoreme d"Hironaka ([H1]),
fait qui ne sera montré qu’en 2008 par Temkin ([Tem1]). En caractéristique positive et
en caractéristique mixte le probleme reste ouvert, ainsi, pour étudier le probleme de
I'uniformisation locale, les anneaux quasi-excellents forment la classe d’anneaux la plus
générale que l'on puisse considérer.

On pourra consulter [Gz2], [Mat1] et [ILO] pour les preuves des énoncés ci-dessous.

La quasi-excellence demande deux conditions sur I'anneau : une condition globale
sur le lieu régulier et une condition locale sur les fibres formelles.
Commengons par la condition locale.

2.1. G-anneaux.
Définition 1.9 — Soient R un anneau et M un R-module.
(1) On dit que M est plat sur R si, pour toute suite exacte de R-modules :
0N —-N-—=>N"—=0,
la suite induite :
0+NQRM—->NRM— N'®@gM — 0,

est exacte.



2. Anneaux quasi-excellents.

(2) Un morphisme d’anneaux o : R — R’ est un morphisme plat si R’ est plat sur R
pour la structure de R-module induite par o.

Définition I.10 — Soit R un anneau noethérien.

(1) Supposons que R contienne un corps k. On dit que R est géométriquement régulier
sur k si, pour toute extension k' |k telle que [k’ : k] < 400, 'anneau R @ k" est régulier.

(2) Soit o : R — R’ un morphisme d’anneaux noethériens. Pour tout P € Spec(R), notons
k(P) = Rp/PRp le corps résiduel de Rp. On dit que o est un morphisme régulier si :

(a) o est un morphisme plat ;
(b) Pour tout P € Spec(R), R’ @ x(P) est géométriqguement régulier sur x(P).
Définition .11 — Un anneau noethérie/ri R est appelé un G-anneau si, pour tout P €
Spec(R), le morphisme de complétion Rp — Rp est régulier.
Remarque L.12 —

(1) Le choix de la lettre G dans la définition est en hommage a Grothendieck qui
est le premier a avoir dégagé cette notion.

(2) Un anneau local noethérien est régulier si et seulement si son complété est
régulier ((AMa], Théoréme 11.24).

(3) La notion de G-anneau est conservée par localisation, passage au quotient et
passage aux algebres de type fini.

(4) Un anneau local noethérien complet est un G-anneau ([Mat1], Théoréeme 68).

La notion de G-anneau est notre condition locale, regardons maintenant la condition
globale.

2.2. Anneaux J-2.

Définition .13 — Soit R un anneau noethérien.

(1) On appelle Reg(R) = {P € Spec(R) | Rp est régulier} le lieu régulier de R et
Sing(R) = Spec(R) \ Reg(R) le lieu singulier de R.

(2) On dit que R est J-o si Reg(R) contient un ouvert non-vide de Spec(R).
(3) On dit que R est J-1 si Reg(R) est ouvert dans Spec(R).
(4) On dit que R est J-2 si toute R-algeébre de type fini est J-1.
Remarque I.14 —
(1) La lettre J vient de jacobien.
(2) La notion d’anneau J-2 est notre condition globale.

(3) Si R est un anneau noethérien réduit alors : J-1 = J-o.

Nous allons énoncer quelques théoréemes donnant des exemples et des criteres qui
vérifient ces conditions.

Théoreme I.15 — Un anneau local noethérien complet est J-1, en particulier les anneaux
de séries formelles sur un corps ou un anneau de valuation discrete sont J-1.

Remarque 1.16 — Ce théoreme est di & Nagata et repose sur le Théoreme L5 de
structure de Cohen et le critere jacobien de Nagata. Dans [Gz], on voit que pour obtenir
le résultat, il suffit de montrer qu'un anneau local noethérien complet integre est J-o.

3



Chapitre I. Préliminaires.

Corollaire .17 — Un G-anneau local est J-1.

Le théoreme suivant, d(i a Grothendieck, va nous donner le lien entre la notion de
G-anneau et d’anneau J-2 dans le cas des anneaux locaux. On peut trouver une preuve
dans [G1] et dans [Matx].

Théoréme 1.18 — Soit R’ une R-algebre de type fini. Si R est un G-anneau alors R’ est un
G-anneau.

Corollaire 1.19 — Un G-anneau local est J-2.

Passons maintenant a la notion de quasi-excellence.

2.3. Anneaux et schémas quasi-excellents.

Définition I.20 — Un anneau est quasi-excellent si c’est un G-anneau J-2.

Remarque I.21 —

(1) Remarquons que, par définition, comme un G-anneau est noethérien, un anneau
quasi-excellent est noethérien.

(2) Lanotion de quasi-excellence est conservée par localisation, passage au quotient
et passage aux algebres de type fini.

(3) Un corps est quasi-excellent.

Grace au Corollaire I.19, on peut affaiblir les hypotheses pour les anneaux locaux :

Proposition 1.22 — Un anneau local est quasi-excellent si et seulement si c’est un G-
anneau.
Exemples 1.23 — Par le (4) de la Remarque 1.12 et par la Proposition 1.22, on en

déduit que les anneaux de séries formelles sur un anneau de Cohen sont des anneaux
quasi-excellents.

Définition 1.24 — Un schéma localement noethérien est dit quasi-excellent s'il existe un
recouvrement formé d’ouverts affines (Uy,), Uy = Spec(Ry), tel que, pour tout a, R, soit un
anneau quasi-excellent.

3. Valuations

Les notions de valuations et surtout de places se sont développées entre la fin du
XIX®™ siecle et le début du XX®™ siecle. C’est tout d’abord en théorie des nombres
qu’est apparu le concept de places d'un corps, introduit par Dedekind et Weber en
1882. Par la suite, Hensel, en développant sa théorie des nombres p-adiques crée la no-
tion de valeur absolue p-adique. Mais c’est Krull ([Kr]) qui, en 1932, définit la notion
générale de valuation.

Zariski, dans le cadre de la résolution des singularités, introduit la notion de va-
luation en géométrie algébrique. Son objectif était de résoudre les singularités via 1'uni-
formisation locale d’une valuation donnée. Ces dernieres années, 1’'étude des valuations
a été relancée par Spivakovsky et Teissier dans cet objectif. Enfin, Cossart et Piltant en
2008 ([CP1] et [CP2]) ont montré que 1’on pouvait résoudre les singularités d"une variété
algébrique de dimension 3 sur un corps de caractéristique positive via l'uniformisation
locale.

Notre référence principale pour cette section est [Va1], on pourra également consul-
ter [ZS] ou [B].



3. Valuations.

3.1. Premieres définitions.

Définition L.25 — Soit (I, +, <) un groupe commutatif totalement ordonné. Considérons
co ¢ T et munissons l'ensemble T U {oo} d'une relation d’ordre total en posant :

VaeTl, a < oo.
Par convention, on suppose que :
VaeTl,co+a=n-+ 00 =00+ 00=c0.

Soient R un anneau et v : R — T U {oco} une application. On dit que v est une valuation si :

(1) Vf,8 € R v(fg) =v(f) +v(g);

(2) Vf,8 € R v(f+g) > min{v(f),v(g)}

(3) v(1) =0et v(0) = co.

Remarque .26 — Lorsque R est un corps, quitte a remplacer I par v(R\ {0}), on

peut supposer que v est surjective.

Si R est un anneau integre de corps des fractions K et si pour tout f € R\ {0}, v(f) # oo,
alors il existe une unique valuation de K qui prolonge v.

Définition I.27 — Soit v une valuation sur un corps K. On appelle anneau de valuation
de v, l'anneau :

Ry = {f € K|v(f) > 0}.
C’est un anneau local d’idéal maximal :
m, = {f € K|v(f) > 0}.

On note alors k, = R, /m, le corps résiduel de R,.
Définition 1.28 — Soient R un anneau et v une valuation. L'ensemble :
Peo = v ({o0})
est un idéal premier de R appelé support de v.
3.2. Centre d’une valuation.

Définition 1.29 — Soient K un corps, R un sous-anneau de K, P un idéal premier de R et
v une valuation de K. On appelle centre de la valuation I'idéal premier R N\ m,. On dit que v est
centrée en Psi R C R, et P = RN m,.
Plus généralement, soient R un anneau et P un idéal premier. Une valuation de R centrée en P
est la donnée d’un idéal premier minimal P de R contenu dans P et d'une valuation du corps
des fractions de R/ Py, centrée en P/ Pu. L'idéal Py est alors le support de la valuation.
Si R est un anneau local d’idéal maximal m, on dira que v est centrée en R pour dire que v est
centrée en m.

Lorsque R est un anneau local, on peut relier cette notion a la relation de domination.

Définition 1.30 — Soient (R, m, k) et (R',m’, k") deux anneaux locaux. On dit que R’
domine Rsi R C R'etsim=RNm’.
Si de plus ce sont des anneaux intégres ayant méme corps des fractions, on dit que R’ domine
birationnellement R.

Remarque L.31 —

(1) L'injection de R dans R’ définit un isomorphisme de k sur un sous-corps de k'.
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(2) Soit R un anneau local. Une valuation est centrée en R si et seulement si R,
domine R.

Définition .32 — Soit X un schéma integre de corps des fonctions K(X). Une valuation
v de K(X) est centrée en un point § de X si v est centrée en Ox . On dira alors que ¢ est le
centre de v.

Remarque I.33 — Le centre de v dans X, s’il existe, est 'unique point ¢ tel que R,
domine birationnellement Ox .

3.3. Algebres graduées d’une valuation.

Nous allons maintenant voir qu’a 'aide d’une valuation, nous pouvons définir, a
partir d'un anneau, une algebre graduée.

Définition 1.34 — Soient R un anneau et v : R — I'U {oo} une valuation centrée en un
idéal premier de R. Pour tout « € v(R\ {0}), on définit les idéaux :

Py = {f € Rv(f) = a};

Po+ ={f € Rv(f) > a}.
L’idéal P, est appelé le v-idéal de R de valuation «.
On définit alors ’algébre graduée de R associée a v par :

gr(R)= &  Pu/Puy+
acv(R\{0})
L’algebre gr, (R) est un anneau integre.
Pour f € R\ {0}, on définit son image dans gr,(R), notée in, ( f), comme étant l'image naturelle
de f dans Py )/ Py(f),+ C grv(R); c’est un élément homogene de degré v(f).
Enfin, on définit une valuation naturelle sur gr,(R) de groupe des valeurs v(R \ {0}), notée
ord, par :
ord(f) = minu,
oit f € gry(R) s'écrit comme une somme finie f = Y fa, fu € Pu/Pa+.
acv(R\{0})
Si R est un anneau local integre, on définit une autre algébre graduée comme suit :

Définition 1.35 — Soient R un anneau local intégre, K = Frac(R) et v : K* — I' U {oo}
une valuation de K centrée en R. Pour tout « € T, on définit les R, -sous-modules de K suivants :

Py ={f € K[v(f) =2 a}
Py = {f € K|v(f) > a}.
On définit alors 'algébre graduée associée a v par :

Gy = P Pu/ P+

ael

Pour f € K*, on définit son image dans G,, notée in,(f), comme dans la Définition 1.34.
Enfin, on définit une valuation naturelle sur G, de groupe des valeurs T', notée ord, comme dans
la Définition 1.34.

Remarque 1.36 — On a l'injection naturelle :
grv(R) = G,.
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Définition 1.37 — Soit G une algébre graduée n’ayant pas de diviseurs de zéro. On appelle
saturé de G l'agebre graduée G* définie par :

G* = {i—i ' f.g € G, g homogene, g ;AO}.

On dit que G est saturée si G = G™.

Remarque 1.38 — Pour toute algebre graduée G, on a :

G* = (G")".

En particulier, G* est toujours saturée.

Exemple 1.39 — Soit v une valuation centrée en un anneau local R. Alors :

Gy = (grv(R))".

En particulier, G, est saturée.

3.4. Rang d’une valuation.

On va définir des invariants pour une valuation donnée, reliés entre eux par 1'inéga-
lité d’Abhyankar.

Définition I.40 — Soient K un corps et v : K* — I' U {oo} une valuation de K centrée en
un sous-anneau local de K. On définit le rang de v, noté rg(v), et le rang rationnel de v, noté
rg.rat(v), par :

rg(v) = dim(Ry),

rg.rat(v) = dimg (I' ®z Q).
Remarque I.41 —

(1) Un sous-groupe A C T’ est dit isolé si pour x € Aet B € I tels que —a < B < «,
alors B € A.
De manieére équivalente, on peut définir le rang de v comme étant le nombre
de sous-groupes distincts et isolés de I' (en comptant I' mais pas {0}). I y a
en fait une bijection entre les sous-groupes isolés de I' et les idéaux premiers
de R, qui, a un sous-groupe isolé A C T, associe un idéal premier Py = {f €

Ry |v(f) & A} de R,.
(2) r¢(v) < rg.rat(v) (voir Proposition 3.5 de [Va1]).

Théoreme I.42 — (Inégalité d’Abhyankar) Soient K un corps et v : K* — I'U {oo}
une valuation de K centrée en un sous-anneau (R, m, k) local noethérien de K. Par la Remarque
131, k, est une extension de k, on note alors deg.tr(k,|k) le degré de transcendance de I'extension
ky|k. On a l'inégalité :

rg.rat(v) + deg.tr(k,|k) < dim(R).
Remarque I.43 — On en déduit alors, via la Remarque .41, que :
rg(v) < dim(R) < +oo.
7
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3.5. Composition de valuations.

On va introduire la composition de valuations qui va nous permettre de nous ra-
mener de 'uniformisation locale de valuations de rang quelconque a l'uniformisation
locale de valuations de rang 1.

Soit v : K — I' une valuation d’un corps K telle que rg(v) > 1. Ainsi il existe une va-
luation V' : K — I de K telle que I'" & T et R, C R Alors, l'idéal m,» N R, est un idéal
premier de R, et R,y = (Ry),,nR,- On note T le sous-groupe isolé de I' correspondant a
I'idéal premier m,, N R, de R,. On a :

I ~T/T.
Soit v : k(m, N R,) — T la valuation de x(m,» N R,), alors :
Ry =R,/(my NRy).
On a ainsi décomposé v en deux valuations v’ et 7 telles que :

rg(v) = rg(v') +rg(v).
On note alors v = v/ o 7.

Réciproquement, soient v; une valuation de K et v, une valuation de k,,. Soit ¢ :
Ry, — ky, le morphisme canonique. Alors, il existe une valuation v de K telle que
R, = (p_l(RVZ) appelée composition de v; et v, notée v = v; o 1.

L'idéal (p_l(mVZ) est un idéal premier non-nul de R, contenu strictement dans m,. Si v
est centrée en un anneau local R, alors vy est centrée en R-1(,,, )nr €t V2« ¢~1(m,,)NR) st

V2
centrée en R/ (¢~ '(m,,) N R).

3.6. Valuations archimédiennes et valuations monomiales.

Terminons cette section avec un exemple de valuation : la valuation monomiale.
Nous suivons ici 'exposé fait par [S1].
On rappelle qu'un semi-groupe est un ensemble muni d"une loi associative.

Définition I.44 — Un semi-groupe ordonné ® est dit archimédien si, pour tout «, p € O,
B >0, il existe n € N\ {0} tel que & < np.
Une valuation v centrée en un anneau local R est dite archimédienne si v(R \ {0}) est un
semi-groupe archimédien.

Remarque I.45 — On ferra attention a ne pas confondre la notion de valuation ar-
chimédienne, qui correspond au fait que v(R \ {0}) possede la propriété d’ Archimede au
sens de [ZS] (p. 45), avec la notion de valeur absolue non-archimédienne qui correspond
au fait de remplacer l'inégalité triangulaire par l'inégalité : |x 4+ y| < max{|x|, |y|}. En
suivant la terminologie de [B] et [L], pour éviter toute confusion, on parlera plutdt dans
ce cas-la de valeur absolue ultramétrique.

Lemme 1.46 — Soit I un groupe abélien ordonné ne possédant pas de sous-groupes isolés
autres que {0} et lui-méme. Soit & C T, un semi-groupe ordonné. Alors ® est archimédien.

Preuve : Par ’absurde, si ® n’est pas archimédien, il existe &, f € @, B # 0 tels que, pour
tout n > 1, np < a. En particulier, 'ensemble :

{yeT|3IneN\{0}, —nB <y <nB}

est un sous-groupe isolé non-trivial de I'.
O

Corollaire 1.47 — Une valuation de rang 1 centrée en un anneau local est archimédienne.
8



3. Valuations.

Le Lemme I.48 suivant nous dit que pour une valuation archimédienne centrée en
un anneau local noethérien, toute suite croissante dans le groupe des valeurs ne peut
étre bornée. Ce lemme technique nous sera utile a plusieurs reprises.

Lemme 1.48 — Soit v une valuation archimédienne centrée en un anneau local noethérien
R. Notons P le support de v. Alors, v (R \ Pw) ne contient aucune suite infinie croissante et
bornée.

Preuve : Soit (B;);, une suite croissante infinie de v (R \ P») bornée par B. Cette suite
correspond a une suite infinie décroissante d’idéaux de R/Pg. Il nous suffit donc de
montrer que R/Pg est de longueur finie. Notons m I'idéal maximal de R et v(m) =
min {v (R \ Px) \ {0} }. La valuation étant archimédienne, il existe n € IN tel que :

B < nv(m).
Ainsi, m" C Pg et donc, il existe une application surjective :

R/m" — R/Pg.

Lemme I.49 — Soit (R, m, k) un anneau local régulier. On suppose que m = (i, ..., Uy) =
u, oit n est le nombre de générateurs de m. Soient ® un semi-groupe ordonné archimédien et

Bi,.... Bn € D telsque f; > 0,1 < i< n.
Notons @, C @ le semi-groupe ordonné suivant :
K € N} .

D, = {Zn;“i,gi
i=1

Pour v € ®,, considérons l'idéal de R :

L, = <{ui‘1...uﬁ”

Alors, pour f € R\ {0}, I'ensemble :

est fini.

Preuve : Soit f € R\ {0}. Comme ® est archimédien alors @, I'est aussi. Remarquons
que P, est un ensemble dénombrable et que ®¢ est un ensemble bien ordonné car a une
suite décroissante de @y correspond une suite croissante d’idéaux de R de la forme I,
qui est forcément finie vu que R est noethérien. Notons 7yg le plus petit élément non-nul
de @ (en fait 0 estle min de ®, et de @ 7, Si ce dernier ensemble est réduit a 0, la preuve
est terminée).

Comme f est non-nul, il existe i > 0 tel que f ¢ m' et donc @ # .. 1l existe donc
71 = sup Py € ®,. Or O, est archimédien, ainsi, il existe N € IN tel que 71 < No.

n
Alors, pour tout élément y = sziﬁi € <I>f, «; € IN, comme B; € cpf, pour1 <i<n on
i=1

n n
<lei> Yo < leiﬁi <71 < N7o.

i=1 i=1

en déduit :

9
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n n
Nécessairement, on a (N — Z oci) Yo > 0 et comme 7y > 0 on en déduit que Z a; <N,
i=1 i=1
c’est-a-dire qu’il n’y a qu’un choix fini de n-uplets (a1, ...,a,) et donc de v € ®y.
O

Corollaire I.50 — Sous les hypotheses du Lemme I.49, il existe une unique valuation, notée
Vo,u, centrée en un idéal premier de R, telle que :

vou(uj) =Bj, 1<j<n;

VO,u(f) = max{'y S CDf}, Vf € R\ {0}
Cette valuation est appelée la valuation monomiale de R associée a u et a B1, ..., Bn.

Soit v une valuation de groupe des valeurs I' et centrée en un idéal premier de R. On dit que v
est monomiale par rapport a u s'il existe B, ..., B € I'1 tels que :

v f € R\{0}, v(f) = vou(f):

Exemple L51 — Pour v une valuation centrée en R = k[[u1, ..., u,]], si f = }_cou®,

alors v, (f) = min { é“ﬂ/(”z‘)

v(uy), ..., v(iy).

Cy F O} est la valuation monomiale associée a u et a

Remarque I.52 — Si v est une valuation centrée en R dont le groupe des valeurs est
archimédien et si v, est la valuation monomiale associée & u et a v(uy),...,v(uy), alors,
pour tout vy € ®,, v(I,) = min{v(f) | f € I,} > . Ainsi, pour tout f € R\ {0} :

vou(f) <v(f).

De plus, la valuation v est monomiale si et seulement si :
¢ry(R) = k [iny(u1), ..., iny (uy)] .
4. Différentes notions d’uniformisation locale

Dans cette section nous allons donner différentes notions d’uniformisation locale,
que ce soit pour des schémas ou pour des anneaux. L'uniformisation locale est la ver-
sion locale de la résolution des singularités. Résoudre les singularités d"un schéma X
noethérien irréductible et réduit revient a trouver un morphisme propre et birationnel
X' — X tel que X' soit régulier. Ainsi, I'uniformisation locale d’une valuation v de K,
le corps des fractions d’un anneau local intégre R ol est centrée la valuation, revient a
trouver un anneau R’ régulier qui domine birationnellement R et tel que R’ C R, C K.
Les références utilisées pour cette partie sont [S1], [CP1] et [NS].

4.1. Uniformisation locale des schémas.

Définition 1.53 — Soient X un schéma noethérien et Y un sous-schéma de X. Soit Ly le
faisceau d’idéaux définissant Y dans X.
. . . 1
On dit que X est normalement plat le long de Y si, pour tout point { € Y, DIy -/ Iy est

n=0
un Oy g-module libre.

Propriété 1.54 — (d’uniformisation locale des schémas). Soit S un schéma noethérien
(non nécessairement integre). Soient X une composante irréductible de S, et v une valuation
de K(X) centrée en un point ¢ € X. Il existe alors un éclatement 7t : S’ — S le long d’un sous-
schéma de S, ne contenant aucune composante irréductible de S,.4 et ayant la propriété suivante :
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soit X' le transformé strict de X par 7t et soit &' le centre de v sur X', alors &' est un point
réqulier de X' et S est normalement plat le long de X' en &'

Propriété I.55 — (d’uniformisation locale des schémas integres). Soit X un schéma
noethérien réduit et irréductible et v une valuation de K(X) centrée en un point § € X. Alors, il
existe un éclatement 7t : X' — X tel que le centre de v sur X' soit un point régulier de X'.

Le probleme étant local, on peut juste ’exprimer en termes d’anneaux. Avant, nous
allons rappeler la notion d’éclatement local par rapport a une valuation.

4.2. Eclatements locaux et uniformisation locale des anneaux.

Définition 1.56 — Soit (R, m) un anneau local noethérien integre de corps des fractions
K. Soit v une valuation de K centrée en R. Soient uy,..u, € R et vq,..,0, € R tels que
v(v;) < v(u;) pour tout i € {1, ...,r}. Notons R' l'anneau :

R' =R n ur
oo |

Alors l'anneau R = R, . est un anneau local d'idéal maximal m) = (m, "\R')R), .
Un éclatement local de R par rapport a v est un morphisme local d’anneaux locaux de la
forme :

7 (Rm) — (RY,mM),
Soient I un idéal de R et uy € I tel que v(ug) < v(f), pour tout f € I. Complétons uy en un
ensmble {ug, uy, ..., us} de générateurs de I. Le morphisme précédent est appelé un éclatement

local de R par rapport a v le long de I si v = s et v; = ug pour tout i € {1,...,s};
conditions auxquelles on peut toujours se ramener sans perte de généralité en posant uy = vy...0,

et u; = &uo, ie{l,..,r}
(i

Remarque I.57 — A isomorphisme pres, la définition précédente est indépendante
du choix de I'ensemble de générateurs de I, c’est-a-dire qu'un autre choix de générateurs
donne un anneau isomorphe.

Propriété 1.58 — (d’uniformisation locale des anneaux locaux). Soient (S, m) un
anneau local noethérien (non nécessairement integre), P un idéal premier minimal de S et v une
valuation du corps des fractions de S/P centrée en S/P. Alors, il existe un éclatement local
7w S — S par rapport a v tel que S, soit réqulier et Spec(S') soit normalement plat le long
de Spec(S.,;).

red

Propriété 1.59 — (d’uniformisation locale des anneaux locaux integres). Soient
(R, m) un anneau local noethérien integre, v une valuation du corps des fractions de R cen-
trée en R. Il existe alors un éclatement local 7t : R — R’ par rapport a v tel que R’ soit régulier.

Nous finissons cette section avec la notion de croisements normaux et d’uniformisa-
tion locale plongée.

4.3. Croisements normaux et uniformisation locale plongée.

Définition 1.6o — Soient (R, m) un anneau local noethérien et v une valuation centrée en
R, au sens de la Définition 1.29, de groupe des valeurs T. Soit u = {uq,...,u,} C m tel que
(1) +1/(0) = m+ 1/ (0). Enfin, pour f € R, on note f € R/1/(0) = R,y l'image de f dans
Ryeq par le morphisme de passage au quotient.

11
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(1) Un mondme u* = ui'...us est dit minimal par rapport a v si la famille {v(u;) | a; #
0}1<j<n est Z-libre dans T.

(2) Soit I un idéal de R. On dit que le triplet (R, I, u) est a croisements normaux si :

(a) Ryeq est un anneau local réqulier et (i, ..., %, ) est un systeme régulier de para-
metres de R4,

(b) Spec(R) est normalement plat le long de Spec(Ryeq) ;

(c) 1/ <I + (0)) est un idéal principal engendré par un mondme en uy, ..., U, (avec

la possibilité que I = (1) et donc I/ <I+ (O)) = (1)).
(3) Soit I un idéal de R, le triplet (R,1,u) est a croisements normaux standards par
rapport a v si (R, I,u) est a croisements normaux et 1/ <I + (0)> est engendré par

un mondme minimal par rapport a v.

(4) Soit I un idéal de R, on dit que (R, I) est a croisements normaux (resp. i croisements
normaux standards) sil existe u tel que (R, 1, u) soit a croisements normaux (resp. d
croisements normaux standards).

(5) On dit que R est désingularisé si (R, R) est a croisements normaux.

Définition 1.61 — Soient (R, m) un anneau local noethérien et v une valuation centrée en
R au sens de la Définition 1.29. Soit I un idéal de R, on dit que la paire (R, 1) admet une uni-
formisation locale plongée (resp. une uniformisation locale plongée standard) s'il existe
une suite :
R0 oy o 2 paeny 2L R
oit, pour 1 < i < I, 7t; est un éclatement local par rapport a v le long d’un idéal J\) ayant les
propriétés suivantes :

(1) Pour1 <i<l, ](i) 7 Po(i), Po(f;) étant le support de v dans R,
(2) (R(i), I R(i)) est a croisements normaux (resp. a croisements normaux standards).

Enfin, on dit que R admet une uniformisation locale plongée (resp. une uniformisation
locale plongée standard) si, pour tout idéal I de R, (R, I) admet une uniformisation locale
plongée (resp. une uniformisation locale plongée standard).

Propriété .62 — (d’uniformisation locale plongée des schémas). Soit S un schéma
noethérien (non nécessairement intégre). Soient X une composante irréductible de S,.; et v une
valuation de K(X) centrée en un point & € X. Il existe alors un éclatement 7t : S’ — S le long
d’un sous-schéma de S, ne contenant aucune composante irréductible de S,,; et ayant la propriété
suivante :
soient X' le transformé strict de X par 7, &' le centre de v sur X' et D le diviseur exceptionnel
de 71, alors (Ox: @, Ip &) admet une uniformisation locale plongée.

Dans le cas des anneaux locaux noethériens integres, on peut énoncer la propriété
de maniére un peu plus simple :

Propriété 1.63 — (d’uniformisation locale plongée des anneaux locaux integres).
Soient (R, m) un anneau local noethérien intégre et v une valuation de K, le corps des fractions
de R, centrée en R. On dit que v admet une uniformisation locale plongée si, pour un nombre
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5. L'idéal premier implicite.

fini d’éléments de R, fi, ..., f; € R tels que v(f1) < ... <v(fy), il existe une suite d'éclatements
locaux par rapport a v :

7o

R RM

m T2 -1

RUI-1) —— R()

telle que R soit régulier et telle qu'il existe un systeme régqulier de parametres uh) =
(u%”,...,ué”) de RY) tel que les f;, 1 < i < g, soient des monomes en u') et f1/.../ fq dans
RY.

5. L'idéal premier implicite

Pour une valuation donnée, I'idéal premier implicite est un des objets centraux de
I'uniformisation locale. En effet, cet idéal va étre 1'idéal a désingulariser. C’est un idéal
du complété qui nous décrit les éléments de valuation infinie. Enfin, via le Lemme III.18,
pour rendre R régulier (en fait R, voir la Remarque I.12), il nous suffit de rendre régu-
lier Ry et R/H, out H est I'idéal premier implicite associé a une valuation centrée en R.
L’intérét de 1'idéal premier implicite est que Ry est automatiquement régulier sous 1’hy-
potheése de quasi-excellence. Ainsi il nous suffira de démontrer 1'uniformisation locale
pour des valuations centrées en R/H.

On ne va présenter ici que les idéaux premiers implicites pour des valuations archimé-
diennes car cela étant suffisant dans le cadre de l'uniformisation locale vu que d’apres
[NS], il suffit de considérer des valuations de rang 1 qui sont archimédiennes (voir Co-
rollaire 1.47).

On va suivre les exposés fait par [S1] et [HGOAST].

5.1. Définition et premieéres propriétés.

Définition 1.64 — Soient (R, m, k) un anneau local noethérien, Ps, un idéal premier mi-
nimal de R et v une valuation archimédienne de Rp_ centrée en R. On appelle idéal premier
implicite de R associé a v, noté H(R,v) ou plus simplement H s’il n’y a pas d’ambiguité, l'idéal
de R définit par :

H= (] BR,
pev(R\Px)

oit Pg est le v-idéal de R de valuation B selon la Définition 1.34.
Remarque 1.65 —
(1) Sil'on suppose de plus que R est integre, alors P, = (0).

(2) Comme la valuation est archimédienne, pour tout € V(R \ P), il existe n € IN
tel que m" C Pg. Il y a donc équivalence entre :

(@) fE€EH;
(b) Il existe une suite de Cauchy (f;), C R telle que, si f, n:) f, alors

v(fu) 52,

(c) Pour toute suite de Cauchy (f,), C R telle que, si f, nj f, alors

v(fn) e
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Lemme 1.66 — Sous les hypoteses de la Définition 1.64, si H est l'idéal premier implicite
de R associé a v, alors :

HNR =Py
et il existe une inclusion naturelle :
R/Psx < R/H.
Preuve : Comme le morphisme de complétion est fidelement plat, alors :
VB € v(R\ Pw), PBRNAR = Py
(voir [Mat1], (4.C) (ii)). Ainsi :

HNR = (| PsR|NR= () Ps=Pu
) pev

(R\Peo)

OJ

Théoréeme 1.67 — Reprenons les hypotheses de la Définition 1.64. Soit H l'idéal premier
implicite de R associé a v, alors :

(1) H est un idéal premier de ﬁ;

(2) v s’étend de maniere unique en une valuation v centrée en R/ H.

Preuve : Soit f € R/H, f # 0. Soit f € R un représentant de f, comme f # 0, alors
f & H, c’est-a-dire qu'il existe By € V(R \ Px) tel que f ¢ Pﬁoﬁ.

Remarquons que l'ensemble {B € v(R\ Px) | B < Po} est fini. En effet, si cet ensemble
était infini, il existerais alors une suite infinie croissante d’éléments de v(R \ P ) bornée
par Bo, o, par le Lemme I.48 ceci est impossible.

On en déduit alors qu'il existe un unique f7 € v(R \ Pw) tel que :

f e (PsR)\ Py, . R.
Grace au (2) de la Remarque 1.65 et au Lemme 1.66, on voit que cet élément f7 ne dépend

que de f et pas du choix du représentant de f. On définit alors I'application :

7 (ﬁ/H)\{ﬁ} — v(R\ Px)

f = By
Par le Lemme 1.66, pour tout f € R\ P, v(f) =7 (7)
Par définition et grace au (2) de la Remarque 1.65, il est clair que, pour tout ]_‘, gc R/ H,

17(7+§> > min {0(7) ,17@}

7(f2) 27 (f) +7(®).
Montrons que, pour tout f,g€ <ﬁ /H > \ {6} :
(i): f8§ #0;
(ii): 7 (f3) =7 (f) +7(®).
14
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En effet, notons o« = v (f) et f =7(3). Soit vy € {a, B}, alors, comme mP, C P, 4, ona:

Py/ Py = Py/ (Pyq + mPy)
~ (P,/P,+)®rk
~ (P,/Py,+) @x (R/mR)
~ PR/ ((P%+ +mP,) ﬁ)
~ P,R/P, ,R.
On en déduit donc qu'il existe a € Py et b € Pg tels que :

a=f mod Pa,+1/2\,

b=g mod Pﬁ,+ﬁ.
Il en suit que :
ab = fg mod P“+ﬁ,+ﬁ.

Comme v est une valuation, alors v(ab) = v(a) +v(b) = a + B etdoncab € Py g\ Pyip -
Via le Lemme 1.66, on en déduit que :

g€ Pa+ﬁﬁ \ Pa+ﬁ,+ﬁ,

c’est-a-dire que f,¢ ¢ H (donc que fg # 0) et que ¥ (fg) =a+p = ﬁ(f) +7(3).
Ainsi, (i) et (ii) sont démontrés.

Par (i), H est un idéal premier de R, ce qui démontre (1). Le fait que 7 soit une valuation
centrée en R/H découle de (ii). Pour achever la preuve de (2), il faut montrer que 7 est
unique. Comme R est noethérien, il existe uy,...,u, € Py 4 et vy, ..., v, € R tels que:

n
f =a+ Z Uu;o;.
i=1

En passant au quotient, on obtient :

Ainsi, pour toute extension 7’ de v centrée en R/H, V' <7> =a=7 (f)

Remarque 1.68 — Dans la preuve, on a montré que :
P,/P,, ~ P,R/P, R.
On en déduit alors les isomorphismes d’algebres graduées :
grv(R) = gry (R/H),

Gy, ~ Gy.
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5.2. Idéal premier implicite et anneaux quasi-excellents.

Corollaire 1.69 — Soient R un anneau local quasi-excellent réduit, P, un idéal premier
minimal de R et v une valuation archimédienne de Rp_ centrée en R. Alors, Ry est un anneau
local régulier.

Preuve : Comme R est noethérien et réduit, (0) = Py N..N P, ot les P;, 1 < i < n, sont
des idéaux premiers minimaux distincts et P € {Py, ..., P, }. Montrons que :

(0) = PwRp,.
Comme (0) C Py alors (0) C PoRp,. Réciproquement, comme les P; sont distincts,
quitte a renuméroter, supposons que P; = Pe. Il existe alors p; € P;\ P, 2 < i < 1.

Pour un élément p% € PoRp,, p € P,a €R, b ¢ Py, 0ona:

a
pE et ppz...pn & (le...mpn) RPOQ,

bpa...pn
vu que Py, est premier et donc que bp;...p; € Peo.
On en déduit que :
(O)RPoo = PooRPmu

Ainsi, k¥ (Ps) = Rpeo/ PssRp,, =~ Rp,, est un corps.
Comme R est local, par la Proposition I.22, R est un G-anneau et donc, pour tout
P € Spec(R), Rp — Rp est régulier. En particulier, pour P = m, R — R est un mor-
phisme régulier. Ainsi, vu la Définition L10, pour tout P € Spec(R), R ®g k(P) est
géométriquement régulier sur x(P). En particulier, R ®g k(Ps) est géométriquement
régulier sur x(Pw). Or, par le Lemme 1.66, on a :

Ry~ (R Py .

H < DR K ))HﬁHﬂ(ﬁ®RK(Pw))

On en conclut que Ry est géométriquement régulier sur « (P.,). En particulier, Ry est

régulier.
O

5.3. Effet des morphismes locaux sur I’idéal premier implicite.

Pour terminer cette section nous allons étudier l'effet sur H d’un éclatement local de
R par rapport a v.

Lemme Ly0 — Soit (R,m) — (R’,m') un morphisme local d’anneaux locaux noethériens.
Soient Pe, un idéal premier minimal de R et v une valuation archimédienne de Rp_, centrée en R.
Supposons qu'il existe un idéal premier minimal P., de R tel que Poy = P, N R et que v s'étend
en une valuation archimédienne v' telle que son groupe des valeurs contienne celui de v.
Comme dans la Définition 1.34, pour p € v' (R"\ {0}), notons Pg le v'-idéal de R’ de valuation

B. Enfin, notons H' = H(R’,v") l'idéal premier implicite de R’ associé a v'.
Alors, pour tout B € v (R\ {0}),

(PR') NR = PeR.
Preuve : Soit p € v (R '\ {0}), par définition de v/, Pz N R = Pg. Ainsi,
(PsR') NR > PeR.
16



5. L'idéal premier implicite.

Pour montrer l'inclusion réciproque, considérons un élément f € (Pél?’ > N R. 1l existe

alors une suite de Cauchy (f,), de R pour la topologie m-adique, convergeant vers f.
Notons & : R — R’ le morphisme local d’anneaux locaux induit par le morphisme
local v : (R,m) — (R, m’). Ainsi la suite (77 (f,)), de R’ converge vers 77(f) pour la
topologie m’—adique. En appliquant la Remarque 1.65 a R/, pour n suffisamment grand,
v(fu) = V'(fa) = B. Toujours en appliquant la Remarque 1.65 mais cette fois a R, on en
déduit que f € Pﬁﬁ.

O

Corollaire I.71 — Avec les hypothéses du Lemme .70, on a :
H'NR=H.
Preuve : Comme v’ est archimédienne, pour tout & € v/ (R"\ P,), il existe B € v (R \ Px)
tel que & < B. Ainsi :
H'= (] PR= () PR
pev/(R\FPL) pev(R\Pe)
Par le Lemme I.70, on en conclut que :
H= () PR
Bev(R\Ps)
= N (P/gﬁ' N ﬁ)
pev(R\Px)
=| () PR |NR=HnNR
pev(R\Px)
O

Corollaire I.72 — Reprenons les hypotheéses du Lemme 1.70 et supposons de plus que
(R,m) — (R, m’) est un éclatement local par rapport a v le long d'un idéal | non-nul de R
et que v reste archimédienne sur R'. On a :

ht(H') > ht(H) et
dim (R'/H') <dim (R/H) .
Preuve : Nous donnerons seulement une idée de preuve. Notons :

R= <ﬁ ©R R,>m/1€fm(13®RR’) ’

H=H'NR.
Soit f € ] tel que v(f) = r?g?{v(g)}, alors f ¢ H' et en particulier, f ¢ H. Comme
R} ~ R fr il vient que 1/2; = R_f Gréace au Corollaire I.71, on a :
HR; = HR;.
Ainsi :
ht(H) = ht (H) .
17
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Comme R est un anneau local noethérien dont le complété est R et, vu que le mor-
phisme local R — R’ est fidelement plat et satisfait le théoréme de « going-down » (voir
(5.A) de [Mat1]), on en déduit que :

ht(H') > ht (H) .
Pour montrer la deuxieme inégalité du Corollaire 1.72, on utilise le fait qu'un éclatement
n‘augmente pas la dimension (Lemme 2.2 de [S3]), ainsi :
dim (ﬁf) = dim(R’) < dim(R) = dim (ﬁ) .

On conclut en utilisant la premiere inégalité du Corollaire .72 et le fait que les anneaux
locaux complets sont caténaires (voir (14.B) de [Matx1]).
O

6. Suites d’éclatements locaux encadrés

Comme on a vu précédemment, les éclatements locaux sont un outil essentiel en vue
d’obtenir un résultat d"uniformisation locale. Ces éclatements sont dépendants du choix
des différents parametres réguliers possibles pour 'anneau d’arrivée. Les éclatements
locaux encadrés vont imposer un systéme de générateurs de l'idéal maximal d’arrivée
pour permettre de faire décroitre des invariants que 1'on verra par la suite (dimension
de plongement et rang rationnel d"un sous-groupe de I'enveloppe divisible du groupe
des valeurs de la valuation).

Pour cette section nous reprenons en grande partie [S1]:§6,§ 7, § 8.
6.1. Définitions et premieres propriétés.
Soit (R, m, k) un anneau local noethérien. Notons :
u = (uy, .. Uy)
un ensemble de générateurs de m. Pour un sous-ensemble I C {1, ...,n}, notons :
up = {Ml"iE I}
Fixons un sous-ensemble | C {1,...,n} et un élément j € J. Notons :

Jo=A{1,..,n}\]J.
Pour tout i € {1,...,n}, considérons les changements de variables suivants :
u; si ieJU{j}
M= s e \{j)
On note alors :
u' = (uy, ..., up).
Rappelons que pour f € R, I'annulateur de f, noté Anng(f), est1'idéal de R défini par :
Anng(f) ={g € R|gf =0}
Pour touti € {1,...,n}, notons :

Anng (u®) = | J Anng <uf> ,

>1

R; = R/Anng (u°) et R' = R; {”;\{J’}} :

Notons (R, m™1), k1)) le localisé de I'anneau R’ en un idéal premier de R’.
18



6. Suites d’éclatements locaux encadrés.

Remarque 173 — Le schéma Spec (R') est un sous-schéma affine de I'éclaté de
Spec(R) le long de l'idéal (uj).

Enfin, nous réalisons une partition de {1,...,n} comme suit :
7 ={ieJ\{j}|uj e RW},
I ={ie\{j}uj ¢ RW*}.

On a donc :
{1,.,n} =] O 1{j},
u/ == u/]c U u/]x U u}xc U {u;},
ol les réunions sont disjointes dans la derniere égalité si R est un anneau régulier avec
u pour systéme régulier de parametres.

Notons u?) = (ugl), e u,(qll)> un systeme de générateurs de m® et

m: (Ru) — <R(1),u(1)>
le morphisme naturel entre ces deux anneaux locaux.

Définition L.74 — On dit que 7 : (R,u) — <R(1),u(1)> est un éclatement encadré de
(R, u) si ny < n et s'il existe un sous-ensemble D1 C {1,...,n1} tel que :

L[/ o u/ — u(l)
{1\ — HJeupreu{jy — Dy

Si de plus, R est réqulier, u est un systeme régulier de parametres de R et [* = @ (c’est-a-dire

. 1 . . .
sin=nqet u = u(Dl)), on dit que 7t est un éclatement monomial.
Enfin, une suite locale encadrée est une suite de la forme :

(R,u) = <R(o)lu(0)) T, (Rm,u(l)) LN <R<l>,u<l>> )

oit chaque 7t; : (R, ud) — (RUE+D), u(iH)), 0 <i<1—1,est un éclatement encadré. Si de

plus, pour tout i, les 7t; sont des éclatements monomiaux, on dit que la suite est monomiale.

Définition Ly5 — Soient 7 : (R, u) — <R(1),u(1)) un éclatement encadré et T C

{1,...,n}. Supposons que R est régulier et que u est un systeme régulier de parametres de R.
On dit que 7t est indépendante de ur si T N ] = @ (c’est-a-dire, T C J°).

Remarque 1.76 — Si un éclatement encadré est indépendant de ur, alors :

ur C {ugl),..., u,(fl)} .

On définit par récurrence I'indépendance pour une suite locale encadrée en suppo-
sant qu’elle est déja définie pour des suites de longueur / — 1.

Définition 1.77 — Une suite locale encadrée de la forme :
(R, u) = <R<0),u(o>> T, (Rm,u(l)) e (Ra),u(z))

est dite indépendante de ur si elle vérifie les deux conditions suivantes :
(1) la suite 7115 o ... o 71 est indépendante de ur;

(2) siur C {ugi),...,u,(f[)}, 0 <i<I—1,alors rj_q est indépendante de ur.
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Remarque 1.78 — Soit g € {1,...,n}, on peut alors écrire u; sous la forme :

;o M1y, Mpy,q
Mq = Ml LUy,

oumy, € Z, p € {1,..,n}. On peut donc décrire le changement de variables u — 1’ par
la matrice M = (my,4)p,q € SLy(Z) avec, par définition :

1 si p=g
Mpg=9q —1 st p=jetqge]
0 si p#get,oubieng # j,oubieng ¢ ]
En particulier, si g € ], alors u, € ujc et siq € ] alors uy est un mondme en u;.

De méme, on peut décrire le changement de variables ' — u par la matrice N =
(Mpg)pq = M~ e SL,(Z) avec :

I 1 si oubienp =g,oubienp=jetgec]
PA71 0 sinon

En particulier, si g € J, alors ug € u’]c etsi g € J, alors u,; est un monome en u}.
Si on note e = #(J°U J*“ U {j}), on en déduit qu'il existe B, € N7 et z;, € R"* tels que :

qu = (Ll]cujxcu{]-})ﬁq Zq.

) Bq R , )
De plus, si g € J, alors (u]t:u]xcu{]‘}> est un mondme en i, uniquement. On a
également :

mR’ = <1/l]cu{]‘}> R

Enfin, si [* = @ alors, z; = 1. Pour terminer cette remarque, on va étudier le cas ou
I’éclatement encadré est indépendant d’un sous ensemble. Soit T C J°, notons :

t=#(T)etr=n—t.
Soit v = {vy,..,0t} = ur, w = {wy,..,w,} = ugy, et u' = (v,w') ou w =

{w}, ..., w,}. Pour 1 < g < r, on écrit :

I

g =w",

w

ou v, € Z'. Alors les r vecteurs 71, ..., 7, forment une matrice de SL,(Z) notée M,.
Quitte a renuméroter les lignes de la matrice M, on peut écrire M sous la forme d’une
matrice diagonale par blocs out un bloc est M, et I'autre est I; la matrice identité de taille
t.

Ainsi, pour tout 6 € Z',ona:

w' = w, vy = 6F,.
De méme pour le changement de variables inverse, pour tout y € Z’, on a :
w =w?, § = yF L,

Nous allons généraliser cette remarque dans le cadre des suites locales encadrées.

Proposition 1.79 — Considérons une suite locale encadrée de la forme :
(R,u) = (Rw),u(m) T, <R<1>,u<1)) LY (RU),u(z))
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Pour 0 < i <1 —1, notons nj;q l'entier correspondant a 'entier ny de la Définition 1.74, D;y4q
I'ensemble correspondant a D1 et ;1 = #(Djy1).
Soient 0 <i<i <l,ge{l,.,n},q €{1,.. ny}. Alors:

o g . ) , 5(1",:') L.
(1) 3551 D e N, Zgl D e RUIX gl que u[(;) = <ug2) ! z,(; A,

(2) Supposons de plus que la suite soit indépendante de up avec T C {1,...,n} et u,si) Z ur.
, 5(1‘/,1‘) ,
Alors (u(Dli/)) " est un mondme uniquement en ugil) \ ur.
(3) Supposons que pour tout i" > 0 tel quei < i’ <i', Dy = {1,..,nn}etq € Dy. Il
(i)

existe alors 'y;f’i/) € Z" tel que u{gf') = <u(i)>7q

(4) Supposons de plus que la suite soit indépendante de ur avec T C {1,...,n} et uéf,) 4

§ .
ur. Alors u(gf) est un mondme uniquement en uf{zl) " \ ur.
ool

Preuve : 11 suffit de montrer le cas ot i’ = i + 1, le cas général se faisant par récurrence.
Or ce cas n’est qu'une application des définitions et de la Remarque 1.78.
O

Proposition .80 — Considérons les mémes hypotheses que dans la Proposition I.79 et sup-
posons de plus que la suite locale encadrée est monomiale et indépendante de ur, T C {1,...,n}.
Notons t = #(T) et r = n — t. On pose :

v={vy,.., 0} =ur,

w = {wy, .. w} = U1, nd\T-
Alors :
(1) Vi€ [0,1], n; =n.
(2) Vie]o,1], D; ={1,...,n}
(3) Pour 0 < i < i < I, notons u = (v,w(i)) ot w') = <w§i),...,w£i)) et ul) =
<v,w(i/)) oit w') = <w§i,), ey wy/)>. Alors, pour tout 1 < g <r, w,(,i) est un monodme

en w'") ayant des exposants positifs.

./ . ’Y
(4) Pour 1 < g < r, notons w,gl) = <w(l)> q, Vg € Z'. Alors, les r vecteurs

colonnes 71, ...,y, forment une matrice Fr(i/’i) € SL.(Z). Réciproquement, notons

. 2N\ O

w,(;) = (w(’ )> q, o € IN". Alors, les r vecteurs colonnes 4y, ..., &, forment la matrice
(i

<Fr ) € SL.(Z).

Preuve : Comme dans la preuve de la Proposition L.79, il suffit de montrer le cas ot
i =i+ 1, le cas général se faisant par récurrence (et en remarquant que SL,(Z) est un
groupe). Or ce cas n’est qu'une application des définitions et de la Remarque 1.78.

O
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6.2. Construction d’un éclatement local encadré.

Gardons les mémes notations que dans la sous-section 6.1. Nous donnons un écla-
tement encadré v : (R, u, k) — <R(1), u(l),k(l)> trés utilisé dans la suite de cette these.
Nous allons décrire, en terme de générateurs et relations, I'extension de corps k —> k™

induite par 7.
Rappelons que R’ est I'anneau :

Notons :
h=#(J
he=#(])=n—h
W =#(]") +1
W =#(]*) =h—h*"
Quitte a renuméroter les variables, on peut supposer que :
J=A{1,..h}
Jo={h+1,..,n}
j=1

J*¢={2,..,h*}
J*={n*"+1,..,h}.
Les changements de variables deviennent alors :
u; si ie{1yu{h+1,..,n}
M= 2 osioie (2,0

Comme on a vu précédemment, prenons m’ € Spec(R’) tel que ujc;jx,;j C m', ainsi
RW =R, etm; = m'RW. De plus, m = my "R =m' N R.
Pour 1 < i < n, notons z; € k™ I'image de uﬁ € R dans k. On remarque alors que :

zi=0,Vie U uU{j}
Remarque 1.81 — Notons R = R'/mR’ et %i; € R I'image de u} € R' dans R, i €
J\ {j}. Alors, R = k {W,Wil] . Les éléments 7 et uj< = sont algébriquement

indépendants sur k, lorsque R est régulier avec u comme systéme régulier de parametres.
Or, on a les morphismes :

R — R — R, — k.
En passant modulo m, on obtient :
k — R — Ry — kW),

ou® = m'/mR’. On en déduit que k! est engendré sur k, en tant que corps, par z.
Notons t = deg.tr (k(l) |k) + h*¢, par la Remarque 1.81 :

deg.tr <k<1>yk> <.
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On en déduit les inégalités :
W<t +h* e =h<n.

De plus, on peut supposer que zjxc 1, ..., z: sont algébriquement indépendants sur k dans
k) tant que zt+1, ..., 2z, sont algébriques sur k (zjxc 1, ..., 2¢).

Pour t < i < h, notons P;(X;) le polyndme minimal de z; sur k (zpxciq,...,z¢). On a
I'isomorphisme :

KD ~ k (zpxein, s 2t) [Xeg1, 0 Xal
(Pry1(Xes1), oo Pu(X1))

Quitte a réduire au méme dénominateur, pour t < i < h, on peut choisir P; €
k [zpxc i1, -, zi—1] [Xi], mais les P; ne sont plus des polyndmes unitaires. Notons :

Pi(Xi) = ) pimX",
m

ol pim € k[zpxet1, .. 2i—1), t < i < h. Notons alors g;,, 1'élément de R [u}xcq, ..., Ui_4]
obtenu a partir de p;,, en remplagant chaque z; par uy, t < i’ < i et en remplagant
chaque coefficient de p; ,, par un représentant dans R (on voit p; ,, comme un polyndéme
en z; a coefficients dans k = R/m).

En particulier, on remarque que p; ,, = qi,n mod m), Enfin, notons :

Qi(X) =) gqimX™.
m
Pour t < i < h, comme P;(z;) = 0 dans k), on en déduit que :
Qi(u}) € mM,

Proposition 1.82 — Notons ny = n —t — h™ et posons le changement de variables sui-

vant :
. Qitnom (Uiyy_p) si W€ <i<h—(n—m)
”E): u; si 1<i<g<j e
Wi si h—(n—m)<i<m
Alors :

(1) ult = (ugl), .y u,(qll)> est un systeme de générateurs de m®,
(2) w: (R, u) — <R(1), u(l)) est un éclatement local encadré.

(3) Si R est réqulier avec u pour systeme régulier de parametres, alors u'") est un systeme
régulier de parametres de RW.

Preuve : Nous allons donner une idée de preuve. Pour (1), il suffit de remarquer que, par
construction :
ufl) IS m(l), 1<i<n.

Réciproquement, par la Remarque 1.78 :

1 1 1 1 1
mRW = <u§ ),ulgjlf(nfnl),..., u,(ﬁ)> R ¢ (ug ),..., u,(ﬁ)> R,

_ _ . 1 1
Rappelons que 1y, ..., U=, Qry1 (Upi1) , -, Qp (W) sont les images de ug ),...,u,(ql)
dans k (zjxcy1, ..., 2t) (U2, ..., Upxe, Ups1, ..., Uy, en particulier, ce sont des éléments de
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mRw. Enfin, U, .., W, Qrs1 (1), -, Qn (W) engendrent un idéal maximal de
k (zpxe i1, p 2t) [W2, ooy Upxe, g1, .., Up) VU qUE

k(thc+1,...,Zt) [M_z,..., thc,ut+1,...,u_h] - k(thc+1,...,Zh><c) [ut—l—l/---/u_h] N k(l)

(2, oo Upee, Qr1r (Wig1) o Qe (Ur))  (Qerr (Wis1) 4o Qn (U))

(thc_H, cey Zt) [M_z, v Upxe, Ut 1, ey I/l—h]ﬁk(

(1) (1)

Tout ceci montre que les images de u, ’, ..., u,,’ engendrent I'idéal maximal MRy de
Ra. Or par définition de R et de m, on en déduit que ugl),..., u,(qll) engendrent 1'idéal
m'Ry = mM dans R, = RW.

Par définition, (2) est évidente, 'ensemble D, étant :

Dy = {1, YU {h— (n—n1)+1,..n1}.

thc_,.lw,zt) I:M_2,.‘.,Hh><c,ut+1,‘.‘,u_h:| '

Pour montrer (3), on remarque que, R étant régulier avec u comme systéme régulier de
parametres, alors, R est régulier et 13, ..., Wy, Qi1 (#41) , ---, Qu (#1,) forment un systeme
régulier de parameétres de I’anneau local régulier mRg qui est de dimension h — (n —
n1) — 1. Enfin, on montre par récurrence sur n — h que :

(0) € (ugl)) - <u§l)’u£zlf)(n7n1)+l> C..C (ugl),uﬁ(”%l)ﬂ,.", u,(fl))

forme une chaine de n — h + 1 idéaux premiers de R distincts.

Corollaire 1.83 — Considérons une suite locale encadrée monomiale de la forme :
(R,u) = <R<o>,u<0)) o, (Ru),u(l)) o e (Ra),u(z)) ,

Alors, pour 0 <1 < 1, le corps résiduel de RO est k = R/ (u).

Preuve : 11 suffit de considérer le cas i = 1, on montre le cas général par récurrence. Par
définition des suites monomiales, h*¢ = t = h. Ainsi n; = n et par définition, k ~ kj.
O

Pour terminer cette section nous allons interpréter les résultats précédents en
termes d’éclatements encadrés par rapport a une valuation donnée.

Soit (R, m, k) un anneau local noethérien, u un ensemble de générateurs de m. Soit
v une valuation centrée en R. Pour 1 < i < n, notons :

Bi = v(u;),
X = inv(ui).
Soit T C {1,...,n}, E={1,..,n} \ T et k [xg] la sous-algebre graduée de G,. Notons :

G =k[xg]" = {(J; ' f,g € k[xg], g homogene, g;«éO}.
Considérons | C E et choisissons j € | tel que :
Bj = min{p:}.
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Soit 77 : (R,m) — <R(l),m(l)) un éclatement local par rapport a v (voir Définition 1.56)
et considérons R()) comme le localisé de R’ en le centre de v. On a donc :
JC={ie]lgi>Bj}
I =A{icJ\{j} | Bi = Bj}-

{m si ieJ°U{j}
u
1

Notons alors :

“osiodie ]\ {j}

~~

si ie]J”
si ie{l,.,n}\J*
xj si i€]J*

1 si ie{l.n}\J*
B =ord(x}),1<i<n,
E'=E\J*.

Pour 1 < i < n, x} est homogene et ord(x}) > 0.On a:

ord(x}) >0 B; > pj<icE,
ord(z;) =0, Vie .
Remarquons que KV =k (zjx). Considérons le morphisme p : R" — k), extension de
R — k, défini en envoyant u} sur z; siz € [* etsur 0sii € [*°. L'idéal m’ = kerp est le
centre de v dans R’ et RV = R/ ,.

Définition 1.84 — Considérons u

comme dans la Proposition 1.82, I'éclatement local
encadré 7 : (R,m) — <R(l),m(l)) qui en résulte est appelé I'éclatement local encadré le

long de (uy) par rapport a v.

Soit ¢ : D1 — J¢UJ*“ U {j} la bijection résultante de 1’éclatement encadré. Notons
alors :

EV = o Y(E') c Dy,
(1 _

/
Xi = o)
)

(1) _ DY _
B’ = ord (xz. ) = [3;)(1-).
Remarque 1.85 — Pour tout i,i’ € E, il existe §; € N#(E(l>), Yii € 7*(E) tels que :

1 Y
l(' ) == uEI s

5
1 [—
u; = (ué&) Zj.

On a les mémes transformations dans les algebres graduées :

u

On a également :
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ot (.,.) représente le produit scalaire de vecteurs de taille #(Dj). On en déduit les éga-
lités d’algebres graduées suivantes :

k[x]* :k{z]x,xgl] {xl]*
k[xg]* =k |:Z]>< x(l)ﬂ =k [x( 2}

Nous allons considérer le cas ou les éclatements sont indépendants d'un sous-
ensemble de générateurs de 1'idéal maximal.
Soit ¥ < n, notons u = (w,v) ot w = (wy, ..., w;) = (U, ..., uy) et v = (v1,...,Vy—y) =
(4p41, ..., Uy). Pour une suite locale encadrée 7t indépendante de v de la forme :

(R,u) = <R(0),u(°)) _m, (R(l),u(1)> e (R(l),u(l)> )

notons, pour 1 <i </, u® = (w(i),v) ouul) = <u§i), veey u,(fi)), wl) = (wgi), ey wﬁ?), avec
r; = r+n; —n. Comme 7T est une suite locale encadrée, on a :
rig1 ST ST
Proposition 1.86 — Soit 7t la suite locale encadrée par rapport a v et indépendante de v

précédente. Alors :

(1) Si 7t est monomiale, pour 1 <i < I, r;i=r.

(2) SiB1,..., Br sont Z-linéairements indépendants, 1t est monomiale.

(3) Supposons que 7t est monomiale. Par la Proposition 1.80, il existe r vecteurs colonnes

'ygl), v 'yﬁl)formant une matrice Fr(l) € SL,(Z) tels que wl(l)

g0 — gD

(ot I'ont voit B et BY) comme des vecteurs ligne).

I
= whi . Ainsi :

(4) Notons x; = in,(w;), 1 < i < r. Alors, x(l) = x)‘fm et si 5%1),..., (551) sont les lignes de
-1 50
la matrice <Fr(l)> € SL,(Z), alors, x; = xl . En particulier :

k[x]* =k [x(l)} .

Preuve : Nous donnerons seulement une idée de preuve. (1) découle de la Proposition
L.80. (3) se montre par récurrence, le cas | = 1 découlant immédiatement des définitions

et les ’yf ) peuvent s’écrire de maniere explicite. (2) se montre aussi par récurrence en
utilisant (3) ainsi que de la construction faite précédemment de 1’éclatement local enca-
dré par rapport a v. Enfin, on montre (4) par récurrence en utilisant bien les définitions

et en observant certains cas particuliers.
O

6.3. Deux invariants pour l'uniformisation locale.

Nous allons définir deux invariants qui vont nous permettre de stopper les suites
d’éclatements et donc nous fournir des théoréemes d’uniformisation locale.

Rappelons que, pour un anneau local (R, m, k), on définit la dimension de plonge-
ment, notée emb.dim(R), par :

emb.dim(R) = dimy (m/m?).
26



6. Suites d’éclatements locaux encadrés.

Définition 1.87 — Soient (S, m, k) un anneau local noethérien, u = (uy, ..., u,) un en-
semble de générateurs de m. Soit v une valuation centrée en S qui se décompose en v = v o 1;
avec rg(vy) = 1. Notons T le groupe des valeurs de v et T'y celui de vy (qui est aussi le plus petit
sous-groupe isolé non-nul de T').

Notons I = {f € S|v(f) & I'1}, v1 induit alors une valuation de rang 1 sur S/ 1.
Notons H I'idéal premier implicite de S 5/1S par rapport a vi et H sa préimage dans S.

(1) On définit e(S,v) € N par :
e(S,v) = emb.dim <§/H) .

(2) Supposons que, pour 1 < i < n, v(u;) € T'y. On définit r(S,u,v) € N par :

r(S,u,v) = dimg <Zn; Qv(ui)> .

i=1
Proposition 1.88 — Gardons les notations de la Définition 1.87. Considérons | C {1,...,n}
et (S,u) — (S(l) (1)> un éclatement encadré le long de (u;) par rapport a v avec uV) =

(ugl) u,(ql)> Reprenons les notations |, ]*,]*¢ et Dy de la Définition I.74. Notons J*' =
{1, ceey 1’11} \ Dl.
Supposons que les uj sont k-linéairement indépendants dans mS/ <H + mZS), il existe alors

une partition de J© = J' 11 ] telle que les uj U uer soient k-linéairement indépendants modulo

H +m2S et les u jen appartiennent au k-espace vectoriel engendré par uy U uje modulo H + m?S.
Identiﬁons ]C’ uJcu {]} a un sous-ensemble de Dj.

Notons IV = {f € SW | v(f ) ¢ T}, Hy lidéal premier implicite de s )/ 1) par rapport

avy et HY sa préimage dans S, Notons mV) Vidéal maximal de SO et kD son corps résiduel.
Alors :

(1) r(S,u,v) <e(S,v).
(2) e(SW,v) <

alors :

e(S,v). De plus, siles tjerpreyjyup Sont kW) -linéairement indépendants

e(SM,v) < e(S,v).
(3) r(S,u,v) <r (S(l),u(l),v) . En particulier, on a l'inégalité suivante, pour I'ordre
lexicographique :
<e(S(1),1/),e(S(1),1/) —r (S(l),u(l),v)> <iex (e(S,v),e(S,v) —7r(S,u,v)).
Sous les mémes hypothese qu’en (2), I'inégalité est stricte.

Preuve : (1) est immédiat par la Définition 1.87. Pour montrer (2), il faut remarquer que,
uM) étant un ensemble de générateurs de m@, il induit un ensemble de générateurs

de my (@ /Hl) Comme n; < n (Définition L74), il vient que # (J*') < #(J). Or,
e(S,v) =#(]) +#(J) et u(D)\(]f’U]XCU{ 1) est contenu dans le kM) -espace vectoriel engen-
dré par ujepxeygjup modulo HD <m(l))2 SO, Ainsi :
e (SW,v) <# () +# (1) +1+# ()
#UY) H#(T) +LH#(7) = #(7) +#() =e(S,v).
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Enfin, si les ujeypxeyjyup< sont kM -linéairement indépendants, la premiere inégalité est
stricte ce qui nous donne le résultat.
L’assertion (3) est immédiate par les remarques 1.78 et 1.85.

O

6.4. Monomialisation d’éléments non-dégénérés.

Nous allons voir 'effet des éclatements encadrés sur les mondmes. Une conséquence
sera qu'un élément non-dégénéré, c’est-a-dire qu’en cet élément, la valuation est égale
a la valuation monomiale, peut étre transformé en un mondme via une suite locale
encadrée.

Toute cette partie est en fait un cas particulier du jeu d’Hironaka (voir [Hz] et [Sz2]).

Pour un élément a« = (a, ..., a,) € IN”, on note :

la| = a1 + ... + ay.

Définition 1.89 — Soient &« = (aq,...,a,), v = (Y1,-,Tn) € N". Pour 1 < i < n,
notons :
(51' = min{rxi, ’)’1}
Posons alors 6 = (01, ...,0,) € N", & = o — 0, ¥ = v — d. Quitte a échanger w et 7y, on peut
supposer que |&| < |y|. On définit T(a,y) par :

(e, ) = (1], [7])-
Remarque I.go —
(1) Sia = (0,...,0), alors u* divise u” dans R.

(2) Quitte a renuméroter les variables de & et , on peut supposer qu’il existea € IN,
1<a<n,tel que:
& = (&1, ...,&,0,..,0),
——
n—a
5 =(0,.,0, Va1, s Yt )-
a
On peut également supposer que, pour 1 <i < a, &; > 0.

Soit (R, m) un anneau local noethérien tel que m soit non-nilpotent et u = (ug, ..., uy)
un ensemble de générateurs de m. Soit v une valuation centrée en R de groupe des
valeurs I'.

Considérons | C {1,..,n} le sous-ensemble le plus petit possible au sens de I'inclusion
tel que :
{1,..a} CJet) 7> &l
i€]
En reprenant les notations de la Définition 1.74, considérons 7 : (R, u) — (R(l), u(1)> un

éclatement encadré le long de (u7), selon la Définition 1.84. Notons :

P71 0 sioi=j
, ¥i si 1#]
Vi=9 Yvi—|al si i=j
ie]
a = (a),..,a,),
Y = (Y1 s V)
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8 = ((51, ...,(Sj,l, (5] + ’5(‘,(5]‘+1,..., (Sn).
Avec ces notations on obtient :
u[x _ (u/)(5 +&

u’ = (u,)5'+«;’.
Posonsa' =6 + &' ety =6 + 4.
Proposition 1.91 — Avec les notations précédentes, on a :
(@, 7") <ter T(0,7),

pour 'ordre lexicographique.

Preuve : Nous ne donnerons qu’'une idée de preuve. Il suffit de montrer que :

(&' 17']) <tex (&, |7]) -
Sije{1,..,a}, alors par définition et par la Remarque I.9o, on a :
&'| = |&| —a; < |al.
Sije{a+1,..n} alors |&'| = |&|. Par minimalité de J, il vient que :
Y. Fi< &l
i€\ {j}

On en conclut que |¥'| < |¥].
(]

Corollaire Loz — Soit s = #{i € {1,..,n} |u} ¢ RV}, Quitte & renuméroter les
variables, on peut supposer que u; n’est pas inversible dans RW, pour 1 < i < s et, inversible
pour s <i < n.

Comme 7 est un éclatement encadré, {u, ..., ul} C uD). Quitte a renuméroter les variables, on
peut suppsoser que u; = ufl), 1 <i < s. Notons les vecteurs de taille ny par :

oM = (&),..,&,0,..0),

¥ = (74, 750, ...,0).

ny—s

Alors,
T ((x(l),'y(l)> <pex T(a, 7).

Preuve : Par la Proposition 1.91 et par définition :

T (‘X(l)/ ,)/(1)> <lex T(‘X// r)’/) <lex T((X’ r)/)
O]

Remarque 1.93 — Soit T C {1,..,n} tel que &; = §; = 0, pour tout i € T. Alors, tout
éclatement encadré le long de (u;), avec | définit comme précédemment, est indépen-
dant de ur.
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Corollaire I.g4 — Soit (R, m) un anneau local noethérien tel que m soit non-nilpotent et
u = (uy,..., uy) un ensemble de générateurs de m. Soit r € IN tel que 1 < r < n. Notons
u = (w,v) avec :

w = (w1, ..., wy) = (U1, ..., Uy),
0= (01, .0, UVp—y).
Soit v une valuation centrée en R, prenons j dans | vérifiant :
() = min{u(i)}
Soient o,y € IN". Il existe alors une suite locale encadrée par rapport a v (Définition 1.84) et

indépendante de v :
(R,u) — <R(l),u(l)>

telle que w* divise w" ou bien w" divise w* dans RY.

Preuve : On itere le processus de construction de la Proposition .91 en choisissant des
éclatements locaux encadrés par rapport a v, qui sont, par construction et par la Re-
marque .93, indépendants de v. Par le Corollaire 1.92, cette construction s’arréte apres
un nombre fini d’itérations. On conclut alors grace au (1) de la Remarque I.9o.

O
Proposition 1.g5 — Gardons les notations du Corollaire 1.94. Alors :
w® divise w” dans RV < v (w*) < v (w?).
Preuve : Notons ul!) = (wﬁ’),..., wﬁ,”,v). Par le (1) de la Proposition I.79, il existe

a4 e N™ et Y,z € RD* tels que :

(1)
w’ =z (wmy .
Comme v <w§l)> Y, <w£,l)> > 0 et que, par construction, 'un des oc(l),’y(l) est plus
grand que 'autre, composante par composante, on a :

(w(l)>a( divise <w(l)>7 dans RO o v ((w(l)),x(l)> < ((w(l))w))‘

1) (N

OJ

Corollaire 1.96 — Gardons les notations du Corollaire 1.94. Soit I un idéal de R engendré
par des mondmes en w. Considérons ¢, ...,e, € IN" une collection minimale d’éléments de IN”
telle que (w®, ..., w) = L.

Enfin, supposons que v (w®) < v (w), 1 < i < b. Il existe alors une suite locale encadrée par
rapport a v et indépendante de v :

(R,u) — <R(l), u(l)>

telle que :
IRW = (w) RW,
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Preuve : On définit 1’entier suivant :
I, — b, : S,-, €l .
() = (b, min {7 (w0, 0}
On suppose que 7(I,w) = (0,1) sib = 0. Si b > 1, on applique la Proposition 1.91 &
la paire {w®, w®"} pour laquelle le minimum est atteint dans {7 (w®, w®")}. On obtient
alors un sous-ensemble | de {1,...,n} telle que tout éclatement encadré le long de (u})
fait décroitre 7(I, w) pour l'ordre lexicographique. On conclut en utilisant la Proposition

Los.
O

Définition .97 — Soient R un anneau local régulier et u = (u1, ..., u,) un systéme régu-
lier de parametres de R. Soit v une valuation centrée en R. On dit que f € R est non-dégénéré
par rapport a v et u si :

vou(f) = v(f),

ol Vo, est la valuation monomiale de R par rapport a u (Corollaire 1.50).

Remarque 1.98 —

(1) f € R est non-dégénéré par rapport u si et seulement s’il existe un idéal I de R,
monomial par rapport a u, tel que v(f) = milln{v(g)}.
g€

(2) Considérons une suite locale encadrée (R, u) — <R(1),u(l)) et f # 0. Par le

(1) de la Proposition 1.79, chaque u; est un monéme en ul) multiplié par une
unité de R, Ainsi, si f est non-dégénéré par rapport a u alors, f est aussi
non-dégénéré par rapport a ul,

Le Théoreme I.99 suivant peut étre vu comme un théoréme « d’uniformisation locale
plongée » de f, f étant un élément non-dégénéré par rapport a v.

Théoreme 1.99 — Considérons les mémes hypotheses que celle de la Définition 1.97. Soit
f un élément non-dégénéré par rapport a u. Il existe alors une suite locale encadrée (R, u) —
(R(l), u(l)> telle que f soit un mondme en ul) multiplié par une unité de RW.
De plus, soit I un idéal de R tel que v(f) = r?el?{v(g)} Notons u = (w, v) et supposons que I

est engendré uniquement par des mondmes en w. Alors, la suite locale encadrée précédente peut
étre choisie indépendante de v.

Preuve : La suite locale encadrée par rapport a v provient du Corollaire 1.96. Ainsi,
comme f € I, il existe z € R tel que f = zw* (selon les notations du Corollaire 1.96).
Comme I est engendré par w* (Corollaire 1.96) et par hypothéses, on en conclut que :

V(@) = v(f) —v(w) = v(f) - min{v(g)} = 0.

Or v est centrée en R(l), dong, z € RWx*,
O

6.5. Suite élémentaire uniformisante.

Nous allons construire une uniformisation locale, par rapport a une valuation
v, d'une hypersurface quasi-homogene satisfaisant certaines conditions vis-a-vis de
l'algebre graduée G, = (g7, (R))*. Cette construction est basée sur tout ce que 1'on vient
d’exposer dans la Section 6.
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Soient (R, m, k) un anneau local régulier, u = (uy,..,u,) un systéme régulier
de parametres de R et v une valuation centrée en R de groupe des valeurs I'. Notons :

Bi=v(u;),1<i<n.

Pourr € {1,..,n—1} posons t =n —r — 1.

Supposns que r = r(R,u,v), cest-a-dire que, quitte & renuméroter les variables,
Bi,..., Br sont Q-linéairement indépendants dans I' ®z Q et qu’en particulier B, est Q-
combinaison linéaire de By, ..., B;.

Notons u = (w,v) avec :

0= (01,..,0t) = (Ups1, ey Un—1),
W = (W1, ., Wy, Wyy) = (U1, evy Up, Up).
Soit A = (B4, ..., Br) le sous-groupe de I' engendré par Sy, ..., B;. Notons :
a = min{m € N* | mpB, € A}.

Par hypotheses, ¥ < +co. Pouri € {1,...,7,n}, on note x; = in,(u;), on a donc ord(x;) =
Bi-

Par le Corollaire 4.6 de [S1], on peut montrer que les xy, ..., x, sont algébriquement
indépendants sur k dans G,. Si x,, est algébrique sur k [x, ..., X;], notons P le polynome
minimal de x, sur k[xi,...,x,]", choisi unitaire et de plus bas degré possible; sinon
posons P = 0. Si P # 0, notons « = d°(P). Soient a3, ..., &, € Z tels que :

’
E‘Bn — 2061"31' =0.
i=1

On peut montrer (Lemme 4.5 de [S1]) que d = % € IN. On note alors :

¥=x.ay,

o o
y=w;'..w,’,

_ X

Z:?n,
o

o
y

Si P #£ 0, alors P est de la forme :

d . —
P(X) =Y ey X",
i=0
d .
oucick pour0<i<d cyg=1et Z c; X' est le polyndme minimal de Z sur k dans G,.
i=0
Enfin, pour 0 < i < d, fixons un élément b; € R tel que ¢; = b; mod m. On pose alors :

d . —
Q=) by wi®,
i=0
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Proposition I.100 — Avec les hypotheses et les notations précédentes, il existe une suite
locale encadrée par rapport a v et indépendante de v :

(Rvu)::<walgm)_;Ee_(RuLucw>_:za...j31,<Raxuag )
telle que, pour 0 < i < 1, si on note :
= (.o
et k) Ie corps résiduel de R(i), alors :

(1) Les éclatements encadrés m, ..., 71;_p sont monomiaux. En particulier, n; = n, k0 = k,
pour 1 <i < 1. Deplus, z € RWx,

- n si P#0
(”m_{n—1sipzo

(3) Notons :
L0 wgl),..., wﬁl),v, w,(ql)) si P#0
wgl),..., wy),v) si P=20
Alors, pour j € {1, ...,r,n}, wj est un mondme en wgl), . w£
de R,

(4) Pourjed{l,..r}, w](l) est un monome en w dont les exposants peuvent étre négatifs.

(5) Si P #0, alors :

1)

multiplié par une unité

k(X) si P=0
(6) k7 =k (2) = kmw<2qx>sip¢o
i=0

Preuve : Nous ne donnerons qu’une idée de preuve. Sans pertes de généralités, on
s

peut supposer qu’il existe 6 = (91, ...,0r,6n) et ¥ = (Y1, ..., Tr, Tn) tels que z = % et

v(w") = v(w®). En appliquant le Corollaire 1.94, on obtient l'existence de la suite locale

encadrée par rapport a v et indépendante de v telle que w” divise w® dans R, En ap-

pliquant la Proposition .95, on en déduit que z,z~' € R\,

On montre (1) par récurrence. Plus précisément, la Proposition 1.80 implique des rela-

tions de dépendance entre les images des ; dans les R et les images des ¢ et 7y ainsi
(i)

que z*1 = i ol j # 1 est tel que ﬁ](i,) = min {[Bgi/)} = ,Bgi/). La Proposition 1.95

wgi/) ! ie{l,..,rn}

permet de conclure que z,z7! € RV En particulier si’ =1 —1ona (1).
En reprenant les notations de la Proposition 1.82, on remarque qu’on est dans le cas o1
h* < 1 (plus précisément, le cas h*¢ = h—1,t = hetle cas " =t = h—1). En
(I=1)
X
utilisant la Proposition .80 et quitte a interchanger, on peut supposer que Z = ———. Le

xY*”

i'+1)

33



Chapitre I. Préliminaires.

NESY

A
xglfl)
P =0). Le cas h*¢ =t = h — 1 arrive si et seulement si z est algébrique sur k (c’est-a-dire

P # 0). Ainsi (2) et (6) proviennent de I'étude directe de ces deux cas particuliers. Pour

terminer, (3) et (4) sont une application directe de la Proposition L.7g aveci = 0 eti’ = I.
O

Proposition I.101 — Reprenons les notations et les hypotheses de la Proposition I.100.
Notons Q = Q +h, ot h € R est tel que v, (h) > v, (Q). Alors, la Proposition L.100 est vraie
avec Q a la place de Q dans (5).

cas h*“ = h —1,t = h arrive si et seulement si z = est transcendant sur k (et donc

Preuve : Par hypotheses, on peut écrire i comme une somme finie h = Zhwﬂ ol
0
h, € Retv(u”) > 19,(Q). Soit N = max{|y| | h, # 0}. Apres une suite locale encadrée

indépendante de 1,1, ..., u,, On peut supposer que :

v(wy) < % (Vo,u(h) —vo,u(Q)) -

v(u;)
v(w)

peut alors supposer que, pour h, # 0, u” est divisible par un monéme @, en wy, ..., w;, tel
que v(@,) = 19, (Q). En appliquant le Corollaire I.96 a 1'idéal monomial engendré par
{y"}y U{@, | hy # 0}, on construit une suite locale encadrée monomiale indépendante

Pour touti € {r+1,...,n}, effectuons

J éclatements le long de I'idéal (u;, wy). On

de 11, ..., uy telle que yd divise h.
Ainsi, avec cette hypothese, on peut considérer la suite locale encadrée construite dans
la Proposition I.100. Comme y? divise Q dans R") et comme y? divise 1, on en déduit

que y? divise Q dans R"). Le wy) de la Proposition I.100 differe alors de y—Qd par des

éléments appartenant a 'idéal <u§l), e ufjll).

O

Définition I.102 — Reprenons les notations et les hypotheses de la Proposition 1.101. La
suite locale encadrée par rapport a v et indépendante de v construite dans la Proposition 1.101 sera
appelée la suite élémentaire uniformisante associée a (R,u,v,n,Q), ou plus simplement,

la n-suite élémentaire uniformisante, lorsque il n’y a pas d’ambiguités possibles dans le choix
de R,u,v et Q.

Remarque I.103 — L’entier n de la Définition I.102 fait référence au fait que la suite
est dépendante uniquement des variables uj, ..., uy, u,. Pour j € {r+1,..,n}, on peut
définir une j-suite élémentaire en remplagant les variables uy, ..., u;, u, par uy, ..., uy, ;.

Proposition I.104 — Reprenons les notations et les hypotheses de la Proposition 1.100. Si
Xy, est transcendant sur k[xi,...,x;] ou si r <R(Z),u(l),v> > r, alors, pour 'ordre lexicogra-

(e <R(l),v> ,e (R(l),v> —7r (R(l),u(l),v)> <pex (m,m—71),

Preuve : Remarquons que :

phique :

e <R(l),v) < emb.dim (R(l)> < ny.

Le résultat découle alors du (2) de la Proposition I.100.
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CHAPITRE II

Séries de Puiseux

On sait, depuis Newton et Puiseux que, pour un corps k de caractéristique 0 et algé-

briquement clos, le corps k(t) peut étre plongé dans le corps U k <<t1/ l>) des séries de
i1

Puiseux qui est algébriquement clos. De plus, si k est muni de la valuation triviale et k()
de la valuation t-adique, on peut alors munir le corps des séries de Puiseux d’une va-
luation de telle sorte que la restriction a k(t) soit la valuation f-adique : ¢’est un exemple
d’extension maximalement compleéte (voir [Kr] et [P]). Rappelons qu'une extension de corps
valués (k,v) — (K, ) est une extension de corps k — K telle que p = v; si deplus,
v et y ont méme groupe des valeurs et k, = k,, on dit que I'extension est immédiate.
Un corps muni dune valuation est alors appelé un corps maximalement complet s'il ne
posseéde aucune extension immédiate de corps valués autre que l'identité.

Krull ([Kr]) montra, a I'aide du Lemme de Zorn, que tout corps muni d’une valuation
possede une extension maximale et que tout corps de séries de Puiseux, muni de sa va-
luation naturelle, est maximal. L'existence et 'unicité de cette extension maximale furent
posées par Kaplansky ([Ka]) qui les démontra en caractéristique nulle ainsi que sa non-
unicité en caractéristique positive. De plus, Poonen ([P]) a montré que si le groupe des
valeurs de la valuation est divisible et si le corps est algébriquement clos, alors I’exten-
sion maximalement compléte est algébriquement close.

La question qui vient alors naturellement est : quelle est la forme de cette extension?

En caractéristique positive, on sait qu’elle n’est pas de la forme U k ((tl/ l)) puisque
i>1

I'équation d’Artin-Schreier n’y posséde aucune solution (voir [Az], [Ch]). Il est alors

naturel de considérer des anneaux de séries généralisées ou les puissances de t varient

sur un ensemble bien ordonné. De tels anneaux sont appelés des anneaux de Mal'cev-

Neumann introduits en premier par Hahn en 1908 puis étudiés par Krull en 1932 (voir

[Kr]).

En 1942, Kaplansky ([Ka]) montre que tout corps muni d’'une valuation ayant un

groupe des valeurs divisible et un corps résiduel algébriquement clos se plonge dans
une extension maximalement complete. Remarquons que deux cas se présentent : ou
bien la restriction a Q ou IF, est la valuation triviale (cas équicaractéristique), ou bien la
restriction a Q est la valuation p-adique (cas mixte). Il a également montré que dans le
cas équicaractéristique, 1’extension maximalement complete est un anneau de Mal’cev-
Neumann.
En 1993, Poonen ([P]) décrit explicitement les extensions dans les deux cas. Si (k, v) est
un corps valué de groupe des valeurs I divisible et de corps résiduel k, algébriquement
clos, il existe alors des plongements dans des anneaux de Mal’cev-Neumann maximale-
ment complets :

(1) k—=k, <<tr>> (cas équicaractéristique) ;

(2) k— C(ky) ((pr>> (cas mixte);
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ott C(ky) est I'anneau de Cohen de k,. Dans tous les cas les preuves ne construisent
pas explicitement le plongement. On se propose donc de décrire de maniere expli-
cite un plongement d'un anneau local régulier et complet muni dune valuation de
rang 1 a I'aide des polyndmes-clés, résultat qui généralise ceux de Kaplansky et Poonen.

Mis a part la Remarque Il.21, la sous-section 2.4 et la Section 5, les résultats
du Chapitre II sont issus de [SS].

Soit (R, m, k) un anneau local, régulier, complet de dimension n + 1. On note :

_ 1 si car(k) =0
P= car(k) si car(k) >0

Si R est de caractéristique mixte, on suppose de plus que p ¢ m?. Par le Théoréme L5 de
Cohen, on peut supposer que :

| k[[u1, ..., upns1]] si car(R) = car(k)
R= { W [u1, ..., un]] si car(R) # car(k)

ot W est un anneau complet de valuation discréte de parametre régulier p et de corps
résiduel k. On note, pour toutj € {1,...,.n+ 1} :

B k si car(R) = car(k)
Ko = { Frac(W) si car(R) # car(k)

K — { k((u1,...,u;)) si car(R) = car(k)
=\ W((uy,...,ui)) si car(R) # car(k)
avec U,41 = p dans le cas de caractéristique mixte (on notera parfois K = K;,1).
Soit v une valuation de K, centrée en R, de groupe des valeurs T, telle que VK, soit de
rang 1 (v|g, dans le cas équicaractéristique). On suppose que ky est algébrique sur k. On
note, I'1 le plus petit sous-groupe isolé non-nul de I' et :

FQ:].—'@ZQ}
1
i>1 P

Posons r le plus petit j tel que les v(u;,), ..., v(u;;) soient Z-linéairement indépendants, si
R est équicaractéristique (en fait, r = r(R, u, v) selon les notations de la Définition 1.87),
ou bien le plus petit j tel que les v(p),v(uy),...,v(u;) soient Z-linéairement indépen-
dants, si R est de caractéristique mixte.

On supposera alors, quitte a renuméroter les variables, que :

v(uy),...,v(u,) sont Z-linéairement indépendantes et v(u,i1),...,v(u,11) sont Q-
combinaisons linéaires de v(u1), ..., v(u,), si R est équicaractéristique ;
v(p),v(uy),...,v(u,) sont Z-linéairement indépendantes et v(u,i1),...,v(u,) sont Q-
combinaisons linéaires de v(p), v(u1), ..., v(u,), si R est de caractéristique mixte.

On note vy la valuation monomiale de R associée a m (voir Corollaire 1.50), c’est-a-dire,

sif= Z%M“ € R ot & est un multi-indice, 4, € k (resp. a, € W), u* = u‘i‘l...ui’rll (resp.

a#o}).

u* = u’i‘l...uﬁ”) etm = (uy,..., Up41) (resp. m = (p,uy, ..., u,)), alors :

n+1

w(f) = min{ ; a;v(u;)

n

ay 7 O} (resp.vo(f) = min {ucov(p) + ) av(u;)

i=1
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1. Anneaux des séries généralisées

On va définir des anneaux de séries généralisées (également appelés anneaux de
Mal’cev-Neumann) en suivant les constructions données par [Ke] et [P].

1.1. Définitions des anneaux et des valuations de Mal’cev-Neumann.

Définition II.1 — Soient A un anneau integre et G un groupe abélien ordonné. On appelle
anneau des séries formelles généralisées, noté A Htc} ] , Uanneau o les éléments sont de la
forme Z a,t7, avec les a, € A tels que l'ensemble {7y | a, # 0} soit bien ordonné.

r€Gt
Si A est un anneau intégre local de caractéristique mixte dont le corps résiduel est de caracté-
ristique p et d’idéal maximal engendré par p, on appelle anneau des p-séries formelles gé-

néralisées, noté A HpGH, I'anneau A HtGH /N oit N est l'idéal de A HtGH formé par les

f=Y a7 tels que Y aniyp" =0, pour tout y € G.
vE G+ nez

Remarque II.2 — L’anneau A HtG” (resp. I'anneau A Hpc] ]) est muni de la va-
luation t-adique (resp. valuation p-adique) v, a valeurs dans G, définie par :

o(f) =inflyla, 20}, V= ¥ ar € a[[]]

reEGy

(resp. Yf= ) a,p’ € A HpGH)
YEGy
Définition II.3 — Un anneau de séries formelles généralisées (resp. de p-séries formelles
généralisées) muni de sa valuation t-adique (resp. p-adique) sera appelé un anneau de Mal’cev-
Neumann.
Sa valuation t-adique (resp. p-adique) associée sera appelée valuation de Mal’cev-Neumann.

Définition 114 — Soient f = )  a,t7 € A HtGH (resp. f = Y, a,p’ €
reGy rYeGy
A HpGH) et B € Gy, on appelle troncature ouverte de f en B la série généralisée
f(B) = )Y ayt" (resp. f(B) = Y_ a,p") et troncature fermée de f en B la série gé-
v<pB r<B

néralisée f[B] = Y a,t7 (resp. flp] = Y a,p"). Pour B,p' € Gy, p < B, on note
<p <P

fIB,B'[= f(B)) = F(B)-

1.2. Construction d’un anneau de Mal’cev-Neumann.

Soit (R, m, k) un anneau local régulier complet de dimension 7 + 1. On va construire
un anneau de Mal’cev-Neumann Ay dans lequel plonger R.

Si R est équicaractéristique, on prend Ag = k, Htr/”, ol k, est une cloture algé-
brique de k, .

Si R est de caractéristique mixte, on va construire, par récurrence transfinie, un
anneau local (W,pW,k,) qui soit une extension de W. Dans ce cas, on pose Agx =
W]

Soit k, une cloture algébrique de k,, on peut la voir comme limite inductive d’ex-
tensions algébriques simples de k puisque k, est algébrique sur k. Plus précisément,

37



Chapitre II. Séries de Puiseux.

ky, = k({a;},c;) ot I est un ensemble bien ordonné et les a; des éléments algébriques sur
k,i € I. Le systéme inductif est alors donné par les inclusions provenant de I'ordre total
de I. Supposons que i € I posséde un prédécesseur immédiat, on est alors emmené a
considérer une extension de la forme :

K — x(a)

o, par hypothése de récurrence, a est algébrique sur « et x est le corps résiduel d'un
anneau local (A, m,). Soit Q le polynéme minimal unitaire de « et P un relevé unitaire
dans A. On pose alors A" = Ala]/(P(«)) et on a un morphisme d’inclusion :

A= A
Lemme 1.5 — A’ est un anneau local d'idéal maximal ma A’ et de corps résiduel k().

Preuve : L'idéal ma A’ est maximal dans A’ car A"/my A’ ~ x(«). Soit M un autre idéal
maximal de A’, alors MN A = m 4. Pour montrer ceci il suffit de remarquer que A/ (M N
A) est un corps. Soit a € A/(MN A), a # 0, 'extension entiere A — A’ induit une
extension d’anneaux integres entiere A/ (M N A) — A’'/M, ainsia € A'/M qui est un
corps et donc a~! € A’/M. 1l existe alors des éléments day, ..., dy_1 € A/(MNA) et
m>Ttelsquea ™ +a, 14" +. . +ag=0etdonca ! = —(ay q+..+aa" ') ¢
A/(MN A).On remarque enfin que mq A’ = (M N A)A’ C M et donc A’ est un anneau
local.

O
Si i est un ordinal limite, notons x; = k({oc]-}]. <l)' pour tout I < i. On suppose, par
hypothese de récurrence, que 'on a construit les anneaux locaux A; dont les corps
résiduels respectifs sont x; pour tout I < i. On pose alors A; = U A, cest un anneau

I<i
local de corps résiduel «;. On a donc créé un systéme inductif d’anneaux locaux, on note

W la limite inductive, c’est un anneau local d’idéal maximal pW, de corps résiduel k, et
onaW — W.

Remarque II.6 — On a un résultat similaire si k, est une extension transcendante de
k. En effet, si deg.tr(k,|k) = I alors il existe t, ..., ; transcendants tels que k, = k(t1, ..., t;).
On pose W' = W[t, ..., t;] et on considére 'anneau local W;qu son corps résiduel est k,

—
et, W — WPW"

Remarque II.7 — Remarquons que W est intégralement clos dans Ky, de plus on a :
wew ] < w([p]]
Ce dernier morphisme est induit par :

Q‘—)FQ
1—v(p)

On peut résumer cette sous-section par la proposition suivante :

Proposition 1.8 — Les anneaux k, Htr/” et W Hpr/H sont des anneaux de Mal cev-
Neumann au sens de la Définition I1.3.
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2. Rappels sur les polynémes-clés

On va faire quelques rappels sur les polyndmes-clés introduits dans [HGOAS]
et [S1] pour des valuations de rang 1. Pour une présentation plus axiomatique des
polyndmes-clés, on pourra consulter la présentation faite par M. Vaquié ([Vaz], [Va3],
[Vag], [Vas], [Va6]). Un lien entre les deux constructions des polyndmes-clés est faite
dans les travaux de W. Mahboub ([Mah]).

2.1. Définition et théoréme d’existence.

Soit K — K(x) une extension de corps simple et transcendante. Soit %' une valuation
de K(x), notons p := y"K. On note G le groupe des valeurs de p’ et G; celui de p. On

suppose de plus que y est de rang 1 et que 3/(x) > 0. Enfin, pour 8 € G, on pose :
Py ={f € K(x) [W(f) = B} U{0};
P = {f € K(x) [ (f) > By U{0};

GV/ = @ P/é/P,lg,-I-;
BeG

et in,(f) I'image de f € K(x) dans G,,.

Définition IL.g — Un ensemble complet de polynémes-clés pour y' est une collection
bien ordonnée :

Q = {Qi}iean CK[x]
telle que, pour tout B € G, le groupe additif Pg N K[x] soit engendré par des produits de la forme
S S
aHQz’, a € K, tels que Y _ vy’ <Q1-j) + u(a) > B.
j=1 j=1
L’ensemble est dit 1-complet si la condition a lieu pour tout p € G;.

Théoréme Il.10 — ([HGOAS], Théoreme 62) Il existe une collection Q = {Q;}ica qui
soit un ensemble 1-complet de polynomes-clés.

Remarque II.11 — La preuve consiste a construire par récurrence transfinie 1'en-
semble de polynomes-clés de type d’ordre au plus w X w.

2.2. Développements standards et valuations tronquées.

Définition II.12 — Soit | € A, un indice i < | est dit l-essentiel s'il existe n € IN tel que
i+n=1louitn<letd] (Qirn) > 1. Danslecas contraire, on dit quei est l-inessentiel.

Soit ] € A, on note :
aj=dg (Qi), Vi<

Xj4+1 = {Déi}igl;

Q1 = {Qiti<s-
On utilise également la notation 7, ; = {7;}i<; oit les 7; sont tous nuls sauf pour un
Y Vi1 _ Vi
nombre fini d’entres eux, Q, +*1 = I_Iz Q.
i<
Pour i < [, on note :

P i+1 siiestl-essentiel
"7 i+w sinon
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Définition I1.13 — Un multi-indice 7y, est dit standard par rapport a ajq si 0 <
vi < &, pour i < let, siiest l-inessentiel, I'ensemble {j < iy |j, = i, vj # O} est de
cardinal au plus 1.

7]4—1

Un monéme l-standard en Q1 est un produit de la forme ¢, Q. Y,

est standard par rapport a ejyq.
Un développement I-standard n’impliquant pas Q; est une somme finie Z Sp de monomes
p
l-standards n'impliquant pas Qy, ot B appartient a un sous-ensemble fini de G et Sg = de
j

oit ¢y, € Ket 744

est une somme de monomes standards de valuation B vérifiant Ziny/(dﬁ,j) # 0.
j

Définition IL.14 — Soient f € K[x| et i < 1, un développement i-standard de f est une
expression de la forme :

Si .
— J
f=2 Qi
j=0
oiL ¢;; est un développement i-standard n’impliquant pas Q;.

Remarque IL.15 — Un tel développement existe, par division Euclidienne et est
unique dans le sens ot les ¢;; € K[x] sont uniques. Plus précisément, sii € IN, on montre
par récurrence que le développement i-standard est unique. Si car (k,) > 0,lesc;; € K|x]
sont uniquement déterminés par f mais ceci ne veut pas dire que le développement i-
standard est unique. Par exemple, si i est un ordinal limite, ¢;; admet un développement
ip-standard pour chaque iy < i, i = ip4, mais il existe un nombre dénombrable de
choix de ip pour qu'un tel développement ip-standard soit un développement ip-standard
n’impliquant pas Qj,.

Si .
Définition I1.16 — Soient f € K[x], i <let f = Y_ c;;Q} un développement i-standard
j=0
de f. On définit la i-troncature de y’, notée u;, comme étant la pseudo-valuation :

pi(f) = min {jp'(Q:) +1'(c;i) }-

0</<s;
Remarque II.17 — On peut montrer que c’est en fait une valuation. On a de plus :
VfeKl i u(f) <H(f):

On termine en donnant la Proposition 10.1 (Corollaire 50 de [HGOAS]) et le Corol-
laire 10.15 de [S1] que nous utiliserons dans les preuves du Lemme II.20, de la Proposi-
tion II.29 et de la Proposition II.36.

Proposition I1.18 — V f € K[x], Vb € N,
b

i) = 1 (Pef) < (#(Q) = 1'0,Q0)

i

P’ "0 — 1 (9.0:
RS %% et b; le plus petit ¢ € IN* qui maximise #IQ) ii (9 Ql).

De plus, il existe b(i, f) € IN* calculé en fonction du développement i-standard de f, tel que :

b(i,f)
p

ui(f) —pi (Opinf) =

< prif ) pbt
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2. Rappels sur les polyndmes-clés.

Si .
Proposition IL.1g — Soit f = Y ¢;;Q le développement i-standard de f € K[x], on pose :
j=0

Si={j € {0, s} 11 (Qi) + 1 (cji) = wi(F)}-

Soit j € S;, écrivons j sous la forme j = p°u, ot p ne divise pas u si car(K,) = p > 0.
Supposons que p°* divise j', pour tout j' € S; tels que ' < j. (%)
Alors :

ui(f) = min {p; 9, f) +7 (4 (Qi) — 1 (9,Q:)) }

0<j<s;
et le minimum est atteint pour tout les j € S; vérifiant la condition de divisibilité (x) précédente.
On va utiliser les polyndmes-clés dans le cadre des anneaux locaux réguliers, ils

interviennent de maniere fondamentale dans la démonstration du Théoreme I1.24.

2.3. Polynémes-clés dans une tour d’extensions de corps.

Pourj € {r+1,..,n+1}, onnote {Qj,}tien, l’ensemble des polynomes-clés de 1'ex-

tension K; 1 .<—> Kj1(uj), Q;i = {Q] i’ € Ay i < i}, T ) le groupe des valeurs de
ViK; et vj; la i-troncature de v pour cette extension. Soient ,B],l = V(Q],l) et b;; le plus
Bji —v(9;, Qi) 10
petit élément b de IN qui maximise e b],p I , ol aj,S = WL s € IN. Soit
P : ou;
Bji — V(a]',pbj,i Qi)
&i = b ,ona:

Lemme I1.20 — ([S1], Lemme 10.4) La suite (Sj,i)i est strictement croissante.

Preuve : Nous reprenons la preuve du Lemme 10.4 de [S1]. Fixons j € {r +1,...,n} et
considérons iy, iz € A; deux ordinaux. Il faut montrer que :

Bjin — v( ]p,,lQ;zl) 5 Bji» — v(9 ]p,zz
p/"l p!'z

On peut supposer que i = iy (c'est-a-dire i = i1 + 1 ou i = i; + w), on conclut
dans le cas général par récurrence transfinie sur ip — i;. Par la Proposition II.18, il existe
b(i1, Qj,;,) calculé en fonction du développement (j, i1 )-standard de Q;;,, tel que :

Q] 12)

pb(ille,iz)
Vi (Qja) = Vi <aph<flro,-,i2>Qj,iz> = (v(Q) - v(d u, Qi) -

Vu que d,, <apb(,-1,Qj/,.2>Q]-,i2> <dy (Qji,), on montre facilement que :

Viia <apb("1'Q;ﬁ2>QJ}iz> =V <apb("1/Qj,iz>Q]}iz> .

Par définition du développement (j, i1)-standard, on a :

Bii» > @jiBjiy = Vjiy (Qjiy)-
41



Chapitre II. Séries de Puiseux.

Ainsi, par définition de ¢;;, :

Viiy (Qj,iz) —Vii <aph(i1er,;2)Q]}iz>

Eiin = pb(iler/iz)
i —V <apb<[1'Qj/fz>Q]}iz>
- pb(iler,i2)
Bjin — v (apb(il,Q,-,i2>Qj,i2>
< pb(ille,fz)
< Sj,l'z'

On en conclut que la suite (¢;;); est strictement croissante, pour tout j € {r+1,...,n+1}.
O

Remarque .21 — Pour tout j € {r +1,..,n +1} eti € Aj, ¢;; n'est pas invariant
par permutation des variables, c’est-a-dire, si u;, et u;, sont deux variables distinctes, en
considérant I’anneau R’ comme 'anneau R dans lequel on a échangé u; et u ji, on obtient,

respectivement pour R et R’, deux ensembles de polyndmes-clés {Q]-,i}(jli)e{, 1A,

/

/ o . . . .
et {Qji}(nefritnii)x A distincts, ainsi que deux suites (¢j,)ie A, et (G

)ie AL telles
que :

di e Ajl N A;2, € 75 E;'z,i/
ou l'on rappelle que Aj N A}2 # @ vu que 1 est dans les deux ensembles et qu’ils on
tous les deux comme segment initial une partie de IN.
En effet, supposonsquen+1=23,k=C,r =1, j; =2etj, = 3. Les anneaux R et R sont
alors C [[uy, up, u3]] et C [[u1,us, uz]]. On considere une valuation v : C ((uy,up, u3))" —

Z telle que vic = 0, que l'on va définir a l'aide des polyndmes-clés de R. Supposons
que :

‘31 = v(ul) =4
B2 :=v(uz) = é
ps:=v(us) =3
On a donc:
4B, = B1
362 =2P3
3B1 = 8B3
B2 +2B3 = B1
L'ensembe de polynomes-clés pour C [[uy, up, u3]] est :
Qi1 =11
Qo1 = up
Qoo = u% — U
Q31 = u3 )
Qsp = uf — —
Uz
avec :

1 (Qz/z) = \/ﬁ etv (Qg,,z) = \/E
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L'ensemble de polyndomes-clés pour C [[u1, u3, uz]] est :

Q/l,l =
!
Q1 = ug 3
/
Q./z,z = Uz — Uy
Q3,1 = Uz y
1
Qé,z =Ux— —
us

Uz
Remarquons que Q3, = —5Q32, donc:
" u
3

v (Q5,) = B2 —2B3 +v(Qs2) = -2+ V10.

Calculons ¢ et 8%/2. Les dérivées partielles en u; donnent :

aQZ,Z _ 41/13
aug 2
Q%
auz
Donc :
v 9027 =3etv aQé’z =0
auz auz ’
Ainsi : 5
&0 = V(Q)—v (%) =V17-3
a !
g5, = v(Q3,)—v ( a%j) = 2410

/
On en conclut que &5 # €3;.

2.4. Un exemple en dimension 2 sur C.

Nous suivons les exposés faits dans [Z2] et [Teiz]. Soit R = C [[u1, uz|] muni d'une
valuation v : R — T U {oo} telle que vic = 0. On note T’y le plus petit sous-groupe
isolé non-nul de I' (on peut avoir I'1 = I') et u = (uy, u2). On suppose que I'1 ~ Z et
r(R,u,v) =1, on écrit alors v(uq) = d, v(uz) = m avec m > d. Sans pertes de généralités
(voir [Z2]), on peut supposer que d { m. Par le théoreme de Newton-Puiseux, on sait

qu’il existe un monomorphisme d’anneaux ¢: R — C Htrlﬂ tel que :

On rappelle que C [ {trl] } C C [[t]] est muni de sa valuation t-adique notée v. A partir de
ces développements de Puiseux, on construit par récurrence deux suites de I'y comme
suit :

ey = d

g =min{j > m|a; #Oete_q11j}, VI=>1

e —= ngd<€1_1,€l)
Remarquons que tous les éléments du groupe v(R) sont premiers entres eux vu que v
est surjective et a valeurs dans I'j ~ Z.
La suite (¢;);>0 C Z étant stirctement décroissante, il existe ¢ > 1 tel que ¢, = 1. La suite
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(€7);>1 est donc finie et strictement croissante. On peut alors écrire la série de Puiseux
de 15 sous la forme :

uz(t) = b1t€1 + Z ﬂj,1t€1+]el + bztez + Z aj,2t€2+]€2 + .+ bgteg + Z aj,gteg—l—]eg
j=1 j=1 j=1

oty =max{g € N |e +qge; < e} pourl <I<g—1;b#0,pourl <I<g (b =a
et aj,l = a€1+j€1)'
Pour 1 <1 < g, comme e¢; divise e;_1 et ¢, il existe n; > 1 et m; > 1 tels que :

€1 = e

€ = me;

pged(my, ny) =1
Ainsi, ¢j_1 = nj..ng, 1 <1 < g. En particulier, d = ny..ng. Pour 1 <1 < g, on note uy(ep)
la troncature ouverte de uy(t) en g :

uy(gy) = Z a]-tj.
m<j<eg

Remarquons que si m < j < g et sia; # 0, alors ¢;_; divise j, il existe donc g; € IN tel
que j = gje;_q et, comme uq(t) = t?, en notant :

j 1 1
= ¥ au e <u1) Ce ((w))
m<j<eg

H(uz) = ua(ep).
On peut étendre la notation a I = g + 1 en posant :

i 1 1
Uget1 = Zajuf eC (Mf) ccC <<Mf>> ,
[

Wuggr1) = t(uz) = ua(t).
Notons y4(C) le groupe des racines d-iemes de 1'unité dans C et fixons { une racine
primitive d-iéme de 1'unité. Pour 1 < s < d, on considére les C-automorphismes o, de

C <u1‘11> définis par o <u1‘11> = Cuy.

Proposition II.22 — Notons Q1 = up et pour2 <1< g+1:

on obtient :

ainsi :

[l

ny..nj_q

Q= T (u2—os(uz)).

s=1
(1) L'ensemble {Q, ..., Qq} est un ensemble 1-complet de polyndmes-clés pour 'extension
C ((u1)) = € ((u1)) (u2).
(2) Notons H l'idéal de R défini par :
H={feR|v(f) £ I},
alors :
H = (Qgn1)-
(3) g =v(Q;) —v(021Q)), VI €{1,... g}
(4) Pour1 <1< g, ux(e;) est entier sur C [ui(t)].
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2. Rappels sur les polyndmes-clés.

Preuve : Nous adaptons la preuve du Théoréme 3.9 de [Z2] ainsi que celle du Corollaire
5.4 de [PP].
Remarquons tout d’abord que Q; est par définition unitaire et irréductible. L'extension

1
C(u) — C (ui’) est une extension galoisienne cyclique de degré d de groupe de
Galois :
1
G, := Gal <C (ui’) ‘ C (u1)> ={0s |1 <s<d} ~uy(C).

1
-1

De plus, pour 2 < I < g, l'extension C (u7) — C <u1 > est une extension galoisienne

1 np.ng d
. , nq..ny_ S ————
cyclique de degré n;_q et comme u;""'"' =u; ¢ et,pour1<s < ny.my_q, ¢ -1 est
une racine 7y...n;_1-iéme de l'unité, on a :

1
Guymy, = Gal <C (u{”‘“""l> ‘ C (“1)) ={os[1<s<npmp 1}

et donc:
Gnl...nl,l =~ ]/lnl...n,,l (C)'
Ainsi, pour2 <I<g+1:
Q= J] (u2—0c(uy)).
aeGnlmn]_l

1

Ly

Comme uy; € C | u," , on en déduit que, pour 2 < I < g+ 1, Q) est le poly-

ndéme minimal de uy; qui est, par définition, unitaire, irréductible et a coefficients dans
C (u1) C C((u1)).

Soient f € 'y et f € C((u1)) [u2] tel que v(f) > B. On peut alors écrire f sous la forme
d’une somme finie :

f: Z aal,.‘.,acg ?1---Qg81
finie
\‘ dl?z <f)

ol Auy,..q € & ((ul))’ 0 < g < ny..ng_1

Jet0<al<n1,pour1<l<g—1.La

procédure est la suivante :
Par division euclidienne, on peut écrire :

dig, (f)
dﬁ2(Qg>
o
f = Z a‘"g Qgg’

ae=0
avec a,, € C ((u1)) [ua] et dy;, (an,) < dy; (Qg) = n...itg_1.
On recommence la méme procédure mais avec a,, au lieu de f et Qg1 au lieu de Qq,
on obtient :
T, Q1)
ag,l

Aag = Z a"‘g—lf"‘gngl’
ﬂég,lzo

avec ay, 10, €C ((u1)) [uz] etdy, <a,xg_1,,xg> <d;,(Qq-1) = ny..ng s etdoncag 1 < ng 1.
En procédant ainsi on s’assure de l'existence du développement de f tel qu'on le sou-
haitait, en effet, d), (ﬂal,.,.,/xg) <d; (Q1) =1etdoncay,, o € C((u1)).
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Chapitre II. Séries de Puiseux.

Remarquons de plus que, si (041, e ocg) # ('yl, -y ’yg) sont deux g-uplets d’indices, alors :

Quitte & renuméroter les indices, on peut supposer qu’il existe Iy € {1,...,¢} tel que
x; =y pour | > I et aj, < 7y;,. Ainsi :
ly—1

(71 — 1) Bty = Y (a1 = v)Br + (V (Gayng) =V (yy,.07) ) -

=1

Br = (m — Vna.ny_1e1 + (n2 — Vngenyp_gea + (-1 — V)eg 1 + ¢
Or, par définition ej,_1 | ... | e; | &, pour | € {1,...,Io — 1}. Ainsi, pour I € {2,...,1p — 1},
ej,—1 | B1- Comme By = €1, on a également ¢;,_1 | B1. On en déduit que e;,_1 | (771, — a;,)Bi, -
De méme, comme ¢, |/, pour ! € {1,..., o} on en déduit que ¢, | B;,. Ainsi ny, | (1, — ay,)
et donc 1, < 7y, — &y, ce qui est absurde vu que 0 < y;, — a;, < ¥y, < 1y,
On en déduit alors, pour tout g-uplet (a1, ..., ;) d’indices apparaissant dans le déve-
loppement de f, que :

B<v(f)= min {v (aoq ..... o ‘i‘lmQZﬁg)} <V (A, 0) +lian(Qz)'

(@1,...,0g) ENE

On en conclut que {Qj, ..., Q¢ } est bien un ensemble 1-complet de polyndmes-clés pour
I'extension C ((u1)) < C ((u1)) (u2).
Pour montrer (2) on remarque que :

0(+(Qsi1)) = o

En effet, comme 0, (14p,g+1) = Up,g41, alors ¢ (uz — 04 (uz,4+1)) = 0 et donc :
0 (1 (Qg41)) = v(0) = co.

Comme v(Qq41) = v (¢ (Qg+1)) ¢ T'1, on en déduit que (Qg41) C H. Soit f € H \ {0}
vu comme un élément de C [[u1]] [[u2]]. On a vu en (1) que Qg1 est un polynome en up
unitaire et de degré d, on peut donc écrire, par division euclidienne de Weierstrass ([L],
Théoreme 4.9.1) :

f= th—l—l +7,
avec h € C[[uq]] [[uz2]], r € C[[u1]] [u2] tel que r = 0 ou d,, (r) < d. Alors :

(f) = (m)u(Qgt1) +1(r) = u(7).

Comme ! est un morphisme injectif, on en déduit que f = r. Ainsi f est un polyndéme
en up de degré strictement plus petit que d ce qui est absurde vu que f # 0 et que

Qg1 € H. Ainsir =0, f = hQgy1 et H = (Qq11)-
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2. Rappels sur les polyndmes-clés.

Pour montrer (3) il nous faut calculer v (d,1Q;) pour ! € {1, ..., g}. Remarquons tout
d’abord que 9,1Q1 = 1 donc v (921Q1) = O et ey = B1 = v(Q1). Soit I € {2,..., ¢},
comme v (021Q;) = v (¢(02,1Q))) il nous sulffit de calculer ¢ (d;1Q;). Or

ny..nj_q
021Q =), Qi

s—1 MZ‘_OE(MZJ)‘

Mais, pour s € {1,.,n1.n_1}, v(t(up—os(uy;))) € {e,...e} et g =
v (L (up — 0s(uyy))) siet seulementsi s = ny...n;_1. Pour 1 < g < I notons :

E;={se{l,..,n.n_q}|v(t(u2—0os(uz))) = &4}

Pours € Ej,ona:
Q >>
vl ————— =B —¢
((uz—%(”z,z) Pr—c

Qi ) _
| —= ) = P8+ R,
<M2 —05(uyy) A A

oticsy € Cet Ry, € C[[t]] tel que v(Rs4) > By — £4. On peut donc écrire :

et:

I
1(021Q1) = Z ) (c thi=e +R5q> =Y ctF 4R,
q=1

g=1s€E,

!
ottcg =) ¢y €C R =) ) Ry € C[t] tel que v(R;) > min{f; —¢,;}. Comme
s€E g=1s€E 1sqsd
q q
B1 < ... < Bg, on en déduit que :

<Z c.tPi— Sq) = 1@121{181 —et=PBr—e,

et donc :
v (021Q1) = B — &1

Soit I € {2,...,g}, pour montrer (4) il faut remarquer que :

Oy (Unp) = U,

donc :
L (0'1’11.‘.1’11_1<u2,l)) = uZ(El)‘
ny..nj_q
On définit alors le polyndme ‘Q; = [ (X —i(0s(uzy))) € Cluq(t)][X], il possede
s=1

uy(e;) comme racine. Enfin, comme uy(e1) = 0, le polyndéme ‘Q; = X possede us(e1)
comme racine.
O

Corollaire 123 — Pour | € {1,..,8}, ua(e;) est entier sur

Clua(t), {ua2(p) [m < p < er}].

Preuve : C’est une conséquence immédiate de la preuve du (3) de la Proposition II.22 vu
le choix des polynémes ‘Q; pour ! € {1,...,¢}.
O
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Chapitre II. Séries de Puiseux.

3. Le théoréeme de plongement de Kaplansky

Dans cette section, on suppose que (R, m, k) est un anneau local régulier complet de
dimension 7 4 1. Si R est de caractéristique mixte, on suppose de plus que p ¢ m?.

Théoreme I1.24 — Il existe un anneau de Mal’cev-Neumann Ag et un monomorphisme
d’anneaux :
1: R — Ag,
tels que v soit la restriction a R de la valuation de Mal cev-Neumann associée a Ag.
Pour f € R, on appelle i(f) un développement de Puiseux de f par rapport a v.

ko [[£7|| si car(R) = car(k)

Remarque Il.25 — Agr =< __ ;
1 > . W | |p" si car(R) # car(k)

Remarque I1.26 — Par le Théoréme 1.5, on sait que :

| k[[u1,...,un1]] si car(R) = car(k)
R—{ W ([ir, ooy itn]] si car(R) # car(k)

La preuve consiste donc a définir, par récurrence transfinie, le développement de Pui-
seux de uy, ..., U, 11 (resp. p,uy, ..., u,) a I'aide des polyndmes-clés.

Preuve : On va faire la preuve de ce théoreme seulement dans le cas ot R est de ca-
ractéristique mixte. Le cas ot R est équicaractéristique se traite de la méme maniére en
remplagant p par t et en prenant les coefficients directement dans k, .

Dans ce qui suit on va construire un développement de Puiseux en lien avec les
polyndmes-clés. Remarquons que définir un développement de Puiseux pour un élé-
ment de R revient a définir n + 1 séries i(p), ((u1), ..., L(un) formellement indépendantes
sur W.

On va construire le morphisme ¢ par récurrence sur 1 — . Si n = r, on pose i(p) = p"'P)
et ((uj) = p'), j € {1,...,r} (remarquons que, pour que ¢ soit un morphisme, comme
Vg, , est de rang 1, on choisit une fois pour toute un plongement I'' — R qui envoie
v(p) sur 1).

Supposons que 1 > r et que I’on a déja construit un monomorphisme d’anneaux valués :

G

tel que vz, , soit induite par la valuation p-adique et R,_; = W [[uy, ..., u,1]]. Pour

j€{l,..,n—1}, onnote u;(p) = t,-1(u;).

Nous allons construire la série généralisée u,(p) par récurrence transfinie sur un sous-

ensemble bien ordonné de I".

Soit B € Ty, on note ig = min{i € A, |p < g,,} et par convention, si {i € A, |p <

€ni} = @, on prendra ig = A, (c’est-a-dire le plus petit ordinal strictement plus grand

que n’importe quel élément de Ay).

Supposons donnée une série généralisée 1, () = Y a,p” € W Hpr/] ] , on considere le
7<p

morphisme d’anneaux 15 : R — W Hpr/” défini par :

ip(p) = p'V);
lﬁ(tlj) =uj(p), Vj€ {1,.,n—1};
‘ﬁ(”n) = un(B).
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3. Le théoréme de plongement de Kaplansky.

Définition IL.27 — On dit que u,(B) est un développement de Puiseux partiel de u,, si
les deux conditions suivantes sont vérifiées pour tout j € {1,...,n} :

(1) v(1(Qn,i)) = Bn,i, Vi € Ay tel quei < ig;
(2) 0(1p(Qnjiy)) = Eré%\{v(an,pq Qu,ig) + p'B} (siig = Ay, on considere cette condition
toujours vérifiée).
Soit T une nouvelle variable et considérons le morphisme d’anneaux
T R—>W Hpr/, T” défini par :

tpr(p) = p"V;
r(uj) = ui(p), Vje{l,..,n—1};
tg,r(un) = un(B) + T

On note v I'extension a W Hpr/, TH de la valuation p-adique v de W HpF,H telle que
vg(T) = B et iny,(T) est transcendant sur gr <W Hpr/] } ) On pose alors g = vgr ol

R est vu comme sous-anneau de W Hpr/, T” via le monomorphisme g 7.
Supposons que ig = Ay, alors g = v. Sinon, supposons que ig < A, c’est-a-dire qu’il
existe i € A, tel que ¢,,; > B. On note alors :

Ip=T"V2;Q+ Y QB CTo

l'<l'ﬁ
Lemme I1.28 — On a les assertions suivantes :

(1) La valuation vgg, | est l'unique valuation telle que :

v 1=V 1
.B|Kn—1[Qn/1ﬁ} |Kn—1[Qn,Aﬁ]

vp(Quiy) = min {v (3,0Qus, ) + 178},

geIN
et inyﬁ(Qn,iﬁ) est transcendant sur gry, (Kn_1 [Qn,i,g,]>'
(2) Considérons les sous-algebres graduées gry, (anl[Qn,iﬁD C  gru(R) et
8T v, (Kn,l[ini ﬁ]) C 8T, (R). On a alors un isomorphisme d’algebres graduées :

35 (Kn1[Qu,]) = gy, (Ka-1[Qu))
qui peut étre étendu en un isomorphisme entre gr,,(R) et 8" vy (R) en envoyant
iy (Qn,ig) sur z'nvw.‘3 (Qu,ig), mais la graduation n’est, en général, pas préservée, sauf
si I'une des deux conditions équivalentes de (3) est vérifiée.
(3) pp = Vnig SSi B = €p iy
(4) Vh € R, vyis(h) < v(h).
Supposons que p = ey, (donc pg = vy i,). On a alors, pour tout h € R :
Uiy () = v() & iy, (1) & ker (gry,, (R) = gry(R))

& iny, (157(h)) & ker (grl,l3 (W HPF/,T”> — QT (W HPF/H) >
En particulier, il y a égalité si in,,(T) n'apparait pas dans iny,(1p(h)).
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Preuve : (1) : VgIK,_, = V|K,_, Par définition de 11, vg et v. Pour i < ig, alors, B,; < B et
comme u,(pB) est un développement de Puiseux partiel, on obtient 1'égalité :
vp (15,7(Qni)) = 0 (15(Qn,i)) = Bu,i-
Enfin, comme :
i, (Qnig)
Quig (U1, s ttp—1, 1 +T) = IZ%) 9,1 Quig (U1, s i) T,

on en déduit que :

V,B(Qn,iﬁ) = 12211151 {V <an,lQn,iﬁ) + lVﬁ(T)} g
ol le minimum est atteint avec I = 1 si car(k) = 0, une puissance de p = car(k)
sinon. Ainsi, iny,(T) apparait dans iny,(Qy,,). Comme in,,(T) est transcendant sur

Sty <W HPFI]D, on en déduit que iny,(Qn,;,) est transcendant sur gr,, (Kn—l[Qn,i/jD-
L'unicité de vg vérifiant les propriétés précédemment démontrées provient de la défini-
tion méme de cette valuation.
(2) : Par définition et construction des polynomes-clés et de la valuation tronquée Vn,igs
on obtient 1’égalité :

Vn,iﬁlKn—l[Qn,iﬁ} = VlKn—l[Qn,iﬁ]

qui nous définit un isomorphisme naturel d’algebres graduées :
grl/n’[ﬁ <K7’Z—1[Q)’l,lﬂ,]) ;> gr]/l/g <K7’l—1[Q)’l,l}g]> *
En envoyant inym.ﬁ (Qn,i/j) sur iny, ,3<Qn,i/5)/ on prolonge l'isomorphisme précédent en un

isomorphisme entre 8Tvis (R) et gru,(R), la graduation étant préservée seulement si

yl; = Vn,iﬁ'
(3) : Supposons que p = &y, par définition des polyndmes-clés et de py, il suffit de

montrer que pig(Qu,is) = Vn,is(Qn,iz). Soit go € N tel que pg(Quiz) = v (an,pao Qn,iﬁ> +
p7°B. Par définition de pg, on a:

bn[
,u‘B(Qn,iﬁ) =V (an,pqo Qn,i;;) + PqO,B Sv (an pb”’i/i Qn,zﬁ) +p ’/jgn,iﬁ = ,Bn,iﬁ'

Par définition de €nigyON A :

,Bn,iﬁ -V <an,p‘70 Qn,iﬁ)
p°

7

c’est-a-dire :
]’lﬁ (Q?’l,lﬁ) =V (an,p‘lo Qn,zﬁ) + pqO,B 2 .Bn,iﬁ .

Réciproquement, si jig = vy, alors :

n,

bni
,Bn,i/j =V (an,pqOQn,l’ﬁ> + quﬁ < 1% <a pbn/i‘B Q?’l,l/j) + p /ﬁﬁl

ce qui donne :

‘Bﬂ,l’ﬁ —V <a bn’[/j Qn,Z‘B>
— P
Enis = - < ,B
B pbn'lﬁ
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3. Le théoréme de plongement de Kaplansky.

Enfin, rappelons que, par définition de ig, f < €n,ig-
(4) : Par la Remarque IL.17, pour tout h € R, vy;,(h) < v(h). La premiere équivalence
est évidente, la deuxiéme provient du fait que I'on a supposé jig = vy, et que ug(h) =
vg(1p,T(h)) ainsi que v(1(h)) = v(h).
O

Commencons notre récurrence transfinie par = v(u,) = P,1. On pose alors
up(B) = Oetonaig =1, pg = Vpi, = Vni1; up(pP) est ainsi un développement de
Puiseux partiel de u,.
Supposons u,(B) construit pour un certain f € T'; tel que B > v(u,) et définissons le
coefficient a, g de pP de u,(p). On suppose également, par hypothese de récurrence, que
B = €n,i, ouque f € I'g.
Si B & I'g, comme B = En,igs alors ,Bn,iﬂ ¢ T'g et donc iz = maxA,. Dans ce cas on a
V = Vp,i; = Hp et on pose :

un(p) = un(B) + Pﬁ-

Si B € I'p, alors vg(Qu,iy) = né%\{u(an,pq Qu,ig) + PP} € Tp et donc:
q
dd € K,_1,l1,... i e Ay, A€ IN,A,.., At €Z
tels que :
Avg( inﬁ Z)\,Bnl+1/ d).
On pose alors :
Q?’Z 1/3
2= 411,
=t

modmy €k, si B =ep

0 si B< En,ig

Notons W1, ..., W,_1, Wy, les supports respectifs de u,1(p), ..., un—1(p), un(B), on note

alors uj(p) = Y_ aj,p" pourje {r+1,.,n—1} etu,() = ) an,p". Posons, pour
’)/GW TEW,

je{r+1,..,n},ai={a, |y €W} CW,a = {gj, |y € W;} Ck, son image modulo
p,a= (ar+1, Lay)eta= (a1, an) Soit X une variable indépendante, si on remplace
T par XpP dans inyy (1p,7(Qn,iz)), on obtient un élément de la forme :

£ ) e Koo, X] .

On note alors f € k,[a, X] C k,[X] 'image de f modulo p.
De plus, pour j € {1,...,t}, iny,(15(Qn,;)) est de la forme :

c]pﬁ i, C]GW

et iny,(1p(d)) est de la forme :
5y 5 T,
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Notons ¢; et § dans k, les images respectives de ¢j et de 6 modulo p.

f

Ainsi, ——— = z induit une équation algébrique en X sur k,, on note alors App € ky

B

]

t
o7
=1

une de ses racines et 4, 5 € W un relevé. Deux cas se présentent :

(1)

(2)

a,,p est transcendant sur Ko[a]. On pose alors :
un(p) = un(B) + an,ﬁpﬁ/
onav = vy, eton arréte 1’algorithme.

a,,p est algébrique sur Ko[a]. On note alors

B = 0(Quis (ur(p), s ttn-1(p), un(B) + anpp?)),
max { lg - V<an,pb Qﬂ,i/j) }

belN pb

g
et
B+ =

Enfin, on pose :

{ min{g eu;,}  si B < en

min{§,€n’iﬁ+1} si ,BZgn,iﬁ

un(By) = un(B) + an,ﬁpﬁ'

Ceci nous définit alors un nouveau développement de Puiseux partiel sur lequel
on peut continuer la récurrence. En effet, remarquons que & > B car si f < &y,

alors, par définition de vg, B > v5(Qy,i;) = gr&{l\ {1/ <8n,qun,iﬁ> + pq,B} et donc

€ > P par définition de &; si f = €, par le (3) du Lemme II.28, B = Brig
et donc, toujours par définition € > B. Ainsi, le (1) de la Définition II.27 est
toujourf vérifié lorsque B < €y, ; S f = €y, C'est é~galement vrai vu que, dans
ce cas, p = By,i;- Quant au (2), on vient de voir que f > I/‘B(inz‘ﬁ) pour f < €, ;
si B = €y,i;, comme la suite (Bn,i)iea, est croissante, on a, lorsque B = &:

(g, (Quigs1)) = B = Bujis-
On en déduit que (g, (Quig+1)) = Ergg{v (an,qun,iﬁ+l) + p‘iﬁ+}. Si By =
En,igt+1s alors :
0(tp, (Quig+1)) = %I{} {V <an,qun,iﬁ+1) + Pqﬁ+}
par le (3) du Lemme II.28.

Pour achever notre récurrence transfinie, il nous faut considérer le cas limite. Soient
W un sous-ensemble bien ordonné de I'; n’ayant pas d’élément maximal et {a,, | 7 €

W1} tels

que pour tout B € W, uy(B) = Y ay,p” soit un développement de Puiseux

YeEW
r<p

partiel de u,. Notons u,(W) = ) an,p".

YEW

Supposons d’abord que :

VieA, IpeW, g, <B.
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4. Des résultats de dépendance intégrale.

Alors, pour tout i € Ay, i < ig et I'ensemble {Qnitic A, forme un systeme complet de
polynémes-clés pour l'extension K;,_1 < Kj,_1(u,). Ainsi :

V f € Ky_1[un], 3i € Au, v(f) = vui(f).

On en déduit, a l'aide de la définition du développement de Puiseux partiel, que :

V f € Knalunl, v(f) = o(f(ur(p), - tn-1(p), un(W))).
Or tout f € R tel que v(f) € Ty sécrit f = '+ f”, avec f' € K,_1[un] et vo(f") > v(f).
On a alors :
o(f"(ur(p)s - ttn-1(p), ua(W))) > v(f) = v(f')
(f' (ur(p), vy ttn-1(p), un(W)))
(f(u1(p), s tin-1(p), un(W)))-

0
0

D’oty, pour tout f € R tel que v(f) € Ty, ona:

v(f) = o(f(ur(p), s thn1(p), un(W)))-

Enfin, le méme résultat est vrai pour tout f € R ®g, , K,_1 tel que v(f) € I'.

S'il existe un f € R tel que v(f) ¢ I'1, alors I’ensemble A, contient un élément maximal
A et donc il existe un g € W tel que ¢, » < B. Alors, f s’écrit de maniere unique sous la
forme f = Q7 ,f, otta € N, f € R ®g, , Ky_1 tel que v(f) € I'y. Par le cas précédent,
V(F) = 0(F(u1 (), s tty1(p), 1 (W) et done () = 0(F (11 (p), s tty1(p), s (W)).
On définit alors u,(p) = u,(WV) et la construction du développement de Puiseux s’ar-
réte.

Supposons, pour terminer, que :

Jie Ay, VBEW, &, > B.

On note alors
iw=min{i € A, |[YBEW, e,; > B},

B = 0(Qui (ur(p), s ttn-1(p), un(W))),

- {lg - V(an,prﬂ,iw) }
& = max b
p

et
B+ = min{é e, ;, }.
Enfin, on pose u,(B+) = u,(W), ceci nous définit un nouveau développement de Pui-

seux partiel sur lequel on peut continuer la récurrence.
O

4. Des résultats de dépendance intégrale

Les résultats de cette section sont donnés dans le cas mixte non-ramifié, en rempla-
cant W par k, W par k,, p par t et n par n + 1, on obtient les mémes résultats dans le cas
équicaractéristique.

Proposition Il.29 — Soient i € Ay, B = €y, (C'est-a-dire i = ig), et h € R. Alors :
Vn,i(h) = ggﬂi} {v(9nah) +ap} = ggﬂi} {vn,i(Onah) +ap} .
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Preuve : Soient h € R et @ € IN, par la Proposition II.18, on a :
Vn,i(h) - Vn,i(an,ach) < ap.
On obtient alors :
v i(h) <min{v,;(0,h) +aBf} < min{v(d, 1) + ap}.
x€N x€N
Montrons que ces inégalités sont des égalités. Par la Remarque I1.28 (3), ona :

Vai(h) = pp(h) = vp(ipr(h)).
Soit h = Z dn,j,iQL,i le développement (n, i)-standard de h, on pose :
i=0

S = {] S {0, ...,Sn,l‘} ‘]ﬁ + V(dn,j,i) = Vn,i(l’l)}.
Tout élément j € S s’écrit de la forme j = p°u ol p ne divise pas u. Prenons un j € S tel

que p°*! divise ', pour tout j' € S tel que j/ < j. On pose alors & = p"ij et a 'aide de la
Proposition I1.19 on en déduit que :

Vn,i(h) - V(an,oéh) = Vn,i(h) - Vn,i(an,txh) = ap.
O

Notons A le sous-anneau de WHPFIH engendré par ((p),t(u1),...,1(u,) et
toutes leurs troncatures. Pour tout j € {r,..,n} et B € T U {0}, on note A;z le
sous-anneau de A engendré par toutes les troncatures ouvertes de la forme u; ('), ot
(j', B') <iex (j, B) pour l'ordre lexicographique.

Proposition I1.30 — Soient j € {r,..,n}, p € TU{co}, g,h € A;g[u;j(B)] et A € T1.
On suppose que v(gh) < A.
Il existe alors | € N, Ag < ... < Ajetdy > ... > O éléments de I'y tels que :

!

;g[}\iflz}\i[h@i).

(gh)(A)
De plus, on peut choisir les suites (A;)o<i<i et (0i)1<i<) de telle sorte que A\ < A —v(h) et
5 < A—0(g).

Preuve : Notons supp(g) (resp. supp(h)) 'ensemble de tous les ¢ € T'j tels que le coeffi-
cient devant p® de g (resp. de h) soit non-nul. On va construire les deux suites cherchées
par récurrence.

On pose Ag = v(g) et 1 = A — A, par hypotheéses on a bien Ag < A — v(h). Supposons
maintenant que, pour tout g > 1, on ait construit Ay < ... < Aj et 1 > ... > J; avec
Ay < A—o(h)etd;=A— Ay, pour 1 <i < q.Posons alors :

B, = {e € supp(g) | 36 € supp(h), 6 + 15 <A <0 +€}.

Si B; = @, on pose | = q et la récurrence s’arréte (remarquons que ceci arrive lorsque
Ay = A —o(h)). De plus, par construction, on a I'égalité :

(8h)(A) = }_ glAi—1, Ai[ h(81).

Si B; # @, on pose A;11 = min{A —v(h), minB;} et ;4,1 = A — A;. Par définition de
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4. Des résultats de dépendance intégrale.

Agy1 et de ;41 et par hypothese de récurrence on a bien que Ay < A1 et é; > 6,41. De
plus, on remarque que :

A=Ay, A= Ag} Nsupp(h) # @.

On obtient alors une suite strictement décroissante d’ensembles :
supp (h(A — A1) 2 ... 2 supp (h(A — Agq1)),

ott supp (h(A — Ag+1)) est un segment initial de supp (h(A — A;)). Le processus s’arréte
donc au bout d’un nombre fini d’itérations, ceci entrainant la finitude des suites (A;); et

(37);i-
O

Corollaire IL.31 — Soient j € {r,..,n}, p € T U{co}, g1,...,8s € Ajpluj(B)] et A € Ty
On suppose que v(g1...gs) < A. Alors :

(g0 = L Tlg),

oit N C (IN*)*® est un ensemble fini et /\fjj) € I'1 4 sont tels que Afjj)

s'il existe j' € {1,...,s}\{j} tel que v(g;) >0

< A avec inégalité stricte

Preuve : Par récurrence sur s en appliquant la Proposition II.30.
O

Corollaire IL.32 — Soient j € {r,..,n}, B € T U{co}, g1,...,8s € Ajpluj(B)] et A € T1.
On suppose que v(g1...gs) < A. Alors :

(81--85)(A) € Ajp[uj(B)].

Preuve : Par le Corollaire I1.31, il suffit de montrer le résultat pour s = 1. Notons g =
g1 et montrons par récurrence sur j € {r,..,n} que, si g € A;g[u;j(B)], alors g(A) €
A]ﬁ[u](/%)] pour B € TU{oo} et A € I'y fixés.

Pourj=rona:

w
w

p! P, pr ), p s v(uy) < B

Ar ur =
,ﬁ[ (:B)] { pv(p), V(”l),“',pV(”rfl):| si V(ur)>ﬁ

et doncsi g € A, 4lu,(B)] et v(g) < Aalors g(A) € A, glu,(B)]-

Supposons j > r et le résultat vrai pour j — 1. Soit ¢ € A;g[u;(B)], on peut écrire g
comme un polynéme en u;() a coefficients dans A; . On applique alors le Corollaire
IL.31 a chaque mondme de g(A). Par hypothese de récurrence, toutes les troncatures

ouvertes des coefficients de ¢ sont dans A; ., ainsi g(A) € A;g[u;(B)]-
O

55



Chapitre II. Séries de Puiseux.

Pour j € {r,..,n}, Rj = W [[uy,..,uj]] et B € T'U{co}, considérons les mor-
phismes d’anneaux Tjg, ;g : Rj = W Hpr/” définis par :
(

T8(p) = 1p(p) = «(p);

Tip(ui) = jp(u;) = t(u;), Vie {1,..,j—1};
t.p (1) = uj(B);

Ti,p(uj) = uj[B

Remarquons que 1, g = 1g.
Proposition I1.33 — Soient j € {r,..,n}, p € T U{co}, f € RA\Rj_j et A € I'y. Alors :
p(f)(A) € Ajplui ()]

Preuve : Remarquons tout d’abord que 1'on peut remplacer f par une de ses approxima-
tions (p, u1, ..., uj)-adiques choisies dans W [u1, ..., uj] de telle sorte que 1’on ne modifie
pas ;g(f)(A). Soit f € W [uy, ..., uj] choisi ainsi, on a alors :

,p(f) € W [up), 1(ur), ooy 1), u;(B)] € Ajpluj (B)]-
On conclut en appliquant le Corollaire II.32.

OJ

Dans ce qui suit nous allons donner une description explicite de Tjz(f)(A) et
1j(f)(A) pour un A que nous préciserons par la suite.
Soient j € {r,..,n}, p € T1U{oo} et f € R;\R;_1. Notons

l],ﬁ = min{i S A] ‘ ,B < Ej,i}

et par convention, si {i € A;[B < ¢;} = @, on prendra i;5 = A; (Cest-a-dire le plus
petit ordinal strictement plus grand que n’importe quel élément de A;). Remarquons
que iy = ig. On pose alors :

A(f,B) = min{v;; ,(9;f) +bB|b € N"};
U ={beN"|v (9uf) +bp=A(f,B)}.
Remarque II.34 — Comme R; est noethérien, on a le fait suivant :
30 € N*, 9;,f € (a]-,of, ...,a].jf) , Vb >
Ainsi U C {0,...,b} est un ensemble fini.

Par abus de notation, on notera in,(9;,f) le mondme de plus petit degré de (9;;f)

dans W Hpr/} ] On appelle Uy 'ensemble des b € U tels que ingjﬂ.jlﬁ(T) n’apparait pas

dans ine].,z.j}S <[5j/i]-ﬂ,/T(a]'rb f )) En remplacant n par j dans le Lemme I1.28 (4), on a, pour
tout b € Uy :

Vi (0jpf) = v(9jpf) =0 <le,-,z-]./ﬁ (9j5f )) ;
ii’lv(a]‘,bf) = ii’lv (lg].,ij/ﬁ (a],bf)) .
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4. Des résultats de dépendance intégrale.

Remarque I1.35 — Soit b € U, on a alors :
be Uyssidip < ij,ﬁ/ Vi (a],bf) = V(a]"bf).

Comme U et Uy sont des ensembles finis, le méme iy peut étre choisi tel que vj;, (9;,f) =
v(9;f) et ceci pour tout b € Up.

Pour i g ordinal limite, prenons iy € A; satisfaisant les conditions suivantes :
(1) io <ijp;
(2) Vb € Uy, v]-,io(ajlbf) = v(aj,bf);
(3) Vi€ Ajig <i<ijp Vb e U,
0(U9jpf) — inu(9jpf)) —v(9nf) > B —€jis
(4) VieNj,ig<i<ijg Vbe{0,..,b}\ U,
v(9jpf) +beji > A(f, B).
Enfin, notons :
Auj = uj[B] — ujleji];
Auj(B) = uj(B) — ujlejio -
Proposition I1.36 — Il existe deux polynomes Fg, Fg € Aj g [X] de la forme :

Fg(X)=F+ Y, ino(9;p X,
bely

Fy(X) =Fo+ Y ino(9;f)X";
bely
tels que :

(1) Fo,Fo € Ajp;
(2) 75(f) [A(f, B)] = Fp (Buj);
(3) 4p(f) (A(f, B)) = Fp (Au;(B)).

Preuve : Dans ce qui suit, on adoptera la convention ¢; 5, = oo, pour tout j € {r+1,..,n}.
Supposons d’abord que B < ¢, alors, u;[] = Au; = 0 et on pose Fy = 0. Dans ce cas,
(2) est trivialement montré et on procede de la méme maniere pour montrer (3).
Supposons que B > ¢j1. Soit ¢ € 1 ®zQ, ¢ > 0 suffisamment petit, notons
9inf (ujlejiy]) = lie,,+¢(9jpf) et prenons le développement de Taylor de «(f) en u;[f]
en la j-eme variable. On peut alors écrire :

Tp(f) = ¥ 0f (ule;]) (Auy)”.

belN

Par les points (3) et (4) dans le choix de iy, les termes de la forme :
' b
(19j0f) — ino(3jpf)) (ujlejip]) (Auj)”, pour b € Up;
et 3juf (ujle;i]) (Au;)”, pour b ¢ Up;

n’interviennent pas dans Tjs(f) [A(f, B)]. Ainsi, a I'aide de la Proposition I1.33, on a :

Ta(f) M B = L ino(@nf) (M) = tje, ve(f) € Ajeyy e [ (g0 + )]

bely
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On en déduit donc que :
Foi=Tp(f) IME B = L ino(@nf) (Buy)” € Ayp.
bely

De la méme maniere on montre, en faisant un développement de Taylor de «(f) en u;(f),
que :

Foi=15(F) AFB) — 1 ino(@;6f) (Au;(B))" € Ajp.

bely
Ainsi, (1), (2), et (3) sont démontrés. Pour conclure il suffit de montrer que :

Vb € Uy, iny(9jpf) € Ajp-

Soit b € Uy et notons g = 9;,f. On pose ig(b) = min{ip € A;|v;;(g) = v(g)}. Parla
Proposition II.19, on a :

Viig(v)(8) = v(8) < v(9j,48) +4€jiyv), V9 € N.
Par minimalité de iy(b), il existe g > 0 tel que 'on ait égalité dans 1'inégalité précédente;
prenons alors le plus petit g de la sorte. Le choix d'un tel g entraine que v(d;,8) =
Viio(v)(9j,48), en effet, sinon on aurait :

Viio)(8) < Vio)(9j,48) + 9€i0(0) < V(948) + 4€ji50) = V(8),
ce qui contredit le choix de q. Pour e € I', € > 0 suffisamment petit, on a :
A8 e +e) = v(308) + (81100 T ) -
Fixons nous alors ¢ € Ty, ¢ > 0 suffisamment petit tel que in,(1(g)) =

((g) (/\ (g,sj,io(b) —|—€>) et €, + € < min{pB, € ; )41} Par la Proposition I1.33, on en
déduit que :

ino(g) = 1(3) (A (g £ +¢))

= e +l8) (A (8600 +¢))

GAJé +8[”J(’\(g'flo() ))]CAW‘
O

Proposition IL37 — Soient j € {r,..,n} et p € T1U{oo}. Siijg < A}, alors u;(B) est
entier sur Aj g et une relation de dépendance intégrale est donnée par :

FO </\ (Qj,ij//g,/ ﬁ)) + bZL:I in, (a]'erj/ij/ﬁ> (Auj(,[%))b =0.

Preuve : Soient j € {r,...,n}, p € T1U {co} et supposons que i;g < A;. Par la Proposition
I1.36 et par construction des développements de Puiseux, on a :

Fg (Aui(B)) = 1jp <Qj,ij/,3> <7\ <Qj,ij’/5,,3>) =0.

De plus, maxUy = df[] <Qj,ij,/5) donc la relation précédente est bien une relation de
dépendance intégrale.

O
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Pour j € {r+1,..,n}, notons A; le sous-anneau de A engendré par A; 1. et
tous les éléments de la forme u;(e;;), i € A;.
Corollaire IL.38 — Soit j € {r +1,...,n}, pour tout B € Ty tel queijp < Ajona:
(1) Aj g est une extension entiere de W [1(p), t(u1), ..., t(uj—1)] ;
(2) Aj est une extension entiere de W [1(p), t(u1), ..., 1(uj—1)] ;
(3) A est une extension entiere de W [1(p), t(u1), ..., t(1n)].
Preuve : La premiere assertion découle de la construction des développements de Pui-

seux, la deuxiéme est une appliction immédiate de la Proposition II.37, enfin, la troi-
siéme provient des deux précédentes.

O

Proposition IL39 — Soit j € {r+1,..,n}, alors 1(u;) est transcendant sur
W [t(p), t(u1), ..., t(1j—1)].
Preuve : Soit P(X) € W [u(p),1(u1),...,te(uj—1)] [X] \ {0}, on peut construire f &
W [u1,...,uj—1] \ {0} tel que ¢(f) = P (¢(u;)). Or f # 0 donc :

v(f) =o((f)) €T
Ainsi, P(1(u;)) = 1(f) #0.
O
Corollaire IL.go — Pour j € {r +1,...,n}, i(u;) est transcendant sur A,.

Preuve : Soit P(X) € A;[X]\ {0}. Par le Corollaire I1.38 (2), on sait que .A; est une
extension entiere de W [i(p), t(u1), ..., 1(uj—1)], il existe donc un W [1(p), t(u1), ..., t(uj-1)]-
module de type fini contenu dans .A; et contenant tous les coefficients de P. On peut
alors écrire :

P(X) = i Py(X)ajp
b=1

ottaj, € Ajet Py(X) € W [i(p), 1(ur), ..., t(uj—1)] [X], pour b € {1, ...,c}. Comme P # 0, il
existe by € {1,...,c} tel que Py (X) # 0. Or, par la Proposition II.39, (u;) est transcendant

sur W [i(p), t(u1), ..., t(uj-1)], donc Py, (¢(uj)) # 0 et done P (1(u;)) # O. -

5. Séries de Puiseux universelles

Par le Théoreme 1.5 de Cohen, on sait que si (R, m, k) est un anneau local régulier
complet de dimension 7 + 1, il posséde un anneau de coefficients R tel que :

[ k si car(R) = car(k)
R= { W si car(R) # car(k)

olt W est un anneau complet de valuation discrete de parametre régulier p et de corps
résiduel k. En notant u = (uy, ..., uy+1) un systeme régulier de parametres de R, on
suppose que R est de la forme :

R = R[] [[tr41, oo ttnr1]],

avec :



Chapitre II. Séries de Puiseux.

ot R[r] est un anneau local régulier complet, éventuellement ramifié, de dimension r
(remarquons que ce cas englobe le cas non-ramifié, en effet, si R est de caractéristique
mixte et non-ramifié, on a R[r] = W [[uy, ..., u/]] et p = u,). Soit v une valuation de K,
centrée en R, de groupe des valeurs I, telle que v/, soit de rang 1 et telle que v|z|, soit
monomiale par rapport au systéeme régulier de parametres (i, ..., u,) de R[r| et de rang
rationnel maximal. On note toujours I'; le premier sous-groupe isolé non-nul de I'.
Considérons {cjp}(jg)e(1,.,nt1}x1, des indéterminées et notons £ I'anneau formé

des éléments de la forme :
),
LIl
v B

.....

soient non-nuls.
Pour j € {1,...,n+ 1}, notons U = Z ¢jp- On définit ainsi un morphisme d’an-
Bel's
neaux ¢ : R — L par:

Vae R, (P(ﬂ) =qa
‘P(”j) =U,je€ {1,..,n+1}.
et, pour f = Z”“”“ € R, avec a, € R[r], « multi-indice de N" "1, y% = it
on pose : :

¢(f) = Y p(aa)p(ur)"...p(uc)™,
4
ol ¢(a,) est défini en remplacant u; par U;, 1 <i < r. Pour f € R, on peut alors écrire :

o(f) =Y [

Bel'+

ou fg est une somme infinie de mondmes en c; g de degré . On pose alors :

Z(f) = ({fp lv(f) > B}),

(o)

On note ¢ le morphisme d’anneaux ¢ : R — £/7 induit par ¢.

Propriété Il.gx — Pour tout développement de Puiseux 1 : R — Ag, il existe un mor-
phisme  : L/T — Ag tel que 1 = o ¢.

R.——l—%>z4R
sOl 04
L/T

Preuve : Nous allons donner la preuve dans le cas mixte non-ramifié, dans le cas équica-
ractéristique, il suffit de remplacer p par t et W par k.
Soit 1 : R < Ag un développement de Puiseux (Théoreme II.24). Pour f € R, notons :

Bes(f)
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ot S(f) ={B €T, |i«(f)p # 0} est, par définition, un ensemble bien ordonné.
On pose alors :
¥(cip) = t(u))ppP, j € {1, .. n+1},
p@)=aVaecW,
ott la notation / désigne la réduction d’un élément i € £ modulo Z.
Enfin, pour h = Z h, H czgﬁ € L, on définit ¢ par :
"/GN{l""’”+1}XF+ ],’B
g =} ph)[Te(Ge)"
"/GN{l""’"+1}XF+ ],‘B

Ainsi, i est un morphisme et, pour f € R, po ¢(f) = 1(f) etde plus, v(po@(f)) = v(f).
O]

Remarque II.42 — Le morphisme ¢ n’est pas unique dans le sens ot le morphisme
1 n’est pas unique. Lors de la construction de ¢ on a choisi de définir les développements
de Puiseux des r premieres variables ujy, ..., u, par prlm) () (ou pv(“l), ey pv(“f) dans
le cas mixte). On aurait pu définir ces développements de Puiseux par n'importe quelle
série de la forme Z aj,ﬁtﬁ pourl <j<r(ou Z aj,ﬁpﬁ dans le cas mixte) et faire la

p=v(u)) p=v(u))

construction des autres séries comme dans la preuve du Théoréme II.24. En définissant
¢ de la méme maniere que dans la preuve de Propriété II.41, on obtient un morphisme
d’évaluation différent tandis que la série de Puiseux universelle reste la méme.
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CHAPITRE III

Uniformisation locale en caractéristique nulle

Dans ce chapitre nous adaptons I’approche de Spivakovsky ([S1]) pour I'uniformisa-
tion locale des anneaux quasi-excellents équicaractéristiques au cas ot le corps résiduel
est de caractéristique nulle. Ce résultat a été demontré pour la premiere fois par Zariski
en 1939 ([Z1]) dans le cas des les surfaces puis en toutes dimensions par Hironaka en
1964 ([Hx]). Il a été redémontré par Villamayor en 1989 ([Vi]), Bierstone et Milman en
1990 ([BM]), Encinas et Villamayor en 2001 ([EV]), Encinas et Hauser en 2002 ([EH]),
Wiodarczyk en 2005 ([W]) et Temkin en 2008 ([Tem1]). L'intérét d’écrire cette preuve
dans le cas de caractéristique nulle nous permet de nous rendre compte des difficul-
tés de la caractéristique positive et mixte. L'algorithme consiste a désingulariser 1'idéal
premier implicite qui est en fait engendré par un polynéme unitaire. On se rend alors
compte qu’il suffit de monomialiser les polyndmes-clés, qui deviennent des coordonnées
apres éclatement, pour avoir le résultat. Toute la difficulté consiste alors a monomialiser
le premier polynome-clé limite, polyndme qui n’existe pas en caractéristique nulle.

1. Polyndmes-clés en caractéristique nulle

Reprenons les notations de la Section 2 du Chapitre II. On considere K — K(x)

une extension de corps simple et transcendante. Soit 3’ une valuation de K(x), notons
U= y"K. On note G le groupe des valeurs de yi' et Gy celui de . On suppose de plus
que y est de rang 1, que p'(x) > 0 et car (k,) = 0.
Par le Théoréme II.10, on sait qu’il existe un ensemble 1-complet de polynomes-clés
Q = {Qi}ien et que le type d’ordre de A est au plus w x w. Si car (k,) = 0, on va voir
que le type d’ordre de A est au plus w et par conséquent qu’ il n'y a pas de polynome-
clé limite. Pour touti € A, notons B; = ¥’ (Q;).

La construction des polyndmes-clés se fait par récurrence (voir [S1], § et [HGOAS]).
Pour | € N* on construit donc un ensemble de polyndmes clés Q;, 1 = {Q;}1<i<;; deux
cas se présentent :

(1) 3l €N, By, ¢ G1;
(2) VIEN, B € Gy.

Dans le cas (1), on stoppe la construction. L'ensemble Q; = {Q;}1<i<,—1 est par défi-
nition un ensemble 1-complet de polynémes-clés et A = {1,...,lp — 1}. Remarquons de
plus que I'ensemble Q, | ; est quant a lui un ensemble complet de polyndmes-clés.
Dans le cas (2), I'ensemble Q,, = {Q;}i>1 est infini et A = IN*. Les propositions qui
suivent nous assurent que dans ce cas, I'ensemble des polyndmes-clés obtenu est égale-
ment 1-complet.

Proposition III.1 — ([S1], Proposition 9.30) Supposons que I'on ait construit un ensemble
infini de polynomes-clés Q,, = {Q;}i>1 tel que, pour tout i € IN*, B; € G1. Supposons de plus
que la suite {B;};>1 n'est pas bornée dans Gy. Alors, 'ensemble de polyndomes-clés Q,, est 1-
complet.
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Preuve : 1l suffit de montrer que, pour tout f € G; et pour tout h € K|[x] tels que
y'(h) = B, h est dans le Ry-sous-module de K [x| engendré par tous les mondmes de la

S S
forme aHQZj, a € K, tels que ' (al_[ ng) > B.
=1 j=1

d .
Considérons donc 1 € K [x] tel que pi/(h) € Gi. Ennotant h = ) _ hjx/, on peut supposer,
j=0
sans perte de généralité, que :

vVijedo,..d}, y(hj) > 0.
En effet, dans le cas contraire, il suffit de multiplier / par un élément de K choisi conve-

nablement.
Comme la suite {B;};>1 n’est pas bornée dans Gj, il existe iy € N* tel que :

‘u/(h) < Biy-

Sig :
Notons alors b = Y _ ¢j, QZO, le développement ip-standard de h. Or, comme ce déve-

j=0
loppement est obtenu par division euclidienne, vu le choix fait sur les coefficients de

Bi
d°(Qi)
développement (i — 1)-standard de Q;), on montre facilement que :
VJ S {O,...,Sio}, U (C]',io) > 0.

Rappelons que, par construction des polynémes-clés, pour j € {0,..,s; }, pi (¢jiy) =
#' (¢ji,)- On en déduit alors que :

Viedl, ...si}, P‘, <Cj,ioQ§0> = :”go <c]-,z-0Q{:0) > y/(h).

Ainsi, p'(h) = p' (coi,) et donc, I est une somme de mondmes en Q, |, de valuation au
moins y'(h) (et en particulier, y} (i) = y'(h)).

h et, comme la suite { } est strictement croissante (il suffit de regarder le
i>1

O

Comme dans la sous-section 2.2 du Chapitre II, on note :
K1 = 1, N = d(%;'_l(Qi)’ Vi > 2.

On considere alors deux cas :

(1) t{i>1|a; > 1} = Ho0;

(2 t{i=>1]a; >1} < Hoo.
Dans le cas (1), a l'aide de la Proposition IIl.2, on montre que l’ensemble infini de
polyndmes-clés est toujours 1-complet, indépendamment de la caractéristique de k.
Dans le cas (2), si la caractéristique de k;, est nulle et si 'ensemble de polyndmes-clés
Q. = {Qi}i>1 n'est pas complet, on montre dans la Proposition III.3 que la suite {B;}i>1

n’est jamais bornée. Dans ce cas-1a, grace a la Proposition III.1, on en déduit que 'en-
semble de polyndmes-clés Q, = {Q;};>1 est également 1-complet.

Proposition III.2 — ([S1], Proposition 11.2) Supposons que I'on ait construit un ensemble
infini de polynomes-clés Q,, = {Q;}i>1 tel que, pour tout i € IN*, B; € Gy. Supposons de plus
que l'ensemble {i > 1|wa; > 1} est infini. Alors, Q,, est un ensemble 1-complet de polyndmes-
clés.
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Preuve : Soit h € K[x], comme on a vu dans la preuve de la Proposition IIL1, il suffit de
montrer que y;(h) = u'(h) pour un certain i > 1. Or, si on note :

(Sl(h) =d° (li’lz(h)) P
ou:
) = X in (6) X,
jesi(hBi)
Si(h,Bi) = {j € {0, ...,si} | iBi + 1’ (i) = ui(h)},

Si .
h=1 Qi
j=0
par le (1) de la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), on a :

0c1-+1c31-+1 (l’l) < (Sl(h), Vi > 1.
On en déduit qu’a chaque fois que 6;(h) > 0eta; g > 0:
(Si+1(l’l) < (Sl(h),VZ > 1

Comme l'ensemble {i > 1|a; > 1} est infini et que l'inégalité précédente ne peut se
produire une infinité de fois, on en conclut qu’il existe un iy > 1 tel que J;,(h) = 0 et
donc que wj (h) = p'(h).

O

A partir de maintenant, on suppose que l'on a construit un ensemble infini
de polynémes-clés Q,, = {Q;}i>1 tel que a; = 1, pour tout i suffisamment grand. Ainsi
pour ces i, ona:

Qit1 = Qi+zi,
ol z; est un développement i-standard homogene, de valuation ;, n'impliquant pas Q;.

Proposition III.3 — ([S1], Proposition 12.8) Supposons que I’on ait construit un ensemble
infini de polynomes-clés Q,, = {Q;}i>1 tel que, pour tout i € IN*, B; € Gy. Supposons de plus
qu'il existe h € K[x]| tel que, pour touti > 1 :

pi(h) < p'(h).
Alors, comme car (k) = 0, la suite {B;}i>1 n’est pas bornée dans G;.

Preuve : Par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), la suite {J;(h) }i>1

est décroissante, il existe donc iy > 1 tel que J;,1+(h) = 6;,(h), pour tout t € IN. Notons
Si .

0 cette valeur commune. Si on note h = Z c]-,iQi le développement i-standard de h pour
j=0

i > ip, alors, par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), ui(h) =

SBi+u' (cs;) et p' (cs,) sont indépendants de i. Il suffit donc de montrer que la suite

{ul(h)}i>1 n’est pas bornée.

Notons :

i () = min ' (c;,Q)) | 6 <j<si},
i(h) = min {j € {6 +1,...,5:} ‘y’ (ciQ)) =i}
Toujours par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), la suite

{ei(h) }i>i, est décroissante, il existe donc i1 > iy tel que cette suite soit constante a
partir de i;. Notons alors c5; € K[x] 'unique polynome de degré strictement inférieur
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ad®(Qj,) =d°(Qi) tel que cj; c5;, — 1 soit divisible par Q;, dans K[x]. On peut mon-
trer que y; (c;;) = ' (cj;), pour tout i > ij. Multiplier h par cj; n’affecte pas 6,
donc multiplier 1 par c;; ne change rien au probléme. On peut donc supposer que
iny (csi) = iny (cs;) =1 pour tout i > iy.

Supposons que h = Q; 1, rappelons que nous sommes dans la situation ot Q;; =
Q; + z;, pour i > i > ip. Les z; n’étant pas uniques, un choix possible de z;, pour i = iy,
est:

_ Cs—1,iy
zZj = T
Par définition de z;, ' (zi,) = Bi, et Bi, < Bi,+1. Par récurrence sur + € IN, on construit

Qi+t

Il faut tout de méme montrer que la propriété « {u’'(Q; +z; + ... + z;) }; n’est pas bornée »
ne dépend pas du choix des z;,...,z;, i < I. En effet, supposons que 1'on ait construit
une autre suite de la forme {§'(Q; + z} + ... + z}/) }». Si pour tout [, il existe I’ tel que
W(Qi+zi+..+z) < u(Qi+z + ...+ z)) alors la suite {3/ (Q; +z/ + ... + z;,) }r ne
peut pas étre bornée car sinon la suite {y'(Q; + z; + ... + z;) }; le serait ce qui contredit
I’hypothese de départ. Supposons donc qu’il existe [ tel que, pour tout I, 1’ (Q; + z; +
wt2zp) < ' (Qi+zi+...+2z). Par la Proposition 9.29 de [S1], il existe un développement
Qi+zi+..+zy+zp g+ ... +zp tel que Qi+ 2z} + ...+ 2 = Qi + 2 + ... + z;. Ainsi, on
peut construire une troisieme suite qui n’est pas bornée.

Comme car(ky) = 0, le sous-corps premier de K est Q, considérons alors A la Q-sous-
algebre de K engendrée par tous les coefficients de Q;,, on a donc que, pour tout t € IN,
Qi1+ € Ax]. L'anneau A étant noethérien, I'anneau A [x| I'est aussi. La valuation Alx]

est alors centrée en A[x] et {y" Al (Qil+t)}t N © Gy, Gy étant de rang 1. En appliquant
S

le Lemme 1.48, on en déduit que la suite {B; };>1 ne peut étre bornée dans G;.
O

Corollaire IIL.g — Si car (k,) = 0, il existe un ensemble 1-complet de polyndmes-clés
{Qi}iea tel que A est, soit un ensemble fini, soit IN*. En particulier, il ny a pas de polynomes-
clés limites pour des valuations de rang 1 en caractéristique nulle.

Preuve : On applique le processus de construction de [S1], § et [HGOAS]. S'il existe iy €
N, tel que B, ¢ G1, on pose A = {1,...,ip — 1} et, par définition, {Q;}ica est 1-complet.
Sinon, pour touti € N, B; € G; et on pose alors A = IN*. Si f{i > 1|a; > 1} = 400, par
la Proposition II1.2, 'ensemble {Q;}ica est 1-complet. Si §{i > 1| a; > 1} < 4o, par la
Proposition II1.3, la suite {B;};>1 n’est pas bornée dans G; et donc, par la Proposition
II1.1, I’ensemble {Q;}ica est un ensemble 1-complet de polynomes-clés.

O

2. Théorémes de monomialisation

Soit (R, m, k) un anneau local régulier complet de dimension n avec m = (u1, ..., Uy).
Soient v une valuation de K = Frac(R), centrée en R, de groupe des valeurs I et I'; le
plus petit sous-groupe isolé non-nul de I'. On note :

H={feR|v(f) ¢ T1}.
H est un idéal premier de R (voir Preuve du Théoréme III.17). On suppose de plus que :
n=-e(R,v) =emb.dim(R/H),
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c’est-a-dire que :
HcC m?

] Qv(uo).
i=1

La valuation v est unique si ht(H) = 1, cas auquel on va se ramener grace au Corollaire
III.10. C’est la composée de la valuation y : L* — T'; de rang 1 centrée en R/H, ou
L = Frac(R/H), avec la valuation 6 : K* — I'/T, centrée en Ry, telle que ky ~ x(H).
Par abus de notations, pour f € R, on notera y(f) au lieu de u(f mod H).

On note également r = (R, u,v) = dimg <

2.1. Suites formelles encadrées.

Définition IIL5 — Soit (R,u, k) — (R',u’, k') une suite locale encadrée, on note H)) le
transformé strict de H dans R'. On dit que y est centrée en R’ si y est centrée en R’/ H{. Dans
ce cas, on dit que la suite locale encadrée est une suite locale encadrée par rapport a p.

Définition III.6 — Soit (R, u) — R 4D un éclatement local encadré. Le morphisme
induit par complétion formelle est appelé un éclatement formel encadré par rapport a .
Soient KO = Frac <I{(T)>, HO e transformé strict de H dans RW et HY Vidéal premier

implicite de RO /H(O)@.

On appelle transformé de H dans RV, noté HY, la préimage de H"Y dans RO,

Enfin, on appelle valuation induite par y en RV, notée u\), I'unique extension de y de x (H)
1

ax <H(1)), centrée en RV /HW et donnée par le Théoreme 1.67.

Définition IIL.; — Une suite de morphismes locaux :

(R u) —2> (Ru),u(l)) o (R(l—l),u(l—l)) Y (Ra),u(l))
est appelée une suite formelle encadrée par rapport a p si, la suite :
(R,u) —2 <R(1>,u<1>) _m, LB (R(Z—n,u(l—l))

est une suite formelle encadrée par rapport a y et 11;_q est un éclatement formel encadré par
rapport a la valuation u'=Y, induite par u sur RU=1).

Pour tout éclatement local encadré de la forme (R, u) — (R(l), u(l)>, on définit une

Vallgtion v centrée en 1@ comme suit : fixons une valuation 8% de I?(T), centrée en
(R(l))H(1> et telle que kyn) ~ « (H(l)). On pose alors v =9 o y(l).

Etant donné une suite formelle encadrée :

(R, 1) —2> (Ru),u(l)) o <R(l—1>,u(l—1>> S <R(l),u(l>> ;

on peut, par récurrence sur 1 < i < [ — 1, construire une valuation y(i), centrée en R()
telle que le plus petit sous-groupe non-nul du groupe des valeurs de v soit I'; et définir
le transformé de H dans R(l), noté H®. Par construction, on a :

HY = {f e RO |v(f) ¢ T1}.

Rappelons alors les notations de la Définition 1.87 dans ce cadre :
e (R(i),v(i)) = emb.dim (R(i)/H(i)) ;
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ot ul) = (ugi),...,u,(f.)).

1

On note 1y, la valuation monomiale centrée en R et associée a u = (uy, ..., u,) et a
v(uq),...,v(uy). Par la Remarque L.52, pour tout f € R, on a:

vou(f) <v(f).

Remarque II1.8 — Supposons que n = r. Pour une suite formelle encadrée de la
forme :

(R,u)_fg,(RuxumJ>_129...:1i,(Ra—n,ua—n)_ft;.<Raxuag )

on note v,,n la valuation monomiale centrée en R® associce a ull) et a

o0 (Yot (),

Si f € H\ {0}, alors :
Vot (f) <v(f),

pour toute suite formelle encadrée de la forme précédente et telle que :
v <u§l)> ,...,v(l) <u,(ql)) eTI;.

Ainsi, comme v, o) (f) € I'1 et v(f) ¢ T1, on en déduit que H% = (0), pour tout .
2.2. L'idéal premier implicite est engendré par un polynéme unitaire.

Proposition IIl.g — Reprenons les hypothéses précédentes et supposons de plus que
car(k,) = 0. R est alors de caractéristique O et, par le Théoreme 1.5 de Cohen, on peut sup-
poser que R s’écrit sous la forme :

R = k([[u, ..., un]] .
Notons R,_1 = k[[u1, ..., un—1]] et supposons que H ¢ R,_1 et HNR,,_1 = (0).
Soit f € H\ {0}. A une suite formelle encadrée pres, f s'écrit sous la forme :

f = D‘f n—1P;

oit w € R™, f,_1 € Ry,_1 et P est un polyndme unitaire en u,.
Preuve : La valuation u de rang 1 centrée en R/ H induit une valuation de rang 1 centrée
en Rn—l- ‘
Soit f € H, f # 0, on peut écrire f = iju]n, avec b; € R,,—1. Par hypothese, on peut

j>0
supposer qu’il existe j > 0 tel que b; ¢ H N R;,—1. On pose alors :

ﬁ:%$W@H%¢Hﬂ&A}

Soit d le plus petit entier naturel tel que y(b;) = B (donc by ¢ HN R,,_1).
Soit N > d un entier naturel non-nul tel que, pour tout j > N,
b] S (bo, ey bN) .

Soit j € {0, ..., N}, comme, par hypotheses, R,,_; est un anneau local, régulier et complet,
on peut appliquer le Théoreme I.99 a cet anneau, muni de la valuation y et a I'élément
b;. Il existe donc une suite locale encadrée :

7T (Ry—1, (U1, e tiy—1)) = oo = (R, (uy, oo i, _1))
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telle que b; est un mondme en (ujy, ..., i, 1) (multiplié par une unité de R’). En passant a
chaque pas de la suite au complété formel, on obtient une suite formelle encadrée telle
que bj est un mondme en (1}, ..., u;, ;) (multiplié par une unité de R’).

De plus, par le (1) de la Proposition .79, la propriété d’étre un mondéme fois une unité
est préservée pour tous les éclatements encadrés suivants. Ainsi, on peut choisir 7r de

telle sorte que les by, ..., by soient simultanéments des mondmes en (u, ..., u},_;).

Par les choix de B et de d et par le Corollaire 1.96, apres une suite locale encadrée de
plus, on peut se ramener a la situation out b; divise b]-, 0 <j < N et dong, b, divise b]-
pour tout j > 0.

Ainsi, oo € R’ [[un]] et satisfait les hypothéses du théoréme de préparation de Weiers-

trass ([L], Théoreme 4.9.2).
O

Corollaire III.10 — Sous les mémes hypothéses que la Proposition I11.9, on a :
ht(H) < 1.

Preuve : Si H = (0), il n’y a rien a montrer. Sinon, prenons f € H tel que f # 0. Comme
la hauteur de H est croissante lorsque 1'on fait des suites locales ou formelles enca-
drées, (Corollaire I.72), par la Proposition I1I.9, on peut supposer que f est un polynome
unitaire en u, a coefficients dans R,,_1. Ainsi, ’extension d’anneaux :

0: Ry—1 = Ry—1[[ua]] /(f)

est finie. La préimage de I'idéal H/ (f) par ¢ est (0). Comme la hauteur est préservée
par les extensions finies d’anneaux ([Mat1], Théoreme 20), on a :

ht (H/(f)) = ht((0)) = 0.

Ainsi, ht (H) = 1.
0J

Corollaire IIl.11 — Sous les hypotheses de la Proposition 1I1.9, a une suite formelle enca-
drée pres, I'idéal H est principal engendré par un polynome unitaire en u,.

Preuve : C’est une conséquence directe du Corollaire III.1o0.

2.3. Un premier théoréme de monomialisation.

Théoreme III.12 — Sous les hypotheses de la Proposition 1I1.9, deux cas se présentent :

(1) Ou bien H # (0) et il existe une suite formelle encadrée :
(R, u) —2> (Ru),u(l)) _m L (R(l—l),u(l—l)) i (Ra),u(l))
telle que :
<e (R(l),v(l)) ,e (R(l),v(l)> —7r (R(l),u(l),v(l)>) <jex (e(R,v),n—r).
(2) Ou bien H = (0) et pour tout f € R, il existe une suite formelle encadrée :

(R, u) —2> (Ru),u(l)) LY (R(l—l),u(l—l)) Y (Ra),u(l))

telle que f soit un monome en u') fois une unité de R\,
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Preuve : On procede par récurrence sur n —r. Si n = r alors v(uy),...,v(u,) sont Q-
linéairements indépendants et donc, tout f € R contient un unique mondme de valua-
tion minimale. En particulier,

VfeR wuf) =v(f)

Par la Remarque II1.8, H = (0). Prenons alors un élément f € R, par le Théoreme 1.99, il
existe une suite locale encadrée :

(R, u) —2 <R(1>,u(1>) a2 (R(z'—n,u(i—l)) i (Ra),u(i))

telle que f soit un mondome en u') fois une unité de R(). En passant au complété a
chaque pas, on obtient la suite formelle encadrée satisfaisant (2).

Supposons que n —r > 0 et que I'on a déja construit une suite formelle encadrée
pour toutes les valeurs strictements plus petites et satisfaisant la conclusion du Théo-
reme IIL12.

Soit <R(i), m(i), k(i)) un anneau local apparaissant dans une suite formelle encadrée. Par

le Théoréme I.5 de Cohen, on peut supposer que :
RO = k@ [1ul?, )] ]

Dans un premier temps, montrons que 1'on peut toujours se ramener aux hypotheses
suivantes :
HONRD = (0),ni=n,r=r,

our,=r <R(i), u(i),v(i)). En effet, si pour un certain i, on a :

HY N RW £ (0),
en notant :

R, = K0 [[ul? ey ] eta® = ()l

on peut appliquer I’hypothese de récurrence sur n — r pour construire une suite formelle
encadrée :

(RO, a0) — (R, 7] — .. — (RO, 700

n;i—1’/ n;i—1/ n;j—1’/

telle que e <R(i'l) y(i/l)) <e (R(i)

ni—17 n,-fer(i)> = n; — 1. Notons alors :

R = RUI), Hu,@“ 1K<,

n; i

on obtient une suite formelle encadrée :
(R, 1) — (Ru),u(l)) S (R(l—n,u(l—l)) . (Ra),u(l))

telle que :
e (R(l),v(l)> <e <R(i),v(i)> <e(R,v).
De méme, s’il existe un i tel que n; < n ou r; > r, la suite formelle encadrée recherchée
est déja construite et il n’y a rien a faire.
Ainsi, on peut supposer que, pour tous les anneaux R apparaissant dans n'importe
quelle suite formelle encadrée :
ni=mn,ri=r, HO N RO = (0).
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En particulier, V|(2“> estderang 1 ete (qu?_l,y(i)> =n—1=e(R,_1, ).

n;—1

En appliquant le Corollaire TIl.11 & chaque anneau R, on peut supposer, a une suite
formelle encadrée pres, que pour tout i, I'idéal H (1) est principal engendré par un poly-
nome unitaire en u,(ql).
Remarquons qu’il existe alors une unique valuation () centreée en <R(i)>H(I_) (cest
la valuation triviale si ht (H (i)) = 0 et la valuation discréte centrée en <R(i))H(i) si
ht (H (i)> = 1). Ainsi, I'extension v} de v a R est déterminée de maniere unique.

Pour achever la preuve du Théoréme III.12, il suffit d’obtenir le résultat pour des
polyndémes en .

2.4. Monomialisation des polyndmes.

Proposition IIL.13 — Sous les hypotheéses du Théoréme 1Il.12, pour tout polyndome
f € k|[u1, ..., un—1]] [tn], il existe une suite formelle encadrée (R,u) — (R',u’) telle que f
soit un mondme en u' fois une unité de R'. Supposons de plus que f soit irréductible dans
k[[u1, ..., un—1]] [[tn]], la suite formelle encadrée précédente peut alors étre choisie de telle sorte

que u, divise f et u!> ne divise pas f dans R'.

Preuve du Théoréme I111.12 en supposant la Proposition 111.13 vraie :

Si H # (0), prenons f € HNk[[uy,...uy—1]][ua], f # 0; sinon, prenons
f € kluy, ..., un—1]] [un] \ {0}. Par hypotheses, il existe une suite formelle enca-
drée (R,u) — (R, 1) telle que f soit un mondme en u’ fois une unité de R’. Notons H’
le transformé de H dans R’.

Si H # (0), alors, par définition, v(f) ¢ I'1 et dong, il existe un j tel que v(u;) ¢ I,
c’est-a-dire, u;- € H'. Ainsi, e(R',v) <n—1 < n = e(R,v) et on est dans la situation (1)
du Théoreme IIL.12. Si H = (0) et f € k[[u1, ..., un—1]] [n] \ {0}, on se retrouve dans la
situation (2) par hypotheses.

Enfin, si H = (0) et f € R\ {0}, non-nécessairement un polynéme en u,, écrivons
f=f+f"avecvou(f") > v(f) (et donc v(f) = v(f')). Par le cas polynomial vu avant,
il existe une suite formelle encadrée (R, u) — (R, u') telle que f’ soit un mondme en u’
multiplié par une unité de R'. Or vy, (f") = vo,.(f") > v(f) = v(f’). Par le Corollaire
Lg6, quitte & compléter, il existe une suite formelle encadrée (R’,u’) — (R”,u") telle

que f soit un mondme en 1" multiplié par une unité de R".
0J

Preuve de la Proposition IIl.13 : On va montrer le résultat par récurrence sur le de-
gréde f.Sid, (f) =1, la Proposition III.13 est alors évidente.

Soit f € k[[u1,...,un—1]] [un] de degré d > 1. Par hypothese de récurrence on suppose
que la Proposition III.13 est vraie pour tout polynéme de degré strictement inférieur a
d.

Par le Corollaire I1I.4, comme car (k,) = 0, il existe i € IN* tel que v(f) = v,,;(f). Ceci
veut dire qu’il existe un développement (,i)-standard de f de la forme :

N .
_ J
f= ZCan,i’
j=0

ol les ¢; sont des développements (,i)-standards n'impliquant pas Q,; et v(f) =
Vn,i(f)-
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On rappelle que pour i € N*, on note a,,; = dg) . (Qui)-

Supposons qu'il existe I € IN* tel que «,,; > 1, prenons alors ce [. S'il n’en existe pas,
N

prenons un [ suffisamment grand tel que f = ) c]-Q{” et v(f) = v,,(f). Dans tous les
j=0
cas, par définition des polynomes-clés et par le Corollaire IIL.4, | < w.
Pour achever la preuve de la Proposition III.13, il nous suffit donc d’obtenir le résul-
tat voulu sur les polynémes-clés comme nous allons le voir dans la sous-section 2.5 et la
Proposition III.14.

2.5. Monomialisation des polyndmes-clés.

Proposition III.14 — Sous les hypotheses du Théoreme 1I1.12, il existe une suite formelle
encadrée :

(R,u) — (R',u)
ot u = (U1, .., uy), u' = (U, ..., u,), vérifiant les propriétés suivantes :
(1) Pour tout q € IN* tel que 1 < q < 1, Qu,q est un mondme en u’ fois une unité de R';

(2) Dans R, u), divise Q,, | mais u ne divise pas Q, |.

Preuve de la Proposition 1I1.13 en supposant la Proposition 1I1.14 vraie :

Par hypothése de récurrence sur n — r, n'importe quelle collection d’éléments de
k((u1,..,uy—1)) peut étre transformée simultanément en mondémes via une suite
formelle encadrée. De plus, en appliquant n — r — 1 fois la Proposition I.100, on peut
supposer que seuls les u], ..., 1, apparaissent dans ces mondmes.

Si a,; = 1, on applique la Proposition I.100 a chaque polyndéme-clé Q,, 1, ..., Q, et la
Proposition III.13 est démontrée.

d )
Supposons que &,; > 1. Notons f = Y_aju},, a; € k|[[uy, ..., un_1]]. Soit jo le plus grand
j=0
j €10,..,d} tel que v(aj,) = Ogj?d{v(aj)}. Par le Corollaire 1.96, apres une suite locale
<j

encadrée indépendante de u,, et quitte a compléter, on peut supposer que a;, divise a;,
pour tout j € {0,...,d}. En appliquant le théoréme de préparation de Weierstrass ([L],
Théoreme 4.9.2), on peut supposer que f est un polyndéme unitaire en u, de degré d.

N ‘ d
Soit f = Z chL N = LX—J , le développement (1, 1)-standard de f. Par la Proposition
j=0 ! n,l
III.14, il existe une suite formelle encadrée telle que le développement (n, [)-standard de

f dans R’ soit de la forme Z cull, c e k' [[uy, ..., u;,_1]], multiplié par une unité de R'.

Notons j; le plus grand ] € {0,..,N} tel que v(c;é) = 01f<ni<nN{v(c;)}. Toujours par
S
le Corollaire 1.96, apres une suite locale encadrée indépendante de uj, et quitte a

compléter, on peut supposer que c, divise c pour tout j € {0, ..., N}. En appliquant le

théoreme de préparation de Welerstrass ([L] Théoreme 4.9.2), on peut supposer que f
est un polynome unitaire en u,, de degré inférieur ou égal a N < d. Pour conclure il

nous suffit juste d’appliquer I'hypothese de récurrence.
O

Preuve de la Proposition Ill.14 : Comme [ € IN*, le développement standard de
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Q) est:
ﬂcn’lfl _ .
_ inl o V-1 J
Qni = Qn,nlfl + Z Z Cn,l,],“rn,z—lQn,nl—l Qn,lfl‘
j:O 77/,]—1

Par hypothese de récurrence, pour des valeurs strictement inférieures a n — r, il existe
une suite formelle encadrée (R,u) — (R’,u'), indépendante de u, telle que chaque
élément ¢, ;7 soit un mondme en uj, ..., u,_; multiplié par une unité de R'.

Pour chaque j € {r+1,..,n — 1}, appliquons la j-suite élémentaire uniformisante de

la Remarque I.103, suivie a chaque fois d’une complétion formelle. On arrive alors a la

. . N V- A : "
situation ot les Z Ci iy, Q H”IL; sont des mondmes en u, ..., u, fois une unité de R’.

Wn/l—l
Appliquons | — 1 fois la Proposition I.100, on peut supposer de plus que :
Q?’l,l—l = 17“:1/

ol 77 est un mondme en uj, ..., u),_; fois une unité de R'.

En appliquant la Proposition L.100 & u], ..., u,, u,, quitte & passer au complété, on ob-

tient une suite formelle encadrée (R, u’) — (R”,u”) telle que Q,; soit un mondme
en uf,.., u/,u,. On en déduit immédiatement (1) et (2) par construction, cei acheve la
preuve de la Proposition III.14 et donc celle du Théoreme III.12.

O

2.6. Un deuxiéme théoréeme de monomialisation.

Soient (R, m, k) un anneau local régulier complet de dimension # tel que m = (u) =
(u1, ..., uy). Soient v une valuation de K = Frac(R) centrée en R et de groupe des valeurs
I'. Notons I’y le plus petit sous-groupe isolé non-nul de I'. On pose :

H=A{feR|v(f) #T1}.
On suppose de plus que :
n=-e(R,v) =emb.dim(R/H),
c’est-a-dire que :
HCm?

La valuation v considérée est la composée de la valuation u : L* — T'; de rang 1 centrée
en R/H, ou L = Frac(R/H), avec la valuation 6 : K* — I'/Ty, centrée en Ry, telle que
ko ~ x(H).

Considérons un sous-anneau local (T, mr) de R, non-nécessairement noethérien,
contenant uj, ..., uy, et tel que T/mr ~ k. Soient | C {1,...,n} etj € J tels que :

v(up) <v(u;), i €.
Soit 7o : (R,u) — <R(1),u(1)) ’éclatement encadré le long de (u) par rapport a v
(Définition 1.84), notons m( I'idéal maximal de R(V).

Définition III.15 — Le transformé de T par 7ty est l'anneau :

T =T [ )]
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Chapitre III. Uniformisation locale en caractéristique nulle.

On dit que I'éclatement 7ty est défini sur T si u) ¢ TW),
Pour une suite locale encadrée de la forme :

(R,u) = (R(O),u(0)> M <R<1>,u<1>) T (Rm,u(z))

les notions de transformé T\ de T et de définie sur T sont définies par récurrence sur 1 <
i < L. Plus précisément, la notion de transformé TU) n'est définie qu'en supposant la suite locale

encadrée (R, u) — <R(i_1),u(i_1)> définie sur T.

Nous allons montrer qu’'indépendamment de la caractéristique de k,, si l’'on dispose
d’un théoreme du méme type que le Théoreme III.12 pour un anneau local régulier com-
plet (R, m, k), il va exister une suite locale encadrée (et non plus formelle encadrée) qui
fasse décroitre l'invariant e(R,v). Si R est équicaractéristique, c’est le cas en caractéris-
tique 0, comme on vient de le voir, mais aussi en caractéristique p si [k : k’] < +o0 (voir
[S1], Théoréme 15.7) et si la Conjecture IV.15 est vraie. On verra dans le Chapitre IV que
c’est également le cas si R est de caractéristique mixte, sous les conditions [k : k¥] < +o0

etv(p) & pI.

Théoreme II1.16 — Supposons que le Théoréme Il1.12 soit vrai pour n'importe quel anneau
local régqulier complet R muni d'une valuation v vérifiant les hypotheses de la sous-section 2.6.
Alors :

(1) (a) Ou bien H # (0) et il existe une suite locale encadrée (R, u) — (R, u’) telle que :
e(R',v) <e(R,v).
(b) Ou bien H = (0) et pour tout f € R, il existe une suite locale encadrée (R, u) —
(R',u") telle que f soit un mondme en u’ fois une unité de R'.
(2) La suite locale encadrée (R,u) — (R',u’) de (1) peut étre choisie définie sur T.

Preuve : Comme 1’on suppose que le Théoreme III.12 est vrai pour n'importe quel anneau
local régulier complet R, pour f € R, il existe une suite formelle encadrée :

(R, u) = (R(O),u(0)> T, <R(1>,u<1>) LY (R(z),u(z))

telle que, ou bien e (R(l),v) < ¢(R,v) si H # (0), ou bien f est un mondme en u®
fois une unité de RY) si H = (0). A partir de cette suite formelle encadrée, nous allons
construire, par approximation <u(l))—adique, la suite locale encadrée (R,u) — (R',u’)
recherchée.

Plus précisément, pour s € {1,...,1}, considérons 7;_1 : (R(S’l),u(s’l)> — (R(S),u(s)>
une des transformations de la suite formelle encadrée, elle consiste en une suite élé-
mentaire uniformisante 7o (Définition I.102), qui résout les singularités d'un certain
polyndme-clé, suivie d'une complétion formelle. Ainsi, quitte a renuméroter les va-
riables, R**) est obtenu a partir de R6™Y en adjoignant des expressions rationnelles
ugs), . uﬁs),u,(f) en terme d’éléments de R~ (dont les dénominateurs sont des mo-

noémes en u5~), puis par passage au complété en le centre de la valuation v.
Pour j € {1, .., n}, notons y; s la somme des valuations pour v des numérateurs et déno-

(s)

minateurs de u j +vuentant que mondme en #*~Y. On note alors :

ps = max {p;s}.

1<j<n
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l
Soit B € Ty tel que B> Y_ 5. Notons I le vy , - -idéal de R*) défini par :
q=1

I; = {g e R®

Nous allons construire, par récurrence sur s € {1, ...,1}, une suite locale encadrée :

Vo (8) =B — ) g } :
g=1

(R,u) = <R<o>,ﬁ<o>> LN (Rm,ﬁ(l)) A, (Rm,ﬁ(l))

définie sur T telle que, pour touts et j € {1,...,n}, on ait :
l
(HR) : v 61 (ﬁ](s> _ u](s>> > Y g
q=s+1

Supposons que la suite locale encadrée soit construite a I'étape s — 1. Quitte a renumé-
roter les variables si nécessaire, on peut supposer que :

(s) _ , (s-1) : _
U = ,r+1<j<n—1

L’hypothese de récurrence :

!
Vo y(s-2) (ﬁ](sfl) N u]('sfl)) > Z H,
g=s

et le fait que les ugs), . uﬁs) s’expriment de maniere rationnelle en fonction de ut=1

entraine que (HR) est vrai pour j € {1,..,n —1}.
Reprenons les notations de la sous-section 6.5 du Chapitre I. Considérons :

igr;(xjv (u}s_l)) =av <u,(f_1)> ,
la plus petite combinaison Z-linéaire de v (ugs_l)) PIY, <u£s_1)> LV (uf—l)) telle que

« € IN*. Notons :
y= ()" ()

N i (1)
Q(S) — iZ:(:)blyd z(un ) ,

le polyndme Q apparaissant dans la Proposition I.100 correspondant a la suite élé-

et

mentaire uniformisante 77p;. Pour chaque b; apparaissant dans Q(S), choisissons b; €
_ X
(R(S_1)> NTEY tel que :

i
Volu(sfl) <b](S) - b](S)> > Z ]/lq.
q=s
Posons :

56 = i oy (u;s—n)ﬁ,

i=0
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et 7t;_1 la n-suite élémentaire uniformisante déterminée par ces données. Anisi, avec
Q) et O, on montre que (HR) est vraie pour j = n.
La suite locale encadrée que I'on vient de construire par récurrence :

(Ru) = (RO, a0) 0 (RO, a0) T B (RO, a0)

définie sur T, telle que, pour toutsetj € {1,..,n}:

1
‘bﬂﬁl)(ﬁf)—léﬂ>i>q§;lﬂw

implique que in, <u](5)> = iny (ﬁ](-s)), vus en tant qu’éléments de (grl, (R(l))> , al-
gebre qui contient la sous-algebre gr, (R(S)). De méme, la valuation monomiale v, )
de Frac (R(l)), restreinte a R, coincide avec la valuation monomiale Vo z0- On a alors

] ]
i -aloe R(s)
contient la sous-algebre 8", <R .

My, <”(-S)> =iy <ﬁ(s)>, vus en tant qu’éléments de <gr1,0’“(]> <R(l)>)*, algebre qui

Si H= (0) et f e R\ {O} est monomialisé par la suite formelle encadrée, 1'égalité
précédente implique que :
f=ao+f,

ot @ est un mondme en ") et v,a0 (f) > v(@).
Si H # (0) et f € H\ {0} dont le transformé strict devient un parametre régulier dans
R(Z), alors :

f=QV+F,
ot vz (f) > v(Q"). En appliquant le Corollaire 1.96, aprés une suite monomiale

)
(R(l),u(l)) — (R, u’) (respectivement, en appliquant la Proposition I.101, apres une

suite locale encadrée indépendante de ug), dans le cas H # (0)), on est ramené a la

situation ot @ divise f, c’est-a-dire a la situation o1 f = z@, z unité de R’ (respective-
ment, f = zg, ou g est un parametre régulier de R’ et z une unité de R/, dans le cas
H 7 (0)).

O

3. Théorémes d’uniformisation locale en caractéristique nulle

Soit S un anneau local noethérien. Pour montrer que S est transformé en un anneau
régulier via une suite locale encadrée, il faut montrer que §g et S /H le sont, H étant
I'idéal premier implicite de S. Par le Théoréme 1.69, si S est quasi-excellent alors §ﬁ est
régulier. Dans un premier temps, nous allons montrer que, sous certaines hypothéses,
S/H est aussi régulier. Enfin, grace a ces deux résultats nous montrerons le théoreme
d’uniformisation locale pour des valuations de rang 1 puis pour des valuations de rang
quelconque grace a [NS].

3.1. Un théoréme préliminaire d’uniformisation locale.

Théoréme IIl.17 — Soient (S, m, k) un anneau local noethérien integre de corps des frac-
tions L et y une valuation de L de rang 1 et de groupe des valeurs I'y centrée en S telle que
car (k,) = 0.
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Notons u = (uy, ..., uy) un ensemble minimal de générateurs de m et H I'idéal premier implicite

de S.

Soient fi, ..., fs € m tels que u(f1) = 1r£1j£1 {n(fj)}. Il existe alors une suite locale encadrée :
\]\S

(S,u,k) = <5(0>,u(0),k(0)> o, (S(U,u(l),k(l)) e <s<i>,u(i>,k<i>) )

ayant les propriétés suivantes :

notons H; l'idéal premier implicite de S; et f] l'image de f] mod H;, 1< j < s, alors :
(1) S;/Hj est réqulier ;
(2) Pour1<j<s, JTJ est un monome en u'? fois une unité de @/Hi;

(3) Pour1<j <s, fi divise f; dans S:;/H,.

Preuve : Notons 0 : S — S le morphisme de complétion formelle. Par le Théoreme 1.67,
i s’étend de maniere unique en une valuation i centrée en S/H. Notons u = (y,x) tel
que x = (x1,...,x7), | = e(S, ) (voir Définition 1.87), y = (y1,..., yn—1) et les images des
X1, ..., X; dans S/H induisent un ensemble minimal de générateurs de (m§) /H.

Par le Théoreme 1.5 de structure de Cohen, on sait qu’il existe un anneau local régulier
complet de caractéristique nulle R et un morphisme ¢ surjectif :

¢:R— S/H.

Notons H = ker ¢, comme H est un idéal premier (Théoreme 1.67), H est un idéal
premier de R. On choisit R de telle sorte que dim(R) = I. Notons K le corps des fractions
de R. Soit 6 une valuation de K centrée en Ry telle que kg = x(H). Si 'on regarde
il comme une valuation centrée en R/H via le morphisme ¢, on peut considérer la
valuation v = ji o 0 centrée en R et de groupe des valeurs I'. Alors, I'; est le plus petit
sous-groupe isolé non-nul de I et :

H={feR|v(f) £I1}.
De plus, car (k,) = car (k) = 0. On s’est donc ramené aux hypothéses du Théoreme
III.12.
Soit T = ¢ 1(c(S)), c’est un sous-anneau local de R d’idéal maximal ¢ !(c(m)) =
mNT. Ainsi, T contient x1, ..., x; et :
T/(mNT)~k.
Comme le Théoreme III.12 est vrai en caractéristique 0, on peut appliquer le Théoréme
III.16. Ainsi, plusieurs cas se présentent :
(1) Si H # (0), il existe une suite locale encadrée (R, x) — <R(i),x(i)> telle que
e(R,v) décroisse strictement. En particulier, ce cas ne peut arriver qu'un nombre
fini de fois, ainsi, on arrive a la situation ot H = (0) et donc R/ H est régulier.

(2) Si H = (0), alors pour chaque f]-, 1 < j < s, il existe une suite locale encadrée
(R, x) = <R(i), x(i)> telle que f; soit un mondme en x) multiplié par une unité
de RM,

Par la Proposition 1.79, la propriété d’étre un mondme fois une unité est préservée par
les suites locales encadrées. Ainsi, en itérant la procédure de (2), on arrive a la situation
ou tous les fi, ..., fs sont simultanéments des mondmes en x@, Apres une suite locale
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encadrée de plus (R,x) — (R’,x’), on peut supposer que les f; sont des mondmes uni-
quement en X1, %, 1 <j<s,r=r(R, x,v) (voir Définition 1.87). Enfin, en appliquant
plusieurs fois le Corollaire .92, on est ramené a la situation ot chaque f; est un mondéme
enxy, .., x, 1 <j<set pourj,j €{1,.,s}, fjdivise f; ou f; divise f;. De plus, toutes
ces suites locales encadrées sont définies sur T. Considérons le diagramme suivant :

(R, x, k) — 2~ (R<1>,x<1>,k<l>) L T <R<i>,x<i>,k(i>>

(S, u, k) —2 <s<1>,u<1>,k<1>> P (5<i>,u<i>,k<i>>

Par ce que l'on vient de voir, la premiere colonne et la premiere ligne on déja été
construit. En passant au transformé strict de R/H ~ S/H a chaque étape de la suite
(71j)1<j<i—1, on construit la suite d’éclatements encadrés (ﬁj)l <<iot de S/H définie sur

S. Enfin, la suite (7;) se releve en une suite locale encadrée (p;)1<j<i—1-

1<j<i-1
Si R/ H est singulier, par le Théoréme III.16, il existe une suite locale encadrée (77;)1<j<i—1
qui fasse décroitre e(R, v). Ainsi, la suite locale encadrée (p;)1<j<i—1 résultante possede

la propriété :
e <S(i),y) <e(S,n).
Ceci n’arrive qu'un nombre fini de fois. Ainsi, aprés un nombre fini de pas, on arrive a la

situation ou @ / H(i) est régulier. Maintenant, si I’'on suppose que Sf(l\) / H(i) est régulier,

considérons fi, ..., fs des éléments non-nuls de S tels que u(f1) = 12112 {n(fj)}, alors, par
SJSS

le (2) vu plus haut, on en déduit que, pour 1 <j <s, f] mod H, sont des mondmes en
ul) et fi mod H; divise fj mod H;.
O

3.2. Uniformisation locale plongée pour des valuations de rang 1.

Avant d’énoncer et de démontrer le théoreme d’uniformisation locale plongée pour
des valuations de rang 1, nous allons donner un lemme un peu plus général et indépen-
dant de la caractéristique qui nous sera également utile dans le Chapitre V.

Lemme IIL.18 — ([S1], Lemme 16.3) Soient (A, m, k) un anneau local noethérien, v une
valuation centrée en A et | un v-idéal premier de A non maximal. Notons h = ht(]). Supposons
que Ay et A/] soient réguliers. Notons u = (uy, ..., ) un ensemble minimal de générateurs de
m et supposons que u = (x,y) avec x = (x1,...,x;) et y = (Y1, ..., Yu_1) tels que :

(1) x induit un systeme régulier de parametres de A/ ] ;

(2) il existe un ensemble minimal de générateurs (yi,...,YJ,—;) de | et des mondmes
@1, ..., @y en X tels que @1/.../@,_; de sorte que (J_j_ps1, - Y1) induit un
systeme régulier de parametres de Aj et, pour tout N € IN*, il existe v; € A™ tel que :

~

N
Yi— Yy — (D]Z)] € cD]m ,
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1 < j < n— 1. Remarquons que, par convention, on peut avoir yj = ]7j, wj = 0, v = 1
et (y) =J.
Soient f1,..., fs € A tels que :
v(f1) < ... <v(f).
Soit (T, mt) un sous-anneau local de A non nécessairement noethérien tel que T /mr = k. Enfin,
supposons que pour tout g1, ..., € A tels que :

v(g) < - Sv(g),
il existe une suite locale encadrée (A, u) — (A',u’) indépendante de y et définie sur T telle que,
pour tout 1 < j < t, gjmod ] est un mondme en u' et g, mod J' divise gymod J', 1 < q <i <t
(oir ] est le transformé strict de | dans A').
11 existe alors une suite locale encadrée (A,u) — (A", u"") par rapport a v et définie sur T telle
que A" soit réqulier.
Supposons de plus que I'une au moins des deux conditions suivantes est vérifiée :

(3) fi¢], 1<i<s;
(4) Yj :]7j,1 <j<n—I(onc] = (y) T =Acetpourtout 1 <i<s, fj est un
mondme en (Yy—i—p+1, - Yn—1) €t fi/ fiy1 dans Aj.
La suite locale encadrée (A,u) — (A", u") précédente peut alors étre choisie de telle sorte que

les f; soient des mondmes en u" multipliés par une unité de A" et telle que f;/ fiyq dans A",
1<i<s.

Preuve : Nous ne donnerons qu’une idée de preuve, pour plus de détails, on peut consul-
ter [S1]. Si ] = (0), il n’y a rien & montrer; supposons donc que | # (0). A partir de
la suite locale encadrée (A,u) — (A’,u’), on veut construire une suite locale encadrée
(A,u) — (A”,u") définie sur T telle que A” soit régulier. Pour cela il suffit d’avoir :

A = Fitt, (]///]//2),
ou Fitt, (J" /] ”2) est le h-ieme idéal de Fitting de | /] "2 Par hypothese et aprés une suite
locale encadrée n'impliquant que des variables en x, on peut se ramener a la situation ot
Fitty,(J'/] ’2) est principal et engendré par un monoéme en x noté a. Quitte a renuméroter
les variables de y, on peut supposer qu’il existe n — | — h relations de la forme :

n—I
gp=agit ) Gt g
g=n—I—h+1

ou g; E]’z etadiviseaj,q pourl<j<n—I—hetn—-I-h+1<g<n—-1Siona4),
alors :

vou(yj) >v(a), 1<j<n—1
Comme ] est un v-idéal alors y; € | et a ¢ |. Supposons que I'on n’a pas (4) et prenons
N € N tel que:

1
N>—|v(w,_;) + max{v(f),v(a
) | V@) + max (), v(a)
fq2]
Considérons une variable x; de x telle que xj divise @; pour un certain « € N*. On
éclate l'idéal (y, x;) et on répeéte cette procédure « fois. On fait de méme pour toutes les

autrs variables divisant @;. On arrive a la situation ot :
Vo,u’ (]/1) > V(“) + V(a)n—l) - V(‘Dl)'
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On refait pareil pour toutes les autres variables de y, on est ainsi ramené a la situation
ol pour ces nouvelles variables, on a :

vou(y}) > v(a), 1<j<n—1

Pour chaque variable x; de x divisant 4, on éclate en I'idéal (y, x;). Ces éclatements ont
pour effet de multiplier a et les a;, par x; ainsi que les g, ..., g par x]7 oll ¥ > 2. Apres
un nombre fini de fois, a divise g; et donc a divise ¢;, 1 < j < n— 1 — h. Ainsi, pour
1<j<n—1—h,les yj s’expriment comme une fonction des variables restantes modulo
m?. Ceci fait donc décroitre emb.dim(A) et donc A est régulier, & une suite formelle
encadrée prés.
A partir de maintenant on peut supposer que h = n — [ ; pour terminer il faut montrer
que les f; sont des mondmes en 1" multipliés par une unité de A”. Quitte a diviser f;
par un mondme en y, on peut supposer que (3) est toujours vérifiée. Si (4) est vérifiée
alors :
volu(y]-) >v(fi),1<j<n—1,1<i<s.
Si (4) nest pas vérifiée, 'inégalité précédente reste vraie par le choix de N. Ainsi, pour
1<i<s,ona:
fi=pi+fi
ot1 p; est un mondme en x et vy, (f;) > vo,.(p;). On applique le Corollaire 1.96 & chaque
fi, 1 <i < s eton obtient le résultat cherché.
O

Passons maitenant au théoréme d’uniformisation locale plongée pour des valuations
de rang 1 sur un anneau équicaractéristique dont le corps résiduel est de caractéristique
nulle.

Théoreéme III.19 — Soient (S, m, k) un anneau local intégre quasi-excellent de corps des
fractions L et y une valuation de L de rang 1 et de groupe des valeurs I'y centrée en S telle que
car (k) = 0.

Notons u = (uy, ..., uy) un ensemble minimal de générateurs de m.

Soient fi, ..., fs € m tels que u(f1) = 1@}135 {u(f;)}. Il existe alors une suite locale encadrée :

(S,u,k) = <s<0>,u<0>,k<0>> _o, <s<1>,u<1>,k<1>) e <5(i>,u(i>,k<i>) )

ayant les propriétés suivantes :
(1) S; est régulier;
(2) Pour1 <j<s, f] est un monome en u') fois une unité de S; ;
(3) Pour1 < j<s, fi divise f] dans S;.
En d’autres termes, yu admet une uniformisation locale plongée au sens de la Propriété 1.63.

Preuve : Reprenons les notations du Théoréme III.17. On a vu qu’il existe un morphisme
surjectif :

1[J:SA—»SA/H2R/H.
Par le Théoreme IIl.17, apres une suite locale encadrée auxiliaire, on peut supposer
que S/H est régulier et donc que R/H ~ k[[xy, ..., x;]]. Ainsi, il existe un ensemble de
générateurs § = (¥1, ..., J»—1) de H et des séries formelles ¢; € k[[x1, ..., x/]] tels que :

Ji=yi+¢;€S51<j<n—1
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Quitte a renuméroter les y;, on peut supposer que :

py) < p(y2) < oo < pYn-i)-
En appliquant le Corollaire [.96 aux mondémes de ¢;, 1 < j < n — I, on peut supposer
que :
¢ = @),
ot les @; sont des mondmes en x1, ..., X, Uj € k [[x1, ..., x1]]* et tels que :
@1/ ../ @,
Ainsi, on en déduit que :
Vie{l,.,n—1}, VN € N*, Jv; € S*, § — yj — @;v; € @m".

Enfin, rappelons que, par le Corollaire 1.69, I'anneau §H est régulier. On applique alors
le Lemme I1I1.18 4 A = §, J=H T=Setv = #. On en déduit alors une uniformisa-
tion locale plongée (Propriété 1.63) de S. Comme S est quasi-excellent, par le (2) de la

Remarque I.12, on en déduit que S est régulier.
O

3.3. Théoremes d’uniformisation locale plongée.

Corollaire II.20 — Soient (S, m, k) un anneau local intégre quasi-excellent de corps des
fractions L et v une valuation de L centrée en S et de groupe des valeurs I telle que car (k,) = 0.
Alors, v admet une uniformisation locale plongée au sens de la Propriété 1.63.

Preuve : On applique le Théoréme IIL.19 et le Théoreme 1.3 de [NS].
O

Corollaire .21 — Soient (S, m, k) un anneau local intégre quasi-excellent de corps des
fractions L et v une valuation de L centrée en S et de groupe des valeurs T telle que car (k,) = 0.
Pour I un idéal de S, la paire (S, I) admet une uniformisation locale plongée par rapport a v au
sens de la Définition 1.61.

Preuve : C’est une application immédiate du Corollaire III.20.
O

Théoréme IIl.22 — Soit (S, m, k) un anneau local (non nécessairement integre) quasi-
excellent. Soient P un idéal premier minimal de S et v une valuation du corps des fractions de
S/ P centrée en S/ P et de groupe des valeurs T telle que car (k,) = 0.

1 existe alors un éclatement local 7t : S — S’ par rapport a v tel que S|, soit régqulier et
Spec(S') soit normalement plat le long de Spec(S,,;), c’est-a-dire que I'anneau S admet une

uniformisation locale par rapport a v au sens de la Propriété I.58.

Preuve : Nous reprenons la preuve du Théoreme 16.5 de [S1]. Par le Corollaire III.21,
il existe une suite locale encadrée (S,u) — (S',u') le long de centres ne contenant
aucune composante irréductible du transformé strict de Spec (Sye4), tel que Spec (S,,,)
soit régulier. On peut donc supposer que S,.; est régulier. Il reste a montrer qu’il existe
une suite locale encadrée telle que Spec(S’) soit normalement plat le long de Spec(S,,;).

red
Soit (y1,...,yn) = 1/ (0) C S, c’est I'idéal qui définit Spec (S,.s) dans Spec(S).
Rappelons que pour un anneau local noethérien (R, n), le cone tangent de Spec(R) est
défini par :

Spec <@ n”/n”“) :

n=0
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I suffit de construire une suite locale encadrée telle que le cone tangent de Spec(S’) soit
définit par un idéal engendré par des éléments de k [y_g, ,y_ﬂ , ol y;- est le transformé

strict de y; dans S’ et 7jj est I'image naturelle de y; dans 'algebre graduée de §', 1 < j < h.
Notons A = S,,45, A’ = S/, on peut alors écrire S sous-la forme :

red’
S=A [yl,...,yh] /I

Notons fi, ..., fs € A [y1, ..., yp] un ensemble de générateurs de I et (xy, ..., X, ) un ensemble
minimal de générateurs de I'idéal maximal de A.

Pour 1 < j < s, notons fj = }_cjy" € A[y]. On va construire une suite locale encadrée
o
et une partition (u') = (v/,x") de (u’) ou (') est le transformé strict de (y).

Soit 1y » la valuation monomiale de A’ associée a x" eta J v ( x/! Corollaire I.50). Par
0, j j 5

le Corollaire II.21, on peut construire une suite locale encadrée (S,u) — (S, u’) telle
que les c;, soient des mondmes en x' fois une unité de A'.
; N
Pour tout j € {1,.., s}, notons y; = max{N € N"| f; € (y)"} et f; = Zc},ay’“ e A'ly']
o

/
j.ar POUr

un certain j et un certain « tel que |a| = y;, éclatons en I'idéal (v}, ..., y}, X;) un nombre
suffisant de fois. On arréte le processus lorsque, pour 1 < j < s et a tel que |a| > y;,
il existe & tel que c; divise c;,, avec |&| = ;. Par le Corollaire 1.96, on sait que, pour
chaque j, il existe bien & tel que |&| = y; et pour tout &, ¢;; divise c;,.
tangent de Spec(S’) est défini par des polyndmes qui ne dépendent que de v}, ,% On

en conclut que Spec(S’) est normalement plat le long de Spec(S,,;)-

le transformé strict de f; dans S’ = A’[/]. Pour chaque x| apparaissant dans ¢
j Y q + app

Ainsi, le cone

OJ

Remarque III.23 — Cette preuve ce généralise indépendamment de la caractéris-
tique de k, lorsque la propriété d’uniformisation locale plongée est vérifiée au sens de
la Définition L.61.
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CHAPITRE IV

Monomialisation en caractéristique mixte

Soient (R, m, k) un anneau local régulier complet de caractéristique mixte de dimen-
sion n avec m = (x) = (x1,...,X,) et v une valuation de K = Frac(R) centrée en R, de
groupe des valeurs I'. Soit I'; le plus petit sous-groupe isolé non-nul de I'. On note :

H={feR|v(f) £ I}
H est un idéal premier de R (voir Preuve du Théoreme V.1). On suppose de plus que :
n=-e(R,v) =emb.dim(R/H),
c’est-a-dire que :
HC m%
On note également r = r(R, x,v) = dimg (i Qv(xi)> .
i=1

La valuation v considérée est la composée de la valuation y : L* — T'; de rang 1 centrée
en R/H, ou L = Frac(R/H), avec la valuation 0 : K* — T'/I';, centrée en Ry, telle que
ko ~ x(H).
Par abus de notations, pour f € R, on notera y(f) au lieu de u(f mod H).

Remarque IV.1 — Si p € H, alors R/H est équicaractéristique et on est sous les
hypotheses du Chapitre 15 de [S1]. Dans la suite on supposera donc que p ¢ H.

1. Suites formelles encadrées et anneaux de caractéristique mixte

Lemme IV.2 — Il existe g € W [[uy, ..., uy]] a coefficients dans W™ tel que :
R~ W/uy, ... unl] /(p—g).
Preuve : On sait qu’il existe un morphisme surjectif :
¢ W(u1, ..., un]] > R,

tel que ¢(u;) = x; et ¢y = idyw. Comme R est integre (voir [G1], Corollaire 17.1.3), ker ¢
est un idéal premier et, en comparant les dimensions, on en déduit que ht(ker ¢) < 1.
Or, W [[u1, ..., uy]] est factoriel donc, ker ¢ est un idéal principal engendré par f. Comme
p € m, il existe ay, ...,a, € R tels que :

p=a1x1+ ...+ ayxy.

N

Or, ¢ est surjective, il existe donc by, ..., b, € W [[ug, ..., u,]] tes que ¢(b;) =a;, 1 <i < n.
Notons g = bju; + ... + byuy,, alors, p — g € ker ¢.

Si un des b; est divisible par p, en notant b; = pb;, b; € W [[uy, ..., u]], on remplace b;
par big. En itérant ce processus, aprés un nombre au plus dénombrable de pas, on peut
supposer que tous les b; sont non-divisibles par p et donc b; € W*, 1 <i < n.

Vu que p est un parametre régulier de W [[uy, ..., u,]|, I'idéal (p — g) est premier, de
hauteur 1 et inclu dans ker ¢, d’ot :

kerg = (p—g).
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avec g € (uy, ..., un)? a coefficients non-divisibles par p, donc dans W*.

Remarque IV.3 — Si R est ramifié alors g € (uy, ..., 1,)".
A partir de maintenant on suppose que :

R=W/uy,...us] /(p—g),

avec § € W [[uy, ..., u,]] a coefficients dans W* et m = (uy, ..., u,) son idéal maximal.

Pour j € {1,..,n}, notons K; le corps des fractions de W [[uy, ..., uj]]. Pour j €
{r+1,..,n}, on note {Qj;}ica, I'ensemble des polynémes-clés de l'extension K; 1 —

K;j_1(uj). Siy = (71, 71), on note :

!

T Yi
jl+1 T [1Q:

i=1

Définition IV.4 — Soient j € {r+1,..,n}, i = (i,41,...,i}) € Apy1 X .. X Ajet f €
K [ty41, ..., tln)]. Un développement i-standard de f est défini par récurrence sur j comme
suit. C'est un développement de la forme :

_ 7
f=Yc Qi1
7

oit chaque inj 1 est un mondme ij-standard pour I'extension K;_1 — K;_1(u;) et les c,, sont :
(1) tous nuls sauf pour un nombre fini d’entres eux ;
(2) des développements (ir11,...,ij_1)-standards, sij > r+1;
(3) des éléments de K,, si j =r + 1.

Un développement i-standard de f est dit strict si c’est un développement i;-standard de f pour
Uextension Kj_1 < K;_1(u;) et si l'une des conditions suivantes est vérifiée :

(4) j=r+1;
(5) j > r+1et chaque c., est un développement (iry1,...,i;_1)-standard strict.

Remarque IV.5 — Par la Section 2 du Chapitre II, tout f € K, [t,41, ..., 1t,] admet un
un développement i-standard strict.

Pour j € {r,..,n} eti= (i,y1,..,ij) € Ary1 X ... X Aj, on définit par récurrence une
valuation v; de Kj comme suit.
Sij = r, on pose vp = v, Supposons que la valuation v(; de K;_1 soit déja

r1edjo1)

construite. Si f € Kj_; [uj], vi(f) est défini comme l’extension de V(ir+1/~~/ij—1)( f) détermi-

née par Q;; 1. Si f € Kr [[ur41, ..., uj]], posons N suffisamment grand de telle sorte que
f = fi+ f2 avec:

(1) f1 € K, HuH—l/"'/ Mj,l]] [uj],
(2 fr € <u;\’> Ky [[trs1, - uj]],

(3) vou(f2) > vi(f1)-
On pose alors v;(f) = vi(f1)-



1. Suites formelles encadrées et anneaux de caractéristique mixte.

Lemme IV.6 — Supposons que le Théoréme I11.12 soit vrai pour n'importe quel anneau de
caractéristique positive. Siv(p) ¢ pT, alors, a une suite formelle encadrée pres, on peut supposer
R de la forme :

R = R[r] [[tty41, - Un]],
oit R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et tel que

V|R[y| S0it monomiale par rapport au systeme régulier de parametres de R[r| et de rang rationnel
maximal.

Preuve : Considérons 1'élément ¢ € W [[uy,...,u,]] du Lemme IV.2. Par le Théoreme
IL.10, pour tout j € {r+1,...,n}, la collection {Q]-,,-}Z-e A forme un ensemble complet de
polynémes-clés, il existe donc i = (iy41, ..., i) € Apy1 X ... X Ay tel que :

vi(g) =v(g) etv (Qii) <p

pour touti <ij, j € {r+1,..., n} (on rappelle que, vu la Remarque IV.1 et comme p = ¢
dans R, v(g) € I').

Notons g l'image de ¢ modulo p dans k|[[uy, ..., u,]] et ¥; la valuation définie sur
k((uy,...,ur)) [[Uy41, -, tin]] comme la valuation v; mais en regardant les éléments mo-
dulo p. En appliquant le Théoréme III.12, supposé vrai dans le cas équicaractéristique, a
la valuation ¥;, il existe une suite formelle encadrée k [[uy, ..., uy)] — k' [[1], ..., u},]] telle
que g soit un monodme en u’ multiplié par une unité de k' [ [u}, ..., u;]]. On a alors :

v(g) = 1i(g) = 7i(8) = vou (8)-
En appliquant a chaque étape de l'algorithme du Théoreme III.12, supposé vrai dans le
cas équicaractéristique, les mémes changements de variables a W [[ug, ..., ,]], on obtient
une suite W [[uy, ..., u,]] = (R®),u?)) telle que :

g= ugz)“l...uﬁz)“”z + ph,

ol &y,...,&, € Z,z € R(Z)X, h € R@. Or l'algorithme du Théoreme IIl.12 consiste en
une répétition de n-suites élémentaires uniformisantes (Définition I.102), ainsi, par la
Proposition 1.82 et par choix de i :

On en déduit donc que :
h & R®*.
On peut alors écrire :

p—g=p(l—h)— ugz)“l...uﬁz)“rz =w(p— ugz)“l...uﬁz)“rz’),

onw=1—heRP* etz =z € RA*,
A une suite formelle encadrée pres, on peut donc supposer que, dans R, on a :

—_ % 18
p=1u .Uz

avec a1,...,0r € Z,z € R*.
Par hypotheses, comme v(p) ¢ pI et R est complet, il existe a; ¢ pZ tel que :
ZM/% € R,
Quitte a faire le changement de variable :
v; = uiz'/,
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on peut supposer que :
p=uj'.ulr € m?
On peut donc supposer, a une suite formelle encadrée pres, que R s’écrit sous la forme :

R=W/[uy,..,un)] / (p —uy'euyr) =~ R[] [y, ..., un]],

ou R[r] = W [[u, ..., ur]] / (p — ui"..uf") est un anneau local régulier complet (éventuel-

lement ramifi€) de dimension r tel que Vg = Vo (uy,....u,) €t 7g-10E (v‘ R[f]) =T.
O

Remarque IV.7 — Pour que ce le Lemme IV.6 soit vrai, il faut supposer que le
Théoreme IIl.12 est vrai pour n’importe quel anneau de caractéristique positive. On va
voir qu'il est vrai dans le cas ot il existe un ensemble complet de polynémes-clés n’ayant
pas de polyndmes-clés limites. Sinon il faut supposer que la Conjecture IV.15 est vraie.

2. L'idéal premier implicite est engendré par un polynéme unitaire

A partir de maintenant et ce jusqu’a la fin du Chapitre IV, on suppose que :

v(p) & pT,
R = R[] [[trs1, e tn]],

ol R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et
tel que v g}, soit monomiale par rapport au systéme régulier de parametres de R[r| et
de rang rationnel maximal.

Proposition IV.8 — Par le Lemme V.6, on peut supposer que R s’écrit sous la forme :
R = R[r] [[tr41, - Un]],

oit R[r] est un anneau local régulier complet (éventuellement ramifié). Notons R,_q =
R[r] [[ttr+1, ..., un—1]] et supposons que H ¢ R, et HNR,—1 = (0).
Soit f € H\ {0}. A une suite formelle encadrée pres, f s'écrit sous la forme :

f=uafy1P;
oit w € R™, f,—1 € Ry,_1 et P est un polyndme unitaire en u,.

Preuve : La preuve est la méme que celle de la Proposition IIL.9.

O
Corollaire IV.9 — Sous les mémes hypotheses que la Proposition IV.8, on a :
ht(H) < 1.
Preuve : La preuve est la méme que celle de la Proposition III.1o0.
O

Corollaire IV.10 — Sous les hypothéses de la Proposition 1V.8, a une suite formelle encadrée
pres, l'idéal H est principal engendré par un polyndme unitaire en u,,.

Preuve : C’est une conséquence directe du Corollaire IV.9.
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4. Monomialisation des polynomes.

3. Un premier théoréme conjectural de monomialisation

Théoreme IV.11 — Sous les hypothéses de la Section 2 et les notations de la sous-section
2.1 du Chapitre 111, deux cas se présentent :

(1) Ou bien H # (0) et il existe une suite formelle encadrée :
(R,u) 2 (R(n,u(l)) o, (R(z—l),u(l—l)) e (Ra),u(l))

telle que :
<e (R(l),v(l)) ,e (R(l),v(l)> —7r (R(l),u(l),v(l)>) <jex (e(R,v),n—r).

(2) Ou bien H = (0) et pour tout f € R, il existe une suite formelle encadrée :
(R,u) 2 (R(n,u(l)) o, (R(z—l),u(l—l)) e (Ra),u(l))

telle que f soit un monome en u'") fois une unité de R™.

Preuve : On procéde par récurrence sur n —r. Si n = r alors v(uy),...,v(u,) sont Q-
linéairements indépendants et donc, tout f € R contient un unique mondéme de valua-
tion minimale. En particulier,

VfER, vulf) =v(f)
Par la Remarque II1.8, H = (0). Prenons alors un élément f € R, par le Théoreme 1.99, il
existe une suite locale encadrée :

(R,u) —2 (Rm,um) _m L T (Ro‘—l),u(i—l)) i (Rm,u(i))

telle que f soit un mondéme en u'V fois une unité de R®. BEn passant au complété a
chaque pas, on obtient la suite formelle encadrée satisfaisant (2).

Supposons que n —r > 0 et que l'on a déja construit une suite formelle encadrée

pour toutes les valeurs strictements plus petites et satisfaisant la conclusion du Théo-
réme IV.11.
Soit R un anneau local apparaissant dans une suite formelle encadrée. Par le Lemme
IV.6, on peut écrire R®) sous la forme B [[tn,]] ol1 B est un anneau régulier (éventuelle-
ment ramifié) et si H®O A RO # (0), alors H® < m2, Par le Corollaire IV.10, H est
engendré par un polynéme unitaire en u,,.

4. Monomialisation des polyndmes

Proposition IV.12 — Sous les hypothéses du Théoréme 1V.11, pour tout polynéme f €
R[r] [[trs1, s in—1]] [t4n), il existe une suite formelle encadrée (R, u) — (R',u’) telle que f soit
un mondme en u’ fois une unité de R’

Preuve du Théoreme 1V.11 en supposant la Proposition 1V.12 vraie :

Si H # (0), prenons f € H N R[r][[ty+1,.,Un-1]] [un], f # 0, sinon, prenons
f € R[r|[[ty+1, -.r un—1]] [tn] \ {0}. Par hypotheses, il existe une suite formelle encadrée
(R,u) = (R',u') telle que f soit un mondme en u’ fois une unité de R’. Notons H' le
transformé de H dans R’.

Si H # (0), alors, par définition, v(f) ¢ I'1 et dong, il existe un j tel que v(u;) ¢ Ty,
c’est-a-dire, u; € H'. Ainsi, e(R",v) =n—1 < n = ¢(R,v) et on est dans la situation (1)
du Théoreme IV.11. Si H = (0) et f € R[r| [[tty+1, ..., un—1]] [tn] \ {0} on se retrouve dans
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la situation (2) par hypotheses.
Enfin, si H = (0) et f € R\ {0}, non-nécessairement un polynéme en u,, écrivons
f=f+f"avecvy,(f") > v(f) (et donc v(f) = v(f)). Par le cas polynomial vu avant,
il existe une suite formelle encadrée (R, u) — (R, u’) telle que f’ soit un mondme en u’
multiplié par une unité de R’. Or vy, (f") = vo,.(f") > v(f) = v(f). Par le Corollaire
Lg6, quitte & compléter, il existe une suite formelle encadrée (R’,u’) — (R”,u") telle
que f soit un mondme en 1" multiplié par une unité de R".

O

Preuve de la Proposition IV.12 : On va montrer le résultat par récurrence sur le de-
gréde f.Sid, (f) =1, la Proposition IV.12 est évidente.

Soit f € RI[r|[[tts+1, ..., Un—1]] [un] de degré d > 1. Par hypotheése de récurrence on
suppose que la Proposition IV.12 est vraie pour tout polynome de degré strictement
inférieur a d.

Par le Théoreme IL.10, il existe un ordinal i € A, tel que v(f) = vy, ;(f). Ceci veut dire
qu'il existe un développement (#, i)-standard de f de la forme :

N .
_ o)
f - ZC]Qn,i’
j=0

ot les ¢; sont des développements (1, i)-standard n’impliquant pas Q, ;.

On rappelle que pour i € Ay, on note a; = dg . (Qn,), si i posséde un prédéces-

seur immédiat, sinon, il existe un indice iy, i-inessentiel, tel que i = ip, on note alors

Xn,i = dén,iO(Qn,i)'

Supposons qu’il existe I € A, tel que &,; > 1, prenons alors ce [. S’il n’en existe pas,
N

prenons un / suffisamment grand tel que f = Z CJQZ?,Z‘ Dans tous les cas, par définition
=0

des polynomes-clés, I < w. :

Sil < w, notons Iy =1 —1.Sil = w, prenons Iy € IN tel que I = Iy et suffisam-

ment grand tel que f admette un développement (7, w)-standard n’impliquant que les

polyndmes-clés Q,, ., et Qy, .

Pour conclure, il nous suffit d’avoir le résultat voulu sur les polyndomes-clés comme nous

allons le voir dans la Section 5 et la Proposition IV.13.

5. Monomialisation des polynémes-clés

Proposition IV.13 — Sous les hypothéses du Théoreme 1V.11, il existe une suite formelle
encadrée :
(R,u) — (R, u')
oit u = (U, ..., uy), u' = (U, ..., u),), vérifiant les propriétés suivantes :

(1) Pour tout q € IN tel que 1 < q < lo, les polynomes-clés Qy,q et Q,,; sont des mondmes
en u' fois une unité de R’ ;

(2) Dans R', u}, divise Q,,; mais u/? ne divise pas Q,, ;.

Preuve de la Proposition 1V.12 en supposant la Proposition IV.13 vraie :

Par hypothése de récurrence sur n — r, n'importe quelle collection d’éléments de
Frac (R[r] [[ur4+1, ..., Un—1]]) peut étre transformée simultanément en mondmes via une
suite formelle encadrée. De plus, en appliquant n — r — 1 fois la Proposition I.100, on
peut supposer que seuls les u, ..., u) apparaissent dans ces monomes.
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5. Monomialisation des polynomes-clés.

Si a,; = 1, on applique la Proposition I.100 a chaque polynéome-clé Q,1,...,Q,; et la
Proposition IV.12 est démontrée.
d ;
Supposons que ,,; > 1. Notons f = Y ajul, a; € R[r] [[ur41, ..., un—1]]. Soit jo le plus
j=0
grand j € {0,..,d} tel que v(aj) = Ogj?d{v(aj)}. Par le Corollaire 1.96, aprés une
S

N

suite locale encadrée indépendante de u,, et quitte a compléter, on peut supposer
que aj, divise a;, pour tout j € {0,..,d}. En appliquant le théoréme de préparation de
Weierstrass ([L], Théoréme 4.9.2), on peut supposer que f est un polyndme unitaire en
u, de degré d.

N )
Soit f = Z c]-QL,l, N = inlJ ,le développement (n,)-standard de f. Par la Proposition
j=0 "

IV.13, il existe une suite formelle encadrée telle que le développement (#,1)-standard de

N )

f dans R’ soit de la forme ) c}u;{, ¢; € R'[r] [[#y41, -, ty_1]], multiplié par une unité
=0

de R ]

Notons jj le plus grand j € {0,.., N} tel que v(c;[,)) = Or<r1i<nN{v(c;)}. Toujours par
YA

le Corollaire 1.96, aprés une suite locale encadrée indépendante de uj, et quitte a
2 / o . / . .
compléter, on peut supposer que Cir divise ¢j, pour tout j € {0, ..., N}. En appliquant le
théoreme de préparation de Weierstrass ([L], Théoreme 4.9.2), on peut supposer que f
est un polyndome unitaire en u), de degré inférieur ou égal & N < d. Pour conclure il

nous suffit juste d’appliquer I'hypothese de récurrence.
O

Preuve de la Proposition IV.13 : Si | € IN, alors | possede un prédécesseur immé-
diat. Considérons le développement standard de Q,,; :

D‘n,l_l _ i
_ Kyl o Tnji-1 Y)
Q”,l - Qn,lfl + . _Z Cn/l,]/Yn,l—lQn,lfl Qn,lfl‘

]:0 Ynji-1
Par hypothése de récurrence, pour des valeurs strictement inférieures a n — r, il existe
une suite formelle encadrée (R,u) — (R’,u), indépendante de u, telle que chaque
21, . N 12 / . ., “ /
€lément ¢, ;7 | soit un mondme en uy, ..., u, | multiplié par une unité de R'.
Pour chaque j € {r+1,..,n — 1}, appliquons la suite uniformisante j-élémentaire de

la Définition I.102, suivie a chaque fois d"une complétion formelle. On arrive alors a la

. . N V- A . iz
situation ot les Z Ci i1 Q n”ll_ll sont des mondmes en uj, ..., u, fois une unité de R'.

Wn,l—l
Appliquons | — 1 fois la Proposition I.100, on peut alors supposer de plus que :

Q?’l,l—l = 17“:1/

ol 7 est un mondme en uj, ..., u),_; fois une unité de R'.

En appliquant la Proposition L.100 & u], ..., u}, u,,, quitte & passer au complété, on ob-
tient une suite formelle encadrée (R’,u’) — (R”,u") telle que Q,; soit un mondéme en
uf, .., u),u). On en déduit immédiatement (1) et (2) par construction.

Supposons que | = w. Fixons-nous une injection I'y < IR. On note alors :
:Bn,w = Z.ETOOIB”,I' €cRU {oo}
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Chapitre IV. Monomialisation en caractéristique mixte.

Considérons Iy < w l'indice w-inessentiel apparaissant dans le développement (n,ly)-
standard :

Kn,w

Qn,w = Z Cj/ZOQ]rl,lo’
j=0
avec la condition c;;; = 0 si 'on est dans I'un des deux cas suivants :
(1) ‘Bn,w < OO,j 7& O/] 7& pS;

(2) :Bn,w = o0, pen'w )(]
ol a,, = p~. Par définition, d;, (Q,,) = 1 et donc dy (Qnw) = p™.
Appliquons la Proposition L.1oo lp-fois (c’est-a-dire appliquée aux polynomes-clés
Qu, - Qny), On peut supposer de plus que [y = 1, c’est-a-dire que Q,,;, = u,. Ainsi,
Qp,w s’écrit sous la forme d'un polyndme unitaire en u, (que 'on peut voir comme un
polynome d’Artin-Schreier généralisé) :

enw—1

en,w j
Qn,w = uf’; + Z Cpfuﬁ + COI
j=0

ot co, ¢, € R[r] [[tty41, .., in-1]], 1 < j < enw — 1. Pour conclure, il faut monomialiser le
premier polynome-clé limite : c’est la Conjecture IV.15 de la Section 6.

.....

ne posséde aucuns polyndmes-clés limites, alors la preuve de la Proposition IV.13 est
complete et le Théoreme IV.11 est démontré. Remarquons également que si R est de ca-
ractéristique p, on peut l'écrire sous la forme R[r| [[ty41, ..., un]] avec R [r] = k [[u1, ..., us]]
et lui appliquer la méme méthode pour monomialiser ses éléments. L’hypothese
v(p) ¢ pI est alors superflue. On peut résumer cela dans le Théoreme IV.14 suivant.

Théoreme IV.14 — Soit R un anneau local réqulier complet de caractéristique p ou mixte
et de dimension n. Soit v une valuation de Frac(R) centrée en R et de groupe des valeurs T'. Soit
I’y le plus petit sous-groupe isolé non-nul de I'. On note :

H={f e R|v(f) ¢ T1}.

On suppose que n = e(R,v) et v(p) ¢ pI si R est de caractéristique mixte. Si on se donne un
ensemble de polyndmes-clés pour R ne possédant pas de polyndmes-clés limites, alors :

(1) Ou bien H # (0) et il existe une suite formelle encadrée :
(R, u) —2> (Ru),u(l)) SN (R(l—n,u(l—l)) Y (Ra),u(l))
telle que :
<e (R(l),v(l)> ,e (R(l),v(l)> —r (R(l),u(l),v(l)>) <jex (e(R,v),n—r).
(2) Ou bien H = (0) et pour tout f € R, il existe une suite formelle encadrée :

(R,u) —2 (Rm,um) _m L (R(Z—n,u(l—l)) B (Ra),u(l))

telle que f soit un monome en u'!) fois une unité de RV,
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6. Une conjecture de monomialisation pour le premier polynéme-clé limite.

6. Une conjecture de monomialisation pour le premier polynéme-clé limite

Pour achever la preuve de la Proposition IV.13 et donc du Théoreme IV.11, il nous
faut monomialiser le premier polynéme-clé limite. Nous proposons ici une conjecture
qui, si elle est vraie, nous permet d’obtenir, via le Théoreme IV.16 ainsi que le Chapitre V,
une uniformisation locale des anneaux locaux quasi-excellents de caractéristique mixte
sous les hypotheses [k : kP| < +oco et v(p) & pI.

Conjecture IV.15 — On suppose que (R, m, k) est de la forme R[r| [[ur+1, ..., tun]] 0it R[r]
est un anneau local régulier complet de dimension r et tel que v|g(, soit monomiale par rapport
au systeme régulier de parametres de R[r] et de rang rationnel r. Supposons que le premier
polyndme-clé limite Qy, ., de l'extension K,y < Ky, _1(uy) s'écrit sous la forme :

enw—1

en,w j
Qn,w = MZ + Z Cpfuﬁ + COI
j=0

oit co, ¢, € R[r] [[tr41, ..., un—1]], 1 < j < enw — 1. On suppose de plus que :
[l k™ | < oo,
1l existe alors une suite formelle encadrée :
(R,u) — (R',u),
ot u = (g, ..., uy), u' = (U, ..., u)), telle que :
(1) Qu,w est un mondme en u' fois une unité de R';
(2) Dans R, ul, divise Q,, ., mais u/* ne divise pas Q, ..

Plus précisément, a une suite formelle encadrée pres, il existe j € {r+1,..,n —1} et e € N,
e < enw, tels que :

(3) Il existe g, h € R[r| [[ty+1, ..., un—1]] tels que co = g+ h;
(4) vou(h) > pe”'WBn’w, en particulier, h = 0 si Bn,w =o0;
(5) g contient un mondme de la forme wuff oit @ est un mondme en uy, ..., u, et, pour

tous les autres monodmes de la forme w’u;l avec @' mondme en uy, ..., Uj_1,Uj1, ..., Un,

apparaissant dans Q o, v(@') > v(®@);

(6) Sip,,=ooalorsj=mn—1

Nous allons donner quelques idées pour essayer de démontrer cette conjecture. Il
faut procéder par récurrence sur le degré de Q, . Le fait d’obtenir dans cp un mondme
de la forme wuf " avec @ mondme en ui, ...,y va nous permettre d’échanger u, et u;
et de conclure par récurrence. Il faut donc trouver des invariants par changements de
variables qui soient décroissants. L'idée est d’utiliser les séries de Puiseux pour obtenir
ces invariants qui sont fortement liés aux suites (gj;), r+1 < j < n. Mais on a vu
dans la Remarque II.21 que ces suites ne sont pas invariantes par changements de va-
riables. Il faut donc utiliser les séries de Puiseux universelles pour trouver des invariants

convenables.
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Chapitre IV. Monomialisation en caractéristique mixte.

7. Un deuxiéme théoréme de monomialisation via la Conjecture IV.15

Soient (R, m, k) un anneau local régulier complet de caractéristique mixte et de di-
mension n tel que m = (u) = (uy, ..., u,). Soient v une valuation de K = Frac(R) centrée
en R et de groupe des valeurs I'. Notons I' le plus petit sous-groupe isolé non-nul de I'.
On pose :

H=A{feR|v(f) #T1}.
On suppose de plus que :
[k:kP] < +oo,
v(p) & pr
et:
n = e(R,v), cest-a-dire, H C m?.
La valuation v considérée est la composée de la valuation p : L* — I'; de rang 1 centrée
en R/H, ou L = Frac(R/H), avec la valuation 0 : K* — T'/I';, centrée en Ry, telle que
kg ~ K(H)

Considérons un sous-anneau local (T, my) de R, non-nécessairement noethérien,

contenant uy, ..., u, et tel que T/mr ~ k.

Théoreme IV.16 — Sous les hypotheses précédentes et en supposant que la Conjecture
IV.15 soit vraie :

(1) (a) Ou bien H # (0) et il existe une suite locale encadrée (R, u) — (R, u’) telle que :
e(R',v) <e(R,v).

(b) Ou bien H = (0) et pour tout f € R, il existe une suite locale encadrée (R, u) —
(R',u') telle que f soit un mondme en u' fois une unité de R'.

(2) La suite locale encadrée (R,u) — (R',u’) de (1) peut étre choisie définie sur T (voir
Définition 111.15).

Preuve : Comme v(p) ¢ pI, par le Lemme IV.6, a une suite formelle encadrée pres,
on peut supposer que R est de la forme R[r] [[tty+1, ..., ttn]] o1 R]r] est un anneau local
régulier complet de dimension r et tel que v|g|,) soit monomiale par rapport au systeme
régulier de parametres de R[] et de rang rationnel 7.
Or, [k : kP] < 400, les hypothes de la Conjecture IV.15 sont donc vérifiées et le Théoreme
IV.11 est vrai pour 'anneau R. Comme le Théoreme IV.11 est ’analogue du Théoréme
III.12, alors le Théoreme II1.16 est vrai pour notre anneau R de caractéristique mixte. Or
ceci n’est rien d’autre que le Théoréme IV.16.

O

Remarque IV.17 — Si l'on supprime 'hypothése v(p) ¢ pI, en faisant la méme
preuve et en supposant que la Conjecture IV.15 est vraie, on obtient le méme résultat
que celui du Théoréme IV.16 pour un anneau de caractéristique p.

Enfin, si I'on suppose qu’il existe un ensemble de polynémes-clés pour R ne possédant
pas de polyndmes-clés limites, alors, par le Corollaire IV.14, le Théoreme IV.16 est vrai.
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CHAPITRE V

Uniformisation locale en caractéristique mixte

Soit S un anneau local noethérien. Pour montrer que S est transformé en un anneau
régulier via une suite locale encadrée, il faut montrer que SAH et S /H le sont, H étant
I'idéal premier implicite de S. Par le Théoreme 1.69, si S est quasi-excellent alors §ﬁ est
régulier. Nous allons montrer que, sous certaines hypotheses, 5/H est aussi régulier.
Ensuite nous montrerons le théoréme d’uniformisation locale pour des valuations de
rang 1 puis grace a [NS], pour des valuations de rang quelconque.

La plupart des preuves de ce chapitre sont les mémes que celles du Chapitre III,
nous les avons réécrite dans le cas mixte pour plus de clarté.

On suppose que la Conjecture IV.15 est vraie ce qui implique que le Théoréme IV.16
est vrai. Remarquons que s’il existe un ensemble de polynémes-clés ne possédant pas de
polyndmes-clés limites, la conjecture IV.15 est inutile et le Théoreme IV.16 est toujours
vrai.

1. Un théoréeme préliminaire d’uniformisation locale via la Conjecture IV.15

Théoréme V.1 — Soient (S, m, k) un anneau local noethérien integre de caractéristique
mixte de corps des fractions L et y une valuation de L de rang 1 et de groupe des valeurs I'y
centrée en S.

Supposons que [k : kP| < +oco ainsi que u(p) ¢ pT'1, ot p = car(k).
Notons u = (uy, ..., uy) un ensemble minimal de générateurs de m et H I'idéal premier implicite
de S.

Soient fi,..., fs € m tels que u(f1) = f?}?s{”(ﬁ)} Si la Conjecture 1V.15 est vraie, alors, il

existe une suite locale encadrée :
(S, uk) = <5(o>,u(o>,k(0)> L (s(n,u(l),k(l)) L <5(z‘>,u(z‘),k(i>) )
ayant les propriétés suivantes : o
notons H; I'idéal premier implicite de S; et f] l'image de f] mod H;, 1 <j<s,alors:
(1) S;/Hj est réqulier ;
(2) Pour1 <
(3) Pour1 <

<s, f; est un monome en u'" fois une unité de S;/Hj; ;

B

j <s, fi divise JTJ dans S;/H;.

Preuve : Notons 0 : S — S le morphisme de complétion formelle. Par le Théoreme 1.67,
i s’étend de maniere unique en une valuation i centrée en S/H. Notons u = (y,x) tel
que x = (x1,...,x;), 1 = e(S,u), y = (y1,-,Yu_1) et les images des xy, ..., x; dans S/H
induisent un ensemble minimal de générateurs de (mS)/H.

Par le Théoreme 1.5 de structure de Cohen, on sait qu’il existe un anneau local régulier

complet de caractéristique mixte R et un morphisme ¢ surjectif :
¢:R—5/H.
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Chapitre V. Uniformisation locale en caractéristique mixte.

Notons H = ker ¢, comme H est un idéal premier (Théoreme 1.67), H est un idéal
premier de R. On choisit R de telle sorte que dim(R) = I. Notons K le corps des fractions
de R. Soit 6 une valuation de K centrée en Ry telle que ks = x(H). Si 'on regarde
il comme une valuation centrée en R/H via le morphisme ¢, on peut considérer la
valuation v = ji o 6 centrée en R et de groupe des valeurs I'. Alors, I'; est le plus petit
sous-groupe isolé non-nul de I' et :

H={f € R|v(f) ¢ T1}.

On s’est donc ramené aux hypotheses du Chapitre IV.
Soit T = ¢ (c(S)), cest un sous-anneau local de R d’idéal maximal ¢ '(c(m)) =
m N T. Ainsi, T contient x1, ..., x; et :

T/(mNT)~k.

Comme on suppose la Conjecture IV.15 vraie, par le Théoréme IV.16, plusieurs cas se
présentent :

(1) Si H # (0), il existe une suite locale encadrée (R,x) — <R(i),x(i)> telle que

e(R, v) décroisse strictement. En particulier, ce cas ne peut arriver qu'un nombre
fini de fois, ainsi, on arrive a la situation ot H = (0) et donc R/ H est régulier.
(2) Si H = (0), alors pour chaque f]-, 1 < j < s, il existe une suite locale encadrée
(R, x) — <R(i), x(i)> telle que f; soit un mondme en x0 multiplié par une unité
de R,
Par la Proposition 1.79, la propriété d’étre un mondme fois une unité est préservée par
les suites locales encadrées. Ainsi, en itérant la procédure de (2), on arrive a la situation
ot tous les fi, ..., fs sont simultanéments des mondémes en xV). Aprés une suite locale
encadrée de plus (R, x) — (R’, x' ), on peut supposer que les f; sont des mondmes
uniquement en Xy, e X0, 1< j <s,r=r(R,x,v). Enfin, en appliquant plusieurs fois le
Corollaire .92, on est ramené a la situation ot chaque f; est un mondme en X, s Xy,
1<j<set pourj, j’ € {1,..5s}, f] divise f]-/ ou f]-/ divise f] De plus, toutes ces suites
locales encadrées sont définies sur T. Considérons alors le diagramme suivant :

(R, x, k) — 2~ (Rm,x(l),k(l)) _m L ey <R(i>,x<i>,k(i>>

(S, u,k) —" <5(1>,u(1>,k(1)> e (5(i>,u<i>,k(z‘>>
Par ce que l'on vient de voir, la premiere colonne et la premiere ligne on déja été
construit. En passant au transformé strict de R/H ~ S/H a chaque étape de la suite
<7T]‘)]< j<i—1, on construit la suite d’éclatements encadrés (ﬁ]) 1<j<io1 de S/H définie sur

S. Enfin, la suite (77;) se releve en une suite locale encadrée (p;)1<j<i—1-

1<j<i-1
Si R/ H est singulier, par le Théoréme II1.12, il existe une suite locale encadrée (77;)1<j<i-1
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2. Uniformisation locale plongée pour des valuations de rang 1.

qui fasse décroitre e(R, v). Ainsi, la suite locale encadrée (p;)1<j<i—1 résultante possede
la propriété :

e <S(i),y) <e(S,u).
Ceci n’arrive qu ‘“un nombre tini de fois. Ainsi, aprés un nombre fini de pas, on arrive a la

situation ot S()/ H est régulier. Maintenant, si 1'on suppose que S )/ H est régulier,

considérons fi, ..., fs des éléments non-nuls de S tels que u(f1) = 11{212 {u(f;)}, alors, par

le (2) vu plus haut, on en déduit que, pour 1 < j <s, f] mod H; sont des mondmes en
u® et fi mod H; divise fj mod H,.
O

2. Uniformisation locale plongée pour des valuations de rang 1

Théoreme V.2 — Soient (S, m, k) un anneau local intégre quasi-excellent de caractéristique
mixte de corps des fractions L et y une valuation de L de rang 1 et de groupe des valeurs I'y
centrée en S.

Supposons que [k : kP]| < +oo ainsi que u(p) & pT'y, ot p = car(k).
Notons u = (uy, ..., uy) un ensemble minimal de générateurs de m.

Soient fi,..., fs € m tels que u(f1) = 1r£11n {u(fj)}. Si la Conjecture 1V.15 est vraie, alors, il

existe une suite locale encadrée :
(S, u,k) = <5(m,u(m,k«n> _fza.(s(n,u(n,ku))._EL,..._Q;;_<5<n,u(0,ku>),

ayant les propriétés suivantes :
(1) S; est régulier;
(2) Pour1<j<s, f] est un mondme en u' fozs une unité de S;;
(3) Pour1<j<s, fi dwzsef] dans S;.
En d’autres termes, yu admet une uniformisation locale plongée au sens de la Propriété 1.63.

Preuve : Reprenons les notations du Théoréme V.1. On a vu qu’il existe un morphisme
surjectif :

¢:5—5/H~R/H.
Par le Théoreme V.1, apres une suite locale encadrée auxiliaire, on peut supposer que
S/H est régulier. Par le Lemme 1V.6, on peut supposer que R/H ~ R[r] [[x,41, ..., x1]].
Ainsi, il existe un ensemble de générateurs 7 = (i3, ..., J,,_;) de H et des séries formelles

¢; € R[r] [[xr+1,..., x1]] tels que :
yi= y]+<,b]€S 1<j<n—1
Quitte a renuméroter les y;, on peut supposer que :

nyr) < ply2) < oo < p(Yni)-

Comme p/ g|;) est monomiale, par le Théoréme 1.99, on peut supposer que les coefficients
de ¢;, 1 < j < n—1, sont des mondmes en x, ..., x;. En appliquant le Corollaire 1.96 aux
monodmes de ¢;, 1 < j < n — I, on peut supposer que :

$j = @jvj,
ot les @; sont des mondmes en x1, ..., X;, 0j € R[r] [[xr41, - x1]]° et tels que :
@1/ ../ @y
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Chapitre V. Uniformisation locale en caractéristique mixte.

Ainsi, on en déduit que :
Vie{l,..,n—1},VN N, 3o, € S*, §j —y; — @jv; € @m".

Enfin, rappelons que, par le Corollaire I.69, I'anneau §H est régulier. On applique alors
le Lemme Il18 4 A =S, ] = H, T = S et v = . On en déduit alors une uniformisa-
tion locale plongée (Propriété 1.63) de S. Comme S est quasi-excellent, par le (2) de la

Remarque I.12, on en déduit que S est régulier.
O

3. Théoréemes d’uniformisation locale plongée via la Conjecture IV.15

Corollaire V.3 — Soient (S, m, k) un anneau local integre quasi-excellent de caractéristique
mixte de corps des fractions L et v une valuation de L centrée en S et de groupe des valeurs T'.
Supposons que [k : kV]| < +oco ainsi que v(p) & pT, oit p = car(k).

Si la Conjecture 1V.15 est vraie, alors, v admet une uniformisation locale plongée au sens de la
Propriété 1.63.

Preuve : On applique le Théoréme V.2 et le Théoreme 1.3 de [NS].
O

Corollaire V.4 — Soient (S, m, k) un anneau local intégre quasi-excellent de caractéristique
mixte de corps des fractions L et v une valuation de L centrée en S et de groupe des valeurs T'.
Supposons que [k : kP| < +oco ainsi que v(p) & pT, oit p = car(k).

Si la Conjecture IV.15 est vraie, alors, pour I un idéal de S, la paire (S, I) admet une uniformi-
sation locale plongée par rapport a v au sens de la Définition 1.61.

Preuve : C’est une application immédiate du Corollaire V.3.
O

Théoréme V.5 — Soit (S, m, k) un anneau local (non nécessairement inteégre), quasi-
excellent et de caractéristique mixte. Soient P un idéal premier minimal de S et v une valuation
du corps des fractions de S/ P centrée en S/ P et de groupe des valeurs T
Supposons que [k : kV| < +oco ainsi que v(p) & pT, oit p = car(k).

Si la Conjecture IV.15 est vraie, alors, il existe un éclatement local 7t : S — S’ par rapport a v tel
que S, soit régulier et Spec(S') soit normalement plat le long de Spec(S,,;), c’est-a-dire que
I'anneau S admet une uniformisation locale par rapport a v au sens de la Propriété 1.58.

Preuve : La preuve est la méme que celle du Théoreme III.22.
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