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« Il est possible que la réciproque de (7.9.5) soit vraie. »
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Théorème de Kaplansky effectif et uniformisation locale des
schémas quasi-excellents

Résumé

La résolution de singularités des courbes sur C est connue depuis longtemps et pos-
sède de nombreuses preuves. L’une d’entre elles consiste à utiliser le théorème de

Newton-Puiseux pour obtenir l’uniformisation locale d’une valuation centrée sur l’an-
neau de départ. Ce théorème fournit une série de Puiseux permettant de paramétrer les
branches de la courbe ainsi qu’un ensemble de polynômes décrivant complètement la
valuation.

Dans cette thèse, nous généralisons cette méthode à l’aide des polynômes-clés in-
dexés sur un ensemble bien ordonné qui deviennent, après éclatements, des coor-
données. Notre premier résultat fournit une généralisation effective du théorème de
Newton-Puiseux pour une valuation de rang 1, centrée sur un anneau local régulier et
complet, ainsi que des résultats de dépendance intégrale sur les séries tronquées. Dans
un second temps, nous montrons qu’il n’y a pas de polynômes-clés limites en caractéris-
tique nulle et proposons une méthode pour obtenir l’uniformisation locale des schémas
quasi-excellents. Cette méthode consiste à désingulariser l’idéal premier implicite, en-
gendré par un polynôme, en monomialisant les polynômes-clés. Enfin, en caractéristique
positive ou mixte, nous montrons que, pour obtenir l’uniformisation locale, il suffit, sous
certaines conditions, de monomialiser le premier polynôme-clé limite.

Mots-clés. Uniformisation locale, polynômes-clés, séries de Puiseux, valuations, ca-
ractéristique nulle et mixte, idéal implicite, éclatements locaux, monomialisation.

Effective Kaplansky’s theorem and local uniformization of
quasi-excellent schemes

Abstract

The resolution of curves singularities over C has long been known and has many
proofs. One of them consists in using the Newton-Puiseux theorem to obtain the

local uniformization of a valuation centered on the starting ring. This theorem provides
a Puiseux expansion to parametrize the branches of the curve and a set of polynomials
describing completely the valuation.

In this thesis we generalize this method using key polynomials indexed by a well-
ordered set which become coordinates after blowings up. Our first result provides an
effective generalization of the Newton-Puiseux theorem for valuation of rank 1 centered
on a complete regular local ring and integral relations on the truncation of the series.
In the next chapter, we show that there is no limit key polynomials in characteristic
zero and we propose a method for the local uniformization of quasi-excellent schemes.
This method consists in resolving the singularities of the implicit prime ideal generated
by a polynomial and monomializing key polynomials. Finally, in positive or mixed
characteristic, we show that, under certain conditions, to obtain the local uniformization
it is sufficient to monomialize the first limit key polynomial.

Keywords. Local uniformization, key polynomials, Puiseux expansions, valuations,
zero and mixed characteristic, implicit ideal, locals blowings up, monomialization.

MSC2010. 13A02, 13A18, 13F25, 13F30, 13F40, 13H05, 14B05, 14E15, 14H20, 14J17.
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Introduction

Cette thèse est consacrée à l’étude de l’uniformisation locale des schémas quasi-
excellents de caractéristique nulle et mixte ainsi qu’à la construction effective

d’un plongement d’un anneau local régulier complet, muni d’une valuation de rang
1, dans un anneau de séries de Puiseux généralisées. Les polynômes-clés développés
par Spivakovsky dans [HGOAS] et [S1] forment l’outil principal d’approche de ces
problèmes.

Les premiers résultats en résolution des singularités sont attribués à Newton
au XVIIème siècle ainsi qu’à Puiseux au XIXème siècle. Leur résultat permet de résoudre
les singularités des courbes définies sur C.

Considérons un élément irréductible f ∈ C [[u1, u2]] \ {0}, à l’aide de la méthode de
Newton, il existe d, m ∈ Z, m > d et deux séries de Puiseux :





u1(t) = td

u2(t) = ∑
j>m

ajt
j

telles que :

f (u1(t), u2(t)) = 0.

Cette méthode nous permet de paramétrer une branche de la courbe f = 0 ; pour para-
métrer les autres branches, il faut remarquer que :

f (u1(t), u2(ζ jt)) = 0, 0 6 j 6 d− 1,

où ζ est une racine primitive d-ième de l’unité dans C. Comme f est irréductible, on
obtient :

f = z
m−1

∏
j=0

(
u2 − u2(ζ ju

1
d
1 )

)
,

où z ∈ C [[u1, u2]]
×.

On obtient également une tour d’extensions galoisiennes de corps cycliques :

K1 = C (u1) →֒ K2 →֒ ... →֒ Kg →֒ Kg+1 = C

(
u

1
d
1

)
.

Notons Q1 = u2 et Ql ∈ C ((u1)) [u2] le polynôme minimal de l’extension K1 →֒ Kl,
2 6 l 6 g+ 1. Soit ν une valuation de C [[u1, u2]], vérifiant ν|C = 0, de groupe des va-
leurs Γ. On considère ν comme la composée d’une valuation µ centrée en C [[u1, u2]] /( f )
de groupe des valeurs Γ1 ≃ Z, premier sous-groupe isolé non-nul de Γ, et d’une valua-
tion θ centrée en C [[u1, u2]]( f ) de groupe des valeurs Γ/Γ1. Supposons de plus que
ν( f ) /∈ Γ1. Alors, l’ensemble de polynômes {Ql}16l6g+1 est tel que pour tout élément
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h ∈ C [[u1, u2]], il existe un développement de la forme :

h = ∑
f inie

aα1 ,...,αg+1Q
α1
1 ...Q

αg+1

g+1 ,

vérifiant :

ν(h) = min
(α1,...,αg+1)∈Ng+1

{
ν
(
aα1 ,...,αg+1Q

α1
1 ...Q

αg+1
g+1

)}
.

L’ensemble {Ql}16l6g+1 est un premier exemple d’un ensemble complet de polynômes-clés
pour l’extension C ((u1)) →֒ C ((u1)) (u2).

Finalement, si on note R = C [[u1, u2]] /( f ), la paramétrisation précédente nous
donne un morphisme injectif d’anneaux :

ι : R →֒ C [[t]] ,

défini par :
{

ι(u1) = u1(t)
ι(u2) = u2(t)

En notant v la valuation t-adique sur C [[t]], on montre que, pour tout h ∈ R :

µ(h) = v(ι(h)).

De plus, on peut montrer que le corps des fractions de R est C ((t)) et que l’idéal
maximal de R est (t) ∩ R. On dit alors que le morphisme ι est birationnel et dominant. On
obtient ainsi une uniformisation locale de µ définie sur R. Le morphisme :

ι∗ : Spec (C [[t]]) → Spec(R)

est alors propre et birationnel, c’est une résolution des singularités de la courbe f = 0.
Cette méthode n’est pas généralisable en dimensions plus grandes et surtout, elle ne

s’étend pas en caractéristique positive. Par exemple, si k est un corps de caractéristique
p > 0, la méthode de Newton ne peut s’appliquer pour résoudre des hypersurfaces de
la forme :

Xp − gp−1X + f = 0,

où f , g ∈ k [[u1, ..., un]], g 6= 0 et f , g /∈ k [[u1, ..., un]]
×. L’équation précédente est dite

d’Artin-Schreier.

En 1939, Zariski montre qu’il existe une résolution des singularités des sur-
faces sur un corps de caractéristique nulle en démontrant l’uniformisation locale des
valuations et en recollant au niveau de la variété de Riemann-Zariski (voir [Z1]).
L’uniformisation locale apparaît donc comme un problème essentiel dans la résolution
des singularités.

En 1964, Hironaka ([H1]) prouve que l’on peut résoudre les singularités de toute
variété algébrique définie sur un corps de caractéristique nulle. Ce résultat a permis
à Grothendieck de donner des conditions minimales pour obtenir une résolution des
singularités via la proposition suivante :

Proposition 1 — ([G2], Proposition (7.9.5)) Soit X un schéma localement noethérien,
tel que, pour tout schéma Y intègre et fini sur X, on puisse résoudre Y. Alors les anneaux des
ouverts affines de X sont quasi-excellents.
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Grothendieck conjecture alors que la réciproque de la Proposition 1 est vraie. Il
remarque que, par le résultat d’Hironaka, cette conjecture est vraie pour les schémas
noethériens réduits dont le corps résiduel est de caractéristique nulle. Sans hypothèse
sur la caractéristique, il propose de se ramener au cas des anneaux locaux noethériens
intègres et complets. Si le corps résiduel k est de caractéristique p > 0, seule une
hypothèse de la forme [k : kp] < +∞ n’est valable pour lui, si un contre-exemple vient
un jour mettre en défaut sa conjecture.

Dans certains cas, plusieurs résultats l’ont confirmée : Abhyankar a démontré l’exis-
tence d’une résolution des singularités pour des surfaces en caractéristique positive
([A1]) ainsi que pour des variétés de dimension 3 sur des corps de caractéristique
supérieure ou égale à 7 ([A3]) ; résultat redémontré en 2009 par Cutkosky ([Cu4]). Enfin,
Cossart et Piltant ont démontré ce dernier résultat sans condition sur la caractéristique
([CP1] et [CP2]) et ont des résultats partiels en caractéristique mixte ([CP3]).

D’autres preuves du théorème d’Hironaka sont apparues depuis les années 1990,
elles ont permis de mettre à jour de nouvelles techniques. On peut citer Villamayor
en 1989 ([Vi]), Bierstone et Milman en 1990 ([BM]), Encinas et Villamayor en 2001

([EV]), Encinas et Hauser en 2002 ([EH]), Włodarczyk en 2005 ([W]) ou Temkin en 2008

([Tem1]) qui a démontré la conjecture de Grothendieck en caractéristique nulle.

Ces dernières années, une nouvelle approche a été proposée par Spivakovsky
([S1]) et Teissier ([Tei1]) pour résoudre cette conjecture. La première étape est de
démontrer l’uniformisation locale d’une valuation en étudiant l’algèbre graduée qui lui
est naturellement associée.

Les travaux de cette thèse viennent s’insérer dans le cadre de cette nouvelle
approche. L’objectif est d’utiliser les séries de Puiseux et les polynômes-clés, outils
indépendants de la caractéristique, pour proposer une preuve de l’uniformisation
locale des valuations définies sur un anneau quelconque. Dans un premier temps, nous
proposons une généralisation des séries de Puiseux définies par Spivakovsky ([S1]) à
un anneau local régulier complet de caractéristique mixte muni d’une valuation de rang
1, ainsi que des résultats de dépendance intégrale pour les séries tronquées. Dans un
deuxième temps, nous reprenons la méthode de Spivakovsky pour donner une nouvelle
preuve de l’uniformisation locale des schémas quasi-excellents de caractéristique nulle.
Enfin, nous montrons que, sous certaines hypothèses, on peut utiliser cette démarche
dans le cas mixte et qu’il suffit de monomialiser le premier polynôme-clé limite.

Détaillons un peu plus le contenu de cette thèse. Le Chapitre I est consacré
aux préliminaires. Nous y introduisons la notion de quasi-excellence pour les anneaux
et les schémas, notion qui impose deux conditions, l’une locale et l’autre globale.

Définition 2 — Un anneau noethérien R est quasi-excellent si les deux conditions sui-
vantes sont vérifiées :

(1) Pour tout P ∈ Spec(R), le morphisme de complétion RP → R̂P est régulier ;

(2) Le lieu régulier de toute R-algèbre de type fini est ouvert.

Un schéma localement noethérien est dit quasi-excellent s’il existe un recouvrement formé d’ou-
verts affines (Uα), Uα = Spec(Rα), tel que, pour tout α, Rα soit un anneau quasi-excellent.

Remarquons que dans le cas des anneaux locaux, la quasi-excellence est équivalente
à (1). Comme on l’a vu précédemment, ces anneaux sont le cadre le plus général pour
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étudier le problème de la résolution des singularités.
Après quelques généralités sur les valuations, la composition de valuations et les

algèbres graduées associées, on définit la notion essentielle de valuation monomiale.
En effet, un élément dont sa valuation est égale à sa valuation monomiale, peut être
monomialisé. Dans le cas où l’anneau est k [[u1, ..., un]], cette valuation est :

ν0,u( f ) = min

{
n

∑
i=1

αiν(ui)

∣∣∣∣∣ cα 6= 0

}
,

où f = ∑ cαuα ∈ k [[u1, ..., un]], u = (u1, ..., un) et uα = uα1
1 ...uαn

n .
Par la suite, nous présentons les différentes notions d’uniformisation locale pour les

schémas et les anneaux. Comme le problème est local, on n’étudie que les anneaux lo-
caux. L’uniformisation locale d’une valuation ν de K, le corps des fractions d’un anneau
local intègre R où est centrée la valuation, revient essentiellement à trouver un anneau
R′ régulier qui domine birationnellement R et tel que R′ ⊂ Rν ⊂ K. On rappelle que :

Rν = { f ∈ K | ν( f ) > 0}.
Plus précisément, la propriété d’uniformisation locale plongée dans le cadre des an-
neaux locaux intègres est la suivante :

Propriété 3 — Soient (R,m) un anneau local noethérien intègre et ν une valuation de K, le
corps des fractions de R, centrée en R. On dit que ν admet une uniformisation locale plongée
si, pour un nombre fini d’éléments de R, f1, ..., fq ∈ R tels que ν( f1) 6 ... 6 ν( fq), il existe une
suite d’éclatements locaux par rapport à ν :

R
π0 // R(1)

π1 // . . . πl−2 // R(l−1)
πl−1 // R(l)

telle que R(l) soit régulier et telle qu’il existe un système régulier de paramètres u(l) =(
u(l)1 , ..., u(l)d

)
de R(l) tel que les fi soient des monômes en u(l) pour 1 6 i 6 q et fi divise

fi+1 dans R
(l), 1 6 i 6 q− 1.

Cette propriété est celle que nous voulons obtenir lorsque R est quasi-excellent et
de corps résiduel k de caractéristique nulle. Si k et R sont de caractéristique p > 0, il
faut ajouter l’hypothèse [k : kp] < +∞. Enfin, si R est de caractéristique mixte et Γ est le
groupe des valeurs de ν, nous rajoutons comme hypothèses [k : kp] < +∞ et ν(p) /∈ pΓ.

La méthode proposée dans cette thèse est la suivante : d’après [NS], pour obtenir la
Propriété 3, il suffit de la démontrer pour des valuations de rang 1, valuations qui sont
archimédiennes. On introduit alors un idéal de R̂ appelé idéal premier implicite défini
dans [HGOAST] comme suit :

Définition 4 — Soient R un anneau local noethérien intègre et ν une valuation archimé-
dienne de K, corps des fractions de R, centrée en R. On appelle idéal premier implicite de R
associé à ν, noté H(R, ν) ou plus simplement H s’il n’y a pas d’ambiguïté, l’idéal de R̂ défini
par :

H =
⋂

β∈ν(R\{0})
PβR̂,

où Pβ = { f ∈ R | ν( f ) > β}.

Cet idéal permet de décrire les éléments de R̂ de valuation infinie. Il possède les
propriétés suivantes :
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(1) H ∩ R = (0) ;

(2) R →֒ R̂/H ;

(3) H est un idéal premier de R̂ ;

(4) ν s’étend de manière unique en une valuation ν̂ centrée en R̂/H ;

(5) Si R est un anneau local intègre quasi-excellent, alors R̂H est régulier.

Cette dernière propriété est essentielle pour montrer que R est régulier. Comme l’on
suppose R local et noethérien, il suffit de démontrer que R̂ est régulier. Grâce au Lemme
III.18, pour montrer que R̂ est régulier il faut montrer que R̂H et R̂/H le sont. Or, par
la propriété (5), il suffit de montrer que R̂/H est régulier. Dans le Chapitre III, nous dé-
montrons ce résultat en caractéristique nulle. Dans le Chapitre IV, nous montrons que,
pour l’obtenir en caractéristique mixte, il suffit de démontrer la Conjecture 12, conjec-
ture qui reste ouverte et non-démontrée à ce jour.

Dans la dernière partie du Chapitre I, nous développons la notion d’éclatements lo-
caux encadrés définie dans [S1]. Ces éclatements sont de la forme :

π : (R, u) →
(
R(1), u(1)

)
,

où l’on impose des conditions de compatibilité entre u et u(1). Leur propriété essentielle
est que, pour une suite d’éclatements de ce type :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
,

chaque uj peut s’exprimer comme un monôme en u(i) multiplié par une unité de R(i).
De plus, cette suite fait décroître les deux invariants suivants :

e(R, ν) = emb.dim
(
R̂/H

)
,

r(R, u, ν) = dimQ

(
n

∑
i=1

Qν(ui)

)
.

Enfin, nous énonçons un premier théorème de monomialisation pour des éléments
dont leur valuation est égale à la valuation monomiale (Théorème I.99) dont la preuve,
issue de [S1], repose sur un cas particulier du jeu d’Hironaka (voir [H2] et [S2]). Nous
terminons le Chapitre I par la construction d’une suite élémentaire uniformisante per-
mettant d’obtenir l’uniformisation locale d’une valuation attachée à une hypersurface
quasi-homogène satisfaisant certaines conditions vis-à-vis de l’algèbre graduée. Cette
suite élémentaire uniformisante est la pièce fondamentale de l’algorithme proposé dans
les Chapitres III et IV afin d’obtenir la Propriété 3 d’uniformisation locale plongée pour
des anneaux locaux intègres.

Dans le Chapitre II, nous essayons d’obtenir, pour les séries de Puiseux, le
même type de résultats que dans le cas des courbes sur C. Plus précisément, si R
est un anneau local régulier complet muni d’une valuation de rang 1, on le plonge
dans un anneau de séries généralisées de Puiseux. Ce résultat a déjà été démontré par
Kaplansky ([Ka]) ainsi que par Poonen ([P]). Ici, on reprend la méthode proposée par
Spivakovsky ([S1]) pour la généraliser au cas de caractéristique mixte. L’intérêt de cette
méthode est que le plongement est construit de manière explicite. Le résultat principal
est le suivant :
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Théorème 5 — Soient (R,m, k) un anneau local régulier complet et ν une valuation de K
le corps des fractions de R, de rang 1 centrée en R. Si R est de caractéristique mixte, on suppose
de plus que p /∈ m

2. Il existe alors un anneau AR et un monomorphisme d’anneaux :

ι : R →֒ AR,

tels que ν soit la restriction à R de la valuation de Mal’cev-Neumann associée à AR.

Ici, la valuation de Mal’cev-Neumann est la valuation t-adique (ou p-adique) et :

AR =





kν

[[
tΓ

′
]]

si car(R) = car(k)

W
[[

pΓ′
]]

si car(R) 6= car(k)

où W est un anneau local d’idéal maximal engendré par p (la caractéristique de k) et de
corps résiduel kν, une clôture algébrique de kν. On rappelle que :

mν = { f ∈ K | ν( f ) > 0} et kν = Rν/mν.

La preuve de ce théorème utilise de manière cruciale les polynômes-clés introduits dans
[HGOAS] et [S1] et dont on rappelle ici la définition :

Définition 6 — Soit K →֒ K(x) une extension de corps simple et transcendante. Soit µ′

une valuation de K(x), notons µ := µ′
|K. On note G le groupe des valeurs de µ′ et G1 celui

de µ. On suppose de plus que µ est de rang 1 et que µ′(x) > 0. Un ensemble complet de

polynômes-clés pour µ′ est une collection bien ordonnée :

Q = {Qi}i∈Λ ⊂ K[x]

telle que, pour tout β ∈ G, le groupe additif P′
β ∩ K[x] soit engendré par des produits de la forme

a
s

∏
j=1

Q
γj

ij
, a ∈ K, tels que

s

∑
j=1

γjµ
′
(
Qij

)
+ µ(a) > β.

L’ensemble est dit 1-complet si la condition a lieu pour tout β ∈ G1.

Avec cette définition, les polynômes introduits dans le cas des courbes sur C sont
bien des polynômes-clés. De plus, on remarque qu’ils sont en nombre fini ce qui n’est
pas toujours le cas. D’après [HGOAS] et [S1], on sait qu’il existe toujours un ensemble
complet de polynômes-clés. La construction se fait par récurrence transfinie et le type
d’ordre de l’ensemble est au plus ω × ω, il existe donc des polynômes-clés limites.

Par le théorème de structure de Cohen, on sait que R est de la forme

R =

{
k [[u1, ..., un+1]] si car(R) = car(k)
W [[u1, ..., un]] si car(R) 6= car(k)

oùW est un anneau complet de valuation discrète de paramètre régulier p et de corps ré-
siduel k. La preuve du Théorème 5 consiste à construire par récurrence transfinie la série
de Puiseux de uj, en utilisant une méthode de Newton via les polynômes-clés {Qj,i}i∈Λ j

de l’extension Kj−1 →֒ Kj−1(uj), où Kj−1 = k
((
u1, ..., uj−1

))
ou W

((
u1, ..., uj−1

))
et, la

suite croissante (ε j,i)i∈Λ j définie par :

ε j,i =
β j,i − ν(∂

j,pbj,i
Qj,i)

pbj,i
,

où bj,i est le plus petit élément b de N qui maximise
β j,i − ν(∂j,pbQj,i)

pb
et ∂j,s =

1
s!

∂s

∂us
j
,

s ∈ N, j ∈ {r, ..., n} et r = r(R, u, ν).
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Une autre généralisation du cas des courbes sur C est le fait que les séries de Puiseux
tronquées sont algébriques. Notons A le sous-anneau de AR engendré par ι(u1), ..., ι(un)
et toutes leurs troncatures et Aj,β le sous-anneau de A engendré par toutes les tronca-
tures ouvertes de la forme uj′(β′), où (j′, β′) <lex (j, β) pour l’ordre lexicographique. On
a alors la proposition suivante :

Proposition 7 — Soient j ∈ {r, ..., n} et β ∈ Γ ∪ {∞}. S’il existe i ∈ Λj tel que β 6 ε j,i,
alors uj(β), la série de Puiseux de uj tronquée en β, est entière sur Aj,β.

Nous terminons ce chapitre en introduisant la notion de séries de Puiseux univer-
selles, notion qui ne dépend pas de l’ordre des variables contrairement à la construction
faite dans la preuve du Théorème 5 qui dépend des polynômes-clés.

Le Chapitre III traite uniquement de l’uniformisation locale en caractéristique
nulle. Nous reprenons la méthode proposée dans [S1] pour l’adapter à ce cas. Considé-
rons (R,m, k) un anneau local régulier complet et de dimension n avec m = (u1, ..., un).
Soient ν une valuation de K = Frac(R), centrée en R, de groupe des valeurs Γ, et Γ1 le
plus petit sous-groupe isolé non-nul de Γ. On note :

H = { f ∈ R | ν( f ) /∈ Γ1}.
H est un idéal premier de R (voir Preuve du Théorème III.17). On suppose de plus que :

n = e(R, ν)

c’est-à-dire que :
H ⊂ m

2.

On note également r = r(R, u, ν).
La valuation ν considérée est la composée de la valuation µ : L∗ → Γ1 de rang 1 centrée
en R/H, où L = Frac(R/H), avec la valuation θ : K∗ → Γ/Γ1, centrée en RH, telle que
kθ ≃ κ(H) = RH/HRH.
L’objectif étant de rendre régulier R/H, on doit désingulariser H. La méthode consiste
à utiliser des suites locales encadrées, puis de compléter à chaque étape afin d’utiliser
l’idéal premier H. Ces suites sont appelées des suites formelles encadrées. On montre alors
que l’idéal premier implicite est principal, engendré par un polynôme en un et que sa
hauteur est au plus 1. Cette propriété reste vraie pour tous les transformés de H via des
éclatements formels. On obtient alors un premier théorème de monomialisation :

Théorème 8 — Deux cas se présentent :

(1) Ou bien H 6= (0) et il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que :
(
e
(
R(l), ν(l)

)
, e
(
R(l), ν(l)

)
− r

(
R(l), u(l), ν(l)

))
<lex (e(R, ν), n− r) .

(2) Ou bien H = (0) et pour tout f ∈ R, il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que f soit un monôme en u(l) fois une unité de R(l).
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La preuve de ce théorème se fait par récurrence sur n− r. Comme H est engendré par
un polynôme, il suffit d’obtenir le résultat pour les polynômes en un. Celui-ci est obtenu
par récurrence sur le degré et par développement standard d’éléments de R en fonction
des polynômes-clés. Il faut donc monomialiser les polynômes-clés ; en utilisant les suites
locales uniformisantes du Chapitre I, on se rend compte qu’il suffit de les monomialiser
uniquement jusqu’au premier polynôme-clé limite, s’il existe. Or en caractéristique nulle
on a le résultat suivant :

Proposition 9 — Si car (kν) = 0, il existe un ensemble 1-complet de polynômes-clés
{Qi}i∈Λ tel que Λ est, soit un ensemble fini, soit N∗. En particulier, il n’y a pas de polynômes-
clés limites pour des valuations de rang 1 en caractéristique nulle.

Ce résultat repose sur le fait qu’en caractéristique nulle, la suite formée par les va-
luations des polynômes-clés n’est jamais bornée. Ainsi, le Théorème 8 est vrai en carac-
téristique nulle mais aussi dans les cas de caractéristique positive ou mixte, chaque fois
qu’il existe un ensemble 1-complet de polynômes-clés n’ayant pas de polynômes-clés
limites.

Par la suite, on obtient un deuxième théorème de monomialisation mais cette fois
avec des suites locales encadrées et non plus formelles encadrées. La preuve se fait par
approximations m-adiques. Enfin, dans la dernière partie, on démontre la Propriété 3

pour des anneaux locaux intègres quasi-excellents dont le corps résiduel est de caracté-
ristique nulle, ainsi que le théorème :

Théorème 10 — Soit (S,m, k) un anneau local, non nécessairement intègre, quasi-
excellent. Soient P un idéal premier minimal de S et ν une valuation du corps des fractions
de S/P centrée en S/P et de groupe des valeurs Γ telle que car (kν) = 0.
Il existe alors un éclatement local π : S → S′ par rapport à ν tel que S′red soit régulier et Spec(S

′)
soit normalement plat le long de Spec(S′red).

Dans le Chapitre IV, nous reprenons la méthode du Chapitre III en essayant de la
généraliser au cas des anneaux de caractéristique mixte grâce au lemme suivant :

Lemme 11 — On suppose que :

R = W [[u1, ..., un]] /(p− g),

avec g ∈ W [[u1, ..., un]] à coefficients dans W× et m = (u1, ..., un) son idéal maximal. Si
ν(p) /∈ pΓ, alors, à une suite formelle encadrée près, on peut supposer R de la forme :

R = R[r] [[ur+1, ..., un]] ,

où R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et tel que
ν|R[r] soit monomiale par rapport au système régulier de paramètres de R[r] et de rang rationnel
maximal.

On obtient les mêmes résultats sur l’idéal H et on applique la même méthode afin
de démontrer le Théorème 8. Or, dans les cas de caractéristique positive ou mixte, il
existe des polynômes-clés limites (voir [Mah]). Pour conclure il faut donc monomialiser
le premier polynôme-clé limite ; on propose alors la conjecture suivante :

Conjecture 12 — On suppose que (R,m, k) est de la forme R[r] [[ur+1, ..., un]] où R[r]
est un anneau local régulier complet de dimension r et tel que ν|R[r] soit monomiale par rapport
au système régulier de paramètres de R[r] et de rang rationnel r. Supposons que le premier
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polynôme-clé limite Qn,ω de l’extension Kn−1 →֒ Kn−1(un) s’écrit sous la forme :

Qn,ω = upen,ω
n +

en,ω−1

∑
j=0

cpju
pj
n + c0,

où c0, cpj ∈ R[r] [[ur+1, ..., un−1]], 1 6 j 6 en,ω − 1. On suppose de plus que :
[
k : kp

en,ω
]
< +∞.

Il existe alors une suite formelle encadrée :

(R, u) → (R′, u′),

où u = (u1, ..., un), u′ = (u′1, ..., u
′
n), telle que :

(1) Qn,ω est un monôme en u′ fois une unité de R′ ;

(2) Dans R′, u′n divise Qn,ω mais u′2n ne divise pas Qn,ω.

Plus précisément, à une suite formelle encadrée près, il existe j ∈ {r + 1, ..., n− 1} et e ∈ N,
e < en,ω, tels que :

(3) Il existe g, h ∈ R[r] [[ur+1, ..., un−1]] tels que c0 = g+ h ;

(4) ν0,u(h) > pen,ω βn,ω, en particulier, h = 0 si βn,ω = ∞ ;

(5) g contient un monôme de la forme ̟upe

j où ̟ est un monôme en u1, ..., ur et, pour

tous les autres monômes de la forme ̟′ud
j avec ̟′ monôme en u1, ..., uj−1, uj+1, ..., un,

apparaissant dans Qn,ω, ν(̟′) > ν(̟) ;

(6) Si βn,ω = ∞ alors j = n− 1.

Remarquons que l’on s’est ramené à une forme bien particulière de polynôme-clé
limite, on appellera cette forme un polynôme d’Artin-Schreier généralisé. Une fois de
plus, comme dans le cas des courbes sur C, le cas Artin-Schreier pose problème et doit
concentrer toute notre attention.

Enfin, le Chapitre V reprend les théorèmes du Chapitre III pour obtenir les
résultats d’uniformisation locale plongée pour des valuations centrées en des an-
neaux locaux quasi-excellents de caractéristique mixte dont le corps résiduel vérifie
[k : kp] < +∞ et tels que ν(p) /∈ pΓ ; en supposant que la Conjecture 12 soit vraie.
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CHAPITRE I

Préliminaires

Tous les anneaux considérés sont supposés commutatifs et unitaires.
Si R est un anneau, I un idéal de R, on notera R̂ le complété I-adique de R. Lorsque
(R,m) est un anneau local on dira plus simplement le complété de R au lieu du complété
m-adique de R.
Pour tout P ∈ Spec(R), on note κ(P) = RP/PRP le corps résiduel de RP.
Pour α ∈ Zn et u = (u1, ..., un) un ensemble d’éléments de R, on note :

uα = uα1
1 ...uαn

n .

Pour P,Q ∈ R [X] avec P =
n

∑
i=0

aiQ
i et ai ∈ R[X] tels que le degré de ai est strictement

inférieur à celui de Q, on note :
d ◦
Q(P) = n.

Si Q = X, on notera plus simplement d ◦(P) au lieu de d ◦
X(P).

Enfin, si R est un anneau intègre, on notera Frac(R) son corps des fractions.

1. Structure des anneaux locaux réguliers complets

1.1. Caractéristique d’un anneau.

Le but de cette section est d’énoncer le théorème de structure de Cohen pour des
anneaux locaux réguliers et complets. Par la suite, nous aurons souvent besoin de ce
théorème dans les deux cas suivants : le cas équicaractéristique et le cas de caractéris-
tique mixte. La preuve repose sur la notion de lissité formelle, on pourra consulter [G1],
[ILO], [Mat1] et [Mat2] pour plus de détails.

Définition I.1 — Soit (R,m, k) un anneau local. On note car(R) sa caractéristique.
On dit que R est un anneau équicaractéristique si car(R) = car(k), sinon, on dit que c’est un
anneau de caractéristique mixte.

Remarque I.2 — Les seuls cas possibles sont les suivants :

(1) R est équicaractéristique :

(a) car(k) = car(R) = 0 ;

(b) car(k) = car(R) = p, p un nombre premier ;

(2) R est de caractéristique mixte :

(a) car(R) = 0 et car(k) = p, p un nombre premier ;

(b) car(R) = pn et car(k) = p, p un nombre premier, n > 2.

Exemples I.3 — Un corps ou un anneau de séries formelles sur un corps sont des
anneaux équicaractéristiques ; Z(p), p un nombre premier, est un anneau de caractéris-
tique mixte.
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Chapitre I. Préliminaires.

Pour les anneaux de caractéristique mixte, il se peut que p soit un paramètre régulier.
Il est souvent utile de faire la distinction entre les deux cas, pour cela, nous introduisons
la définition suivante :

Définition I.4 — Soient (R,m, k) un anneau local de caractéristique mixte et p = car(k).
On dit que R est ramifié si p ∈ m

2, sinon on dit qu’il est non-ramifié.

1.2. Le théorème de structure de Cohen.

Théorème I.5 — Soit (R,m, k) un anneau local régulier complet de dimension n.

(1) Si R est équicaractéristique alors :

R ≃ k [[u1, ..., un]] .

(2) Si R est de caractéristique mixte, il existe un anneau complet de valuation discrète W,
d’idéal maximal pW et g ∈ W [[u1, ..., un]], g ∈ (u1, ..., un) à coefficients inversibles
tels que :

R ≃ W [[u1, ..., un]] /(p− g).

Définition I.6 — Un anneau de Cohen est soit un corps de caractéristique nulle, soit
un anneau complet de valuation discrète, de corps résiduel de caractéristique p > 0 et d’idéal
maximal engendré par p.

Exemple I.7 — Le corps k et l’anneau W du Théorème I.5 sont des anneaux de
Cohen.

Remarque I.8 — Dans le cas (2), si k est parfait alors, l’anneau de Cohen W est
isomorphe à l’anneau des vecteurs de Witt de k (voir [G1], Remarques (21.5.3), (ii)). Si
de plus, R est non-ramifié alors R ≃ W [[u1, ..., un−1]].

2. Anneaux quasi-excellents

Dans [G2], Grothendieck montre que tout schéma localement noethérien X, tel que
tout schéma intègre et de type fini sur X admette une résolution des singularités, est
quasi-excellent. De plus, il conjecture que la réciproque est probablement vraie et il
avance même qu’elle est vraie en caractéristique nulle via le théorème d’Hironaka ([H1]),
fait qui ne sera montré qu’en 2008 par Temkin ([Tem1]). En caractéristique positive et
en caractéristique mixte le problème reste ouvert, ainsi, pour étudier le problème de
l’uniformisation locale, les anneaux quasi-excellents forment la classe d’anneaux la plus
générale que l’on puisse considérer.
On pourra consulter [G2], [Mat1] et [ILO] pour les preuves des énoncés ci-dessous.

La quasi-excellence demande deux conditions sur l’anneau : une condition globale
sur le lieu régulier et une condition locale sur les fibres formelles.
Commençons par la condition locale.

2.1. G-anneaux.

Définition I.9 — Soient R un anneau et M un R-module.

(1) On dit que M est plat sur R si, pour toute suite exacte de R-modules :

0 → N′ → N → N′′ → 0,

la suite induite :

0 → N′ ⊗R M → N ⊗R M → N′′ ⊗R M → 0,

est exacte.
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2. Anneaux quasi-excellents.

(2) Un morphisme d’anneaux σ : R → R′ est un morphisme plat si R′ est plat sur R
pour la structure de R-module induite par σ.

Définition I.10 — Soit R un anneau noethérien.

(1) Supposons que R contienne un corps k. On dit que R est géométriquement régulier
sur k si, pour toute extension k′|k telle que [k′ : k] < +∞, l’anneau R⊗k k

′ est régulier.

(2) Soit σ : R → R′ un morphisme d’anneaux noethériens. Pour tout P ∈ Spec(R), notons
κ(P) = RP/PRP le corps résiduel de RP. On dit que σ est unmorphisme régulier si :

(a) σ est un morphisme plat ;

(b) Pour tout P ∈ Spec(R), R′ ⊗R κ(P) est géométriquement régulier sur κ(P).

Définition I.11 — Un anneau noethérien R est appelé un G-anneau si, pour tout P ∈
Spec(R), le morphisme de complétion RP → R̂P est régulier.

Remarque I.12 —

(1) Le choix de la lettre G dans la définition est en hommage à Grothendieck qui
est le premier à avoir dégagé cette notion.

(2) Un anneau local noethérien est régulier si et seulement si son complété est
régulier ([AMa], Théorème 11.24).

(3) La notion de G-anneau est conservée par localisation, passage au quotient et
passage aux algèbres de type fini.

(4) Un anneau local noethérien complet est un G-anneau ([Mat1], Théorème 68).

La notion de G-anneau est notre condition locale, regardons maintenant la condition
globale.

2.2. Anneaux J-2.

Définition I.13 — Soit R un anneau noethérien.

(1) On appelle Reg(R) = {P ∈ Spec(R) | RP est régulier} le lieu régulier de R et
Sing(R) = Spec(R) \ Reg(R) le lieu singulier de R.

(2) On dit que R est J-0 si Reg(R) contient un ouvert non-vide de Spec(R).

(3) On dit que R est J-1 si Reg(R) est ouvert dans Spec(R).

(4) On dit que R est J-2 si toute R-algèbre de type fini est J-1.

Remarque I.14 —

(1) La lettre J vient de jacobien.

(2) La notion d’anneau J-2 est notre condition globale.

(3) Si R est un anneau noethérien réduit alors : J-1 ⇒ J-0.

Nous allons énoncer quelques théorèmes donnant des exemples et des critères qui
vérifient ces conditions.

Théorème I.15 — Un anneau local noethérien complet est J-1, en particulier les anneaux
de séries formelles sur un corps ou un anneau de valuation discrète sont J-1.

Remarque I.16 — Ce théorème est dû à Nagata et repose sur le Théorème I.5 de
structure de Cohen et le critère jacobien de Nagata. Dans [G2], on voit que pour obtenir
le résultat, il suffit de montrer qu’un anneau local noethérien complet intègre est J-0.

3



Chapitre I. Préliminaires.

Corollaire I.17 — Un G-anneau local est J-1.

Le théorème suivant, dû à Grothendieck, va nous donner le lien entre la notion de
G-anneau et d’anneau J-2 dans le cas des anneaux locaux. On peut trouver une preuve
dans [G1] et dans [Mat1].

Théorème I.18 — Soit R′ une R-algèbre de type fini. Si R est un G-anneau alors R′ est un
G-anneau.

Corollaire I.19 — Un G-anneau local est J-2.

Passons maintenant à la notion de quasi-excellence.

2.3. Anneaux et schémas quasi-excellents.

Définition I.20 — Un anneau est quasi-excellent si c’est un G-anneau J-2.

Remarque I.21 —

(1) Remarquons que, par définition, comme un G-anneau est noethérien, un anneau
quasi-excellent est noethérien.

(2) La notion de quasi-excellence est conservée par localisation, passage au quotient
et passage aux algèbres de type fini.

(3) Un corps est quasi-excellent.

Grâce au Corollaire I.19, on peut affaiblir les hypothèses pour les anneaux locaux :

Proposition I.22 — Un anneau local est quasi-excellent si et seulement si c’est un G-
anneau.

Exemples I.23 — Par le (4) de la Remarque I.12 et par la Proposition I.22, on en
déduit que les anneaux de séries formelles sur un anneau de Cohen sont des anneaux
quasi-excellents.

Définition I.24 — Un schéma localement noethérien est dit quasi-excellent s’il existe un
recouvrement formé d’ouverts affines (Uα), Uα = Spec(Rα), tel que, pour tout α, Rα soit un
anneau quasi-excellent.

3. Valuations

Les notions de valuations et surtout de places se sont développées entre la fin du
XIXème siècle et le début du XXème siècle. C’est tout d’abord en théorie des nombres
qu’est apparu le concept de places d’un corps, introduit par Dedekind et Weber en
1882. Par la suite, Hensel, en développant sa théorie des nombres p-adiques crée la no-
tion de valeur absolue p-adique. Mais c’est Krull ([Kr]) qui, en 1932, définit la notion
générale de valuation.

Zariski, dans le cadre de la résolution des singularités, introduit la notion de va-
luation en géométrie algébrique. Son objectif était de résoudre les singularités via l’uni-
formisation locale d’une valuation donnée. Ces dernières années, l’étude des valuations
a été relancée par Spivakovsky et Teissier dans cet objectif. Enfin, Cossart et Piltant en
2008 ([CP1] et [CP2]) ont montré que l’on pouvait résoudre les singularités d’une variété
algébrique de dimension 3 sur un corps de caractéristique positive via l’uniformisation
locale.

Notre référence principale pour cette section est [Va1], on pourra également consul-
ter [ZS] ou [B].
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3. Valuations.

3.1. Premières définitions.

Définition I.25 — Soit (Γ,+,6) un groupe commutatif totalement ordonné. Considérons
∞ /∈ Γ et munissons l’ensemble Γ ∪ {∞} d’une relation d’ordre total en posant :

∀ α ∈ Γ, α < ∞.

Par convention, on suppose que :

∀ α ∈ Γ, ∞ + α = α + ∞ = ∞ + ∞ = ∞.

Soient R un anneau et ν : R → Γ ∪ {∞} une application. On dit que ν est une valuation si :

(1) ∀ f , g ∈ R, ν( f g) = ν( f ) + ν(g) ;

(2) ∀ f , g ∈ R, ν( f + g) > min{ν( f ), ν(g)} ;
(3) ν(1) = 0 et ν(0) = ∞.

Remarque I.26 — Lorsque R est un corps, quitte à remplacer Γ par ν(R \ {0}), on
peut supposer que ν est surjective.
Si R est un anneau intègre de corps des fractions K et si pour tout f ∈ R \ {0}, ν( f ) 6= ∞,
alors il existe une unique valuation de K qui prolonge ν.

Définition I.27 — Soit ν une valuation sur un corps K. On appelle anneau de valuation
de ν, l’anneau :

Rν = { f ∈ K | ν( f ) > 0}.
C’est un anneau local d’idéal maximal :

mν = { f ∈ K | ν( f ) > 0}.
On note alors kν = Rν/mν le corps résiduel de Rν.

Définition I.28 — Soient R un anneau et ν une valuation. L’ensemble :

P∞ = ν−1({∞})
est un idéal premier de R appelé support de ν.

3.2. Centre d’une valuation.

Définition I.29 — Soient K un corps, R un sous-anneau de K, P un idéal premier de R et
ν une valuation de K. On appelle centre de la valuation l’idéal premier R ∩mν. On dit que ν est
centrée en P si R ⊂ Rν et P = R ∩mν.
Plus généralement, soient R un anneau et P un idéal premier. Une valuation de R centrée en P
est la donnée d’un idéal premier minimal P∞ de R contenu dans P et d’une valuation du corps
des fractions de R/P∞ centrée en P/P∞. L’idéal P∞ est alors le support de la valuation.
Si R est un anneau local d’idéal maximal m, on dira que ν est centrée en R pour dire que ν est
centrée en m.

Lorsque R est un anneau local, on peut relier cette notion à la relation de domination.

Définition I.30 — Soient (R,m, k) et (R′,m′, k′) deux anneaux locaux. On dit que R′

domine R si R ⊂ R′ et si m = R ∩m
′.

Si de plus ce sont des anneaux intègres ayant même corps des fractions, on dit que R′ domine
birationnellement R.

Remarque I.31 —

(1) L’injection de R dans R′ définit un isomorphisme de k sur un sous-corps de k′.
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(2) Soit R un anneau local. Une valuation est centrée en R si et seulement si Rν

domine R.

Définition I.32 — Soit X un schéma intègre de corps des fonctions K(X). Une valuation
ν de K(X) est centrée en un point ξ de X si ν est centrée en OX,ξ . On dira alors que ξ est le
centre de ν.

Remarque I.33 — Le centre de ν dans X, s’il existe, est l’unique point ξ tel que Rν

domine birationnellement OX,ξ .

3.3. Algèbres graduées d’une valuation.

Nous allons maintenant voir qu’à l’aide d’une valuation, nous pouvons définir, à
partir d’un anneau, une algèbre graduée.

Définition I.34 — Soient R un anneau et ν : R → Γ ∪ {∞} une valuation centrée en un
idéal premier de R. Pour tout α ∈ ν(R \ {0}), on définit les idéaux :

Pα = { f ∈ R | ν( f ) > α};

Pα,+ = { f ∈ R | ν( f ) > α}.
L’idéal Pα est appelé le ν-idéal de R de valuation α.
On définit alors l’algèbre graduée de R associée à ν par :

grν(R) =
⊕

α∈ν(R\{0})
Pα/Pα,+.

L’algèbre grν(R) est un anneau intègre.
Pour f ∈ R \ {0}, on définit son image dans grν(R), notée inν( f ), comme étant l’image naturelle
de f dans Pν( f )/Pν( f ),+ ⊂ grν(R) ; c’est un élément homogène de degré ν( f ).
Enfin, on définit une valuation naturelle sur grν(R) de groupe des valeurs ν(R \ {0}), notée
ord, par :

ord( f ) = min α,

où f ∈ grν(R) s’écrit comme une somme finie f = ∑
α∈ν(R\{0})

fα, fα ∈ Pα/Pα,+.

Si R est un anneau local intègre, on définit une autre algèbre graduée comme suit :

Définition I.35 — Soient R un anneau local intègre, K = Frac(R) et ν : K× ։ Γ ∪ {∞}
une valuation de K centrée en R. Pour tout α ∈ Γ, on définit les Rν-sous-modules de K suivants :

Pα = { f ∈ K | ν( f ) > α};

Pα,+ = { f ∈ K | ν( f ) > α}.
On définit alors l’algèbre graduée associée à ν par :

Gν =
⊕

α∈Γ

Pα/Pα,+.

Pour f ∈ K×, on définit son image dans Gν, notée inν( f ), comme dans la Définition I.34.
Enfin, on définit une valuation naturelle sur Gν de groupe des valeurs Γ, notée ord, comme dans
la Définition I.34.

Remarque I.36 — On a l’injection naturelle :

grν(R) →֒ Gν.
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Définition I.37 — Soit G une algèbre graduée n’ayant pas de diviseurs de zéro. On appelle
saturé de G l’agèbre graduée G∗ définie par :

G∗ =
{

f
g

∣∣∣∣ f , g ∈ G, g homogène, g 6= 0
}
.

On dit que G est saturée si G = G∗.

Remarque I.38 — Pour toute algèbre graduée G, on a :

G∗ = (G∗)∗ .

En particulier, G∗ est toujours saturée.

Exemple I.39 — Soit ν une valuation centrée en un anneau local R. Alors :

Gν = (grν(R))
∗ .

En particulier, Gν est saturée.

3.4. Rang d’une valuation.

On va définir des invariants pour une valuation donnée, reliés entre eux par l’inéga-
lité d’Abhyankar.

Définition I.40 — Soient K un corps et ν : K× ։ Γ ∪ {∞} une valuation de K centrée en
un sous-anneau local de K. On définit le rang de ν, noté rg(ν), et le rang rationnel de ν, noté
rg.rat(ν), par :

rg(ν) = dim(Rν),

rg.rat(ν) = dimQ (Γ ⊗Z Q) .

Remarque I.41 —

(1) Un sous-groupe ∆ ⊂ Γ est dit isolé si pour α ∈ ∆ et β ∈ Γ tels que −α < β < α,
alors β ∈ ∆.
De manière équivalente, on peut définir le rang de ν comme étant le nombre
de sous-groupes distincts et isolés de Γ (en comptant Γ mais pas {0}). Il y a
en fait une bijection entre les sous-groupes isolés de Γ et les idéaux premiers
de Rν qui, à un sous-groupe isolé ∆ ⊂ Γ, associe un idéal premier P∆ = { f ∈
Rν | ν( f ) 6∈ ∆} de Rν.

(2) rg(ν) 6 rg.rat(ν) (voir Proposition 3.5 de [Va1]).

Théorème I.42 — (Inégalité d’Abhyankar) Soient K un corps et ν : K× ։ Γ ∪ {∞}
une valuation de K centrée en un sous-anneau (R,m, k) local noethérien de K. Par la Remarque
I.31, kν est une extension de k, on note alors deg.tr(kν |k) le degré de transcendance de l’extension
kν|k. On a l’inégalité :

rg.rat(ν) + deg.tr(kν |k) 6 dim(R).

Remarque I.43 — On en déduit alors, via la Remarque I.41, que :

rg(ν) 6 dim(R) < +∞.
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3.5. Composition de valuations.
On va introduire la composition de valuations qui va nous permettre de nous ra-

mener de l’uniformisation locale de valuations de rang quelconque à l’uniformisation
locale de valuations de rang 1.

Soit ν : K ։ Γ une valuation d’un corps K telle que rg(ν) > 1. Ainsi il existe une va-
luation ν′ : K ։ Γ′ de K telle que Γ′ & Γ et Rν ⊂ Rν′ . Alors, l’idéal mν′ ∩ Rν est un idéal
premier de Rν et Rν′ = (Rν)mν′∩Rν . On note Γ le sous-groupe isolé de Γ correspondant à
l’idéal premier mν′ ∩ Rν de Rν. On a :

Γ′ ≃ Γ/Γ.

Soit ν : κ(mν′ ∩ Rν) ։ Γ la valuation de κ(mν′ ∩ Rν), alors :

Rν = Rν/(mν′ ∩ Rν).

On a ainsi décomposé ν en deux valuations ν′ et ν telles que :

rg(ν) = rg(ν′) + rg(ν).

On note alors ν = ν′ ◦ ν.
Réciproquement, soient ν1 une valuation de K et ν2 une valuation de kν1 . Soit ϕ :

Rν1 ։ kν1 le morphisme canonique. Alors, il existe une valuation ν de K telle que
Rν = ϕ−1(Rν2) appelée composition de ν1 et ν2, notée ν = ν1 ◦ ν2.
L’idéal ϕ−1(mν2) est un idéal premier non-nul de Rν contenu strictement dans mν. Si ν
est centrée en un anneau local R, alors ν1 est centrée en Rϕ−1(mν2)∩R et ν2 | κ(ϕ−1(mν2)∩R) est

centrée en R/(ϕ−1(mν2) ∩ R).

3.6. Valuations archimédiennes et valuations monomiales.
Terminons cette section avec un exemple de valuation : la valuation monomiale.

Nous suivons ici l’exposé fait par [S1].
On rappelle qu’un semi-groupe est un ensemble muni d’une loi associative.

Définition I.44 — Un semi-groupe ordonné Φ est dit archimédien si, pour tout α, β ∈ Φ,
β > 0, il existe n ∈ N \ {0} tel que α < nβ.
Une valuation ν centrée en un anneau local R est dite archimédienne si ν(R \ {0}) est un
semi-groupe archimédien.

Remarque I.45 — On ferra attention à ne pas confondre la notion de valuation ar-
chimédienne, qui correspond au fait que ν(R \ {0}) possède la propriété d’Archimède au
sens de [ZS] (p. 45), avec la notion de valeur absolue non-archimédienne qui correspond
au fait de remplacer l’inégalité triangulaire par l’inégalité : |x + y| 6 max{|x|, |y|}. En
suivant la terminologie de [B] et [L], pour éviter toute confusion, on parlera plutôt dans
ce cas-là de valeur absolue ultramétrique.

Lemme I.46 — Soit Γ un groupe abélien ordonné ne possédant pas de sous-groupes isolés
autres que {0} et lui-même. Soit Φ ⊂ Γ+ un semi-groupe ordonné. Alors Φ est archimédien.

Preuve : Par l’absurde, si Φ n’est pas archimédien, il existe α, β ∈ Φ, β 6= 0 tels que, pour
tout n > 1, nβ 6 α. En particulier, l’ensemble :

{γ ∈ Γ | ∃ n ∈ N \ {0}, −nβ < γ < nβ}
est un sous-groupe isolé non-trivial de Γ.

�

Corollaire I.47 — Une valuation de rang 1 centrée en un anneau local est archimédienne.
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Le Lemme I.48 suivant nous dit que pour une valuation archimédienne centrée en
un anneau local noethérien, toute suite croissante dans le groupe des valeurs ne peut
être bornée. Ce lemme technique nous sera utile à plusieurs reprises.

Lemme I.48 — Soit ν une valuation archimédienne centrée en un anneau local noethérien
R. Notons P∞ le support de ν. Alors, ν (R \ P∞) ne contient aucune suite infinie croissante et
bornée.

Preuve : Soit (βi)i>1 une suite croissante infinie de ν (R \ P∞) bornée par β. Cette suite
correspond à une suite infinie décroissante d’idéaux de R/Pβ. Il nous suffit donc de
montrer que R/Pβ est de longueur finie. Notons m l’idéal maximal de R et ν(m) =
min {ν (R \ P∞) \ {0}}. La valuation étant archimédienne, il existe n ∈ N tel que :

β 6 nν(m).

Ainsi, mn ⊂ Pβ et donc , il existe une application surjective :

R/mn ։ R/Pβ.

�

Lemme I.49 — Soit (R,m, k) un anneau local régulier. On suppose que m = (u1, ..., un) =
u, où n est le nombre de générateurs de m. Soient Φ un semi-groupe ordonné archimédien et
β1, ..., βn ∈ Φ tels que βi > 0, 1 6 i 6 n.
Notons Φ∗ ⊂ Φ le semi-groupe ordonné suivant :

Φ∗ =

{
n

∑
i=1

αiβi

∣∣∣∣∣ αi ∈ N

}
.

Pour γ ∈ Φ∗, considérons l’idéal de R :

Iγ =

〈{
uα1
1 ...uαn

n

∣∣∣∣∣
n

∑
i=1

αiβi > γ

}〉
.

Alors, pour f ∈ R \ {0}, l’ensemble :

Φ f = {γ ∈ Φ∗ | f ∈ Iγ}
est fini.

Preuve : Soit f ∈ R \ {0}. Comme Φ est archimédien alors Φ∗ l’est aussi. Remarquons
que Φ∗ est un ensemble dénombrable et que Φ f est un ensemble bien ordonné car à une
suite décroissante de Φ f correspond une suite croissante d’idéaux de R de la forme Iγ
qui est forcément finie vu que R est noethérien. Notons γ0 le plus petit élément non-nul
de Φ f (en fait 0 est le min de Φ∗ et de Φ f , si ce dernier ensemble est réduit à 0, la preuve
est terminée).
Comme f est non-nul, il existe i > 0 tel que f /∈ m

i et donc Φ f 6= Φ∗. Il existe donc
γ1 = supΦ f ∈ Φ∗. Or Φ∗ est archimédien, ainsi, il existe N ∈ N tel que γ1 < Nγ0.

Alors, pour tout élément γ =
n

∑
i=1

αiβi ∈ Φ f , αi ∈ N, comme βi ∈ Φ f , pour 1 6 i 6 n, on

en déduit : (
n

∑
i=1

αi

)
γ0 6

n

∑
i=1

αiβi < γ1 < Nγ0.
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Nécessairement, on a

(
N −

n

∑
i=1

αi

)
γ0 > 0 et comme γ0 > 0 on en déduit que

n

∑
i=1

αi 6 N,

c’est-à-dire qu’il n’y a qu’un choix fini de n-uplets (α1, ..., αn) et donc de γ ∈ Φ f .
�

Corollaire I.50 — Sous les hypothèses du Lemme I.49, il existe une unique valuation, notée
ν0,u, centrée en un idéal premier de R, telle que :

ν0,u(uj) = β j, 1 6 j 6 n;

ν0,u( f ) = max{γ ∈ Φ f }, ∀ f ∈ R \ {0}.
Cette valuation est appelée la valuation monomiale de R associée à u et à β1, ..., βn.
Soit ν une valuation de groupe des valeurs Γ et centrée en un idéal premier de R. On dit que ν
est monomiale par rapport à u s’il existe β1, ..., βn ∈ Γ+ tels que :

∀ f ∈ R \ {0}, ν( f ) = ν0,u( f ).

Exemple I.51 — Pour ν une valuation centrée en R = k [[u1, ..., un]], si f = ∑ cαuα,

alors ν0,u( f ) = min

{
n

∑
i=1

αiν(ui)

∣∣∣∣∣ cα 6= 0

}
est la valuation monomiale associée à u et à

ν(u1), ..., ν(un).

Remarque I.52 — Si ν est une valuation centrée en R dont le groupe des valeurs est
archimédien et si ν0,u est la valuation monomiale associée à u et à ν(u1), ..., ν(un), alors,
pour tout γ ∈ Φ∗, ν(Iγ) = min{ν( f ) | f ∈ Iγ} > γ. Ainsi, pour tout f ∈ R \ {0} :

ν0,u( f ) 6 ν( f ).

De plus, la valuation ν est monomiale si et seulement si :

grν(R) = k [inν(u1), ..., inν(un)] .

4. Différentes notions d’uniformisation locale

Dans cette section nous allons donner différentes notions d’uniformisation locale,
que ce soit pour des schémas ou pour des anneaux. L’uniformisation locale est la ver-
sion locale de la résolution des singularités. Résoudre les singularités d’un schéma X
noethérien irréductible et réduit revient à trouver un morphisme propre et birationnel
X′ → X tel que X′ soit régulier. Ainsi, l’uniformisation locale d’une valuation ν de K,
le corps des fractions d’un anneau local intègre R où est centrée la valuation, revient à
trouver un anneau R′ régulier qui domine birationnellement R et tel que R′ ⊂ Rν ⊂ K.
Les références utilisées pour cette partie sont [S1], [CP1] et [NS].

4.1. Uniformisation locale des schémas.

Définition I.53 — Soient X un schéma noethérien et Y un sous-schéma de X. Soit IY le
faisceau d’idéaux définissant Y dans X.
On dit que X est normalement plat le long de Y si, pour tout point ξ ∈ Y,

⊕

n>0

In
Y,ξ/In+1

Y,ξ est

un OY,ξ-module libre.

Propriété I.54 — (d’uniformisation locale des schémas). Soit S un schéma noethérien
(non nécessairement intègre). Soient X une composante irréductible de Sred et ν une valuation
de K(X) centrée en un point ξ ∈ X. Il existe alors un éclatement π : S′ → S le long d’un sous-
schéma de S, ne contenant aucune composante irréductible de Sred et ayant la propriété suivante :
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soit X′ le transformé strict de X par π et soit ξ′ le centre de ν sur X′, alors ξ′ est un point
régulier de X′ et S′ est normalement plat le long de X′ en ξ′.

Propriété I.55 — (d’uniformisation locale des schémas intègres). Soit X un schéma
noethérien réduit et irréductible et ν une valuation de K(X) centrée en un point ξ ∈ X. Alors, il
existe un éclatement π : X′ → X tel que le centre de ν sur X′ soit un point régulier de X′.

Le problème étant local, on peut juste l’exprimer en termes d’anneaux. Avant, nous
allons rappeler la notion d’éclatement local par rapport à une valuation.

4.2. Éclatements locaux et uniformisation locale des anneaux.

Définition I.56 — Soit (R,m) un anneau local noethérien intègre de corps des fractions
K. Soit ν une valuation de K centrée en R. Soient u1, ...ur ∈ R et v1, ..., vr ∈ R tels que
ν(vi) 6 ν(ui) pour tout i ∈ {1, ..., r}. Notons R′ l’anneau :

R′ = R
[
u1
v1

, ...,
ur
vr

]
.

Alors l’anneau R(1) = R′
mν∩R′ est un anneau local d’idéal maximal m(1) = (mν ∩ R′)R′

mν∩R′ .
Un éclatement local de R par rapport à ν est un morphisme local d’anneaux locaux de la
forme :

π : (R,m) → (R(1),m(1)).

Soient I un idéal de R et u0 ∈ I tel que ν(u0) 6 ν( f ), pour tout f ∈ I. Complétons u0 en un
ensmble {u0, u1, ..., us} de générateurs de I. Le morphisme précédent est appelé un éclatement
local de R par rapport à ν le long de I si r = s et vi = u0 pour tout i ∈ {1, ..., s} ;
conditions auxquelles on peut toujours se ramener sans perte de généralité en posant u0 = v1...vr
et ui =

ui

vi
u0, i ∈ {1, ..., r}.

Remarque I.57 — À isomorphisme près, la définition précédente est indépendante
du choix de l’ensemble de générateurs de I, c’est-à-dire qu’un autre choix de générateurs
donne un anneau isomorphe.

Propriété I.58 — (d’uniformisation locale des anneaux locaux). Soient (S,m) un
anneau local noethérien (non nécessairement intègre), P un idéal premier minimal de S et ν une
valuation du corps des fractions de S/P centrée en S/P. Alors, il existe un éclatement local
π : S → S′ par rapport à ν tel que S′red soit régulier et Spec(S′) soit normalement plat le long
de Spec(S′red).

Propriété I.59 — (d’uniformisation locale des anneaux locaux intègres). Soient
(R,m) un anneau local noethérien intègre, ν une valuation du corps des fractions de R cen-
trée en R. Il existe alors un éclatement local π : R → R′ par rapport à ν tel que R′ soit régulier.

Nous finissons cette section avec la notion de croisements normaux et d’uniformisa-
tion locale plongée.

4.3. Croisements normaux et uniformisation locale plongée.

Définition I.60 — Soient (R,m) un anneau local noethérien et ν une valuation centrée en
R, au sens de la Définition I.29, de groupe des valeurs Γ. Soit u = {u1, ..., un} ⊂ m tel que

(u) +
√
(0) = m+

√
(0). Enfin, pour f ∈ R, on note f ∈ R/

√
(0) = Rred l’image de f dans

Rred par le morphisme de passage au quotient.

11
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(1) Un monôme uα = uα1
1 ...uαn

n est ditminimal par rapport à ν si la famille {ν(uj) | αj 6=
0}16j6n est Z-libre dans Γ.

(2) Soit I un idéal de R. On dit que le triplet (R, I, u) est à croisements normaux si :

(a) Rred est un anneau local régulier et (u1, ..., un) est un système régulier de para-
mètres de Rred ;

(b) Spec(R) est normalement plat le long de Spec(Rred) ;

(c) I/
(
I +

√
(0)
)
est un idéal principal engendré par un monôme en u1, ..., un (avec

la possibilité que I = (1) et donc I/
(
I +

√
(0)
)

= (1)).

(3) Soit I un idéal de R, le triplet (R, I, u) est à croisements normaux standards par

rapport à ν si (R, I, u) est à croisements normaux et I/
(
I +

√
(0)
)

est engendré par

un monôme minimal par rapport à ν.

(4) Soit I un idéal de R, on dit que (R, I) est à croisements normaux (resp. à croisements
normaux standards) s’il existe u tel que (R, I, u) soit à croisements normaux (resp. à
croisements normaux standards).

(5) On dit que R est désingularisé si (R, R) est à croisements normaux.

Définition I.61 — Soient (R,m) un anneau local noethérien et ν une valuation centrée en
R au sens de la Définition I.29. Soit I un idéal de R, on dit que la paire (R, I) admet une uni-
formisation locale plongée (resp. une uniformisation locale plongée standard) s’il existe
une suite :

R
π0 // R(1)

π1 // . . . πl−2 // R(l−1)
πl−1 // R(l)

où, pour 1 6 i 6 l, πi est un éclatement local par rapport à ν le long d’un idéal J(i) ayant les
propriétés suivantes :

(1) Pour 1 6 i 6 l, J(i) 6⊂ P(i)
∞ , P(i)

∞ étant le support de ν dans R(i).

(2)
(
R(i), IR(i)

)
est à croisements normaux (resp. à croisements normaux standards).

Enfin, on dit que R admet une uniformisation locale plongée (resp. une uniformisation

locale plongée standard) si, pour tout idéal I de R, (R, I) admet une uniformisation locale
plongée (resp. une uniformisation locale plongée standard).

Propriété I.62 — (d’uniformisation locale plongée des schémas). Soit S un schéma
noethérien (non nécessairement intègre). Soient X une composante irréductible de Sred et ν une
valuation de K(X) centrée en un point ξ ∈ X. Il existe alors un éclatement π : S′ → S le long
d’un sous-schéma de S, ne contenant aucune composante irréductible de Sred et ayant la propriété
suivante :
soient X′ le transformé strict de X par π, ξ′ le centre de ν sur X′ et D le diviseur exceptionnel
de π, alors (OX′ ,ξ ′ , ID,ξ ′) admet une uniformisation locale plongée.

Dans le cas des anneaux locaux noethériens intègres, on peut énoncer la propriété
de manière un peu plus simple :

Propriété I.63 — (d’uniformisation locale plongée des anneaux locaux intègres).
Soient (R,m) un anneau local noethérien intègre et ν une valuation de K, le corps des fractions
de R, centrée en R. On dit que ν admet une uniformisation locale plongée si, pour un nombre

12



5. L’idéal premier implicite.

fini d’éléments de R, f1, ..., fq ∈ R tels que ν( f1) 6 ... 6 ν( fq), il existe une suite d’éclatements
locaux par rapport à ν :

R
π0 // R(1)

π1 // . . . πl−2 // R(l−1)
πl−1 // R(l)

telle que R(l) soit régulier et telle qu’il existe un système régulier de paramètres u(l) =(
u(l)1 , ..., u(l)d

)
de R(l) tel que les fi, 1 6 i 6 q, soient des monômes en u(l) et f1/.../ fq dans

R(l).

5. L’idéal premier implicite

Pour une valuation donnée, l’idéal premier implicite est un des objets centraux de
l’uniformisation locale. En effet, cet idéal va être l’idéal à désingulariser. C’est un idéal
du complété qui nous décrit les éléments de valuation infinie. Enfin, via le Lemme III.18,
pour rendre R régulier (en fait R̂, voir la Remarque I.12), il nous suffit de rendre régu-
lier R̂H et R̂/H, où H est l’idéal premier implicite associé à une valuation centrée en R.
L’intérêt de l’idéal premier implicite est que R̂H est automatiquement régulier sous l’hy-
pothèse de quasi-excellence. Ainsi il nous suffira de démontrer l’uniformisation locale
pour des valuations centrées en R̂/H.
On ne va présenter ici que les idéaux premiers implicites pour des valuations archimé-
diennes car cela étant suffisant dans le cadre de l’uniformisation locale vu que d’après
[NS], il suffit de considérer des valuations de rang 1 qui sont archimédiennes (voir Co-
rollaire I.47).
On va suivre les exposés fait par [S1] et [HGOAST].

5.1. Définition et premières propriétés.

Définition I.64 — Soient (R,m, k) un anneau local noethérien, P∞ un idéal premier mi-
nimal de R et ν une valuation archimédienne de RP∞

centrée en R. On appelle idéal premier

implicite de R associé à ν, noté H(R, ν) ou plus simplement H s’il n’y a pas d’ambiguïté, l’idéal
de R̂ définit par :

H =
⋂

β∈ν(R\P∞)

PβR̂,

où Pβ est le ν-idéal de R de valuation β selon la Définition I.34.

Remarque I.65 —

(1) Si l’on suppose de plus que R est intègre, alors P∞ = (0).

(2) Comme la valuation est archimédienne, pour tout β ∈ ν(R \ P∞), il existe n ∈ N

tel que m
n ⊂ Pβ. Il y a donc équivalence entre :

(a) f ∈ H ;

(b) Il existe une suite de Cauchy ( fn)n ⊂ R telle que, si fn −→
n→+∞

f , alors

ν( fn) −→
n→+∞

∞ ;

(c) Pour toute suite de Cauchy ( fn)n ⊂ R telle que, si fn −→
n→+∞

f , alors

ν( fn) −→
n→+∞

∞.
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Lemme I.66 — Sous les hypotèses de la Définition I.64, si H est l’idéal premier implicite
de R associé à ν, alors :

H ∩ R = P∞

et il existe une inclusion naturelle :

R/P∞ →֒ R̂/H.

Preuve : Comme le morphisme de complétion est fidèlement plat, alors :

∀ β ∈ ν(R \ P∞), PβR̂ ∩ R = Pβ

(voir [Mat1], (4.C) (ii)). Ainsi :

H ∩ R =


 ⋂

β∈ν(R\P∞)

PβR̂


 ∩ R =

⋂

β∈ν(R\P∞)

Pβ = P∞.

�

Théorème I.67 — Reprenons les hypothèses de la Définition I.64. Soit H l’idéal premier
implicite de R associé à ν, alors :

(1) H est un idéal premier de R̂ ;

(2) ν s’étend de manière unique en une valuation ν̂ centrée en R̂/H.

Preuve : Soit f ∈ R̂/H, f 6= 0. Soit f ∈ R̂ un représentant de f , comme f 6= 0, alors
f 6∈ H, c’est-à-dire qu’il existe β0 ∈ ν(R \ P∞) tel que f 6∈ Pβ0 R̂.
Remarquons que l’ensemble {β ∈ ν(R \ P∞) | β < β0} est fini. En effet, si cet ensemble
était infini, il existerais alors une suite infinie croissante d’éléments de ν(R \ P∞) bornée
par β0, or, par le Lemme I.48 ceci est impossible.
On en déduit alors qu’il existe un unique β f ∈ ν(R \ P∞) tel que :

f ∈
(
Pβ f

R̂
)
\ Pβ f ,+R̂.

Grâce au (2) de la Remarque I.65 et au Lemme I.66, on voit que cet élément β f ne dépend

que de f et pas du choix du représentant de f . On définit alors l’application :

ν̂ :
(
R̂/H

)
\
{
0
}

→ ν(R \ P∞)

f 7→ β f

Par le Lemme I.66, pour tout f ∈ R \ P∞, ν( f ) = ν̂
(
f
)
.

Par définition et grâce au (2) de la Remarque I.65, il est clair que, pour tout f , g ∈ R̂/H,

ν̂
(
f + g

)
> min

{
ν̂
(
f
)
, ν̂ (g)

}

ν̂
(
f g
)
> ν̂

(
f
)
+ ν̂ (g) .

Montrons que, pour tout f , g ∈
(
R̂/H

)
\
{
0
}
:

(i) : f g 6= 0 ;

(ii) : ν̂
(
f g
)
= ν̂

(
f
)
+ ν̂ (g).
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5. L’idéal premier implicite.

En effet, notons α = ν̂
(
f
)
et β = ν̂ (g). Soit γ ∈ {α, β}, alors, comme mPγ ⊂ Pγ,+, on a :

Pγ/Pγ,+ ≃ Pγ/ (Pγ,+ +mPγ)

≃ (Pγ/Pγ,+)⊗R k

≃ (Pγ/Pγ,+)⊗R

(
R̂/mR̂

)

≃ PγR̂/
(
(Pγ,+ +mPγ) R̂

)

≃ PγR̂/Pγ,+R̂.

On en déduit donc qu’il existe a ∈ Pα et b ∈ Pβ tels que :

a ≡ f mod Pα,+R̂,

b ≡ g mod Pβ,+R̂.

Il en suit que :

ab ≡ f g mod Pα+β,+R̂.

Comme ν est une valuation, alors ν(ab) = ν(a)+ ν(b) = α+ β et donc ab ∈ Pα+β \Pα+β,+.
Via le Lemme I.66, on en déduit que :

f g ∈ Pα+βR̂ \ Pα+β,+R̂,

c’est-à-dire que f , g 6∈ H (donc que f g 6= 0) et que ν̂
(
f g
)

= α + β = ν̂
(
f
)
+ ν̂ (g).

Ainsi, (i) et (ii) sont démontrés.
Par (i), H est un idéal premier de R̂, ce qui démontre (1). Le fait que ν̂ soit une valuation
centrée en R̂/H découle de (ii). Pour achever la preuve de (2), il faut montrer que ν̂ est
unique. Comme R est noethérien, il existe u1, ..., un ∈ Pα,+ et v1, ..., vn ∈ R̂ tels que :

f = a+
n

∑
i=1

uivi.

En passant au quotient, on obtient :

f = a+
n

∑
i=1

ui vi ∈ R̂/H.

Ainsi, pour toute extension ν̂′ de ν centrée en R̂/H, ν̂′
(
f
)
= α = ν̂

(
f
)
.

�

Remarque I.68 — Dans la preuve, on a montré que :

Pγ/Pγ,+ ≃ PγR̂/Pγ,+R̂.

On en déduit alors les isomorphismes d’algèbres graduées :

grν(R) ≃ grν̂

(
R̂/H

)
,

Gν ≃ Gν̂.
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5.2. Idéal premier implicite et anneaux quasi-excellents.

Corollaire I.69 — Soient R un anneau local quasi-excellent réduit, P∞ un idéal premier
minimal de R et ν une valuation archimédienne de RP∞

centrée en R. Alors, R̂H est un anneau
local régulier.

Preuve : Comme R est noethérien et réduit, (0) = P1 ∩ ... ∩ Pn où les Pi, 1 6 i 6 n, sont
des idéaux premiers minimaux distincts et P∞ ∈ {P1, ..., Pn}. Montrons que :

(0) = P∞RP∞
.

Comme (0) ⊂ P∞ alors (0) ⊂ P∞RP∞
. Réciproquement, comme les Pi sont distincts,

quitte à renuméroter, supposons que P1 = P∞. Il existe alors pi ∈ Pi \ P∞, 2 6 i 6 n.

Pour un élément p
a
b
∈ P∞RP∞

, p ∈ P∞, a ∈ R, b 6∈ P∞, on a :

p
a
b
= pp2...pn

a
bp2...pn

∈ (P1 ∩ ...∩ Pn) RP∞
,

vu que P∞ est premier et donc que bp2...pn 6∈ P∞.
On en déduit que :

(0)RP∞ = P∞RP∞
.

Ainsi, κ (P∞) = RP∞/P∞RP∞
≃ RP∞

est un corps.
Comme R est local, par la Proposition I.22, R est un G-anneau et donc, pour tout
P ∈ Spec(R), RP → R̂P est régulier. En particulier, pour P = m, R → R̂ est un mor-
phisme régulier. Ainsi, vu la Définition I.10, pour tout P ∈ Spec(R), R̂ ⊗R κ(P) est
géométriquement régulier sur κ(P). En particulier, R̂ ⊗R κ(P∞) est géométriquement
régulier sur κ(P∞). Or, par le Lemme I.66, on a :

R̂H ≃
(
R̂⊗R κ(P∞)

)
HR̂H∩(R̂⊗Rκ(P∞))

.

On en conclut que R̂H est géométriquement régulier sur κ (P∞). En particulier, R̂H est
régulier.

�

5.3. Effet des morphismes locaux sur l’idéal premier implicite.

Pour terminer cette section nous allons étudier l’effet sur H d’un éclatement local de
R par rapport à ν.

Lemme I.70 — Soit (R,m) → (R′,m′) un morphisme local d’anneaux locaux noethériens.
Soient P∞ un idéal premier minimal de R et ν une valuation archimédienne de RP∞

centrée en R.
Supposons qu’il existe un idéal premier minimal P′

∞ de R′ tel que P∞ = P′
∞ ∩ R et que ν s’étend

en une valuation archimédienne ν′ telle que son groupe des valeurs contienne celui de ν.
Comme dans la Définition I.34, pour β ∈ ν′

(
R′ \ {0}

)
, notons P′

β le ν′-idéal de R′ de valuation
β. Enfin, notons H′ = H(R′, ν′) l’idéal premier implicite de R′ associé à ν′.
Alors, pour tout β ∈ ν (R \ {0}),

(
P′

βR̂′
)
∩ R̂ = PβR̂.

Preuve : Soit β ∈ ν (R \ {0}), par définition de ν′, P′
β ∩ R = Pβ. Ainsi,

(
P′

βR̂′
)
∩ R̂ ⊃ PβR̂.
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5. L’idéal premier implicite.

Pour montrer l’inclusion réciproque, considérons un élément f ∈
(
P′

βR̂′
)
∩ R̂. Il existe

alors une suite de Cauchy ( fn)n de R pour la topologie m-adique, convergeant vers f .
Notons π̂ : R̂ → R̂′ le morphisme local d’anneaux locaux induit par le morphisme
local π : (R,m) → (R′,m′). Ainsi la suite (π ( fn))n de R′ converge vers π̂( f ) pour la
topologie m

′-adique. En appliquant la Remarque I.65 à R′, pour n suffisamment grand,
ν( fn) ≡ ν′( fn) > β. Toujours en appliquant la Remarque I.65 mais cette fois à R, on en
déduit que f ∈ PβR̂.

�

Corollaire I.71 — Avec les hypothèses du Lemme I.70, on a :

H′ ∩ R̂ = H.

Preuve : Comme ν′ est archimédienne, pour tout α ∈ ν′
(
R′ \ P′

∞

)
, il existe β ∈ ν (R \ P∞)

tel que α 6 β. Ainsi :

H′ =
⋂

β∈ν′(R′\P′
∞)

P′
βR̂′ =

⋂

β∈ν(R\P∞)

P′
βR̂′.

Par le Lemme I.70, on en conclut que :

H =
⋂

β∈ν(R\P∞)

PβR̂

=
⋂

β∈ν(R\P∞)

(
P′

βR̂′ ∩ R̂
)

=


 ⋂

β∈ν(R\P∞)

P′
βR̂′


 ∩ R̂ = H′ ∩ R̂.

�

Corollaire I.72 — Reprenons les hypothèses du Lemme I.70 et supposons de plus que
(R,m) → (R′,m′) est un éclatement local par rapport à ν le long d’un idéal J non-nul de R
et que ν reste archimédienne sur R′. On a :

ht(H′) > ht(H) et

dim
(
R̂′/H′

)
6 dim

(
R̂/H

)
.

Preuve : Nous donnerons seulement une idée de preuve. Notons :

R =
(
R̂⊗R R′

)
m

′ R̂′∩(R̂⊗RR′)
,

H = H′ ∩ R.

Soit f ∈ J tel que ν( f ) = min
g∈J

{ν(g)}, alors f /∈ H′ et en particulier, f /∈ H. Comme

R′
f ≃ R f , il vient que R̂ f = R f . Grâce au Corollaire I.71, on a :

H R̂ f = H R f .

Ainsi :
ht(H) = ht

(
H
)
.
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Comme R est un anneau local noethérien dont le complété est R̂′ et, vu que le mor-
phisme local R → R̂′ est fidèlement plat et satisfait le théorème de « going-down » (voir
(5.A) de [Mat1]), on en déduit que :

ht(H′) > ht
(
H
)
.

Pour montrer la deuxième inégalité du Corollaire I.72, on utilise le fait qu’un éclatement
n’augmente pas la dimension (Lemme 2.2 de [S3]), ainsi :

dim
(
R̂′
)
= dim(R′) 6 dim(R) = dim

(
R̂
)
.

On conclut en utilisant la première inégalité du Corollaire I.72 et le fait que les anneaux
locaux complets sont caténaires (voir (14.B) de [Mat1]).

�

6. Suites d’éclatements locaux encadrés

Comme on a vu précédemment, les éclatements locaux sont un outil essentiel en vue
d’obtenir un résultat d’uniformisation locale. Ces éclatements sont dépendants du choix
des différents paramètres réguliers possibles pour l’anneau d’arrivée. Les éclatements
locaux encadrés vont imposer un système de générateurs de l’idéal maximal d’arrivée
pour permettre de faire décroître des invariants que l’on verra par la suite (dimension
de plongement et rang rationnel d’un sous-groupe de l’enveloppe divisible du groupe
des valeurs de la valuation).
Pour cette section nous reprenons en grande partie [S1] : § 6, § 7, § 8.

6.1. Définitions et premières propriétés.
Soit (R,m, k) un anneau local noethérien. Notons :

u = (u1, ..., un)

un ensemble de générateurs de m. Pour un sous-ensemble I ⊂ {1, ..., n}, notons :
uI = {ui | i ∈ I}.

Fixons un sous-ensemble J ⊂ {1, ..., n} et un élément j ∈ J. Notons :

Jc = {1, ..., n} \ J.

Pour tout i ∈ {1, ..., n}, considérons les changements de variables suivants :

u′i =





ui si i ∈ Jc ∪ {j}
ui

uj
si i ∈ J \ {j}

On note alors :
u′ = (u′1, ..., u

′
n).

Rappelons que pour f ∈ R, l’annulateur de f , noté AnnR( f ), est l’idéal de R défini par :

AnnR( f ) = {g ∈ R | g f = 0}.
Pour tout i ∈ {1, ..., n}, notons :

AnnR (u∞
i ) =

⋃

l>1

AnnR

(
ul
i

)
,

Ri = R/AnnR (u∞
i ) et R′ = Rj

[
u′J\{j}

]
.

Notons (R(1),m(1), k(1)) le localisé de l’anneau R′ en un idéal premier de R′.
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6. Suites d’éclatements locaux encadrés.

Remarque I.73 — Le schéma Spec
(
R′) est un sous-schéma affine de l’éclaté de

Spec(R) le long de l’idéal (uJ).

Enfin, nous réalisons une partition de {1, ..., n} comme suit :

J× = {i ∈ J \ {j} | u′i ∈ R(1)×},
J×c = {i ∈ J \ {j} | u′i 6∈ R(1)×}.

On a donc :
{1, ..., n} = Jc ∐ J× ∐ J×c ∐ {j},
u′ = u′Jc ∪ u′J× ∪ u′J×c ∪ {u′j},

où les réunions sont disjointes dans la dernière égalité si R est un anneau régulier avec
u pour système régulier de paramètres.

Notons u(1) =
(
u(1)1 , ..., u(1)n1

)
un système de générateurs de m

(1) et

π : (R, u) →
(
R(1), u(1)

)

le morphisme naturel entre ces deux anneaux locaux.

Définition I.74 — On dit que π : (R, u) →
(
R(1), u(1)

)
est un éclatement encadré de

(R, u) si n1 6 n et s’il existe un sous-ensemble D1 ⊂ {1, ..., n1} tel que :

u′{1,...,n}\J× = u′Jc∪J×c∪{j} = u(1)D1
.

Si de plus, R est régulier, u est un système régulier de paramètres de R et J× = ∅ (c’est-à-dire

si n = n1 et u′ = u(1)D1
), on dit que π est un éclatement monomial.

Enfin, une suite locale encadrée est une suite de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
,

où chaque πi :
(
R(i), u(i)

)
→
(
R(i+1), u(i+1)

)
, 0 6 i 6 l − 1, est un éclatement encadré. Si de

plus, pour tout i, les πi sont des éclatements monomiaux, on dit que la suite est monomiale.

Définition I.75 — Soient π : (R, u) →
(
R(1), u(1)

)
un éclatement encadré et T ⊂

{1, ..., n}. Supposons que R est régulier et que u est un système régulier de paramètres de R.
On dit que π est indépendante de uT si T ∩ J = ∅ (c’est-à-dire, T ⊂ Jc).

Remarque I.76 — Si un éclatement encadré est indépendant de uT, alors :

uT ⊂
{
u(1)1 , ..., u(1)n1

}
.

On définit par récurrence l’indépendance pour une suite locale encadrée en suppo-
sant qu’elle est déjà définie pour des suites de longueur l − 1.

Définition I.77 — Une suite locale encadrée de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)

est dite indépendante de uT si elle vérifie les deux conditions suivantes :

(1) la suite πl−2 ◦ ... ◦ π0 est indépendante de uT ;

(2) si uT ⊂
{
u(i)1 , ..., u(i)ni

}
, 0 6 i 6 l − 1, alors πl−1 est indépendante de uT.
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Remarque I.78 — Soit q ∈ {1, ..., n}, on peut alors écrire u′q sous la forme :

u′q = u
m1,q
1 ...u

mn,q
n ,

où mp,q ∈ Z, p ∈ {1, ..., n}. On peut donc décrire le changement de variables u → u′ par
la matrice M = (mp,q)p,q ∈ SLn(Z) avec, par définition :

mp,q =





1 si p = q
−1 si p = j et q ∈ J
0 si p 6= q et, ou bien q 6= j, ou bien q 6∈ J

En particulier, si q ∈ Jc, alors u′q ∈ uJc et si q ∈ J alors u′q est un monôme en uJ .
De même, on peut décrire le changement de variables u′ → u par la matrice N =
(np,q)p,q = M−1 ∈ SLn(Z) avec :

np,q =

{
1 si ou bien p = q, ou bien p = j et q ∈ J
0 sinon

En particulier, si q ∈ Jc, alors uq ∈ u′Jc et si q ∈ J, alors uq est un monôme en u′J .
Si on note e = #(Jc ∪ J×c ∪ {j}), on en déduit qu’il existe βq ∈ Nq et zq ∈ R′× tels que :

uq =
(
uJc∪J×c∪{j}

)βq
zq.

De plus, si q ∈ J, alors
(
uJc∪J×c∪{j}

)βq
est un monôme en u′J×c∪{j} uniquement. On a

également :

mR′ =
(
uJc∪{j}

)
R′.

Enfin, si J× = ∅ alors, zq = 1. Pour terminer cette remarque, on va étudier le cas où
l’éclatement encadré est indépendant d’un sous ensemble. Soit T ⊂ Jc, notons :

t = #(T) et r = n− t.

Soit v = {v1, ..., vt} = uT, w = {w1, ...,wr} = u{1,...,n}\T et u′ = (v,w′) où w′ =

{w′
1, ...,w

′
r}. Pour 1 6 q 6 r, on écrit :

w′
q = wγq ,

où γq ∈ Zr. Alors les r vecteurs γ1, ...,γr forment une matrice de SLr(Z) notée Mr.
Quitte à renuméroter les lignes de la matrice M, on peut écrire M sous la forme d’une
matrice diagonale par blocs où un bloc est Mr et l’autre est It la matrice identité de taille
t.
Ainsi, pour tout δ ∈ Zr, on a :

w′δ = wγ, γ = δFr.

De même pour le changement de variables inverse, pour tout γ ∈ Zr, on a :

wγ = w′δ, δ = γF−1
r .

Nous allons généraliser cette remarque dans le cadre des suites locales encadrées.

Proposition I.79 — Considérons une suite locale encadrée de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
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Pour 0 6 i 6 l − 1, notons ni+1 l’entier correspondant à l’entier n1 de la Définition I.74, Di+1
l’ensemble correspondant à D1 et ei+1 = #(Di+1).
Soient 0 6 i < i′ 6 l, q ∈ {1, ..., ni}, q′ ∈ {1, ..., ni′}. Alors :

(1) ∃ δ
(i′,i)
q ∈ Nei , z(i

′,i)
q ∈ R(i′)× tels que u(i)q =

(
u(i

′)
Di′

)δ
(i′,i)
q

z(i
′,i)

q .

(2) Supposons de plus que la suite soit indépendante de uT avec T ⊂ {1, ..., n} et u(i)q 6∈ uT.

Alors
(
u(i

′)
Di′

)δ
(i′,i)
q

est un monôme uniquement en u(i
′)

Di′
\ uT.

(3) Supposons que pour tout i′′ > 0 tel que i 6 i′′ < i′, Di′′ = {1, ..., ni′′} et q′ ∈ Di′ . Il

existe alors γ
(i,i′)
q′ ∈ Zni tel que u(i

′)
q′ =

(
u(i)
)γ

(i,i′)
q′ .

(4) Supposons de plus que la suite soit indépendante de uT avec T ⊂ {1, ..., n} et u(i
′)

q′ 6∈
uT. Alors u

(i′)
q′ est un monôme uniquement en u(i){1,...,ni} \ uT.

Preuve : Il suffit de montrer le cas où i′ = i+ 1, le cas général se faisant par récurrence.
Or ce cas n’est qu’une application des définitions et de la Remarque I.78.

�

Proposition I.80 — Considérons les mêmes hypothèses que dans la Proposition I.79 et sup-
posons de plus que la suite locale encadrée est monomiale et indépendante de uT, T ⊂ {1, ..., n}.
Notons t = #(T) et r = n− t. On pose :

v = {v1, ..., vt} = uT,

w = {w1, ...,wr} = u{1,...,n}\T.

Alors :

(1) ∀ i ∈ [[0, l]], ni = n.

(2) ∀ i ∈ ]]0, l]], Di = {1, ..., n}.

(3) Pour 0 6 i < i′ 6 l, notons u(i) =
(
v,w(i)

)
où w(i) =

(
w(i)

1 , ...,w(i)
r

)
et u(i

′) =
(
v,w(i′)

)
où w(i′) =

(
w(i′)

1 , ...,w(i′)
r

)
. Alors, pour tout 1 6 q 6 r, w(i)

q est un monôme

en w(i′) ayant des exposants positifs.

(4) Pour 1 6 q 6 r, notons w(i′)
q =

(
w(i)

)γq
, γq ∈ Zr. Alors, les r vecteurs

colonnes γ1, ...,γr forment une matrice F(i
′,i)

r ∈ SLr(Z). Réciproquement, notons

w(i)
q =

(
w(i′)

)δq
, δq ∈ Nr. Alors, les r vecteurs colonnes δ1, ..., δr forment la matrice

(
F(i

′,i)
r

)−1
∈ SLr(Z).

Preuve : Comme dans la preuve de la Proposition I.79, il suffit de montrer le cas où
i′ = i+ 1, le cas général se faisant par récurrence (et en remarquant que SLr(Z) est un
groupe). Or ce cas n’est qu’une application des définitions et de la Remarque I.78.

�
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6.2. Construction d’un éclatement local encadré.

Gardons les mêmes notations que dans la sous-section 6.1. Nous donnons un écla-

tement encadré π : (R, u, k) →
(
R(1), u(1), k(1)

)
très utilisé dans la suite de cette thèse.

Nous allons décrire, en terme de générateurs et relations, l’extension de corps k →֒ k(1)

induite par π.
Rappelons que R′ est l’anneau :

R′ = Rj

[
u′J\{j}

]
.

Notons :

h = #(J)

hc = # (Jc) = n− h

h×c = #
(
J×c)+ 1

h× = #
(
J×
)
= h− h×c.

Quitte à renuméroter les variables, on peut supposer que :

J = {1, ..., h}
Jc = {h+ 1, ..., n}
j = 1

J×c = {2, ..., h×c}
J× = {h×c + 1, ..., h}.

Les changements de variables deviennent alors :

u′i =





ui si i ∈ {1} ∪ {h+ 1, ..., n}
ui

uj
si i ∈ {2, ..., h}

Comme on a vu précédemment, prenons m
′ ∈ Spec(R′) tel que u′Jc∪J×c∪{j} ⊂ m

′, ainsi

R(1) = R′
m

′ et m1 = m
′R(1). De plus, m = m1 ∩ R = m

′ ∩ R.
Pour 1 6 i 6 n, notons zi ∈ k(1) l’image de u′1 ∈ R′ dans k(1). On remarque alors que :

zi = 0, ∀ i ∈ Jc ∪ J×c ∪ {j}.
Remarque I.81 — Notons R = R′/mR′ et ui ∈ R l’image de u′i ∈ R′ dans R, i ∈

J \ {j}. Alors, R = k
[
uJ×c , uJ×

± 1
]
. Les éléments uJ×c et uJ×

± 1 sont algébriquement
indépendants sur k, lorsque R est régulier avec u comme système régulier de paramètres.
Or, on a les morphismes :

R → R′ → R′
m

′ → k(1).

En passant modulo m, on obtient :

k → R → Rm → k(1),

où m = m
′/mR′. On en déduit que k(1) est engendré sur k, en tant que corps, par zJ× .

Notons t = deg.tr
(
k(1)|k

)
+ h×c, par la Remarque I.81 :

deg.tr
(
k(1)|k

)
6 h×.
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On en déduit les inégalités :

h×c 6 t 6 h× + h×c = h 6 n.

De plus, on peut supposer que zh×c+1, ..., zt sont algébriquement indépendants sur k dans
k(1), tant que zt+1, ..., zh sont algébriques sur k (zh×c+1, ..., zt).
Pour t < i 6 h, notons Pi(Xi) le polynôme minimal de zi sur k (zh×c+1, ..., zt). On a
l’isomorphisme :

k(1) ≃ k (zh×c+1, ..., zt) [Xt+1, ...,Xh]

(Pt+1(Xt+1), ..., Ph(Xh))
.

Quitte à réduire au même dénominateur, pour t < i 6 h, on peut choisir Pi ∈
k [zh×c+1, ..., zi−1] [Xi], mais les Pi ne sont plus des polynômes unitaires. Notons :

Pi(Xi) = ∑
m

pi,mX
m
i ,

où pi,m ∈ k [zh×c+1, ..., zi−1], t < i 6 h. Notons alors qi,m l’élément de R
[
u′h×c+1, ..., u

′
i−1
]

obtenu à partir de pi,m en remplaçant chaque zi′ par ui′ , t < i′ < i et en remplaçant
chaque coefficient de pi,m par un représentant dans R (on voit pi,m comme un polynôme
en zi′ à coefficients dans k = R/m).
En particulier, on remarque que pi,m ≡ qi,m mod m

(1). Enfin, notons :

Qi(X) = ∑
m

qi,mXm.

Pour t < i 6 h, comme Pi(zi) = 0 dans k(1), on en déduit que :

Qi(u′i) ∈ m
(1).

Proposition I.82 — Notons n1 = n− t− h×c et posons le changement de variables sui-
vant :

u(1)i =





Qi+n−n1(u
′
i+n−n1) si h×c < i 6 h− (n− n1)

u′i si 1 6 i 6 j×c

u′i+n−n1 si h− (n− n1) < i 6 n1

Alors :

(1) u(1) =
(
u(1)1 , ..., u(1)n1

)
est un système de générateurs de m(1).

(2) π : (R, u) →
(
R(1), u(1)

)
est un éclatement local encadré.

(3) Si R est régulier avec u pour système régulier de paramètres, alors u(1) est un système
régulier de paramètres de R(1).

Preuve : Nous allons donner une idée de preuve. Pour (1), il suffit de remarquer que, par
construction :

u(1)i ∈ m
(1), 1 6 i 6 n1.

Réciproquement, par la Remarque I.78 :

mR(1) =
(
u(1)1 , u(1)h+1−(n−n1)

, ..., u(1)n1

)
R(1) ⊂

(
u(1)1 , ..., u(1)n1

)
R(1).

Rappelons que u2, ..., uh×c,Qt+1 (ut+1) , ...,Qh (uh) sont les images de u(1)2 , ..., u(1)n1
dans k (zh×c+1, ..., zt) [u2, ..., uh×c , ut+1, ..., uh], en particulier, ce sont des éléments de
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mRm. Enfin, u2, ..., uh×c ,Qt+1 (ut+1) , ...,Qh (uh) engendrent un idéal maximal de
k (zh×c+1, ..., zt) [u2, ..., uh×c, ut+1, ..., uh] vu que :

k (zh×c+1, ..., zt) [u2, ..., uh×c , ut+1, ..., uh]

(u2, ..., uh×c,Qt+1 (ut+1) , ...,Qh (uh))
≃ k (zh×c+1, ..., zh×c) [ut+1, ..., uh]

(Qt+1 (ut+1) , ...,Qh (uh))
≃ k(1).

Comme :

Rm ≃ k [u2, ..., uh]m
≃ k (zh×c+1, ..., zt) [u2, ..., uh×c , ut+1, ..., uh]mk(zh×c+1,...,zt)[u2,...,uh×c,ut+1,...,uh] .

Tout ceci montre que les images de u(1)2 , ..., u(1)n1 engendrent l’idéal maximal mRm de

Rm. Or par définition de R et de m, on en déduit que u(1)1 , ..., u(1)n1 engendrent l’idéal
m

′Rm
′ ≡ m

(1) dans R′
m

′ ≡ R(1).
Par définition, (2) est évidente, l’ensemble D1 étant :

D1 = {1, ..., h×c} ∪ {h− (n− n1) + 1, ..., n1}.
Pour montrer (3), on remarque que, R étant régulier avec u comme système régulier de
paramètres, alors, R est régulier et u2, ..., uh×c,Qt+1 (ut+1) , ...,Qh (uh) forment un système
régulier de paramètres de l’anneau local régulier mRm qui est de dimension h − (n −
n1)− 1. Enfin, on montre par récurrence sur n− h que :

(0) (
(
u(1)1

)
(
(
u(1)1 , u(1)h−(n−n1)+1

)
( ... (

(
u(1)1 , u(1)h−(n−n1)+1, ..., u

(1)
n1

)

forme une chaîne de n− h+ 1 idéaux premiers de R(1) distincts.
�

Corollaire I.83 — Considérons une suite locale encadrée monomiale de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
.

Alors, pour 0 6 i 6 l, le corps résiduel de R(i) est k = R/(u).

Preuve : Il suffit de considérer le cas i = 1, on montre le cas général par récurrence. Par
définition des suites monomiales, h×c = t = h. Ainsi n1 = n et par définition, k ≃ k1.

�

Pour terminer cette section nous allons interpréter les résultats précédents en
termes d’éclatements encadrés par rapport à une valuation donnée.

Soit (R,m, k) un anneau local noethérien, u un ensemble de générateurs de m. Soit
ν une valuation centrée en R. Pour 1 6 i 6 n, notons :

βi = ν(ui),

xi = inν(ui).

Soit T ⊂ {1, ..., n}, E = {1, ..., n} \ T et k [xE] la sous-algèbre graduée de Gν. Notons :

G = k [xE]
∗ =

{
f
g

∣∣∣∣ f , g ∈ k [xE] , g homogène, g 6= 0
}
.

Considérons J ⊂ E et choisissons j ∈ J tel que :

β j = min
i∈J

{βi}.
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Soit π : (R,m) →
(
R(1),m(1)

)
un éclatement local par rapport à ν (voir Définition I.56)

et considérons R(1) comme le localisé de R′ en le centre de ν. On a donc :

J×c = {i ∈ J | βi > β j},
J× = {i ∈ J \ {j} | βi = β j}.

Notons alors :

x′i =





xi si i ∈ Jc ∪ {j}
xi
xj

si i ∈ J \ {j}

zi =
{

u′i si i ∈ J×

1 si i ∈ {1, ..., n} \ J×

zi =
{

x′i si i ∈ J×

1 si i ∈ {1, ..., n} \ J×

β′
i = ord(x′i), 1 6 i 6 n,

E′ = E \ J×.

Pour 1 6 i 6 n, x′i est homogène et ord(x′i) > 0. On a :

ord(x′i) > 0 ⇔ βi > β j ⇔ i ∈ E′,

ord(zi) = 0, ∀ i ∈ J×.

Remarquons que k(1) = k
(
zJ×
)
. Considérons le morphisme ρ : R′ → k(1), extension de

R → k, défini en envoyant u′i sur zi si z ∈ J× et sur 0 si i ∈ J×c. L’idéal m′ = ker ρ est le
centre de ν dans R′ et R(1) = R′

m
′ .

Définition I.84 — Considérons u(1) comme dans la Proposition I.82, l’éclatement local

encadré π : (R,m) →
(
R(1),m(1)

)
qui en résulte est appelé l’éclatement local encadré le

long de (uJ) par rapport à ν.

Soit ϕ : D1 → Jc ∪ J×c ∪ {j} la bijection résultante de l’éclatement encadré. Notons
alors :

E(1) = ϕ−1(E′) ⊂ D1,

x(1)i = x′ϕ(i),

β
(1)
i = ord

(
x(1)i

)
= β′

ϕ(i).

Remarque I.85 — Pour tout i, i′ ∈ E, il existe δi ∈ N#(E(1)), γi′ ∈ Z#(E) tels que :

u(1)i′ = uγi′
E ,

ui =
(
u(1)
E(1)

)δi
zi.

On a les mêmes transformations dans les algèbres graduées :

x(1)i′ = xγi′
E ,

xi =
(
x(1)
E(1)

)δi
zi.

On a également :

βi =
〈

δi, β
(1)
E(1)

〉
,
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où 〈., .〉 représente le produit scalaire de vecteurs de taille #(D1). On en déduit les éga-
lités d’algèbres graduées suivantes :

k[x]∗ = k
[
zJ× , x

(1)
D1

]∗
= k1

[
x(1)D1

]∗
,

k[xE]∗ = k
[
zJ× , x

(1)
E(1)

]∗
= k1

[
x(1)
E(1)

]∗
.

Nous allons considérer le cas où les éclatements sont indépendants d’un sous-
ensemble de générateurs de l’idéal maximal.
Soit r 6 n, notons u = (w, v) où w = (w1, ...,wr) = (u1, ..., ur) et v = (v1, ..., vn−r) =
(ur+1, ..., un). Pour une suite locale encadrée π indépendante de v de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
,

notons, pour 1 6 i 6 l, u(i) = (w(i), v) où u(i) =
(
u(i)1 , ..., u(i)ni

)
, w(i) =

(
w(i)

1 , ...,w(i)
ri

)
, avec

ri = r+ ni − n. Comme π est une suite locale encadrée, on a :

ri+1 6 ri 6 r.

Proposition I.86 — Soit π la suite locale encadrée par rapport à ν et indépendante de v
précédente. Alors :

(1) Si π est monomiale, pour 1 6 i 6 l, ri = r.

(2) Si β1, ..., βr sont Z-linéairements indépendants, π est monomiale.

(3) Supposons que π est monomiale. Par la Proposition I.80, il existe r vecteurs colonnes

γ
(l)
1 , ...,γ(l)

r formant une matrice F(l)r ∈ SLr(Z) tels que w(l)
i = wλ

(l)
i . Ainsi :

β(l) = βF(l)r

(où l’ont voit β et β(l) comme des vecteurs ligne).

(4) Notons xi = inν(wi), 1 6 i 6 r. Alors, x(l)i = xλ
(l)
i et si δ

(l)
1 , ..., δ(l)r sont les lignes de

la matrice
(
F(l)r

)−1
∈ SLr(Z), alors, xi = x

δ
(l)
i
l . En particulier :

k[x]∗ = k
[
x(l)
]∗

.

Preuve : Nous donnerons seulement une idée de preuve. (1) découle de la Proposition
I.80. (3) se montre par récurrence, le cas l = 1 découlant immédiatement des définitions
et les γ

(1)
i peuvent s’écrire de manière explicite. (2) se montre aussi par récurrence en

utilisant (3) ainsi que de la construction faite précédemment de l’éclatement local enca-
dré par rapport à ν. Enfin, on montre (4) par récurrence en utilisant bien les définitions
et en observant certains cas particuliers.

�

6.3. Deux invariants pour l’uniformisation locale.

Nous allons définir deux invariants qui vont nous permettre de stopper les suites
d’éclatements et donc nous fournir des théorèmes d’uniformisation locale.

Rappelons que, pour un anneau local (R,m, k), on définit la dimension de plonge-
ment, notée emb.dim(R), par :

emb.dim(R) = dimk
(
m/m2) .
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Définition I.87 — Soient (S,m, k) un anneau local noethérien, u = (u1, ..., un) un en-
semble de générateurs de m. Soit ν une valuation centrée en S qui se décompose en ν = ν2 ◦ ν1
avec rg(ν1) = 1. Notons Γ le groupe des valeurs de ν et Γ1 celui de ν1 (qui est aussi le plus petit
sous-groupe isolé non-nul de Γ).
Notons I = { f ∈ S | ν( f ) 6∈ Γ1}, ν1 induit alors une valuation de rang 1 sur S/I.
Notons H l’idéal premier implicite de Ŝ/IŜ par rapport à ν1 et H sa préimage dans Ŝ.

(1) On définit e(S, ν) ∈ N par :

e(S, ν) = emb.dim
(
Ŝ/H

)
.

(2) Supposons que, pour 1 6 i 6 n, ν(ui) ∈ Γ1. On définit r(S, u, ν) ∈ N par :

r(S, u, ν) = dimQ

(
n

∑
i=1

Qν(ui)

)
.

Proposition I.88 — Gardons les notations de la Définition I.87. Considérons J ⊂ {1, ..., n}
et (S, u) →

(
S(1), u(1)

)
un éclatement encadré le long de (uJ) par rapport à ν avec u(1) =(

u(1)1 , ..., u(1)n1

)
. Reprenons les notations Jc, J×, J×c et D1 de la Définition I.74. Notons J×′ =

{1, ..., n1} \ D1.

Supposons que les uJ sont k-linéairement indépendants dans mŜ/
(
H +m

2Ŝ
)
, il existe alors

une partition de Jc = Jc ′ ∐ Jc ′′ telle que les uJ ∪ uJc ′ soient k-linéairement indépendants modulo
H+m

2Ŝ et les uJc ′′ appartiennent au k-espace vectoriel engendré par uJ ∪ uJc ′ modulo H+m
2Ŝ.

Identifions Jc ′ ∪ J×c ∪ {j} à un sous-ensemble de D1.

Notons I(1) = { f ∈ S(1) | ν( f ) 6∈ Γ1}, H1 l’idéal premier implicite de Ŝ(1)/I(1)Ŝ(1) par rapport

à ν1 et H(1) sa préimage dans Ŝ(1). Notons m(1) l’idéal maximal de S(1) et k(1) son corps résiduel.
Alors :

(1) r(S, u, ν) 6 e(S, ν).

(2) e(S(1), ν) 6 e(S, ν). De plus, si les uJc ′∪J×c∪{j}∪J×′ sont k(1)-linéairement indépendants
alors :

e(S(1), ν) < e(S, ν).

(3) r(S, u, ν) 6 r
(
S(1), u(1), ν

)
. En particulier, on a l’inégalité suivante, pour l’ordre

lexicographique :
(
e(S(1), ν), e(S(1), ν)− r

(
S(1), u(1), ν

))
6lex (e(S, ν), e(S, ν) − r (S, u, ν)) .

Sous les mêmes hypothèse qu’en (2), l’inégalité est stricte.

Preuve : (1) est immédiat par la Définition I.87. Pour montrer (2), il faut remarquer que,
u(1) étant un ensemble de générateurs de m

(1), il induit un ensemble de générateurs

de m1

(
Ŝ(1)/H1

)
. Comme n1 6 n (Définition I.74), il vient que #

(
J×′) 6 #

(
J×
)
. Or,

e(S, ν) = #(J) + #
(
Jc ′
)
et u(1)D1\(Jc ′∪J×c∪{j}) est contenu dans le k(1)-espace vectoriel engen-

dré par uJc ′∪J×c∪{j}∪J×′ modulo H(1) +
(
m

(1)
)2

Ŝ(1). Ainsi :

e
(
S(1), ν

)
6 #

(
Jc ′
)
+ #

(
J×c)+ 1+ #

(
J×′)

6 #
(
Jc ′
)
+ #

(
J×c)+ 1+ #

(
J×
)
= #

(
Jc ′
)
+ # (J) = e(S, ν).
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Enfin, si les uJc ′∪J×c∪{j}∪J×′ sont k(1)-linéairement indépendants, la première inégalité est
stricte ce qui nous donne le résultat.
L’assertion (3) est immédiate par les remarques I.78 et I.85.

�

6.4. Monomialisation d’éléments non-dégénérés.
Nous allons voir l’effet des éclatements encadrés sur les monômes. Une conséquence

sera qu’un élément non-dégénéré, c’est-à-dire qu’en cet élément, la valuation est égale
à la valuation monomiale, peut être transformé en un monôme via une suite locale
encadrée.
Toute cette partie est en fait un cas particulier du jeu d’Hironaka (voir [H2] et [S2]).

Pour un élément α = (α1, ..., αn) ∈ Nn, on note :

|α| = α1 + ...+ αn.

Définition I.89 — Soient α = (α1, ..., αn), γ = (γ1, ...,γn) ∈ Nn. Pour 1 6 i 6 n,
notons :

δi = min{αi,γi}.
Posons alors δ = (δ1, ..., δn) ∈ Nn, α̃ = α − δ, γ̃ = γ − δ. Quitte à échanger α et γ, on peut
supposer que |α̃| 6 |γ̃|. On définit τ(α,γ) par :

τ(α,γ) = (|α̃|, |γ̃|) .
Remarque I.90 —

(1) Si α̃ = (0, ..., 0), alors uα divise uγ dans R.

(2) Quitte à renuméroter les variables de α̃ et γ̃, on peut supposer qu’il existe a ∈ N,
1 6 a < n, tel que :

α̃ = (α̃1, ..., α̃a, 0, ..., 0︸ ︷︷ ︸
n−a

),

γ̃ = (0, ..., 0︸ ︷︷ ︸
a

, γ̃a+1, ..., γ̃n).

On peut également supposer que, pour 1 6 i 6 a, α̃i > 0.

Soit (R,m) un anneau local noethérien tel que m soit non-nilpotent et u = (u1, ..., un)
un ensemble de générateurs de m. Soit ν une valuation centrée en R de groupe des
valeurs Γ.
Considérons J ⊂ {1, ..., n} le sous-ensemble le plus petit possible au sens de l’inclusion
tel que :

{1, ...a} ⊂ J et ∑
i∈J

γ̃i > |α̃|.

En reprenant les notations de la Définition I.74, considérons π : (R, u) →
(
R(1), u(1)

)
un

éclatement encadré le long de (uJ), selon la Définition I.84. Notons :

α̃′
i =

{
α̃i si i 6= j
0 si i = j

γ̃′
i =





γ̃i si i 6= j
∑
i∈J

γ̃i − |α̃| si i = j

α̃′ = (α̃′
1, ..., α̃

′
n),

γ̃′ = (γ̃′
1, ..., γ̃

′
n),
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δ′ = (δ1, ..., δj−1, δj + |α̃|, δj+1, ..., δn).

Avec ces notations on obtient :

uα =
(
u′
)δ′+α̃′

,

uγ =
(
u′
)δ′+γ̃′

.

Posons α′ = δ′ + α̃′ et γ′ = δ′ + γ̃′.

Proposition I.91 — Avec les notations précédentes, on a :

τ(α′,γ′) <lex τ(α,γ),

pour l’ordre lexicographique.

Preuve : Nous ne donnerons qu’une idée de preuve. Il suffit de montrer que :
(
|α̃′|, |γ̃′|

)
<lex (|α̃|, |γ̃|) .

Si j ∈ {1, ..., a}, alors par définition et par la Remarque I.90, on a :

|α̃′| = |α̃| − α̃j < |α̃|.

Si j ∈ {a+ 1, ..., n}, alors |α̃′| = |α̃|. Par minimalité de J, il vient que :

∑
i∈J\{j}

γ̃i < |α̃|.

On en conclut que |γ̃′| < |γ̃|.
�

Corollaire I.92 — Soit s = #{i ∈ {1, ..., n} | u′i 6∈ R(1)×}. Quitte à renuméroter les
variables, on peut supposer que u′i n’est pas inversible dans R

(1), pour 1 6 i 6 s et, inversible
pour s < i 6 n.
Comme π est un éclatement encadré, {u′1, ..., u′s} ⊂ u(1). Quitte à renuméroter les variables, on
peut suppsoser que u′i = u(1)i , 1 6 i 6 s. Notons les vecteurs de taille n1 par :

α(1) = (α̃′
1, ..., α̃

′
s, 0, ..., 0︸ ︷︷ ︸

n1−s

),

γ̃ = (γ′
1, ...,γ

′
s, 0, ..., 0︸ ︷︷ ︸

n1−s

).

Alors,

τ
(

α(1),γ(1)
)
<lex τ(α,γ).

Preuve : Par la Proposition I.91 et par définition :

τ
(

α(1),γ(1)
)
6lex τ(α′,γ′) <lex τ(α,γ).

�

Remarque I.93 — Soit T ⊂ {1, .., n} tel que α̃i = γ̃i = 0, pour tout i ∈ T. Alors, tout
éclatement encadré le long de (uJ), avec J définit comme précédemment, est indépen-
dant de uT.
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Corollaire I.94 — Soit (R,m) un anneau local noethérien tel que m soit non-nilpotent et
u = (u1, ..., un) un ensemble de générateurs de m. Soit r ∈ N tel que 1 6 r 6 n. Notons
u = (w, v) avec :

w = (w1, ...,wr) = (u1, ..., ur),

v = (v1, ..., vn−r).

Soit ν une valuation centrée en R, prenons j dans J vérifiant :

ν(uj) = min
i∈J

{ν(ui)}.

Soient α,γ ∈ Nn. Il existe alors une suite locale encadrée par rapport à ν (Définition I.84) et
indépendante de v :

(R, u) →
(
R(l), u(l)

)

telle que wα divise wγ ou bien wγ divise wα dans R(l).

Preuve : On itère le processus de construction de la Proposition I.91 en choisissant des
éclatements locaux encadrés par rapport à ν, qui sont, par construction et par la Re-
marque I.93, indépendants de v. Par le Corollaire I.92, cette construction s’arrête après
un nombre fini d’itérations. On conclut alors grâce au (1) de la Remarque I.90.

�

Proposition I.95 — Gardons les notations du Corollaire I.94. Alors :

wα divise wγ dans R(l) ⇔ ν (wα) 6 ν (wγ) .

Preuve : Notons u(l) =
(
w(l)

1 , ...,w(l)
rl , v

)
. Par le (1) de la Proposition I.79, il existe

α(l),γ(l) ∈ Nrl et y, z ∈ R(l)× tels que :

wα = y
(
w(l)

)α(l)

,

wγ = z
(
w(l)

)γ(l)

.

Comme ν
(
w(l)

1

)
, ..., ν

(
w(l)

rl

)
> 0 et que, par construction, l’un des α(l),γ(l) est plus

grand que l’autre, composante par composante, on a :
(
w(l)

)α(l)

divise
(
w(l)

)γ(l)

dans R(l) ⇔ ν

((
w(l)

)α(l))
6 ν

((
w(l)

)γ(l))
.

�

Corollaire I.96 — Gardons les notations du Corollaire I.94. Soit I un idéal de R engendré
par des monômes en w. Considérons ε0, ..., εb ∈ Nr une collection minimale d’éléments de Nr

telle que (wε0 , ...,wεb) = I.
Enfin, supposons que ν (wǫ0) 6 ν (wǫi), 1 6 i 6 b. Il existe alors une suite locale encadrée par
rapport à ν et indépendante de v :

(R, u) →
(
R(l), u(l)

)

telle que :

IR(l) = (wε0) R(l).
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Preuve : On définit l’entier suivant :

τ(I,w) =
(
b, min

06i<i′6b
{τ (wε i ,wε i′ )}

)
.

On suppose que τ(I,w) = (0, 1) si b = 0. Si b > 1, on applique la Proposition I.91 à
la paire {wε i ,wε i′} pour laquelle le minimum est atteint dans {τ (wε i ,wε i′ )}. On obtient
alors un sous-ensemble J de {1, ..., n} telle que tout éclatement encadré le long de (uJ)
fait décroître τ(I,w) pour l’ordre lexicographique. On conclut en utilisant la Proposition
I.95.

�

Définition I.97 — Soient R un anneau local régulier et u = (u1, ..., un) un système régu-
lier de paramètres de R. Soit ν une valuation centrée en R. On dit que f ∈ R est non-dégénéré
par rapport à ν et u si :

ν0,u( f ) = ν( f ),
où ν0,u est la valuation monomiale de R par rapport à u (Corollaire I.50).

Remarque I.98 —

(1) f ∈ R est non-dégénéré par rapport u si et seulement s’il existe un idéal I de R,
monomial par rapport à u, tel que ν( f ) = min

g∈I
{ν(g)}.

(2) Considérons une suite locale encadrée (R, u) →
(
R(1), u(1)

)
et f 6= 0. Par le

(1) de la Proposition I.79, chaque uj est un monôme en u(1) multiplié par une
unité de R(1). Ainsi, si f est non-dégénéré par rapport à u alors, f est aussi
non-dégénéré par rapport à u(1).

Le Théorème I.99 suivant peut être vu comme un théorème « d’uniformisation locale
plongée » de f , f étant un élément non-dégénéré par rapport à ν.

Théorème I.99 — Considérons les mêmes hypothèses que celle de la Définition I.97. Soit
f un élément non-dégénéré par rapport à u. Il existe alors une suite locale encadrée (R, u) →(
R(l), u(l)

)
telle que f soit un monôme en u(l) multiplié par une unité de R(l).

De plus, soit I un idéal de R tel que ν( f ) = min
g∈I

{ν(g)}. Notons u = (w, v) et supposons que I

est engendré uniquement par des monômes en w. Alors, la suite locale encadrée précédente peut
être choisie indépendante de v.

Preuve : La suite locale encadrée par rapport à ν provient du Corollaire I.96. Ainsi,
comme f ∈ I, il existe z ∈ R(l) tel que f = zwε0 (selon les notations du Corollaire I.96).
Comme I est engendré par wε0 (Corollaire I.96) et par hypothèses, on en conclut que :

ν(z) = ν( f )− ν(wε0) = ν( f )−min
g∈I

{ν(g)} = 0.

Or ν est centrée en R(l), donc, z ∈ R(l)×.
�

6.5. Suite élémentaire uniformisante.
Nous allons construire une uniformisation locale, par rapport à une valuation

ν, d’une hypersurface quasi-homogène satisfaisant certaines conditions vis-à-vis de
l’algèbre graduée Gν = (grν(R))∗. Cette construction est basée sur tout ce que l’on vient
d’exposer dans la Section 6.
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Soient (R,m, k) un anneau local régulier, u = (u1, ..., un) un système régulier
de paramètres de R et ν une valuation centrée en R de groupe des valeurs Γ. Notons :

βi = ν(ui), 1 6 i 6 n.

Pour r ∈ {1, ..., n− 1} posons t = n− r− 1.
Supposns que r = r(R, u, ν), c’est-à-dire que, quitte à renuméroter les variables,
β1, ..., βr sont Q-linéairement indépendants dans Γ ⊗Z Q et qu’en particulier βn est Q-
combinaison linéaire de β1, ..., βr.
Notons u = (w, v) avec :

v = (v1, ..., vt) = (ur+1, ..., un−1),

w = (w1, ...,wr,wn) = (u1, ..., ur, un).

Soit ∆ = 〈β1, ..., βr〉 le sous-groupe de Γ engendré par β1, ..., βr. Notons :

α = min{m ∈ N∗ |mβn ∈ ∆}.

Par hypothèses, α < +∞. Pour i ∈ {1, ..., r, n}, on note xi = inν(ui), on a donc ord(xi) =
βi.
Par le Corollaire 4.6 de [S1], on peut montrer que les x1, ..., xr sont algébriquement
indépendants sur k dans Gν. Si xn est algébrique sur k [x1, ..., xr], notons P le polynôme
minimal de xn sur k [x1, ..., xr]

∗, choisi unitaire et de plus bas degré possible ; sinon
posons P = 0. Si P 6= 0, notons α = d ◦(P). Soient α1, ..., αr ∈ Z tels que :

αβn −
r

∑
i=1

αiβi = 0.

On peut montrer (Lemme 4.5 de [S1]) que d =
α

α
∈ N. On note alors :

y = xα1
1 ...xαr

r ,

y = wα1
1 ...wαr

r ,

z =
xα
n

y
,

z =
wα

n

y
.

Si P 6= 0, alors P est de la forme :

P(X) =
d

∑
i=0

ciyd−iXiα,

où ci ∈ k, pour 0 6 i 6 d, cd = 1 et
d

∑
i=0

ciX
i est le polynôme minimal de z sur k dans Gν.

Enfin, pour 0 6 i 6 d, fixons un élément bi ∈ R tel que ci ≡ bi mod m. On pose alors :

Q =
d

∑
i=0

biy
d−iwiα

n .
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Proposition I.100 — Avec les hypothèses et les notations précédentes, il existe une suite
locale encadrée par rapport à ν et indépendante de v :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)
,

telle que, pour 0 6 i 6 l, si on note :

u(i) =
(
u(i)1 , ..., u(i)ni

)

et k(i) le corps résiduel de R(i), alors :

(1) Les éclatements encadrés π0, ...,πl−2 sont monomiaux. En particulier, ni = n, k(i) = k,
pour 1 6 i < l. De plus, z ∈ R(l)×.

(2) nl =

{
n si P 6= 0

n− 1 si P = 0

(3) Notons :

u(l) =





(
w(l)

1 , ...,w(l)
r , v,w(l)

n

)
si P 6= 0(

w(l)
1 , ...,w(l)

r , v
)

si P = 0

Alors, pour j ∈ {1, ..., r, n}, wj est un monôme en w(l)
1 , ...,w(l)

r multiplié par une unité
de R(l).

(4) Pour j ∈ {1, ..., r}, w(l)
j est un monôme en w dont les exposants peuvent être négatifs.

(5) Si P 6= 0, alors :

w(l)
n =

d

∑
i=0

bizi =
Q
yd

.

(6) k(l) ≃ k (z) ≃





k(X) si P = 0

k[X]/

(
d

∑
i=0

ciXi

)
si P 6= 0

Preuve : Nous ne donnerons qu’une idée de preuve. Sans pertes de généralités, on

peut supposer qu’il existe δ = (δ1, ..., δr, δn) et γ = (γ1, ...,γr,γn) tels que z =
wδ

wγ
et

ν(wγ) = ν(wδ). En appliquant le Corollaire I.94, on obtient l’existence de la suite locale
encadrée par rapport à ν et indépendante de v telle que wγ divise wδ dans R(l). En ap-
pliquant la Proposition I.95, on en déduit que z, z−1 ∈ R(l).
On montre (1) par récurrence. Plus précisément, la Proposition I.80 implique des rela-
tions de dépendance entre les images des βi dans les R(i′) et les images des δ et γ ainsi

que z± 1 =
w(i′)

j

w(i′)
1

, où j 6= 1 est tel que β
(i′)
j = min

i∈{1,...,r,n}

{
β
(i′)
i

}
= β

(i′)
1 . La Proposition I.95

permet de conclure que z, z−1 ∈ R(i′+1). En particulier si i′ = l − 1 on a (1).
En reprenant les notations de la Proposition I.82, on remarque qu’on est dans le cas où
h× 6 1 (plus précisément, le cas h×c = h − 1, t = h et le cas h×c = t = h − 1). En

utilisant la Proposition I.80 et quitte à interchanger, on peut supposer que z =
x(l−1)
j

x(l−1)
1

. Le
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cas h×c = h− 1, t = h arrive si et seulement si z =
x(l−1)
j

x(l−1)
1

est transcendant sur k (et donc

P = 0). Le cas h×c = t = h− 1 arrive si et seulement si z est algébrique sur k (c’est-à-dire
P 6= 0). Ainsi (2) et (6) proviennent de l’étude directe de ces deux cas particuliers. Pour
terminer, (3) et (4) sont une application directe de la Proposition I.79 avec i = 0 et i′ = l.

�

Proposition I.101 — Reprenons les notations et les hypothèses de la Proposition I.100.
Notons Q̃ = Q+ h, où h ∈ R est tel que ν0,u(h) > ν0,u(Q). Alors, la Proposition I.100 est vraie
avec Q̃ à la place de Q dans (5).

Preuve : Par hypothèses, on peut écrire h comme une somme finie h = ∑
γ

hγuγ où

hγ ∈ R et ν(uγ) > ν0,u(Q). Soit N = max{|γ| | hγ 6= 0}. Après une suite locale encadrée
indépendante de ur+1, ..., un, on peut supposer que :

ν(w1) <
1
N

(ν0,u(h)− ν0,u(Q)) .

Pour tout i ∈ {r+ 1, ..., n}, effectuons
⌊

ν(ui)

ν(w1)

⌋
éclatements le long de l’idéal (ui,w1). On

peut alors supposer que, pour hγ 6= 0, uγ est divisible par un monôme ̟γ en w1, ...,wr tel
que ν(̟γ) > ν0,u(Q). En appliquant le Corollaire I.96 à l’idéal monomial engendré par
{yd} ∪ {̟γ | hγ 6= 0}, on construit une suite locale encadrée monomiale indépendante
de ur+1, ..., un telle que yd divise h.
Ainsi, avec cette hypothèse, on peut considérer la suite locale encadrée construite dans
la Proposition I.100. Comme yd divise Q dans R(l) et comme yd divise h, on en déduit

que yd divise Q̃ dans R(l). Le w(l)
n de la Proposition I.100 diffère alors de

Q̃
yd

par des

éléments appartenant à l’idéal
(
u(l)1 , ..., u(l)n−1

)
.

�

Définition I.102 — Reprenons les notations et les hypothèses de la Proposition I.101. La
suite locale encadrée par rapport à ν et indépendante de v construite dans la Proposition I.101 sera
appelée la suite élémentaire uniformisante associée à

(
R, u, ν, n, Q̃

)
, ou plus simplement,

la n-suite élémentaire uniformisante, lorsque il n’y a pas d’ambiguïtés possibles dans le choix
de R, u, ν et Q̃.

Remarque I.103 — L’entier n de la Définition I.102 fait référence au fait que la suite
est dépendante uniquement des variables u1, ..., ur, un. Pour j ∈ {r + 1, ..., n}, on peut
définir une j-suite élémentaire en remplaçant les variables u1, ..., ur, un par u1, ..., ur, uj.

Proposition I.104 — Reprenons les notations et les hypothèses de la Proposition I.100. Si

xn est transcendant sur k [x1, ..., xr] ou si r
(
R(l), u(l), ν

)
> r, alors, pour l’ordre lexicogra-

phique : (
e
(
R(l), ν

)
, e
(
R(l), ν

)
− r

(
R(l), u(l), ν

))
<lex (n, n− r),

Preuve : Remarquons que :

e
(
R(l), ν

)
6 emb.dim

(
R(l)

)
6 nl.

Le résultat découle alors du (2) de la Proposition I.100.
�
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CHAPITRE II

Séries de Puiseux

On sait, depuis Newton et Puiseux que, pour un corps k de caractéristique 0 et algé-

briquement clos, le corps k(t) peut être plongé dans le corps
⋃

i>1

k
((

t1/i
))

des séries de

Puiseux qui est algébriquement clos. De plus, si k est muni de la valuation triviale et k(t)
de la valuation t-adique, on peut alors munir le corps des séries de Puiseux d’une va-
luation de telle sorte que la restriction à k(t) soit la valuation t-adique : c’est un exemple
d’extension maximalement complète (voir [Kr] et [P]). Rappelons qu’une extension de corps
valués (k, ν) →֒ (K, µ) est une extension de corps k →֒ K telle que µ|k = ν ; si deplus,
ν et µ ont même groupe des valeurs et kν = kµ, on dit que l’extension est immédiate.
Un corps muni d’une valuation est alors appelé un corps maximalement complet s’il ne
possède aucune extension immédiate de corps valués autre que l’identité.
Krull ([Kr]) montra, à l’aide du Lemme de Zorn, que tout corps muni d’une valuation
possède une extension maximale et que tout corps de séries de Puiseux, muni de sa va-
luation naturelle, est maximal. L’existence et l’unicité de cette extension maximale furent
posées par Kaplansky ([Ka]) qui les démontra en caractéristique nulle ainsi que sa non-
unicité en caractéristique positive. De plus, Poonen ([P]) a montré que si le groupe des
valeurs de la valuation est divisible et si le corps est algébriquement clos, alors l’exten-
sion maximalement complète est algébriquement close.
La question qui vient alors naturellement est : quelle est la forme de cette extension?

En caractéristique positive, on sait qu’elle n’est pas de la forme
⋃

i>1

k
((

t1/i
))

puisque

l’équation d’Artin-Schreier n’y possède aucune solution (voir [A2], [Ch]). Il est alors
naturel de considérer des anneaux de séries généralisées où les puissances de t varient
sur un ensemble bien ordonné. De tels anneaux sont appelés des anneaux de Mal’cev-
Neumann introduits en premier par Hahn en 1908 puis étudiés par Krull en 1932 (voir
[Kr]).

En 1942, Kaplansky ([Ka]) montre que tout corps muni d’une valuation ayant un
groupe des valeurs divisible et un corps résiduel algébriquement clos se plonge dans
une extension maximalement complète. Remarquons que deux cas se présentent : ou
bien la restriction à Q ou Fp est la valuation triviale (cas équicaractéristique), ou bien la
restriction à Q est la valuation p-adique (cas mixte). Il a également montré que dans le
cas équicaractéristique, l’extension maximalement complète est un anneau de Mal’cev-
Neumann.
En 1993, Poonen ([P]) décrit explicitement les extensions dans les deux cas. Si (k, ν) est
un corps valué de groupe des valeurs Γ divisible et de corps résiduel kν algébriquement
clos, il existe alors des plongements dans des anneaux de Mal’cev-Neumann maximale-
ment complets :

(1) k →֒ kν

((
tΓ
))

(cas équicaractéristique) ;

(2) k →֒ C(kν)
((

pΓ
))

(cas mixte) ;
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où C(kν) est l’anneau de Cohen de kν. Dans tous les cas les preuves ne construisent
pas explicitement le plongement. On se propose donc de décrire de manière expli-
cite un plongement d’un anneau local régulier et complet muni d’une valuation de
rang 1 à l’aide des polynômes-clés, résultat qui généralise ceux de Kaplansky et Poonen.

Mis à part la Remarque II.21, la sous-section 2.4 et la Section 5, les résultats
du Chapitre II sont issus de [SS].

Soit (R,m, k) un anneau local, régulier, complet de dimension n+ 1. On note :

p =

{
1 si car(k) = 0

car(k) si car(k) > 0

Si R est de caractéristique mixte, on suppose de plus que p /∈ m
2. Par le Théorème I.5 de

Cohen, on peut supposer que :

R =

{
k [[u1, ..., un+1]] si car(R) = car(k)
W [[u1, ..., un]] si car(R) 6= car(k)

où W est un anneau complet de valuation discrète de paramètre régulier p et de corps
résiduel k. On note, pour tout j ∈ {1, ..., n+ 1} :

K0 =

{
k si car(R) = car(k)

Frac(W) si car(R) 6= car(k)

Kj =

{
k
((
u1, ..., uj

))
si car(R) = car(k)

W
((
u1, ..., uj

))
si car(R) 6= car(k)

avec un+1 = p dans le cas de caractéristique mixte (on notera parfois K = Kn+1).
Soit ν une valuation de K, centrée en R, de groupe des valeurs Γ, telle que ν|Kn−1

soit de
rang 1 (ν|Kn

dans le cas équicaractéristique). On suppose que kν est algébrique sur k. On
note, Γ1 le plus petit sous-groupe isolé non-nul de Γ et :

ΓQ = Γ ⊗Z Q;

Γ′ =
⋃

i>1

1
pi

Γ.

Posons r le plus petit j tel que les ν(ui1), ..., ν(uij) soient Z-linéairement indépendants, si
R est équicaractéristique (en fait, r = r(R, u, ν) selon les notations de la Définition I.87),
ou bien le plus petit j tel que les ν(p), ν(ui1 ), ..., ν(uij) soient Z-linéairement indépen-
dants, si R est de caractéristique mixte.
On supposera alors, quitte à renuméroter les variables, que :
ν(u1), ..., ν(ur) sont Z-linéairement indépendantes et ν(ur+1), ..., ν(un+1) sont Q-
combinaisons linéaires de ν(u1), ..., ν(ur), si R est équicaractéristique ;
ν(p), ν(u1), ..., ν(ur) sont Z-linéairement indépendantes et ν(ur+1), ..., ν(un) sont Q-
combinaisons linéaires de ν(p), ν(u1), ..., ν(ur), si R est de caractéristique mixte.
On note ν0 la valuation monomiale de R associée à m (voir Corollaire I.50), c’est-à-dire,
si f = ∑

α

aαuα ∈ R où α est un multi-indice, aα ∈ k (resp. aα ∈ W), uα = uα1
1 ...uαn+1

n+1 (resp.

uα = uα1
1 ...uαn

n ) et m = (u1, ..., un+1) (resp. m = (p, u1, ..., un)), alors :

ν0( f ) = min

{
n+1

∑
i=1

αiν(ui)

∣∣∣∣∣ aα 6= 0

}(
resp. ν0( f ) = min

{
α0ν(p) +

n

∑
i=1

αiν(ui)

∣∣∣∣∣ aα 6= 0

})
.
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1. Anneaux des séries généralisées

On va définir des anneaux de séries généralisées (également appelés anneaux de
Mal’cev-Neumann) en suivant les constructions données par [Ke] et [P].

1.1. Définitions des anneaux et des valuations de Mal’cev-Neumann.

Définition II.1 — Soient A un anneau intègre et G un groupe abélien ordonné. On appelle

anneau des séries formelles généralisées, noté A
[[
tG
]]
, l’anneau où les éléments sont de la

forme ∑
γ ∈ G+

aγtγ, avec les aγ ∈ A tels que l’ensemble {γ | aγ 6= 0} soit bien ordonné.

Si A est un anneau intègre local de caractéristique mixte dont le corps résiduel est de caracté-
ristique p et d’idéal maximal engendré par p, on appelle anneau des p-séries formelles gé-

néralisées, noté A
[[

pG
]]
, l’anneau A

[[
tG
]]

/N où N est l’idéal de A
[[
tG
]]

formé par les

f = ∑
γ ∈ G+

aγtγ tels que ∑
n∈Z

an+γpn = 0, pour tout γ ∈ G.

Remarque II.2 — L’anneau A
[[
tG
]]

(resp. l’anneau A
[[

pG
]]
) est muni de la va-

luation t-adique (resp. valuation p-adique) v, à valeurs dans G, définie par :

v( f ) = in f{γ | aγ 6= 0} , ∀ f = ∑
γ ∈ G+

aγtγ ∈ A
[[
tG
]]

(resp. ∀ f = ∑
γ ∈ G+

aγpγ ∈ A
[[

pG
]]
).

Définition II.3 — Un anneau de séries formelles généralisées (resp. de p-séries formelles
généralisées) muni de sa valuation t-adique (resp. p-adique) sera appelé un anneau de Mal’cev-
Neumann.
Sa valuation t-adique (resp. p-adique) associée sera appelée valuation de Mal’cev-Neumann.

Définition II.4 — Soient f = ∑
γ ∈ G+

aγtγ ∈ A
[[
tG
]]

(resp. f = ∑
γ ∈ G+

aγpγ ∈

A
[[

pG
]]
) et β ∈ G+, on appelle troncature ouverte de f en β la série généralisée

f (β) = ∑
γ<β

aγtγ (resp. f (β) = ∑
γ<β

aγpγ) et troncature fermée de f en β la série gé-

néralisée f [β] = ∑
γ6β

aγtγ (resp. f [β] = ∑
γ6β

aγpγ). Pour β, β′ ∈ G+, β < β′, on note

f [β, β′ [= f (β′)− f (β).

1.2. Construction d’un anneau de Mal’cev-Neumann.

Soit (R,m, k) un anneau local régulier complet de dimension n+ 1. On va construire
un anneau de Mal’cev-Neumann AR dans lequel plonger R.

Si R est équicaractéristique, on prend AR = kν

[[
tΓ

′
]]
, où kν est une clôture algé-

brique de kν.
Si R est de caractéristique mixte, on va construire, par récurrence transfinie, un

anneau local (W, pW, kν) qui soit une extension de W. Dans ce cas, on pose AR =

W
[[

pΓ′
]]
.

Soit kν une clôture algébrique de kν, on peut la voir comme limite inductive d’ex-
tensions algébriques simples de k puisque kν est algébrique sur k. Plus précisément,
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kν = k({αi}i∈I) où I est un ensemble bien ordonné et les αi des éléments algébriques sur
k, i ∈ I. Le système inductif est alors donné par les inclusions provenant de l’ordre total
de I. Supposons que i ∈ I possède un prédécesseur immédiat, on est alors emmené à
considérer une extension de la forme :

κ →֒ κ(α)

où, par hypothèse de récurrence, α est algébrique sur κ et κ est le corps résiduel d’un
anneau local (A,mA). Soit Q le polynôme minimal unitaire de α et P un relevé unitaire
dans A. On pose alors A′ = A[α]/(P(α)) et on a un morphisme d’inclusion :

A →֒ A′

Lemme II.5 — A′ est un anneau local d’idéal maximal mAA
′ et de corps résiduel κ(α).

Preuve : L’idéal mAA
′ est maximal dans A′ car A′/mAA

′ ≃ κ(α). Soit M un autre idéal
maximal de A′, alors M∩ A = mA. Pour montrer ceci il suffit de remarquer que A/(M∩
A) est un corps. Soit a ∈ A/(M ∩ A), a 6= 0, l’extension entière A →֒ A′ induit une
extension d’anneaux intègres entière A/(M ∩ A) →֒ A′/M, ainsi a ∈ A′/M qui est un
corps et donc a−1 ∈ A′/M. Il existe alors des éléments a0, ..., am−1 ∈ A/(M ∩ A) et
m > 1 tels que a−m + am−1a−m+1 + ...+ a0 = 0 et donc a−1 = −(am−1 + ...+ a0am−1) ∈
A/(M ∩ A). On remarque enfin que mAA

′ = (M ∩ A)A′ ⊂ M et donc A′ est un anneau
local.

�

Si i est un ordinal limite, notons κl = k(
{

αj
}
j6l), pour tout l 6 i. On suppose, par

hypothèse de récurrence, que l’on a construit les anneaux locaux Al dont les corps
résiduels respectifs sont κl pour tout l < i. On pose alors Ai =

⋃

l<i

Al, c’est un anneau

local de corps résiduel κi. On a donc créé un système inductif d’anneaux locaux, on note
W la limite inductive, c’est un anneau local d’idéal maximal pW, de corps résiduel kν et
on a W →֒ W.

Remarque II.6 — On a un résultat similaire si kν est une extension transcendante de
k. En effet, si deg.tr(kν |k) = l alors il existe t1, ..., tl transcendants tels que kν = k(t1, ..., tl).
On pose W ′ = W[t1, ..., tl] et on considère l’anneau local W ′

pW ′ , son corps résiduel est kν

et, W →֒ W ′
pW ′ .

Remarque II.7 — Remarquons que W est intégralement clos dans K0, de plus on a :

W $ W
[
pQ
]
→֒ W

[[
pΓQ

]]
.

Ce dernier morphisme est induit par :

Q →֒ ΓQ

1 7→ ν(p)

On peut résumer cette sous-section par la proposition suivante :

Proposition II.8 — Les anneaux kν

[[
tΓ

′
]]

et W
[[

pΓ′
]]

sont des anneaux de Mal’cev-

Neumann au sens de la Définition II.3.
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2. Rappels sur les polynômes-clés

On va faire quelques rappels sur les polynômes-clés introduits dans [HGOAS]
et [S1] pour des valuations de rang 1. Pour une présentation plus axiomatique des
polynômes-clés, on pourra consulter la présentation faite par M. Vaquié ([Va2], [Va3],
[Va4], [Va5], [Va6]). Un lien entre les deux constructions des polynômes-clés est faite
dans les travaux de W. Mahboub ([Mah]).

2.1. Définition et théorème d’existence.

Soit K →֒ K(x) une extension de corps simple et transcendante. Soit µ′ une valuation
de K(x), notons µ := µ′

|K. On note G le groupe des valeurs de µ′ et G1 celui de µ. On
suppose de plus que µ est de rang 1 et que µ′(x) > 0. Enfin, pour β ∈ G, on pose :

P′
β = { f ∈ K(x) | µ′( f ) > β} ∪ {0};

P′
β,+ = { f ∈ K(x) | µ′( f ) > β} ∪ {0};

Gµ′ =
⊕

β∈G
P′

β/P
′
β,+;

et inµ′( f ) l’image de f ∈ K(x) dans Gµ′ .

Définition II.9 — Un ensemble complet de polynômes-clés pour µ′ est une collection
bien ordonnée :

Q = {Qi}i∈Λ ⊂ K[x]

telle que, pour tout β ∈ G, le groupe additif P′
β ∩ K[x] soit engendré par des produits de la forme

a
s

∏
j=1

Q
γj

ij
, a ∈ K, tels que

s

∑
j=1

γjµ
′
(
Qij

)
+ µ(a) > β.

L’ensemble est dit 1-complet si la condition a lieu pour tout β ∈ G1.

Théorème II.10 — ([HGOAS], Théorème 62) Il existe une collection Q = {Qi}i∈Λ qui
soit un ensemble 1-complet de polynômes-clés.

Remarque II.11 — La preuve consiste à construire par récurrence transfinie l’en-
semble de polynômes-clés de type d’ordre au plus ω × ω.

2.2. Développements standards et valuations tronquées.

Définition II.12 — Soit l ∈ Λ, un indice i < l est dit l-essentiel s’il existe n ∈ N tel que
i+ n = l ou i+ n < l et d ◦

Qi+n−1
(Qi+n) > 1. Dans le cas contraire, on dit que i est l-inessentiel.

Soit l ∈ Λ, on note :
αi = d ◦

Qi−1
(Qi), ∀ i 6 l;

αl+1 = {αi}i6 l ;

Ql+1 = {Qi}i6 l.

On utilise également la notation γl+1 = {γi}i6 l où les γi sont tous nuls sauf pour un

nombre fini d’entres eux, Qγl+1
l+1 = ∏

i6 l

Qγi
i .

Pour i < l, on note :

i+ =

{
i+ 1 si i est l-essentiel
i+ ω sinon
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Définition II.13 — Un multi-indice γl+1 est dit standard par rapport à αl+1 si 0 6

γi < αi+ , pour i 6 l et, si i est l-inessentiel, l’ensemble {j < i+ | j+ = i+, γj 6= 0} est de
cardinal au plus 1.
Un monôme l-standard en Ql+1 est un produit de la forme cγl+1

Q
γl+1
l+1 , où cγl+1

∈ K et γl+1
est standard par rapport à αl+1.
Un développement l-standard n’impliquant pas Ql est une somme finie ∑

β

Sβ de monômes

l-standards n’impliquant pas Ql , où β appartient à un sous-ensemble fini de G+ et Sβ = ∑
j
dβ,j

est une somme de monômes standards de valuation β vérifiant ∑
j
inµ′(dβ,j) 6= 0.

Définition II.14 — Soient f ∈ K[x] et i 6 l, un développement i-standard de f est une
expression de la forme :

f =
si

∑
j=0

cj,iQ
j
i ,

où cj,i est un développement i-standard n’impliquant pas Qi.

Remarque II.15 — Un tel développement existe, par division Euclidienne et est
unique dans le sens où les cj,i ∈ K[x] sont uniques. Plus précisément, si i ∈ N, on montre
par récurrence que le développement i-standard est unique. Si car

(
kµ

)
> 0, les cj,i ∈ K[x]

sont uniquement déterminés par f mais ceci ne veut pas dire que le développement i-
standard est unique. Par exemple, si i est un ordinal limite, cj,i admet un développement
i0-standard pour chaque i0 < i, i = i0+, mais il existe un nombre dénombrable de
choix de i0 pour qu’un tel développement i0-standard soit un développement i0-standard
n’impliquant pas Qi0 .

Définition II.16 — Soient f ∈ K[x], i 6 l et f =
si

∑
j=0

cj,iQ
j
i un développement i-standard

de f . On définit la i-troncature de µ′, notée µ′
i, comme étant la pseudo-valuation :

µ′
i( f ) = min

06j6si
{jµ′(Qi) + µ′(cj,i)}.

Remarque II.17 — On peut montrer que c’est en fait une valuation. On a de plus :

∀ f ∈ K[x], i ∈ Λ, µ′
i( f ) 6 µ′( f ).

On termine en donnant la Proposition 10.1 (Corollaire 50 de [HGOAS]) et le Corol-
laire 10.15 de [S1] que nous utiliserons dans les preuves du Lemme II.20, de la Proposi-
tion II.29 et de la Proposition II.36.

Proposition II.18 — ∀ f ∈ K[x], ∀ b ∈ N,

µ′
i( f )− µ′

i

(
∂pb f

)
6

pb

pbi

(
µ′(Qi)− µ′(∂pbiQi)

)
,

où ∂pb =
1
pb!

∂pb

∂xpb
et bi le plus petit c ∈ N∗ qui maximise

µ′(Qi)− µ′(∂pcQi)

pc
.

De plus, il existe b(i, f ) ∈ N∗ calculé en fonction du développement i-standard de f , tel que :

µ′
i( f )− µ′

i

(
∂pb(i, f ) f

)
=

pb(i, f )

pbi

(
µ′(Qi)− µ′(∂pbiQi)

)
.
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Proposition II.19 — Soit f =
si

∑
j=0

cj,iQ
j
i le développement i-standard de f ∈ K[x], on pose :

Si = {j ∈ {0, ..., si} | jµ′(Qi) + µ′(cj,i) = µ′
i( f )}.

Soit j ∈ Si, écrivons j sous la forme j = peu, où p ne divise pas u si car(Kµ) = p > 0.
Supposons que pe+1 divise j′, pour tout j′ ∈ Si tels que j′ < j. (∗)
Alors :

µ′
i( f ) = min

06j6si
{µ′

i

(
∂jbi f

)
+ j
(
µ′(Qi)− µ′(∂biQi)

)
}

et le minimum est atteint pour tout les j ∈ Si vérifiant la condition de divisibilité (∗) précédente.

On va utiliser les polynômes-clés dans le cadre des anneaux locaux réguliers, ils
interviennent de manière fondamentale dans la démonstration du Théorème II.24.

2.3. Polynômes-clés dans une tour d’extensions de corps.

Pour j ∈ {r + 1, ..., n+ 1}, on note {Qj,i}i∈Λ j l’ensemble des polynômes-clés de l’ex-

tension Kj−1 →֒ Kj−1(uj), Qj,i =
{
Qj,i′ |i′ ∈ Λj, i′ < i

}
, Γ(j) le groupe des valeurs de

ν|Kj
et νj,i la i-troncature de ν pour cette extension. Soient β j,i = ν(Qj,i) et bj,i le plus

petit élément b de N qui maximise
β j,i − ν(∂j,pbQj,i)

pb
, où ∂j,s =

1
s!

∂s

∂us
j
, s ∈ N. Soit

ε j,i =
β j,i − ν(∂

j,pbj,i
Qj,i)

pbj,i
, on a :

Lemme II.20 — ([S1], Lemme 10.4) La suite (ε j,i)i est strictement croissante.

Preuve : Nous reprenons la preuve du Lemme 10.4 de [S1]. Fixons j ∈ {r + 1, ..., n} et
considérons i1, i2 ∈ Λj deux ordinaux. Il faut montrer que :

β j,i1 − ν(∂
j,p

bj,i1
Qj,i1)

pbj,i1
<

β j,i2 − ν(∂
j,p

bj,i2
Qj,i2)

pbj,i2
.

On peut supposer que i2 = i1+ (c’est-à-dire i2 = i1 + 1 ou i2 = i1 + ω), on conclut
dans le cas général par récurrence transfinie sur i2 − i1. Par la Proposition II.18, il existe
b(i1,Qj,i2) calculé en fonction du développement (j, i1)-standard de Qj,i2 , tel que :

νj,i1(Qj,i2)− νj,i1

(
∂
p
b(i1,Qj,i2

)Qj,i2

)
=

pb(i1,Q j,i2
)

pbi1

(
ν(Qj,i1)− ν(∂

p
bi1
Qj,i1)

)
.

Vu que d ◦
uj

(
∂
p
b(i1,Qj,i2

)Qj,i2

)
< d ◦

uj

(
Qj,i2

)
, on montre facilement que :

νj,i1

(
∂
p
b(i1,Qj,i2

)Qj,i2

)
= ν

(
∂
p
b(i1,Qj,i2

)Qj,i2

)
.

Par définition du développement (j, i1)-standard, on a :

β j,i2 > αj,i2β j,i1 = νj,i1(Qj,i2).
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Ainsi, par définition de ε j,i2 :

ε j,i1 =

νj,i1(Qj,i2)− νj,i1

(
∂
p
b(i1,Qj,i2

)Qj,i2

)

pb(i1,Q j,i2
)

=

αj,i2β j,i1 − ν

(
∂
p
b(i1,Qj,i2

)Qj,i2

)

pb(i1,Q j,i2
)

<

β j,i2 − ν

(
∂
p
b(i1,Qj,i2

)Qj,i2

)

pb(i1,Q j,i2)

6 ε j,i2 .

On en conclut que la suite (ε j,i)i est strictement croissante, pour tout j ∈ {r+ 1, ..., n+ 1}.
�

Remarque II.21 — Pour tout j ∈ {r + 1, ..., n+ 1} et i ∈ Λj, ε j,i n’est pas invariant
par permutation des variables, c’est-à-dire, si uj1 et uj2 sont deux variables distinctes, en
considérant l’anneau R′ comme l’anneau R dans lequel on a échangé uj et uj′ , on obtient,
respectivement pour R et R′, deux ensembles de polynômes-clés {Qj,i}(j,i)∈{r+1,...,n+1}×Λj

et {Q′
j,i}(j,i)∈{r+1,...,n+1}×Λ′

j
distincts, ainsi que deux suites (ε j1 ,i)i∈Λ j1

et (ε′j2 ,i)i∈Λ′
j2
telles

que :
∃ i ∈ Λj1 ∩ Λ′

j2 , ε j1 ,i 6= ε′j2 ,i,

où l’on rappelle que Λj1 ∩ Λ′
j2 6= ∅ vu que 1 est dans les deux ensembles et qu’ils on

tous les deux comme segment initial une partie de N.
En effet, supposons que n+ 1 = 3, k = C, r = 1, j1 = 2 et j2 = 3. Les anneaux R et R′ sont
alors C [[u1, u2, u3]] et C [[u1, u3, u2]]. On considère une valuation ν : C ((u1, u2, u3))

∗ →
Z telle que ν|C = 0, que l’on va définir à l’aide des polynômes-clés de R. Supposons
que : 




β1 := ν(u1) = 4
β2 := ν(u2) = 1

β3 := ν(u3) =
3
2

On a donc : 



4β2 = β1
3β2 = 2β3

3β1 = 8β3

β2 + 2β3 = β1

L’ensembe de polynômes-clés pour C [[u1, u2, u3]] est :




Q1,1 = u1
Q2,1 = u2
Q2,2 = u42 − u1
Q3,1 = u3
Q3,2 = u23 −

u1
u2

avec :
ν (Q2,2) =

√
17 et ν (Q3,2) =

√
10.
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L’ensemble de polynômes-clés pour C [[u1, u3, u2]] est :



Q′
1,1 = u1

Q′
2,1 = u3

Q′
2,2 = u83 − u31

Q′
3,1 = u2

Q′
3,2 = u2 −

u1
u23

Remarquons que Q′
3,2 =

u2
u23

Q3,2, donc :

ν
(
Q′

3,2
)
= β2 − 2β3 + ν (Q3,2) = −2+

√
10.

Calculons ε2,2 et ε′3,2. Les dérivées partielles en u2 donnent :




∂Q2,2

∂u2
= 4u32

∂Q′
3,2

∂u2
= 1

Donc :

ν

(
∂Q2,2

∂u2

)
= 3 et ν

(
∂Q′

3,2

∂u2

)
= 0.

Ainsi : 



ε2,2 = ν (Q2,2)− ν

(
∂Q2,2

∂u2

)
=

√
17− 3

ε′3,2 = ν
(
Q′

3,2
)
− ν

(
∂Q′

3,2

∂u2

)
= −2+

√
10

On en conclut que ε2,2 6= ε′3,2.

2.4. Un exemple en dimension 2 sur C.

Nous suivons les exposés faits dans [Z2] et [Tei2]. Soit R = C [[u1, u2]] muni d’une
valuation ν : R → Γ ∪ {∞} telle que ν|C = 0. On note Γ1 le plus petit sous-groupe
isolé non-nul de Γ (on peut avoir Γ1 = Γ) et u = (u1, u2). On suppose que Γ1 ≃ Z et
r(R, u, ν) = 1, on écrit alors ν(u1) = d, ν(u2) = m avec m > d. Sans pertes de généralités
(voir [Z2]), on peut supposer que d ∤ m. Par le théorème de Newton-Puiseux, on sait

qu’il existe un monomorphisme d’anneaux ι : R →֒ C

[[
tΓ1

]]
tel que :





ι(u1) = u1(t) = td

ι(u2) = u2(t) = ∑
j>m

ajt
j

On rappelle que C

[[
tΓ1

]]
⊂ C [[t]] est muni de sa valuation t-adique notée v. À partir de

ces développements de Puiseux, on construit par récurrence deux suites de Γ1 comme
suit : 




e0 = d
ε l = min{j > m | aj 6= 0 et el−1 ∤ j}, ∀ l > 1
el = pgcd(el−1, ε l)

Remarquons que tous les éléments du groupe v(R) sont premiers entres eux vu que v
est surjective et à valeurs dans Γ1 ≃ Z.
La suite (el)l>0 ⊂ Z étant stirctement décroissante, il existe g > 1 tel que eg = 1. La suite
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(ε l)l>1 est donc finie et strictement croissante. On peut alors écrire la série de Puiseux
de u2 sous la forme :

u2(t) = b1tε1 +
h1

∑
j=1

aj,1tε1+je1 + b2tε2 +
h2

∑
j=1

aj,2tε2+je2 + ...+ bgtεg + ∑
j>1

aj,gtεg+jeg

où hl = max{q ∈ N | ε l + qel < ε l+1} pour 1 6 l 6 g− 1 ; bl 6= 0, pour 1 6 l 6 g (bl = aε l

et aj,l = aε l+jel ).
Pour 1 6 l 6 g, comme el divise el−1 et ε l , il existe nl > 1 et ml > 1 tels que :





el−1 = nlel
ε l = mlel
pgcd(ml, nl) = 1

Ainsi, el−1 = nl...ng, 1 6 l 6 g. En particulier, d = n1...ng. Pour 1 6 l 6 g, on note u2(ε l)
la troncature ouverte de u2(t) en ε l :

u2(ε l) = ∑
m6j<ε l

ajt
j.

Remarquons que si m 6 j < ε l et si aj 6= 0, alors el−1 divise j, il existe donc qj ∈ N tel
que j = qjel−1 et, comme u1(t) = td, en notant :

u2,l = ∑
m6j<ε l

aju
qj

n1...nl−1
1 ∈ C

(
u

1
n1...nl−1
1

)
⊂ C

((
u

1
n1...nl−1
1

))
,

on obtient :
ι(u2,l) = u2(ε l).

On peut étendre la notation à l = g+ 1 en posant :

u2,g+1 = ∑
j>m

aju
j
d
1 ∈ C

(
u

1
d
1

)
⊂ C

((
u

1
d
1

))
,

ainsi :
ι(u2,g+1) = ι(u2) = u2(t).

Notons µd(C) le groupe des racines d-ièmes de l’unité dans C et fixons ζ une racine
primitive d-ième de l’unité. Pour 1 6 s 6 d, on considère les C-automorphismes σs de

C

(
u

1
d
1

)
définis par σs

(
u

1
d
1

)
= ζsu

1
d
1 .

Proposition II.22 — Notons Q1 = u2 et pour 2 6 l 6 g+ 1 :

Ql =
n1...nl−1

∏
s=1

(u2 − σs(u2,l)) .

(1) L’ensemble {Q1, ...,Qg} est un ensemble 1-complet de polynômes-clés pour l’extension
C ((u1)) →֒ C ((u1)) (u2).

(2) Notons H l’idéal de R défini par :

H = { f ∈ R | ν( f ) /∈ Γ1},
alors :

H =
(
Qg+1

)
.

(3) ε l = ν(Ql)− ν (∂2,1Ql), ∀ l ∈ {1, ..., g}.
(4) Pour 1 6 l 6 g, u2(ε l) est entier sur C [u1(t)].
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Preuve : Nous adaptons la preuve du Théorème 3.9 de [Z2] ainsi que celle du Corollaire
5.4 de [PP].
Remarquons tout d’abord que Q1 est par définition unitaire et irréductible. L’extension

C (u1) →֒ C

(
u

1
d
1

)
est une extension galoisienne cyclique de degré d de groupe de

Galois :

Gd := Gal
(

C

(
u

1
d
1

)∣∣∣∣C (u1)
)
= {σs | 1 6 s 6 d} ≃ µd(C).

De plus, pour 2 6 l 6 g, l’extension C (u1) →֒ C

(
u

1
nl−1
1

)
est une extension galoisienne

cyclique de degré nl−1 et comme u
1

n1...nl−1
1 = u

nl ...ng
d

1 et, pour 1 6 s 6 n1...nl−1, ζ
s d
n1...nl−1 est

une racine n1...nl−1-ième de l’unité, on a :

Gn1...nl−1 := Gal
(

C

(
u

1
n1...nl−1
1

)∣∣∣∣C (u1)
)
= {σs | 1 6 s 6 n1...nl−1}

et donc :
Gn1...nl−1 ≃ µn1...nl−1(C).

Ainsi, pour 2 6 l 6 g+ 1 :

Ql = ∏
σ∈Gn1...nl−1

(u2 − σ(u2,l)) .

Comme u2,l ∈ C

(
u

1
n1...nl−1
1

)
, on en déduit que, pour 2 6 l 6 g + 1, Ql est le poly-

nôme minimal de u2,l qui est, par définition, unitaire, irréductible et à coefficients dans
C (u1) ⊂ C ((u1)).
Soient β ∈ Γ1 et f ∈ C ((u1)) [u2] tel que ν( f ) > β. On peut alors écrire f sous la forme
d’une somme finie :

f = ∑
f inie

aα1 ,...,αgQ
α1
1 ...Q

αg
g ,

où aα1 ,...,αg ∈ C ((u1)), 0 6 αg 6

⌊
d ◦
u2( f )

n1...ng−1

⌋
et 0 6 αl < nl, pour 1 6 l 6 g − 1. La

procédure est la suivante :
Par division euclidienne, on peut écrire :

f =

⌊
d ◦u2 ( f )
d ◦u2 (Qg)

⌋

∑
αg=0

aαgQ
αg
g ,

avec aαg ∈ C ((u1)) [u2] et d ◦
u2

(
aαg

)
< d ◦

u2(Qg) = n1...ng−1.
On recommence la même procédure mais avec aαg au lieu de f et Qg−1 au lieu de Qg,
on obtient :

aαg =

⌊
d ◦u2 (aαg )

d ◦u2 (Qg−1)

⌋

∑
αg−1=0

aαg−1,αgQ
αg−1
g−1 ,

avec aαg−1,αg ∈ C ((u1)) [u2] et d ◦
u2

(
aαg−1,αg

)
< d ◦

u2(Qg−1) = n1...ng−2 et donc αg−1 < ng−1.
En procédant ainsi on s’assure de l’existence du développement de f tel qu’on le sou-
haitait, en effet, d ◦

u2

(
aα1,...,αg

)
< d ◦

u2(Q1) = 1 et donc aα1 ,...,αg ∈ C ((u1)).
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Remarquons de plus que, si
(
α1, ..., αg

)
6=
(
γ1, ...,γg

)
sont deux g-uplets d’indices, alors :

ν
(
aα1 ,...,αgQ

α1
1 ...Q

αg
g

)
6= ν

(
aγ1 ,...,γgQ

γ1
1 ...Q

γg
g

)
.

En effet, supposons par l’absurde , qu’il existe deux g-uplets d’indices
(
α1, ..., αg

)
6=

(
γ1, ...,γg

)
tels que ν

(
aα1 ,...,αgQ

α1
1 ...Q

αg
g

)
= ν

(
aγ1,...,γgQ

γ1
1 ...Q

γg
g

)
. Si on note βl = ν(Ql)

pour tout l ∈ {1, ..., g}, l’égalité précédente équivaut à :

ν
(
aα1 ,...,αg

)
+

g

∑
l=1

αlβl = ν
(
aγ1,...,γg

)
+

g

∑
l=1

γlβl .

Quitte à renuméroter les indices, on peut supposer qu’il existe l0 ∈ {1, ..., g} tel que
αl = γl pour l > l0 et αl0 < γl0 . Ainsi :

(γl0 − αl0)βl0 =
l0−1

∑
l=1

(αl − γl)βl +
(
ν
(
aα1,...,αg

)
− ν

(
aγ1,...,γg

))
.

Or, par le théorème de Newton-Puiseux, on sait que βl = v(ι(Ql)), l ∈ {1, ..., g},
ν
(
aα1 ,...,αg

)
= v

(
ι
(
aα1 ,...,αg

))
et ν

(
aγ1,...,γg

)
= v

(
ι
(
aγ1,...,γg

))
. Vu que d divise v

(
ι
(
aα1 ,...,αg

))

et v
(
ι
(
aγ1,...,γg

))
, et que el0−1 divise e1 qui divise d, on en déduit que el0−1 divise(

ν
(
aα1,...,αg

)
− ν

(
aγ1,...,γg

))
. De plus, par le Théorème 3.9 de [Z2], pour l ∈ {2, ..., g} :

βl = (n1 − 1)n2...nl−1ε1 + (n2 − 1)n3...nl−1ε2 + (nl−1 − 1)ε l−1 + ε l .

Or, par définition el0−1 | ... | el | ε l , pour l ∈ {1, ..., l0 − 1}. Ainsi, pour l ∈ {2, ..., l0 − 1},
el0−1 | βl . Comme β1 = ε1, on a également el0−1 | β1. On en déduit que el0−1 | (γl0 − αl0)βl0 .
De même, comme el0 | ε l , pour l ∈ {1, ..., l0} on en déduit que el0 | βl0 . Ainsi nl0 | (γl0 − αl0)
et donc nl0 6 γl0 − αl0 ce qui est absurde vu que 0 < γl0 − αl0 6 γl0 < nl0 .
On en déduit alors, pour tout g-uplet (α1, ..., αg) d’indices apparaissant dans le déve-
loppement de f , que :

β 6 ν( f ) = min
(α1,...,αg)∈Ng

{
ν
(
aα1,...,αgQ

α1
1 ...Q

αg
g

)}
6 ν

(
aα1 ,...,αg

)
+

g

∑
l=1

αlν (Ql) .

On en conclut que {Q1, ...,Qg} est bien un ensemble 1-complet de polynômes-clés pour
l’extension C ((u1)) →֒ C ((u1)) (u2).

Pour montrer (2) on remarque que :

v
(
ι
(
Qg+1

))
= ∞.

En effet, comme σd(u2,g+1) = u2,g+1, alors ι
(
u2 − σd(u2,g+1)

)
= 0 et donc :

v
(
ι
(
Qg+1

))
= v(0) = ∞.

Comme ν(Qg+1) = v
(
ι
(
Qg+1

))
/∈ Γ1, on en déduit que

(
Qg+1

)
⊂ H. Soit f ∈ H \ {0}

vu comme un élément de C [[u1]] [[u2]]. On a vu en (1) que Qg+1 est un polynôme en u2
unitaire et de degré d, on peut donc écrire, par division euclidienne de Weierstrass ([L],
Théorème 4.9.1) :

f = hQg+1 + r,
avec h ∈ C [[u1]] [[u2]], r ∈ C [[u1]] [u2] tel que r = 0 ou d ◦

u2(r) < d. Alors :

ι( f ) = ι(h)ι(Qg+1) + ι(r) = ι(r).

Comme ι est un morphisme injectif, on en déduit que f = r. Ainsi f est un polynôme
en u2 de degré strictement plus petit que d ce qui est absurde vu que f 6= 0 et que
Qg+1 ∈ H. Ainsi r = 0, f = hQg+1 et H = (Qg+1).
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Pour montrer (3) il nous faut calculer ν (∂2,1Ql) pour l ∈ {1, ..., g}. Remarquons tout
d’abord que ∂2,1Q1 = 1 donc ν (∂2,1Q1) = 0 et ε1 = β1 = ν(Q1). Soit l ∈ {2, ..., g},
comme ν (∂2,1Ql) = v (ι (∂2,1Ql)) il nous suffit de calculer ι (∂2,1Ql). Or :

∂2,1Ql =
n1...nl−1

∑
s=1

Ql

u2 − σs(u2,l)
.

Mais, pour s ∈ {1, ..., n1...nl−1}, v (ι (u2 − σs(u2,l))) ∈ {ε1, ..., ε l} et ε l =
v (ι (u2 − σs(u2,l))) si et seulement si s = n1...nl−1. Pour 1 6 q 6 l notons :

Eq = {s ∈ {1, ..., n1...nl−1} | v (ι (u2 − σs(u2,l))) = εq}.
Pour s ∈ Eq, on a :

v
(

ι

(
Ql

u2 − σs(u2,l)

))
= βl − εq

et :

ι

(
Ql

u2 − σs(u2,l)

)
= cs,qtβl−εq + Rs,q,

où cs,q ∈ C et Rs,q ∈ C [[t]] tel que v(Rs,q) > βl − εq. On peut donc écrire :

ι (∂2,1Ql) =
l

∑
q=1

∑
s∈Eq

(
cs,qtβl−εq + Rs,q

)
=

l

∑
q=1

cqtβl−εq + Rl,

où cq = ∑
s∈Eq

cs,q ∈ C, Rl =
l

∑
q=1

∑
s∈Eq

Rs,q ∈ C [[t]] tel que v(Rl) > min
16q6l

{βl − εq}. Comme

β1 < ... < βg, on en déduit que :

v

(
l

∑
q=1

cqtβl−εq

)
= min

16q6l
{βl − εq} = βl − ε l ,

et donc :
ν (∂2,1Ql) = βl − ε l .

Soit l ∈ {2, ..., g}, pour montrer (4) il faut remarquer que :

σn1 ...nl−1(u2,l) = u2,l,

donc :
ι
(
σn1...nl−1(u2,l)

)
= u2(ε l).

On définit alors le polynôme ιQl =
n1...nl−1

∏
s=1

(X − ι (σs(u2,l))) ∈ C [u1(t)] [X], il possède

u2(ε l) comme racine. Enfin, comme u2(ε1) = 0, le polynôme ιQ1 = X possède u2(ε1)
comme racine.

�

Corollaire II.23 — Pour l ∈ {1, ..., g}, u2(ε l) est entier sur
C [u1(t), {u2(β) |m 6 β < ε l}].

Preuve : C’est une conséquence immédiate de la preuve du (3) de la Proposition II.22 vu
le choix des polynômes ιQl pour l ∈ {1, ..., g}.

�
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3. Le théorème de plongement de Kaplansky

Dans cette section, on suppose que (R,m, k) est un anneau local régulier complet de
dimension n+ 1. Si R est de caractéristique mixte, on suppose de plus que p /∈ m

2.

Théorème II.24 — Il existe un anneau de Mal’cev-Neumann AR et un monomorphisme
d’anneaux :

ι : R →֒ AR,
tels que ν soit la restriction à R de la valuation de Mal’cev-Neumann associée à AR.
Pour f ∈ R, on appelle ι( f ) un développement de Puiseux de f par rapport à ν.

Remarque II.25 — AR =





kν

[[
tΓ

′
]]

si car(R) = car(k)

W
[[

pΓ′
]]

si car(R) 6= car(k)

Remarque II.26 — Par le Théorème I.5, on sait que :

R =

{
k [[u1, ..., un+1]] si car(R) = car(k)
W [[u1, ..., un]] si car(R) 6= car(k)

La preuve consiste donc à définir, par récurrence transfinie, le développement de Pui-
seux de u1, ..., un+1 (resp. p, u1, ..., un) à l’aide des polynômes-clés.

Preuve : On va faire la preuve de ce théorème seulement dans le cas où R est de ca-
ractéristique mixte. Le cas où R est équicaractéristique se traite de la même manière en
remplaçant p par t et en prenant les coefficients directement dans kν.

Dans ce qui suit on va construire un développement de Puiseux en lien avec les
polynômes-clés. Remarquons que définir un développement de Puiseux pour un élé-
ment de R revient à définir n+ 1 séries ι(p), ι(u1), ..., ι(un) formellement indépendantes
sur W.
On va construire le morphisme ι par récurrence sur n− r. Si n = r, on pose ι(p) = pν(p)

et ι(uj) = pν(uj), j ∈ {1, ..., r} (remarquons que, pour que ι soit un morphisme, comme
ν|Kn−1

est de rang 1, on choisit une fois pour toute un plongement Γ1 →֒ R qui envoie
ν(p) sur 1).
Supposons que n > r et que l’on a déjà construit un monomorphisme d’anneaux valués :

ιn−1 : Rn−1 →֒ W
[[

pΓ′
]]

tel que ν|Rn−1
soit induite par la valuation p-adique et Rn−1 = W [[u1, ..., un−1]]. Pour

j ∈ {1, ..., n− 1}, on note uj(p) = ιn−1(uj).
Nous allons construire la série généralisée un(p) par récurrence transfinie sur un sous-
ensemble bien ordonné de Γ′.
Soit β ∈ Γ+, on note iβ = min{i ∈ Λn | β 6 εn,i} et par convention, si {i ∈ Λn | β 6

εn,i} = ∅, on prendra iβ = Λn (c’est-à-dire le plus petit ordinal strictement plus grand
que n’importe quel élément de Λn).

Supposons donnée une série généralisée un(β) = ∑
γ<β

aγpγ ∈ W
[[

pΓ′
]]
, on considère le

morphisme d’anneaux ιβ : R → W
[[

pΓ′
]]

défini par :

ιβ(p) = pν(p);

ιβ(uj) = uj(p), ∀ j ∈ {1, ..., n− 1};
ιβ(un) = un(β).
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Définition II.27 — On dit que un(β) est un développement de Puiseux partiel de un si
les deux conditions suivantes sont vérifiées pour tout j ∈ {1, ..., n} :

(1) v(ιβ(Qn,i)) = βn,i, ∀i ∈ Λn tel que i < iβ ;

(2) v(ιβ(Qn,iβ)) > min
q∈N

{ν(∂n,pqQn,iβ) + pqβ} (si iβ = Λn, on considère cette condition

toujours vérifiée).

Soit T une nouvelle variable et considérons le morphisme d’anneaux

ιβ,T : R → W
[[

pΓ′
, T
]]

défini par :

ιβ,T(p) = pν(p);

ιβ,T(uj) = uj(p), ∀ j ∈ {1, ..., n− 1};
ιβ,T(un) = un(β) + T.

On note νβ l’extension à W
[[

pΓ′
, T
]]

de la valuation p-adique v de W
[[

pΓ′
]]

telle que

νβ(T) = β et inνβ
(T) est transcendant sur grv

(
W
[[

pΓ′
]])

. On pose alors µβ = νβ|R où

R est vu comme sous-anneau de W
[[

pΓ′
, T
]]

via le monomorphisme ιβ,T.
Supposons que iβ = Λn, alors µβ = ν. Sinon, supposons que iβ < Λn, c’est-à-dire qu’il
existe i ∈ Λn tel que εn,i > β. On note alors :

Γβ = Γ(n−1) ⊗Z Q + ∑
i<iβ

Qβn,i ⊂ ΓQ.

Lemme II.28 — On a les assertions suivantes :

(1) La valuation νβ|Kn−1
est l’unique valuation telle que :

νβ|Kn−1[Qn,iβ
] = ν|Kn−1[Qn,iβ

];

νβ(Qn,iβ) = min
q∈N

{
ν
(

∂n,pqQn,iβ

)
+ pqβ

}
,

et inνβ
(Qn,iβ) est transcendant sur grνβ

(
Kn−1[Qn,iβ ]

)
.

(2) Considérons les sous-algèbres graduées grµβ

(
Kn−1[Qn,iβ ]

)
⊂ grµβ

(R) et

grνn,iβ

(
Kn−1[Qn,iβ ]

)
⊂ grνn,iβ

(R). On a alors un isomorphisme d’algèbres graduées :

grµβ

(
Kn−1[Qn,iβ ]

)
≃ grνn,iβ

(
Kn−1[Qn,iβ ]

)

qui peut être étendu en un isomorphisme entre grµβ
(R) et grνn,iβ

(R) en envoyant

inµβ
(Qn,iβ) sur inνn,iβ

(Qn,iβ), mais la graduation n’est, en général, pas préservée, sauf
si l’une des deux conditions équivalentes de (3) est vérifiée.

(3) µβ = νn,iβ ssi β = εn,iβ .

(4) ∀ h ∈ R, νn,iβ(h) 6 ν(h).
Supposons que β = εn,iβ (donc µβ = νn,iβ). On a alors, pour tout h ∈ R :

νn,iβ(h) = ν(h) ⇔ inνn,iβ
(h) /∈ ker

(
grνn,iβ

(R) → grν(R)
)

⇔ inνβ

(
ιβ,T(h)

)
/∈ ker

(
grνβ

(
W
[[

pΓ′
, T
]])

→ grv
(
W
[[

pΓ′
]]) )

.

En particulier, il y a égalité si inνβ
(T) n’apparaît pas dans inνβ

(ιβ,T(h)).
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Preuve : (1) : νβ|Kn−1
= ν|Kn−1

par définition de ιβ,T, νβ et v. Pour i < iβ, alors, βn,i < β et
comme un(β) est un développement de Puiseux partiel, on obtient l’égalité :

νβ

(
ιβ,T(Qn,i)

)
= v

(
ιβ(Qn,i)

)
= βn,i.

Enfin, comme :

Qn,iβ (u1, ..., un−1, un + T) =

d ◦
un (Qn,iβ

)

∑
l=0

∂n,lQn,iβ(u1, ..., un)Tl ,

on en déduit que :

νβ(Qn,iβ) = min
l∈N

{
ν
(

∂n,lQn,iβ

)
+ lνβ(T)

}
,

où le minimum est atteint avec l = 1 si car(k) = 0, une puissance de p = car(k)
sinon. Ainsi, inνβ

(T) apparaît dans inνβ
(Qn,iβ). Comme inνβ

(T) est transcendant sur

grv
(
W
[[

pΓ′
]])

, on en déduit que inνβ
(Qn,iβ) est transcendant sur grνβ

(
Kn−1[Qn,iβ ]

)
.

L’unicité de νβ vérifiant les propriétés précédemment démontrées provient de la défini-
tion même de cette valuation.
(2) : Par définition et construction des polynômes-clés et de la valuation tronquée νn,iβ ,
on obtient l’égalité :

νn,iβ|Kn−1[Qn,iβ
] = ν|Kn−1[Qn,iβ

]

qui nous définit un isomorphisme naturel d’algèbres graduées :

grνn,iβ

(
Kn−1[Qn,iβ ]

) ∼−→ grµβ

(
Kn−1[Qn,iβ ]

)
.

En envoyant inνn,iβ
(Qn,iβ) sur inµβ

(Qn,iβ), on prolonge l’isomorphisme précédent en un

isomorphisme entre grνn,iβ
(R) et grµβ

(R), la graduation étant préservée seulement si
µβ = νn,iβ .
(3) : Supposons que β = εn,iβ , par définition des polynômes-clés et de µβ, il suffit de

montrer que µβ(Qn,iβ) = νn,iβ(Qn,iβ). Soit q0 ∈ N tel que µβ(Qn,iβ) = ν
(

∂n,pq0Qn,iβ

)
+

pq0β. Par définition de µβ, on a :

µβ(Qn,iβ) = ν
(

∂n,pq0Qn,iβ

)
+ pq0 β 6 ν

(
∂
n,p

bn,iβ
Qn,iβ

)
+ p

bn,iβ εn,iβ = βn,iβ .

Par définition de εn,iβ , on a :

εn,iβ >
βn,iβ − ν

(
∂n,pq0Qn,iβ

)

pq0
,

c’est-à-dire :
µβ(Qn,iβ) = ν

(
∂n,pq0Qn,iβ

)
+ pq0β > βn,iβ .

Réciproquement, si µβ = νn,iβ , alors :

βn,iβ = ν
(

∂n,pq0Qn,iβ

)
+ pq0β 6 ν

(
∂
n,p

bn,iβ
Qn,iβ

)
+ p

bn,iβ β,

ce qui donne :

εn,iβ =

βn,iβ − ν

(
∂
n,p

bn,iβ
Qn,iβ

)

p
bn,iβ

6 β.
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3. Le théorème de plongement de Kaplansky.

Enfin, rappelons que, par définition de iβ, β 6 εn,iβ .
(4) : Par la Remarque II.17, pour tout h ∈ R, νn,iβ(h) 6 ν(h). La première équivalence
est évidente, la deuxième provient du fait que l’on a supposé µβ = νn,iβ et que µβ(h) =
νβ(ιβ,T(h)) ainsi que v(ι(h)) = ν(h).

�

Commençons notre récurrence transfinie par β = ν(un) = βn,1. On pose alors
un(β) = 0 et on a iβ = 1, µβ = νn,iβ = νn,1 ; un(β) est ainsi un développement de
Puiseux partiel de un.
Supposons un(β) construit pour un certain β ∈ Γ+ tel que β > ν(un) et définissons le
coefficient an,β de pβ de un(p). On suppose également, par hypothèse de récurrence, que
β = εn,iβ ou que β ∈ Γβ.
Si β /∈ Γβ, comme β = εn,iβ , alors βn,iβ /∈ Γβ et donc iβ = max Λn. Dans ce cas on a
ν = νn,iβ = µβ et on pose :

un(p) = un(β) + pβ.

Si β ∈ Γβ, alors νβ(Qn,iβ) = min
q∈N

{ν(∂n,pqQn,iβ) + pqβ} ∈ Γβ et donc :

∃ d ∈ Kn−1, l1, ..., lt ∈ Λn,λ ∈ N,λ1, ...,λt ∈ Z

tels que :

λνβ(Qn,iβ) =
t

∑
j=1

λjβn,lj + ν(d).

On pose alors :

z =





Qλ
n,iβ

d
t

∏
j=1

Q
λj

n,lj

modmν ∈ kν si β = εn,iβ

0 si β < εn,iβ

Notons Wr+1, ...,Wn−1,Wn les supports respectifs de ur+1(p), ..., un−1(p), un(β), on note
alors uj(p) = ∑

γ∈Wj

aj,γpγ pour j ∈ {r+ 1, ..., n− 1} et un(β) = ∑
γ∈Wn

an,γpγ. Posons, pour

j ∈ {r+ 1, ..., n}, aj = {aj,γ | γ ∈ Wj} ⊂ W, aj = {aj,γ | γ ∈ Wj} ⊂ kν son image modulo
p, a = (ar+1, ..., an) et a = (ar+1, ..., an). Soit X une variable indépendante, si on remplace
T par Xpβ dans inνβ

(ιβ,T(Qn,iβ)), on obtient un élément de la forme :

f p
νβ(Qn,iβ

)
, f ∈ K0 [a,X] .

On note alors f ∈ kν[a,X] ⊂ kν[X] l’image de f modulo p.
De plus, pour j ∈ {1, ..., t}, inνβ

(ιβ(Qn,lj)) est de la forme :

cjp
βn,lj , cj ∈ W

×

et inνβ
(ιβ(d)) est de la forme :

δpν(d), δ ∈ W
×
.
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Chapitre II. Séries de Puiseux.

Notons cj et δ dans kν les images respectives de cj et de δ modulo p.

Ainsi,
f

λ

δ
t

∏
j=1

cjλj

= z induit une équation algébrique en X sur kν, on note alors αn,β ∈ kν

une de ses racines et an,β ∈ W un relevé. Deux cas se présentent :

(1) an,β est transcendant sur K0[a]. On pose alors :

un(p) = un(β) + an,βpβ,

on a ν = νn,iβ et on arrête l’algorithme.

(2) an,β est algébrique sur K0[a]. On note alors

β̃ = v(Qn,iβ(u1(p), ..., un−1(p), un(β) + an,βpβ)),

ε̃ = max
b∈N

{
β̃ − ν(∂n,pbQn,iβ)

pb

}

et

β+ =

{
min{ε̃, εn,iβ} si β < εn,iβ
min{ε̃, εn,iβ+1} si β = εn,iβ

Enfin, on pose :
un(β+) = un(β) + an,βpβ.

Ceci nous définit alors un nouveau développement de Puiseux partiel sur lequel
on peut continuer la récurrence. En effet, remarquons que ε̃ > β car si β < εn,iβ ,

alors, par définition de νβ, β̃ > νβ(Qn,iβ) = min
q∈N

{
ν
(

∂n,pqQn,iβ

)
+ pqβ

}
et donc

ε̃ > β par définition de ε̃ ; si β = εn,iβ , par le (3) du Lemme II.28, β̃ = βn,iβ
et donc, toujours par définition ε̃ > β. Ainsi, le (1) de la Définition II.27 est
toujours vérifié lorsque β < εn,iβ ; si β = εn,iβ , c’est également vrai vu que, dans
ce cas, β̃ = βn,iβ . Quant au (2), on vient de voir que β̃ > νβ(Qn,iβ) pour β < εn,iβ ;
si β = εn,iβ , comme la suite (βn,i)i∈Λn est croissante, on a, lorsque β+ = ε̃ :

v(ιβ+
(Qn,iβ+1)) > β̃ = βn,iβ .

On en déduit que v(ιβ+
(Qn,iβ+1)) > min

q∈N

{
ν
(

∂n,pqQn,iβ+1

)
+ pqβ+

}
. Si β+ =

εn,iβ+1, alors :

v(ιβ+
(Qn,iβ+1)) = min

q∈N

{
ν
(

∂n,pqQn,iβ+1

)
+ pqβ+

}

par le (3) du Lemme II.28.

Pour achever notre récurrence transfinie, il nous faut considérer le cas limite. Soient
W un sous-ensemble bien ordonné de Γ1 n’ayant pas d’élément maximal et {an,γ | γ ∈
W} tels que pour tout β ∈ W , un(β) = ∑

γ∈W
γ<β

an,γpγ soit un développement de Puiseux

partiel de un. Notons un(W) = ∑
γ∈W

an,γpγ.

Supposons d’abord que :
∀ i ∈ Λn, ∃ β ∈ W , εn,i < β.
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Alors, pour tout i ∈ Λn, i < iβ et l’ensemble {Qn,i}i∈Λn
forme un système complet de

polynômes-clés pour l’extension Kn−1 →֒ Kn−1(un). Ainsi :

∀ f ∈ Kn−1[un], ∃ i ∈ Λn, ν( f ) = νn,i( f ).

On en déduit, à l’aide de la définition du développement de Puiseux partiel, que :

∀ f ∈ Kn−1[un], ν( f ) = v( f (u1(p), ..., un−1(p), un(W))).

Or tout f ∈ R tel que ν( f ) ∈ Γ1 s’écrit f = f ′ + f ′′, avec f ′ ∈ Kn−1[un] et ν0( f ′′) > ν( f ).
On a alors :

v( f ′′(u1(p), ..., un−1(p), un(W))) > ν( f ) = ν( f ′)

= v( f ′(u1(p), ..., un−1(p), un(W)))

= v( f (u1(p), ..., un−1(p), un(W))).

D’où, pour tout f ∈ R tel que ν( f ) ∈ Γ1, on a :

ν( f ) = v( f (u1(p), ..., un−1(p), un(W))).

Enfin, le même résultat est vrai pour tout f ∈ R ⊗Rn−1 Kn−1 tel que ν( f ) ∈ Γ1.
S’il existe un f ∈ R tel que ν( f ) /∈ Γ1, alors l’ensemble Λn contient un élément maximal
λ et donc il existe un β ∈ W tel que εn,λ < β. Alors, f s’écrit de manière unique sous la
forme f = Qa

n,λ f̃ , où a ∈ N, f̃ ∈ R ⊗Rn−1 Kn−1 tel que ν( f̃ ) ∈ Γ1. Par le cas précédent,
ν( f̃ ) = v( f̃ (u1(p), ..., un−1(p), un(W))) et donc ν( f ) = v( f (u1(p), ..., un−1(p), un(W))).
On définit alors un(p) = un(W) et la construction du développement de Puiseux s’ar-
rête.
Supposons, pour terminer, que :

∃ i ∈ Λn, ∀ β ∈ W , εn,i > β.

On note alors
iW = min{i ∈ Λn | ∀ β ∈ W , εn,i > β},

β̃ = v(Qn,iW (u1(p), ..., un−1(p), un(W))),

ε̃ = max
b∈N

{
β̃ − ν(∂n,pbQn,iW )

pb

}

et
β+ = min{ε̃, εn,iW}.

Enfin, on pose un(β+) = un(W), ceci nous définit un nouveau développement de Pui-
seux partiel sur lequel on peut continuer la récurrence.

�

4. Des résultats de dépendance intégrale

Les résultats de cette section sont donnés dans le cas mixte non-ramifié, en rempla-
çant W par k, W par kν, p par t et n par n+ 1, on obtient les mêmes résultats dans le cas
équicaractéristique.

Proposition II.29 — Soient i ∈ Λn, β = εn,i (c’est-à-dire i = iβ), et h ∈ R. Alors :

νn,i(h) = min
α∈N

{ν(∂n,αh) + αβ} = min
α∈N

{νn,i(∂n,αh) + αβ} .
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Preuve : Soient h ∈ R et α ∈ N, par la Proposition II.18, on a :

νn,i(h)− νn,i(∂n,αh) 6 αβ.

On obtient alors :

νn,i(h) 6 min
α∈N

{νn,i(∂n,αh) + αβ} 6 min
α∈N

{ν(∂n,αh) + αβ} .

Montrons que ces inégalités sont des égalités. Par la Remarque II.28 (3), on a :

νn,i(h) = µβ(h) = νβ(ιβ,T(h)).

Soit h =
sn,i

∑
j=0

dn,j,iQ
j
n,i le développement (n, i)-standard de h, on pose :

S = {j ∈ {0, ..., sn,i} | jβ + ν(dn,j,i) = νn,i(h)}.
Tout élément j ∈ S s’écrit de la forme j = peu où p ne divise pas u. Prenons un j ∈ S tel
que pe+1 divise j′, pour tout j′ ∈ S tel que j′ < j. On pose alors α = pbn,i j et à l’aide de la
Proposition II.19 on en déduit que :

νn,i(h)− ν(∂n,αh) = νn,i(h)− νn,i(∂n,αh) = αβ.

�

Notons A le sous-anneau de W
[[

pΓ′
]]

engendré par ι(p), ι(u1), ..., ι(un) et

toutes leurs troncatures. Pour tout j ∈ {r, ..., n} et β ∈ Γ ∪ {∞}, on note Aj,β le
sous-anneau de A engendré par toutes les troncatures ouvertes de la forme uj′(β′), où
(j′, β′) <lex (j, β) pour l’ordre lexicographique.

Proposition II.30 — Soient j ∈ {r, ..., n}, β ∈ Γ ∪ {∞}, g, h ∈ Aj,β[uj(β)] et λ ∈ Γ1.
On suppose que v(gh) < λ.
Il existe alors l ∈ N, λ0 < ... < λl et δ1 > ... > δl éléments de Γ1 tels que :

(gh)(λ) =
l

∑
i=1

g[λi−1,λi[ h(δi).

De plus, on peut choisir les suites (λi)06i6l et (δi)16i6l de telle sorte que λl 6 λ − v(h) et
δ1 6 λ − v(g).

Preuve : Notons supp(g) (resp. supp(h)) l’ensemble de tous les ε ∈ Γ1 tels que le coeffi-
cient devant pε de g (resp. de h) soit non-nul. On va construire les deux suites cherchées
par récurrence.
On pose λ0 = v(g) et δ1 = λ − λ0, par hypothèses on a bien λ0 6 λ − v(h). Supposons
maintenant que, pour tout q > 1, on ait construit λ0 < ... < λq et δ1 > ... > δq avec
λq 6 λ − v(h) et δi = λ − λi−1, pour 1 6 i 6 q. Posons alors :

Bq = {ε ∈ supp(g) | ∃ θ ∈ supp(h), θ + λq < λ 6 θ + ǫ}.
Si Bq = ∅, on pose l = q et la récurrence s’arrête (remarquons que ceci arrive lorsque
λq > λ − v(h)). De plus, par construction, on a l’égalité :

(gh)(λ) =
l

∑
i=1

g[λi−1,λi[ h(δi).

Si Bq 6= ∅, on pose λq+1 = min{λ − v(h), min Bq} et δq+1 = λ − λq. Par définition de
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λq+1 et de δq+1 et par hypothèse de récurrence on a bien que λq < λq+1 et δq > δq+1. De
plus, on remarque que :

{λ − λq+1, λ − λq} ∩ supp(h) 6= ∅.

On obtient alors une suite strictement décroissante d’ensembles :

supp (h(λ − λ1)) % ... % supp
(
h(λ − λq+1)

)
,

où supp
(
h(λ − λq+1)

)
est un segment initial de supp

(
h(λ − λq)

)
. Le processus s’arrête

donc au bout d’un nombre fini d’itérations, ceci entraînant la finitude des suites (λi)i et
(δi)i.

�

Corollaire II.31 — Soient j ∈ {r, ..., n}, β ∈ Γ ∪ {∞}, g1, ..., gs ∈ Aj,β[uj(β)] et λ ∈ Γ1.
On suppose que v(g1...gs) < λ. Alors :

(g1...gs)(λ) = ∑
(i1,...,is)∈N

s

∏
j=1

gj(λ
(j)
ij
),

où N ⊂ (N∗)s est un ensemble fini et λ
(j)
ij

∈ Γ1+ sont tels que λ
(j)
ij

6 λ avec inégalité stricte

s’il existe j′ ∈ {1, ..., s}\{j} tel que v(gj′ ) > 0.

Preuve : Par récurrence sur s en appliquant la Proposition II.30.
�

Corollaire II.32 — Soient j ∈ {r, ..., n}, β ∈ Γ ∪ {∞}, g1, ..., gs ∈ Aj,β[uj(β)] et λ ∈ Γ1.
On suppose que v(g1...gs) < λ. Alors :

(g1...gs)(λ) ∈ Aj,β[uj(β)].

Preuve : Par le Corollaire II.31, il suffit de montrer le résultat pour s = 1. Notons g =
g1 et montrons par récurrence sur j ∈ {r, ..., n} que, si g ∈ Aj,β[uj(β)], alors g(λ) ∈
Aj,β[uj(β)], pour β ∈ Γ ∪ {∞} et λ ∈ Γ1 fixés.
Pour j = r on a :

Ar,β[ur(β)] =





W
[
pν(p), pν(u1), ..., pν(ur)

]
si ν(ur) < β

W
[
pν(p), pν(u1), ..., pν(ur−1)

]
si ν(ur) > β

et donc si g ∈ Ar,β[ur(β)] et v(g) < λ alors g(λ) ∈ Ar,β[ur(β)].
Supposons j > r et le résultat vrai pour j − 1. Soit g ∈ Aj,β[uj(β)], on peut écrire g
comme un polynôme en uj(β) à coefficients dans Aj,∞. On applique alors le Corollaire
II.31 à chaque monôme de g(λ). Par hypothèse de récurrence, toutes les troncatures
ouvertes des coefficients de g sont dans Aj,∞, ainsi g(λ) ∈ Aj,β[uj(β)].

�
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Pour j ∈ {r, ..., n}, Rj = W
[[
u1, ..., uj

]]
et β ∈ Γ ∪ {∞}, considérons les mor-

phismes d’anneaux τj,β, ιj,β : Rj → W
[[

pΓ′
]]

définis par :

τj,β(p) = ιj,β(p) = ι(p);

τj,β(ui) = ιj,β(ui) = ι(ui), ∀ i ∈ {1, ..., j− 1};
ιj,β(uj) = uj(β);

τj,β(uj) = uj[β].

Remarquons que ιn,β = ιβ.

Proposition II.33 — Soient j ∈ {r, ..., n}, β ∈ Γ ∪ {∞}, f ∈ Rj\Rj−1 et λ ∈ Γ1. Alors :

ιj,β( f )(λ) ∈ Aj,β[uj(β)].

Preuve : Remarquons tout d’abord que l’on peut remplacer f par une de ses approxima-
tions (p, u1, ..., uj)-adiques choisies dans W

[
u1, ..., uj

]
de telle sorte que l’on ne modifie

pas ιj,β( f )(λ). Soit f ∈ W
[
u1, ..., uj

]
choisi ainsi, on a alors :

ιj,β( f ) ∈ W
[
ι(p), ι(u1), ..., ι(uj−1), uj(β)

]
⊂ Aj,β[uj(β)].

On conclut en appliquant le Corollaire II.32.
�

Dans ce qui suit nous allons donner une description explicite de τj,β( f )(λ) et
ιj,β( f )(λ) pour un λ que nous préciserons par la suite.
Soient j ∈ {r, ..., n}, β ∈ Γ1 ∪ {∞} et f ∈ Rj\Rj−1. Notons

ij,β = min{i ∈ Λj | β 6 ε j,i}
et par convention, si {i ∈ Λj | β 6 ε j,i} = ∅, on prendra ij,β = Λj (c’est-à-dire le plus
petit ordinal strictement plus grand que n’importe quel élément de Λj). Remarquons
que in,β = iβ. On pose alors :

λ( f , β) = min{νj,ij,β(∂j,b f ) + bβ | b ∈ N∗};

U = {b ∈ N∗ | νj,ij,β(∂j,b f ) + bβ = λ( f , β)}.

Remarque II.34 — Comme Rj est noethérien, on a le fait suivant :

∃ b ∈ N∗, ∂j,b f ∈
(

∂j,0 f , ..., ∂j,b f
)
, ∀ b > b.

Ainsi U ⊂ {0, ..., b} est un ensemble fini.

Par abus de notation, on notera inv(∂j,b f ) le monôme de plus petit degré de ι(∂j,b f )

dans W
[[

pΓ′
]]
. On appelle U0 l’ensemble des b ∈ U tels que inε j,ij,β

(T) n’apparaît pas

dans inε j,ij,β

(
ιε j,ij,β ,T

(∂j,b f )
)
. En remplaçant n par j dans le Lemme II.28 (4), on a, pour

tout b ∈ U0 :

νj,ij,β(∂j,b f ) = ν(∂j,b f ) = v
(

ιε j,ij,β
(∂j,b f )

)
;

inv(∂j,b f ) = inv

(
ιε j,ij,β

(∂j,b f )
)
.
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Remarque II.35 — Soit b ∈ U, on a alors :

b ∈ U0 ssi ∃ i0 < ij,β, νj,i0(∂j,b f ) = ν(∂j,b f ).

Comme U et U0 sont des ensembles finis, le même i0 peut être choisi tel que νj,i0 (∂j,b f ) =
ν(∂j,b f ) et ceci pour tout b ∈ U0.

Pour ij,β ordinal limite, prenons i0 ∈ Λj satisfaisant les conditions suivantes :

(1) i0 < ij,β ;

(2) ∀ b ∈ U0, νj,i0(∂j,b f ) = ν(∂j,b f ) ;

(3) ∀ i ∈ Λj, i0 < i < ij,β, ∀ b ∈ U0,

v(ι(∂j,b f )− inv(∂j,b f ))− ν(∂j,b f ) > β − ε j,i ;

(4) ∀ i ∈ Λj, i0 < i < ij,β, ∀ b ∈ {0, ..., b} \U0,

ν(∂j,b f ) + bε j,i > λ( f , β).

Enfin, notons :
∆uj = uj[β]− uj[ε j,i0 ];

∆uj(β) = uj(β)− uj[ε j,i0 ].

Proposition II.36 — Il existe deux polynômes Fβ, F̃β ∈ Aj,β [X] de la forme :

Fβ (X) = F0 + ∑
b∈U0

inv(∂j,b f )X
b;

F̃β (X) = F̃0 + ∑
b∈U0

inv(∂j,b f )X
b;

tels que :

(1) F0, F̃0 ∈ Aj,β ;

(2) τj,β( f ) [λ( f , β)] = Fβ

(
∆uj
)
;

(3) ιj,β( f ) (λ( f , β)) = F̃β

(
∆uj(β)

)
.

Preuve : Dans ce qui suit, on adoptera la convention ε j,Λ j = ∞, pour tout j ∈ {r+ 1, ..., n}.
Supposons d’abord que β 6 ε j,1, alors, uj[β] = ∆uj = 0 et on pose F0 = 0. Dans ce cas,
(2) est trivialement montré et on procède de la même manière pour montrer (3).
Supposons que β > ε j,1. Soit ε ∈ Γ1 ⊗Z Q, ε > 0 suffisamment petit, notons
∂j,b f

(
uj[ε j,i0 ]

)
= ιj,ε j,i0+ε(∂j,b f ) et prenons le développement de Taylor de ι( f ) en uj[β]

en la j-ème variable. On peut alors écrire :

τj,β( f ) = ∑
b∈N

∂j,b f
(
uj[ε j,i0 ]

) (
∆uj
)b .

Par les points (3) et (4) dans le choix de i0, les termes de la forme :
(
ι(∂j,b f )− inv(∂j,b f )

) (
uj[ε j,i0 ]

) (
∆uj
)b , pour b ∈ U0;

et ∂j,b f
(
uj[ε j,i0 ]

) (
∆uj
)b , pour b /∈ U0;

n’interviennent pas dans τj,β( f ) [λ( f , β)]. Ainsi, à l’aide de la Proposition II.33, on a :

τj,β( f ) [λ( f , β)]− ∑
b∈U0

inv(∂j,b f )
(
∆uj

)b
= ιj,ε j,i0+ε( f ) ∈ Aj,ε j,i0+ε

[
uj
(
ε j,i0 + ε

)]
.
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On en déduit donc que :

F0 := τj,β( f ) [λ( f , β)]− ∑
b∈U0

inv(∂j,b f )
(
∆uj
)b ∈ Aj,β.

De la même manière on montre, en faisant un développement de Taylor de ι( f ) en uj(β),
que :

F̃0 := ιj,β( f ) (λ( f , β)) − ∑
b∈U0

inv(∂j,b f )
(
∆uj(β)

)b ∈ Aj,β.

Ainsi, (1), (2), et (3) sont démontrés. Pour conclure il suffit de montrer que :

∀ b ∈ U0, inv(∂j,b f ) ∈ Aj,β.

Soit b ∈ U0 et notons g = ∂j,b f . On pose i0(b) = min{i0 ∈ Λj | νj,i0(g) = ν(g)}. Par la
Proposition II.19, on a :

νj,i0(b)(g) = ν(g) 6 ν(∂j,qg) + qε j,i0(b), ∀ q ∈ N.

Par minimalité de i0(b), il existe q > 0 tel que l’on ait égalité dans l’inégalité précédente ;
prenons alors le plus petit q de la sorte. Le choix d’un tel q entraîne que ν(∂j,qg) =
νj,i0(b)(∂j,qg), en effet, sinon on aurait :

νj,i0(b)(g) 6 νj,i0(b)(∂j,qg) + qε j,i0(b) < ν(∂j,qg) + qε j,i0(b) = ν(g),

ce qui contredit le choix de q. Pour ε ∈ Γ1, ε > 0 suffisamment petit, on a :

λ
(
g, ε j,i0(b) + ε

)
= ν(∂j,qg) + q

(
ε j,i0(b) + ε

)
.

Fixons nous alors ε ∈ Γ1, ε > 0 suffisamment petit tel que inv(ι(g)) =

ι(g)
(

λ
(
g, ε j,i0(b) + ε

))
et ε j,i0(b) + ε < min{β, ε j,i0(b)+1}. Par la Proposition II.33, on en

déduit que :

inv(g) = ι(g)
(

λ
(
g, ε j,i0(b) + ε

))

= ιj,ε j,i0(b)+ε(g)
(

λ
(
g, ε j,i0(b) + ε

))

∈ Aj,ε j,i0(b)+ε

[
uj

(
λ
(
g, ε j,i0(b) + ε

))]
⊂ Aj,β.

�

Proposition II.37 — Soient j ∈ {r, ..., n} et β ∈ Γ1 ∪ {∞}. Si ij,β < Λj, alors uj(β) est
entier sur Aj,β et une relation de dépendance intégrale est donnée par :

F̃0
(

λ
(
Qj,ij,β , β

))
+ ∑

b∈U0

inv

(
∂j,bQj,ij,β

) (
∆uj(β)

)b
= 0.

Preuve : Soient j ∈ {r, ..., n}, β ∈ Γ1 ∪ {∞} et supposons que ij,β < Λj. Par la Proposition
II.36 et par construction des développements de Puiseux, on a :

F̃β

(
∆uj(β)

)
= ιj,β

(
Qj,ij,β

) (
λ
(
Qj,ij,β , β

))
= 0.

De plus, maxU0 = d◦uj

(
Qj,ij,β

)
donc la relation précédente est bien une relation de

dépendance intégrale.
�
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Pour j ∈ {r + 1, ..., n}, notons Aj le sous-anneau de A engendré par Aj−1,∞ et
tous les éléments de la forme uj(ε j,i), i ∈ Λj.

Corollaire II.38 — Soit j ∈ {r+ 1, ..., n}, pour tout β ∈ Γ1 tel que ij,β < Λj on a :

(1) Aj,β est une extension entière de W
[
ι(p), ι(u1), ..., ι(uj−1)

]
;

(2) Aj est une extension entière de W
[
ι(p), ι(u1), ..., ι(uj−1)

]
;

(3) A est une extension entière de W [ι(p), ι(u1), ..., ι(un)].

Preuve : La première assertion découle de la construction des développements de Pui-
seux, la deuxième est une appliction immédiate de la Proposition II.37, enfin, la troi-
sième provient des deux précédentes.

�

Proposition II.39 — Soit j ∈ {r + 1, ..., n}, alors ι(uj) est transcendant sur
W
[
ι(p), ι(u1), ..., ι(uj−1)

]
.

Preuve : Soit P(X) ∈ W
[
ι(p), ι(u1), ..., ι(uj−1)

]
[X] \ {0}, on peut construire f ∈

W
[
u1, ..., uj−1

]
\ {0} tel que ι( f ) = P

(
ι(uj)

)
. Or f 6= 0 donc :

ν( f ) = v(ι( f )) ∈ Γ.

Ainsi, P(ι(uj)) = ι( f ) 6= 0.
�

Corollaire II.40 — Pour j ∈ {r+ 1, ..., n}, ι(uj) est transcendant sur Aj.

Preuve : Soit P(X) ∈ Aj [X] \ {0}. Par le Corollaire II.38 (2), on sait que Aj est une
extension entière deW

[
ι(p), ι(u1), ..., ι(uj−1)

]
, il existe donc unW

[
ι(p), ι(u1), ..., ι(uj−1)

]
-

module de type fini contenu dans Aj et contenant tous les coefficients de P. On peut
alors écrire :

P(X) =
c

∑
b=1

Pb(X)aj,b

où aj,b ∈ Aj et Pb(X) ∈ W
[
ι(p), ι(u1), ..., ι(uj−1)

]
[X], pour b ∈ {1, ..., c}. Comme P 6= 0, il

existe b0 ∈ {1, ..., c} tel que Pb0(X) 6= 0. Or, par la Proposition II.39, ι(uj) est transcendant
sur W

[
ι(p), ι(u1), ..., ι(uj−1)

]
, donc Pb0

(
ι(uj)

)
6= 0 et donc P

(
ι(uj)

)
6= 0.

�

5. Séries de Puiseux universelles

Par le Théorème I.5 de Cohen, on sait que si (R,m, k) est un anneau local régulier
complet de dimension n+ 1, il possède un anneau de coefficients R tel que :

R =

{
k si car(R) = car(k)
W si car(R) 6= car(k)

où W est un anneau complet de valuation discrète de paramètre régulier p et de corps
résiduel k. En notant u = (u1, ..., un+1) un système régulier de paramètres de R, on
suppose que R est de la forme :

R = R[r] [[ur+1, ..., un+1]] ,

avec :

R[r] =
{

k [[u1, ..., ur]] si car(R) = car(k)
R[r] si car(R) 6= car(k)
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où R[r] est un anneau local régulier complet, éventuellement ramifié, de dimension r
(remarquons que ce cas englobe le cas non-ramifié, en effet, si R est de caractéristique
mixte et non-ramifié, on a R[r] = W [[u1, ..., ur]] et p = ur). Soit ν une valuation de K,
centrée en R, de groupe des valeurs Γ, telle que ν|Kn

soit de rang 1 et telle que ν|R[r] soit
monomiale par rapport au système régulier de paramètres (u1, ..., ur) de R[r] et de rang
rationnel maximal. On note toujours Γ1 le premier sous-groupe isolé non-nul de Γ.

Considérons {cj,β}(j,β)∈{1,...,n+1}×Γ+
des indéterminées et notons L l’anneau formé

des éléments de la forme :

∑
γ

hγ ∏
j,β

c
γj,β

j,β ,

où hγ ∈ R, γ = {γj,β}(j,β)∈{1,...,n+1}×Γ+
∈ N{1,...,n+1}×Γ+ tel qu’un nombre fini de γj,β

soient non-nuls.
Pour j ∈ {1, ..., n + 1}, notons Uj = ∑

β∈Γ+

cj,β. On définit ainsi un morphisme d’an-

neaux φ : R → L par :
∀ a ∈ R, φ(a) = a

φ(uj) = Uj, j ∈ {1, ..., n+ 1}.
et, pour f = ∑

α

aαuα ∈ R, avec aα ∈ R[r], α multi-indice de Nn−r+1, uα = uαr+1
r+1 ...u

αn+1
n+1 ,

on pose :
φ( f ) = ∑

α

φ(aα)φ(u1)α1 ...φ(uc)
αc ,

où φ(aα) est défini en remplaçant ui par Ui, 1 6 i 6 r. Pour f ∈ R, on peut alors écrire :

φ( f ) = ∑
β∈Γ+

fβ,

où fβ est une somme infinie de monômes en cj,β′ de degré β. On pose alors :

I( f ) = 〈{ fβ | ν( f ) > β}〉,

I =

〈
⋃

f∈R
I( f )

〉
.

On note ϕ le morphisme d’anneaux ϕ : R → L/I induit par φ.

Propriété II.41 — Pour tout développement de Puiseux ι : R →֒ AR, il existe un mor-
phisme ψ : L/I → AR tel que ι = ψ ◦ ϕ.

R
ι //

ϕ

��

AR

L/I
ψ

<<
	

Preuve : Nous allons donner la preuve dans le cas mixte non-ramifié, dans le cas équica-
ractéristique, il suffit de remplacer p par t et W par k.
Soit ι : R →֒ AR un développement de Puiseux (Théorème II.24). Pour f ∈ R, notons :

ι( f ) = ∑
β∈S( f )

ι( f )βp
β,
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où S( f ) = {β ∈ Γ′
+ | ι( f )β 6= 0} est, par définition, un ensemble bien ordonné.

On pose alors :
ψ(cj,β) = ι(uj)βp

β, j ∈ {1, ..., n+ 1},
ψ(a) = a, ∀ a ∈ W,

où la notation h désigne la réduction d’un élément h ∈ L modulo I .
Enfin, pour h = ∑

γ∈N{1,...,n+1}×Γ+

hγ ∏
j,β

c
γj,β

j,β ∈ L, on définit ψ par :

ψ(h) = ∑
γ∈N{1,...,n+1}×Γ+

ψ(hγ)∏
j,β

ψ(cj,β)γj,β .

Ainsi, ψ est un morphisme et, pour f ∈ R, ψ ◦ ϕ( f ) = ι( f ) et de plus, v(ψ ◦ ϕ( f )) = ν( f ).
�

Remarque II.42 — Le morphisme ψ n’est pas unique dans le sens où le morphisme
ι n’est pas unique. Lors de la construction de ι on a choisi de définir les développements
de Puiseux des r premières variables u1, ..., ur par tν(u1), ..., tν(ur) (ou pν(u1), ..., pν(ur) dans
le cas mixte). On aurait pu définir ces développements de Puiseux par n’importe quelle
série de la forme ∑

β>ν(uj)

aj,βt
β pour 1 6 j 6 r (ou ∑

β>ν(uj)

aj,βp
β dans le cas mixte) et faire la

construction des autres séries comme dans la preuve du Théorème II.24. En définissant
ψ de la même manière que dans la preuve de Propriété II.41, on obtient un morphisme
d’évaluation différent tandis que la série de Puiseux universelle reste la même.
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CHAPITRE III

Uniformisation locale en caractéristique nulle

Dans ce chapitre nous adaptons l’approche de Spivakovsky ([S1]) pour l’uniformisa-
tion locale des anneaux quasi-excellents équicaractéristiques au cas où le corps résiduel
est de caractéristique nulle. Ce résultat a été demontré pour la première fois par Zariski
en 1939 ([Z1]) dans le cas des les surfaces puis en toutes dimensions par Hironaka en
1964 ([H1]). Il a été redémontré par Villamayor en 1989 ([Vi]), Bierstone et Milman en
1990 ([BM]), Encinas et Villamayor en 2001 ([EV]), Encinas et Hauser en 2002 ([EH]),
Włodarczyk en 2005 ([W]) et Temkin en 2008 ([Tem1]). L’intérêt d’écrire cette preuve
dans le cas de caractéristique nulle nous permet de nous rendre compte des difficul-
tés de la caractéristique positive et mixte. L’algorithme consiste à désingulariser l’idéal
premier implicite qui est en fait engendré par un polynôme unitaire. On se rend alors
compte qu’il suffit de monomialiser les polynômes-clés, qui deviennent des coordonnées
après éclatement, pour avoir le résultat. Toute la difficulté consiste alors à monomialiser
le premier polynôme-clé limite, polynôme qui n’existe pas en caractéristique nulle.

1. Polynômes-clés en caractéristique nulle

Reprenons les notations de la Section 2 du Chapitre II. On considère K →֒ K(x)
une extension de corps simple et transcendante. Soit µ′ une valuation de K(x), notons
µ := µ′

| K. On note G le groupe des valeurs de µ′ et G1 celui de µ. On suppose de plus
que µ est de rang 1, que µ′(x) > 0 et car

(
kµ

)
= 0.

Par le Théorème II.10, on sait qu’il existe un ensemble 1-complet de polynômes-clés
Q = {Qi}i∈Λ et que le type d’ordre de Λ est au plus ω × ω. Si car

(
kµ

)
= 0, on va voir

que le type d’ordre de Λ est au plus ω et par conséquent qu’ il n’y a pas de polynôme-
clé limite. Pour tout i ∈ Λ, notons βi = µ′(Qi).

La construction des polynômes-clés se fait par récurrence (voir [S1], §9 et [HGOAS]).
Pour l ∈ N∗ on construit donc un ensemble de polynômes clés Ql+1 = {Qi}16i6 l ; deux
cas se présentent :

(1) ∃ l0 ∈ N, βl0 /∈ G1 ;

(2) ∀ l ∈ N, βl ∈ G1.

Dans le cas (1), on stoppe la construction. L’ensemble Ql0 = {Qi}16i6 l0−1 est par défi-
nition un ensemble 1-complet de polynômes-clés et Λ = {1, ..., l0 − 1}. Remarquons de
plus que l’ensemble Ql0+1 est quant à lui un ensemble complet de polynômes-clés.
Dans le cas (2), l’ensemble Qω = {Qi}i>1 est infini et Λ = N∗. Les propositions qui
suivent nous assurent que dans ce cas, l’ensemble des polynômes-clés obtenu est égale-
ment 1-complet.

Proposition III.1 — ([S1], Proposition 9.30) Supposons que l’on ait construit un ensemble
infini de polynômes-clés Qω = {Qi}i>1 tel que, pour tout i ∈ N∗, βi ∈ G1. Supposons de plus
que la suite {βi}i>1 n’est pas bornée dans G1. Alors, l’ensemble de polynômes-clés Qω est 1-
complet.
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Preuve : Il suffit de montrer que, pour tout β ∈ G1 et pour tout h ∈ K [x] tels que
µ′(h) = β, h est dans le Rµ-sous-module de K [x] engendré par tous les monômes de la

forme a
s

∏
j=1

Q
γj

ij
, a ∈ K, tels que µ′

(
a

s

∏
j=1

Q
γj

ij

)
> β.

Considérons donc h ∈ K [x] tel que µ′(h) ∈ G1. En notant h =
d

∑
j=0

hjx
j, on peut supposer,

sans perte de généralité, que :

∀ j ∈ {0, ..., d}, µ(hj) > 0.

En effet, dans le cas contraire, il suffit de multiplier h par un élément de K choisi conve-
nablement.
Comme la suite {βi}i>1 n’est pas bornée dans G1, il existe i0 ∈ N∗ tel que :

µ′(h) < βi0 .

Notons alors h =

si0

∑
j=0

cj,i0Q
j
i0
, le développement i0-standard de h. Or, comme ce déve-

loppement est obtenu par division euclidienne, vu le choix fait sur les coefficients de

h et, comme la suite
{

βi

d ◦ (Qi)

}

i>1
est strictement croissante (il suffit de regarder le

développement (i− 1)-standard de Qi), on montre facilement que :

∀ j ∈ {0, ..., si0}, µ
(
cj,i0
)
> 0.

Rappelons que, par construction des polynômes-clés, pour j ∈ {0, ..., si0}, µ′
i0

(
cj,i0
)
=

µ′ (cj,i0
)
. On en déduit alors que :

∀ j ∈ {1, ..., si0}, µ′
(
cj,i0Q

j
i0

)
= µ′

i0

(
cj,i0Q

j
i0

)
> µ′(h).

Ainsi, µ′(h) = µ′ (c0,i0) et donc, h est une somme de monômes en Qi0+1 de valuation au
moins µ′(h) (et en particulier, µ′

i0(h) = µ′(h)).
�

Comme dans la sous-section 2.2 du Chapitre II, on note :

α1 = 1, αi = d ◦
Qi−1

(Qi), ∀ i > 2.

On considère alors deux cas :

(1) ♯{i > 1 | αi > 1} = +∞ ;

(2) ♯{i > 1 | αi > 1} < +∞.

Dans le cas (1), à l’aide de la Proposition III.2, on montre que l’ensemble infini de
polynômes-clés est toujours 1-complet, indépendamment de la caractéristique de kµ.
Dans le cas (2), si la caractéristique de kµ est nulle et si l’ensemble de polynômes-clés
Qω = {Qi}i>1 n’est pas complet, on montre dans la Proposition III.3 que la suite {βi}i>1
n’est jamais bornée. Dans ce cas-là, grâce à la Proposition III.1, on en déduit que l’en-
semble de polynômes-clés Qω = {Qi}i>1 est également 1-complet.

Proposition III.2 — ([S1], Proposition 11.2) Supposons que l’on ait construit un ensemble
infini de polynômes-clés Qω = {Qi}i>1 tel que, pour tout i ∈ N∗, βi ∈ G1. Supposons de plus
que l’ensemble {i > 1 | αi > 1} est infini. Alors, Qω est un ensemble 1-complet de polynômes-
clés.
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Preuve : Soit h ∈ K[x], comme on a vu dans la preuve de la Proposition III.1, il suffit de
montrer que µ′

i(h) = µ′(h) pour un certain i > 1. Or, si on note :

δi(h) = d ◦ (ini(h)) ,

où :
ini(h) = ∑

j∈Si(h,βi)

inµ′
(
cj,i
)
X j,

Si(h, βi) = {j ∈ {0, ..., si} | jβi + µ′ (cj,i
)
= µ′

i(h)},

h =
si

∑
j=0

cj,iQ
j
i,

par le (1) de la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), on a :

αi+1δi+1(h) 6 δi(h), ∀ i > 1.

On en déduit qu’à chaque fois que δi(h) > 0 et αi+1 > 0 :

δi+1(h) < δi(h), ∀ i > 1.

Comme l’ensemble {i > 1 | αi > 1} est infini et que l’inégalité précédente ne peut se
produire une infinité de fois, on en conclut qu’il existe un i0 > 1 tel que δi0(h) = 0 et
donc que µ′

i0(h) = µ′(h).
�

À partir de maintenant, on suppose que l’on a construit un ensemble infini
de polynômes-clés Qω = {Qi}i>1 tel que αi = 1, pour tout i suffisamment grand. Ainsi
pour ces i, on a :

Qi+1 = Qi + zi,

où zi est un développement i-standard homogène, de valuation βi, n’impliquant pas Qi.

Proposition III.3 — ([S1], Proposition 12.8) Supposons que l’on ait construit un ensemble
infini de polynômes-clés Qω = {Qi}i>1 tel que, pour tout i ∈ N∗, βi ∈ G1. Supposons de plus
qu’il existe h ∈ K[x] tel que, pour tout i > 1 :

µ′
i(h) < µ′(h).

Alors, comme car
(
kµ

)
= 0, la suite {βi}i>1 n’est pas bornée dans G1.

Preuve : Par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), la suite {δi(h)}i>1
est décroissante, il existe donc i0 > 1 tel que δi0+t(h) = δi0(h), pour tout t ∈ N. Notons

δ cette valeur commune. Si on note h =
si

∑
j=0

cj,iQ
j
i le développement i-standard de h pour

i > i0, alors, par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), µ′
i(h) =

δβi + µ′ (cδ,i) et µ′ (cδ,i) sont indépendants de i. Il suffit donc de montrer que la suite
{µ′

i(h)}i>1 n’est pas bornée.
Notons :

µ+
i (h) = min

{
µ′
(
cj,iQ

j
i

) ∣∣∣ δ < j 6 si
}
,

ε i(h) = min
{
j ∈ {δ + 1, ..., si}

∣∣∣ µ′
(
cj,iQ

j
i

)
= µ+

i (h)
}
.

Toujours par la Proposition 37 de [HGOAS] (Proposition 11.2 de [S1]), la suite
{ε i(h)}i>i0 est décroissante, il existe donc i1 > i0 tel que cette suite soit constante à
partir de i1. Notons alors c∗δ,i1 ∈ K[x] l’unique polynôme de degré strictement inférieur
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à d ◦ (Qi0) = d ◦ (Qi1) tel que c∗δ,i1cδ,i1 − 1 soit divisible par Qi1 dans K[x]. On peut mon-
trer que µ′

i

(
c∗δ,i1
)
= µ′ (c∗δ,i1

)
, pour tout i > i1. Multiplier h par c∗δ,i1 n’affecte pas δ,

donc multiplier h par c∗δ,i1 ne change rien au problème. On peut donc supposer que
inµ′ (cδ,i) = inµ′

i
(cδ,i) = 1 pour tout i > i1.

Supposons que h = Qi1+1, rappelons que nous sommes dans la situation où Qi+1 =
Qi + zi, pour i > i1 > i0. Les zi n’étant pas uniques, un choix possible de zi, pour i = i1,
est :

zi1 =
cδ−1,i1

δ
.

Par définition de zi1 , µ′ (zi1) = βi1 et βi1 < βi1+1. Par récurrence sur t ∈ N, on construit
Qi1+t.
Il faut tout de même montrer que la propriété « {µ′(Qi+ zi + ...+ zl)}l n’est pas bornée »
ne dépend pas du choix des zi, ..., zl, i 6 l. En effet, supposons que l’on ait construit
une autre suite de la forme {µ′(Qi + z′i + ...+ z′l′)}l′ . Si pour tout l, il existe l′ tel que
µ′(Qi + zi + ... + zl) < µ′(Qi + z′i + ...+ z′l′) alors la suite {µ′(Qi + z′i + ... + z′l′)}l′ ne
peut pas être bornée car sinon la suite {µ′(Qi + zi + ...+ zl)}l le serait ce qui contredit
l’hypothèse de départ. Supposons donc qu’il existe l tel que, pour tout l′, µ′(Qi + z′i +
...+ z′l′) < µ′(Qi+ zi+ ...+ zl). Par la Proposition 9.29 de [S1], il existe un développement
Qi + z′i + ...+ z′l′ + z′′l′+1 + ...+ z′′l′′ tel que Qi + z′′i + ...+ z′′l′′ = Qi + zi + ...+ zl . Ainsi, on
peut construire une troisième suite qui n’est pas bornée.
Comme car(kµ) = 0, le sous-corps premier de K est Q, considérons alors A la Q-sous-
algèbre de K engendrée par tous les coefficients de Ql1 , on a donc que, pour tout t ∈ N,
Qi1+t ∈ A [x]. L’anneau A étant noethérien, l’anneau A [x] l’est aussi. La valuation µ′

| A[x]

est alors centrée en A[x] et
{

µ′
| A[x] (Qi1+t)

}
t∈N

⊂ G1, G1 étant de rang 1. En appliquant

le Lemme I.48, on en déduit que la suite {βi}i>1 ne peut être bornée dans G1.
�

Corollaire III.4 — Si car
(
kµ

)
= 0, il existe un ensemble 1-complet de polynômes-clés

{Qi}i∈Λ tel que Λ est, soit un ensemble fini, soit N∗. En particulier, il n’y a pas de polynômes-
clés limites pour des valuations de rang 1 en caractéristique nulle.

Preuve : On applique le processus de construction de [S1], §9 et [HGOAS]. S’il existe i0 ∈
N, tel que βi0 /∈ G1, on pose Λ = {1, ..., i0 − 1} et, par définition, {Qi}i∈Λ est 1-complet.
Sinon, pour tout i ∈ N, βi ∈ G1 et on pose alors Λ = N∗. Si ♯{i > 1 | αi > 1} = +∞, par
la Proposition III.2, l’ensemble {Qi}i∈Λ est 1-complet. Si ♯{i > 1 | αi > 1} < +∞, par la
Proposition III.3, la suite {βi}i>1 n’est pas bornée dans G1 et donc, par la Proposition
III.1, l’ensemble {Qi}i∈Λ est un ensemble 1-complet de polynômes-clés.

�

2. Théorèmes de monomialisation

Soit (R,m, k) un anneau local régulier complet de dimension n avec m = (u1, ..., un).
Soient ν une valuation de K = Frac(R), centrée en R, de groupe des valeurs Γ et Γ1 le
plus petit sous-groupe isolé non-nul de Γ. On note :

H = { f ∈ R | ν( f ) /∈ Γ1}.
H est un idéal premier de R (voir Preuve du Théorème III.17). On suppose de plus que :

n = e(R, ν) = emb.dim (R/H) ,
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c’est-à-dire que :
H ⊂ m

2.

On note également r = r(R, u, ν) = dimQ

(
n

∑
i=1

Qν(ui)

)
.

La valuation ν est unique si ht(H) = 1, cas auquel on va se ramener grâce au Corollaire
III.10. C’est la composée de la valuation µ : L∗ → Γ1 de rang 1 centrée en R/H, où
L = Frac(R/H), avec la valuation θ : K∗ → Γ/Γ1, centrée en RH, telle que kθ ≃ κ(H).
Par abus de notations, pour f ∈ R, on notera µ( f ) au lieu de µ( f mod H).

2.1. Suites formelles encadrées.

Définition III.5 — Soit (R, u, k) → (R′, u′, k′) une suite locale encadrée, on note H′
0 le

transformé strict de H dans R′. On dit que µ est centrée en R′ si µ est centrée en R′/H′
0. Dans

ce cas, on dit que la suite locale encadrée est une suite locale encadrée par rapport à µ.

Définition III.6 — Soit (R, u) →
(
R(1), u(1)

)
un éclatement local encadré. Le morphisme

induit par complétion formelle est appelé un éclatement formel encadré par rapport à µ.

Soient K̂(1) = Frac
(
R̂(1)

)
, H(0) le transformé strict de H dans R(1) et H

(1)
l’idéal premier

implicite de R̂(1)/H(0)R̂(1).

On appelle transformé de H dans R̂(1), noté H(1), la préimage de H
(1)

dans R̂(1).

Enfin, on appelle valuation induite par µ en R̂(1), notée µ(1), l’unique extension de µ de κ (H)

à κ
(
H(1)

)
, centrée en R̂(1)/H(1) et donnée par le Théorème I.67.

Définition III.7 — Une suite de morphismes locaux :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

est appelée une suite formelle encadrée par rapport à µ si, la suite :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

)

est une suite formelle encadrée par rapport à µ et πl−1 est un éclatement formel encadré par
rapport à la valuation µ(l−1), induite par µ sur R(l−1).

Pour tout éclatement local encadré de la forme (R, u) →
(
R(1), u(1)

)
, on définit une

valuation ν(1) centrée en R̂(1) comme suit : fixons une valuation θ(1) de K̂(1), centrée en(
R̂(1)

)
H(1)

et telle que kθ(1) ≃ κ
(
H(1)

)
. On pose alors ν(1) = θ(1) ◦ µ(1).

Etant donné une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)
;

on peut, par récurrence sur 1 6 i 6 l − 1, construire une valuation µ(i), centrée en R(i)

telle que le plus petit sous-groupe non-nul du groupe des valeurs de ν(i) soit Γ1 et définir
le transformé de H dans R(i), noté H(i). Par construction, on a :

H(i) = { f ∈ R(i) | ν(i)( f ) /∈ Γ1}.
Rappelons alors les notations de la Définition I.87 dans ce cadre :

e
(
R(i), ν(i)

)
= emb.dim

(
R(i)/H(i)

)
;

67



Chapitre III. Uniformisation locale en caractéristique nulle.

r
(
R(i), u(i), ν(i)

)
= dimQ

(
ni

∑
j=1

Qν(i)
(
u(i)j
))

,

où u(i) = (u(i)1 , ..., u(i)ni ).
On note ν0,u la valuation monomiale centrée en R et associée à u = (u1, ..., un) et à

ν(u1), ..., ν(un). Par la Remarque I.52, pour tout f ∈ R, on a :

ν0,u( f ) 6 ν( f ).

Remarque III.8 — Supposons que n = r. Pour une suite formelle encadrée de la
forme :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)
,

on note ν0,u(l) la valuation monomiale centrée en R(l) associée à u(l) et à

ν(l)
(
u(l)1

)
, ..., ν(l)

(
u(l)n

)
.

Si f ∈ H \ {0}, alors :
ν0,u(l)( f ) < ν( f ),

pour toute suite formelle encadrée de la forme précédente et telle que :

ν(l)
(
u(l)1

)
, ..., ν(l)

(
u(l)n

)
∈ Γ1.

Ainsi, comme ν0,u(l)( f ) ∈ Γ1 et ν( f ) /∈ Γ1, on en déduit que H(i) = (0), pour tout i.

2.2. L’idéal premier implicite est engendré par un polynôme unitaire.

Proposition III.9 — Reprenons les hypothèses précédentes et supposons de plus que
car(kν) = 0. R est alors de caractéristique 0 et, par le Théorème I.5 de Cohen, on peut sup-
poser que R s’écrit sous la forme :

R = k [[u1, ..., un]] .

Notons Rn−1 = k [[u1, ..., un−1]] et supposons que H 6⊂ Rn−1 et H ∩ Rn−1 = (0).
Soit f ∈ H \ {0}. À une suite formelle encadrée près, f s’écrit sous la forme :

f = α fn−1P;

où α ∈ R×, fn−1 ∈ Rn−1 et P est un polynôme unitaire en un.

Preuve : La valuation µ de rang 1 centrée en R/H induit une valuation de rang 1 centrée
en Rn−1.
Soit f ∈ H, f 6= 0, on peut écrire f = ∑

j>0
bju

j
n, avec bj ∈ Rn−1. Par hypothèse, on peut

supposer qu’il existe j > 0 tel que bj /∈ H ∩ Rn−1. On pose alors :

β = min
j>0

{µ(bj) | bj /∈ H ∩ Rn−1}.

Soit d le plus petit entier naturel tel que µ(bd) = β (donc bd /∈ H ∩ Rn−1).
Soit N > d un entier naturel non-nul tel que, pour tout j > N,

bj ∈ (b0, ..., bN) .

Soit j ∈ {0, ...,N}, comme, par hypothèses, Rn−1 est un anneau local, régulier et complet,
on peut appliquer le Théorème I.99 à cet anneau, muni de la valuation µ et à l’élément
bj. Il existe donc une suite locale encadrée :

π : (Rn−1, (u1, ..., un−1)) → ... →
(
R′, (u′1, ..., u

′
n−1)

)
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telle que bj est un monôme en (u′1, ..., u
′
n−1) (multiplié par une unité de R′). En passant à

chaque pas de la suite au complété formel, on obtient une suite formelle encadrée telle
que bj est un monôme en (u′1, ..., u

′
n−1) (multiplié par une unité de R′).

De plus, par le (1) de la Proposition I.79, la propriété d’être un monôme fois une unité
est préservée pour tous les éclatements encadrés suivants. Ainsi, on peut choisir π de
telle sorte que les b0, ..., bN soient simultanéments des monômes en (u′1, ..., u

′
n−1).

Par les choix de β et de d et par le Corollaire I.96, après une suite locale encadrée de
plus, on peut se ramener à la situation où bd divise bj, 0 6 j 6 N et donc, bd divise bj
pour tout j > 0.

Ainsi,
f
bd

∈ R′ [[un]] et satisfait les hypothèses du théorème de préparation de Weiers-

trass ([L], Théorème 4.9.2).
�

Corollaire III.10 — Sous les mêmes hypothèses que la Proposition III.9, on a :

ht (H) 6 1.

Preuve : Si H = (0), il n’y a rien à montrer. Sinon, prenons f ∈ H tel que f 6= 0. Comme
la hauteur de H est croissante lorsque l’on fait des suites locales ou formelles enca-
drées, (Corollaire I.72), par la Proposition III.9, on peut supposer que f est un polynôme
unitaire en un à coefficients dans Rn−1. Ainsi, l’extension d’anneaux :

σ : Rn−1 →֒ Rn−1 [[un]] /( f )

est finie. La préimage de l’idéal H/ ( f ) par σ est (0). Comme la hauteur est préservée
par les extensions finies d’anneaux ([Mat1], Théorème 20), on a :

ht (H/( f )) = ht((0)) = 0.

Ainsi, ht (H) = 1.
�

Corollaire III.11 — Sous les hypothèses de la Proposition III.9, à une suite formelle enca-
drée près, l’idéal H est principal engendré par un polynôme unitaire en un.

Preuve : C’est une conséquence directe du Corollaire III.10.
�

2.3. Un premier théorème de monomialisation.

Théorème III.12 — Sous les hypothèses de la Proposition III.9, deux cas se présentent :

(1) Ou bien H 6= (0) et il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que :
(
e
(
R(l), ν(l)

)
, e
(
R(l), ν(l)

)
− r

(
R(l), u(l), ν(l)

))
<lex (e(R, ν), n− r) .

(2) Ou bien H = (0) et pour tout f ∈ R, il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que f soit un monôme en u(l) fois une unité de R(l).
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Preuve : On procède par récurrence sur n − r. Si n = r alors ν(u1), ..., ν(un) sont Q-
linéairements indépendants et donc, tout f ∈ R contient un unique monôme de valua-
tion minimale. En particulier,

∀ f ∈ R, ν0,u( f ) = ν( f ).

Par la Remarque III.8, H = (0). Prenons alors un élément f ∈ R, par le Théorème I.99, il
existe une suite locale encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πi−2 //

(
R(i−1), u(i−1)

) πi−1 //
(
R(i), u(i)

)

telle que f soit un monôme en u(i) fois une unité de R(i). En passant au complété à
chaque pas, on obtient la suite formelle encadrée satisfaisant (2).

Supposons que n − r > 0 et que l’on a déjà construit une suite formelle encadrée
pour toutes les valeurs strictements plus petites et satisfaisant la conclusion du Théo-
rème III.12.
Soit

(
R(i),m(i), k(i)

)
un anneau local apparaissant dans une suite formelle encadrée. Par

le Théorème I.5 de Cohen, on peut supposer que :

R(i) = k(i)
[[

u(i)1 , ..., u(i)ni
]]

.

Dans un premier temps, montrons que l’on peut toujours se ramener aux hypothèses
suivantes :

H(i) ∩ R(i) = (0) , ni = n, ri = r,

où ri = r
(
R(i), u(i), ν(i)

)
. En effet, si pour un certain i, on a :

H(i) ∩ R(i) 6= (0),

en notant :
R(i)
ni−1 = k(i)

[[
u(i)1 , ..., u(i)ni−1

]]
et u(i) =

(
u(i)1 , ..., u(i)ni−1

)
,

on peut appliquer l’hypothèse de récurrence sur n− r pour construire une suite formelle
encadrée :

(
R(i)
ni−1, u

(i)
)

//
(
R(i,1)
ni−1, u

(i,1)
)

// . . . //
(
R(i,l)
ni−1, u

(i,l)
)

telle que e
(
R(i,l)
ni−1, ν

(i,l)
)
< e

(
R(i)
ni−1, ν

(i)
)
= ni − 1. Notons alors :

R(j) = R(i,j)
ni−1

[[
u(i)ni
]]

, 1 6 j 6 l,

on obtient une suite formelle encadrée :

(R, u) //
(
R(1), u(1)

)
// . . . //

(
R(l−1), u(l−1)

)
//
(
R(l), u(l)

)

telle que :

e
(
R(l), ν(l)

)
< e

(
R(i), ν(i)

)
6 e(R, ν).

De même, s’il existe un i tel que ni < n ou ri > r, la suite formelle encadrée recherchée
est déjà construite et il n’y a rien à faire.

Ainsi, on peut supposer que, pour tous les anneaux R(i) apparaissant dans n’importe
quelle suite formelle encadrée :

ni = n, ri = r, H(i) ∩ R(i) = (0).
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En particulier, ν
(i)

| R(i)
ni−1

est de rang 1 et e
(
R(i)
ni−1, µ

(i)
)
= n− 1 = e (Rn−1, µ).

En appliquant le Corollaire III.11 à chaque anneau R(i), on peut supposer, à une suite
formelle encadrée près, que pour tout i, l’idéal H(i) est principal engendré par un poly-
nôme unitaire en u(i)n .
Remarquons qu’il existe alors une unique valuation θ(i) centreée en

(
R(i)

)
H(i)

(c’est

la valuation triviale si ht
(
H(i)

)
= 0 et la valuation discrète centrée en

(
R(i)

)
H(i)

si

ht
(
H(i)

)
= 1). Ainsi, l’extension ν(i) de ν à R(i) est déterminée de manière unique.

Pour achever la preuve du Théorème III.12, il suffit d’obtenir le résultat pour des
polynômes en un.

2.4. Monomialisation des polynômes.

Proposition III.13 — Sous les hypothèses du Théorème III.12, pour tout polynôme
f ∈ k [[u1, ..., un−1]] [un], il existe une suite formelle encadrée (R, u) → (R′, u′) telle que f
soit un monôme en u′ fois une unité de R′. Supposons de plus que f soit irréductible dans
k [[u1, ..., un−1]] [[un]], la suite formelle encadrée précédente peut alors être choisie de telle sorte
que u′n divise f et u′2n ne divise pas f dans R′.

Preuve du Théorème III.12 en supposant la Proposition III.13 vraie :
Si H 6= (0), prenons f ∈ H ∩ k [[u1, ..., un−1]] [un], f 6= 0 ; sinon, prenons
f ∈ k [[u1, ..., un−1]] [un] \ {0}. Par hypothèses, il existe une suite formelle enca-
drée (R, u) → (R′, u′) telle que f soit un monôme en u′ fois une unité de R′. Notons H′

le transformé de H dans R′.
Si H 6= (0), alors, par définition, ν( f ) /∈ Γ1 et donc, il existe un j tel que ν(u′j) /∈ Γ1,
c’est-à-dire, u′j ∈ H′. Ainsi, e(R′, ν) 6 n− 1 < n = e(R, ν) et on est dans la situation (1)
du Théorème III.12. Si H = (0) et f ∈ k [[u1, ..., un−1]] [un] \ {0}, on se retrouve dans la
situation (2) par hypothèses.
Enfin, si H = (0) et f ∈ R \ {0}, non-nécessairement un polynôme en un, écrivons
f = f ′ + f ′′ avec ν0,u( f ′′) > ν( f ) (et donc ν( f ) = ν( f ′)). Par le cas polynomial vu avant,
il existe une suite formelle encadrée (R, u) → (R′, u′) telle que f ′ soit un monôme en u′

multiplié par une unité de R′. Or ν0,u′( f
′′) > ν0,u( f ′′) > ν( f ) = ν( f ′). Par le Corollaire

I.96, quitte à compléter, il existe une suite formelle encadrée (R′, u′) → (R′′, u′′) telle
que f soit un monôme en u′′ multiplié par une unité de R′′.

�

Preuve de la Proposition III.13 : On va montrer le résultat par récurrence sur le de-
gré de f . Si d ◦

un( f ) = 1, la Proposition III.13 est alors évidente.
Soit f ∈ k [[u1, ..., un−1]] [un] de degré d > 1. Par hypothèse de récurrence on suppose
que la Proposition III.13 est vraie pour tout polynôme de degré strictement inférieur à
d.
Par le Corollaire III.4, comme car (kν) = 0, il existe i ∈ N∗ tel que ν( f ) = νn,i( f ). Ceci
veut dire qu’il existe un développement (n, i)-standard de f de la forme :

f =
N

∑
j=0

cjQ
j
n,i,

où les cj sont des développements (n, i)-standards n’impliquant pas Qn,i et ν( f ) =
νn,i( f ).
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On rappelle que pour i ∈ N∗, on note αn,i = d ◦
Qn,i−1

(Qn,i).
Supposons qu’il existe l ∈ N∗ tel que αn,l > 1, prenons alors ce l. S’il n’en existe pas,

prenons un l suffisamment grand tel que f =
N

∑
j=0

cjQ
j
n,l et ν( f ) = νn,l( f ). Dans tous les

cas, par définition des polynômes-clés et par le Corollaire III.4, l < ω.
Pour achever la preuve de la Proposition III.13, il nous suffit donc d’obtenir le résul-

tat voulu sur les polynômes-clés comme nous allons le voir dans la sous-section 2.5 et la
Proposition III.14.

2.5. Monomialisation des polynômes-clés.

Proposition III.14 — Sous les hypothèses du Théorème III.12, il existe une suite formelle
encadrée :

(R, u) → (R′, u′)

où u = (u1, ..., un), u′ = (u′1, ..., u
′
n), vérifiant les propriétés suivantes :

(1) Pour tout q ∈ N∗ tel que 1 6 q 6 l, Qn,q est un monôme en u′ fois une unité de R′ ;

(2) Dans R′, u′n divise Qn,l mais u′2n ne divise pas Qn,l.

Preuve de la Proposition III.13 en supposant la Proposition III.14 vraie :
Par hypothèse de récurrence sur n − r, n’importe quelle collection d’éléments de
k ((u1, ..., un−1)) peut être transformée simultanément en monômes via une suite
formelle encadrée. De plus, en appliquant n − r − 1 fois la Proposition I.100, on peut
supposer que seuls les u′1, ..., u

′
r apparaissent dans ces monômes.

Si αn,l = 1, on applique la Proposition I.100 à chaque polynôme-clé Qn,1, ...,Qn,l et la
Proposition III.13 est démontrée.

Supposons que αn,l > 1. Notons f =
d

∑
j=0

aju
j
n, aj ∈ k [[u1, ..., un−1]]. Soit j0 le plus grand

j ∈ {0, ..., d} tel que ν(aj0 ) = min
06j6d

{ν(aj)}. Par le Corollaire I.96, après une suite locale

encadrée indépendante de un, et quitte à compléter, on peut supposer que aj0 divise aj,
pour tout j ∈ {0, ..., d}. En appliquant le théorème de préparation de Weierstrass ([L],
Théorème 4.9.2), on peut supposer que f est un polynôme unitaire en un de degré d.

Soit f =
N

∑
j=0

cjQ
j
n,l, N =

⌊
d

αn,l

⌋
, le développement (n, l)-standard de f . Par la Proposition

III.14, il existe une suite formelle encadrée telle que le développement (n, l)-standard de

f dans R′ soit de la forme
N

∑
j=0

c′ju
′j
n , c′j ∈ k′

[[
u′1, ..., u

′
n−1
]]
, multiplié par une unité de R′.

Notons j′0 le plus grand j ∈ {0, ...,N} tel que ν(c′j′0 ) = min
06j6N

{ν(c′j)}. Toujours par

le Corollaire I.96, après une suite locale encadrée indépendante de u′n, et quitte à
compléter, on peut supposer que c′j′0 divise c′j, pour tout j ∈ {0, ...,N}. En appliquant le
théorème de préparation de Weierstrass ([L], Théorème 4.9.2), on peut supposer que f
est un polynôme unitaire en u′n de degré inférieur ou égal à N < d. Pour conclure il
nous suffit juste d’appliquer l’hypothèse de récurrence.

�

Preuve de la Proposition III.14 : Comme l ∈ N∗, le développement standard de
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Qn,l est :

Qn,l = Qαn,l
n,l−1 +

αn,l−1

∑
j=0


 ∑

γn,l−1

cn,l,j,γn,l−1
Q

γn,l−1
n,l−1


Qj

n,l−1.

Par hypothèse de récurrence, pour des valeurs strictement inférieures à n− r, il existe
une suite formelle encadrée (R, u) → (R′, u′), indépendante de un telle que chaque
élément cn,l,j,γn,l−1

soit un monôme en u′1, ..., u
′
n−1 multiplié par une unité de R′.

Pour chaque j ∈ {r + 1, ..., n − 1}, appliquons la j-suite élémentaire uniformisante de
la Remarque I.103, suivie à chaque fois d’une complétion formelle. On arrive alors à la

situation où les ∑
γn,l−1

cn,l,j,γn,l−1
Q

γn,l−1
n,l−1 sont des monômes en u′1, ..., u

′
r fois une unité de R′.

Appliquons l − 1 fois la Proposition I.100, on peut supposer de plus que :

Qn,l−1 = ηu′n,

où η est un monôme en u′1, ..., u
′
n−1 fois une unité de R′.

En appliquant la Proposition I.100 à u′1, ..., u
′
r, u

′
n, quitte à passer au complété, on ob-

tient une suite formelle encadrée (R′, u′) → (R′′, u′′) telle que Qn,l soit un monôme
en u′′1 , ..., u

′′
r , u

′′
n . On en déduit immédiatement (1) et (2) par construction, cei achève la

preuve de la Proposition III.14 et donc celle du Théorème III.12.
�

2.6. Un deuxième théorème de monomialisation.

Soient (R,m, k) un anneau local régulier complet de dimension n tel que m = (u) =
(u1, ..., un). Soient ν une valuation de K = Frac(R) centrée en R et de groupe des valeurs
Γ. Notons Γ1 le plus petit sous-groupe isolé non-nul de Γ. On pose :

H = { f ∈ R | ν( f ) /∈ Γ1}.

On suppose de plus que :

n = e(R, ν) = emb.dim (R/H) ,

c’est-à-dire que :

H ⊂ m
2.

La valuation ν considérée est la composée de la valuation µ : L∗ → Γ1 de rang 1 centrée
en R/H, où L = Frac(R/H), avec la valuation θ : K∗ → Γ/Γ1, centrée en RH, telle que
kθ ≃ κ(H).

Considérons un sous-anneau local (T,mT) de R, non-nécessairement noethérien,
contenant u1, ..., un et tel que T/mT ≃ k. Soient J ⊂ {1, ..., n} et j ∈ J tels que :

ν(uj) 6 ν(ui), i ∈ J.

Soit π0 : (R, u) →
(
R(1), u(1)

)
l’éclatement encadré le long de (uJ) par rapport à ν

(Définition I.84), notons m(1) l’idéal maximal de R(1).

Définition III.15 — Le transformé de T par π0 est l’anneau :

T(1) = T
[
u′j\{0}

]
m1∩T

[
u′j\{0}

] .
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On dit que l’éclatement π0 est défini sur T si u(1) ⊂ T(1).
Pour une suite locale encadrée de la forme :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)

les notions de transformé T(i) de T et de définie sur T sont définies par récurrence sur 1 6

i 6 l. Plus précisément, la notion de transformé T(i) n’est définie qu’en supposant la suite locale

encadrée (R, u) →
(
R(i−1), u(i−1)

)
définie sur T.

Nous allons montrer qu’indépendamment de la caractéristique de kν, si l’on dispose
d’un théorème du même type que le Théorème III.12 pour un anneau local régulier com-
plet (R,m, k), il va exister une suite locale encadrée (et non plus formelle encadrée) qui
fasse décroître l’invariant e(R, ν). Si R est équicaractéristique, c’est le cas en caractéris-
tique 0, comme on vient de le voir, mais aussi en caractéristique p si [k : kp] < +∞ (voir
[S1], Théorème 15.7) et si la Conjecture IV.15 est vraie. On verra dans le Chapitre IV que
c’est également le cas si R est de caractéristique mixte, sous les conditions [k : kp] < +∞

et ν(p) 6∈ pΓ.

Théorème III.16 — Supposons que le Théorème III.12 soit vrai pour n’importe quel anneau
local régulier complet R muni d’une valuation ν vérifiant les hypothèses de la sous-section 2.6.
Alors :

(1) (a) Ou bien H 6= (0) et il existe une suite locale encadrée (R, u) → (R′, u′) telle que :

e(R′, ν) < e(R, ν).

(b) Ou bien H = (0) et pour tout f ∈ R, il existe une suite locale encadrée (R, u) →
(R′, u′) telle que f soit un monôme en u′ fois une unité de R′.

(2) La suite locale encadrée (R, u) → (R′, u′) de (1) peut être choisie définie sur T.

Preuve : Comme l’on suppose que le Théorème III.12 est vrai pour n’importe quel anneau
local régulier complet R, pour f ∈ R, il existe une suite formelle encadrée :

(R, u) =
(
R(0), u(0)

)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−1 //

(
R(l), u(l)

)

telle que, ou bien e
(
R(l), ν

)
< e(R, ν) si H 6= (0), ou bien f est un monôme en u(l)

fois une unité de R(l) si H = (0). À partir de cette suite formelle encadrée, nous allons

construire, par approximation
(
u(l)
)
-adique, la suite locale encadrée (R, u) → (R′, u′)

recherchée.
Plus précisément, pour s ∈ {1, ..., l}, considérons πs−1 :

(
R(s−1), u(s−1)

)
→
(
R(s), u(s)

)

une des transformations de la suite formelle encadrée, elle consiste en une suite élé-
mentaire uniformisante π0,s (Définition I.102), qui résout les singularités d’un certain
polynôme-clé, suivie d’une complétion formelle. Ainsi, quitte à renuméroter les va-
riables, R(s) est obtenu à partir de R(s−1) en adjoignant des expressions rationnelles
u(s)1 , ..., u(s)r , u(s)n en terme d’éléments de R(s−1) (dont les dénominateurs sont des mo-
nômes en u(s−1)), puis par passage au complété en le centre de la valuation ν.
Pour j ∈ {1, ..., n}, notons µj,s la somme des valuations pour ν des numérateurs et déno-

minateurs de u(s)j , vu en tant que monôme en u(s−1). On note alors :

µs = max
16j6n

{µj,s}.
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Soit β ∈ Γ1 tel que β >
l

∑
q=1

µq. Notons Is le ν0,u(s)-idéal de R(s) défini par :

Is =

{
g ∈ R(s)

∣∣∣∣∣ ν0,u(s)(g) > β −
s

∑
q=1

µq

}
.

Nous allons construire, par récurrence sur s ∈ {1, ..., l}, une suite locale encadrée :

(R, u) =
(
R̃(0), ũ(0)

)
π̃0 //

(
R̃(1), ũ(1)

)
π̃1 // . . . π̃l−1 //

(
R̃(l), ũ(l)

)

définie sur T telle que, pour tout s et j ∈ {1, ..., n}, on ait :

(HR) : ν0,u(s−1)

(
ũ(s)j − u(s)j

)
>

l

∑
q=s+1

µq.

Supposons que la suite locale encadrée soit construite à l’étape s− 1. Quitte à renumé-
roter les variables si nécessaire, on peut supposer que :

u(s)j = u(s−1)
j , r+ 1 6 j 6 n− 1.

L’hypothèse de récurrence :

ν0,u(s−2)

(
ũ(s−1)
j − u(s−1)

j

)
>

l

∑
q=s

µq,

et le fait que les u(s)1 , ..., u(s)r s’expriment de manière rationnelle en fonction de u(s−1)

entraîne que (HR) est vrai pour j ∈ {1, ..., n− 1}.
Reprenons les notations de la sous-section 6.5 du Chapitre I. Considérons :

r

∑
i=1

αjν
(
u(s−1)
j

)
= αν

(
u(s−1)
n

)
,

la plus petite combinaison Z-linéaire de ν
(
u(s−1)
1

)
, ..., ν

(
u(s−1)
r

)
, ν
(
u(s−1)
n

)
telle que

α ∈ N∗. Notons :

y =
(
u(s−1)
1

)α1
...
(
u(s−1)
r

)αr

et

Q(s) =
d

∑
i=0

biyd−i
(
u(s−1)
n

)iα
,

le polynôme Q apparaissant dans la Proposition I.100 correspondant à la suite élé-
mentaire uniformisante π0,s. Pour chaque bi apparaissant dans Q(s), choisissons b̃i ∈(
R̃(s−1)

)×
∩ T(s−1) tel que :

ν0,u(s−1)

(
b(s)j − b̃(s)j

)
>

l

∑
q=s

µq.

Posons :

Q̃(s) =
d

∑
i=0

b̃iy
d−i
(
u(s−1)
n

)iα
,
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et π̃s−1 la n-suite élémentaire uniformisante déterminée par ces données. Anisi, avec
Q(s) et Q̃(s), on montre que (HR) est vraie pour j = n.
La suite locale encadrée que l’on vient de construire par récurrence :

(R, u) =
(
R̃(0), ũ(0)

)
π̃0 //

(
R̃(1), ũ(1)

)
π̃1 // . . . π̃l−1 //

(
R̃(l), ũ(l)

)

définie sur T, telle que, pour tout s et j ∈ {1, ..., n} :

ν0,u(s−1)

(
ũ(s)j − u(s)j

)
>

l

∑
q=s+1

µq,

implique que inν

(
u(s)j

)
= inν

(
ũ(s)j

)
, vus en tant qu’éléments de

(
grν

(
R(l)

))∗
, al-

gèbre qui contient la sous-algèbre grν

(
R̃(s)

)
. De même, la valuation monomiale ν0,u(l)

de Frac
(
R(l)

)
, restreinte à R̃(l), coïncide avec la valuation monomiale ν0,ũ(l) . On a alors

inν
0,u(l)

(
u(s)j

)
= inν

0,u(l)

(
ũ(s)j

)
, vus en tant qu’éléments de

(
grν

0,u(l)

(
R(l)

))∗
, algèbre qui

contient la sous-algèbre grν
0,u(l)

(
R̃(s)

)
.

Si H = (0) et f ∈ R \ {0} est monomialisé par la suite formelle encadrée, l’égalité
précédente implique que :

f = ̟ + f̃ ,

où ̟ est un monôme en ũ(l) et ν0,ũ(l)( f̃ ) > ν(̟).
Si H 6= (0) et f ∈ H \ {0} dont le transformé strict devient un paramètre régulier dans
R(l), alors :

f = Q̃(l) + f̃ ,

où ν0,ũ(l)( f̃ ) > ν(Q̃(l)). En appliquant le Corollaire I.96, après une suite monomiale(
R(l), u(l)

)
→ (R′, u′) (respectivement, en appliquant la Proposition I.101, après une

suite locale encadrée indépendante de u(l)n , dans le cas H 6= (0)), on est ramené à la
situation où ̟ divise f̃ , c’est-à-dire à la situation où f = z̟, z unité de R̂′ (respective-
ment, f = zg, où g est un paramètre régulier de R′ et z une unité de R̂′, dans le cas
H 6= (0)).

�

3. Théorèmes d’uniformisation locale en caractéristique nulle

Soit S un anneau local noethérien. Pour montrer que S est transformé en un anneau
régulier via une suite locale encadrée, il faut montrer que ŜH et Ŝ/H le sont, H étant
l’idéal premier implicite de Ŝ. Par le Théorème I.69, si S est quasi-excellent alors ŜH est
régulier. Dans un premier temps, nous allons montrer que, sous certaines hypothèses,
Ŝ/H est aussi régulier. Enfin, grâce à ces deux résultats nous montrerons le théorème
d’uniformisation locale pour des valuations de rang 1 puis pour des valuations de rang
quelconque grâce à [NS].

3.1. Un théorème préliminaire d’uniformisation locale.

Théorème III.17 — Soient (S,m, k) un anneau local noethérien intègre de corps des frac-
tions L et µ une valuation de L de rang 1 et de groupe des valeurs Γ1 centrée en S telle que
car
(
kµ

)
= 0.

76



3. Théorèmes d’uniformisation locale en caractéristique nulle.

Notons u = (u1, ..., un) un ensemble minimal de générateurs de m et H l’idéal premier implicite
de Ŝ.
Soient f1, ..., fs ∈ m tels que µ( f1) = min

16j6s
{µ( f j)}. Il existe alors une suite locale encadrée :

(S, u, k) =
(
S(0), u(0), k(0)

) ρ0 //
(
S(1), u(1), k(1)

) ρ1 // . . . ρi−1 //
(
S(i), u(i), k(i)

)
,

ayant les propriétés suivantes :
notons Hi l’idéal premier implicite de Ŝi et f j l’image de f j mod Hi, 1 6 j 6 s, alors :

(1) Ŝi/Hi est régulier ;

(2) Pour 1 6 j 6 s, f j est un monôme en u(i) fois une unité de Ŝi/Hi ;

(3) Pour 1 6 j 6 s, f1 divise f j dans Ŝi/H i.

Preuve : Notons σ : S → Ŝ le morphisme de complétion formelle. Par le Théorème I.67,
µ s’étend de manière unique en une valuation µ̂ centrée en Ŝ/H. Notons u = (y, x) tel
que x = (x1, ..., xl), l = e(S, µ) (voir Définition I.87), y = (y1, ..., yn−l) et les images des
x1, ..., xl dans Ŝ/H induisent un ensemble minimal de générateurs de (mŜ)/H.
Par le Théorème I.5 de structure de Cohen, on sait qu’il existe un anneau local régulier
complet de caractéristique nulle R et un morphisme ϕ surjectif :

ϕ : R ։ Ŝ/H.

Notons H = ker ϕ, comme H est un idéal premier (Théorème I.67), H est un idéal
premier de R. On choisit R de telle sorte que dim(R) = l. Notons K le corps des fractions
de R. Soit θ une valuation de K centrée en RH telle que kθ = κ(H). Si l’on regarde
µ̂ comme une valuation centrée en R/H via le morphisme ϕ, on peut considérer la
valuation ν = µ̂ ◦ θ centrée en R et de groupe des valeurs Γ. Alors, Γ1 est le plus petit
sous-groupe isolé non-nul de Γ et :

H = { f ∈ R | ν( f ) 6∈ Γ1}.
De plus, car (kν) = car

(
kµ

)
= 0. On s’est donc ramené aux hypothèses du Théorème

III.12.
Soit T = ϕ−1(σ(S)), c’est un sous-anneau local de R d’idéal maximal ϕ−1(σ(m)) =
m ∩ T. Ainsi, T contient x1, ..., xl et :

T/(m ∩ T) ≃ k.

Comme le Théorème III.12 est vrai en caractéristique 0, on peut appliquer le Théorème
III.16. Ainsi, plusieurs cas se présentent :

(1) Si H 6= (0), il existe une suite locale encadrée (R, x) →
(
R(i), x(i)

)
telle que

e(R, ν) décroisse strictement. En particulier, ce cas ne peut arriver qu’un nombre
fini de fois, ainsi, on arrive à la situation où H = (0) et donc R/H est régulier.

(2) Si H = (0), alors pour chaque f j, 1 6 j 6 s, il existe une suite locale encadrée

(R, x) →
(
R(i), x(i)

)
telle que f j soit un monôme en x(i) multiplié par une unité

de R(i).

Par la Proposition I.79, la propriété d’être un monôme fois une unité est préservée par
les suites locales encadrées. Ainsi, en itérant la procédure de (2), on arrive à la situation
où tous les f1, ..., fs sont simultanéments des monômes en x(i). Après une suite locale
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encadrée de plus (R, x) →
(
R′, x′

)
, on peut supposer que les f j sont des monômes uni-

quement en x′1, ..., x
′
r, 1 6 j 6 s, r = r(R, x, ν) (voir Définition I.87). Enfin, en appliquant

plusieurs fois le Corollaire I.92, on est ramené à la situation où chaque f j est un monôme
en x′1, ..., x

′
r, 1 6 j 6 s et, pour j, j′ ∈ {1, ..., s}, f j divise f j′ ou f j′ divise f j. De plus, toutes

ces suites locales encadrées sont définies sur T. Considérons le diagramme suivant :

(R, x, k)
π0 //

��

(
R(1), x(1), k(1)

)
π1 //

��

. . . πi−1 //
(
R(i), x(i), k(i)

)

��(
Ŝ/H, x, k

)
π̃0 //

(
S̃(1), x(1), k(1)

)
π̃1 // . . . π̃i−1 //

(
S̃(i), x(i), k(i)

)

(S, u, k)
ρ0 //

OO

(
S(1), u(1), k(1)

) ρ1 //

OO

. . . ρi−1 //
(
S(i), u(i), k(i)

)

OO

Par ce que l’on vient de voir, la première colonne et la première ligne on déjà été
construit. En passant au transformé strict de R/H ≃ Ŝ/H à chaque étape de la suite
(πj)16j6i−1, on construit la suite d’éclatements encadrés

(
π̃j
)
16j6i−1 de Ŝ/H définie sur

S. Enfin, la suite
(
π̃j
)
16j6i−1 se relève en une suite locale encadrée (ρj)16j6i−1.

Si R/H est singulier, par le Théorème III.16, il existe une suite locale encadrée (πj)16j6i−1
qui fasse décroître e(R, ν). Ainsi, la suite locale encadrée (ρj)16j6i−1 résultante possède
la propriété :

e
(
S(i), µ

)
< e(S, µ).

Ceci n’arrive qu’un nombre fini de fois. Ainsi, après un nombre fini de pas, on arrive à la

situation où Ŝ(i)/H
(i)

est régulier. Maintenant, si l’on suppose que Ŝ(i)/H
(i)

est régulier,
considérons f1, ..., fs des éléments non-nuls de S tels que µ( f1) = min

16j6s
{µ( f j)}, alors, par

le (2) vu plus haut, on en déduit que, pour 1 6 j 6 s, f j mod Hi sont des monômes en
u(i) et f1 mod Hi divise f j mod Hi.

�

3.2. Uniformisation locale plongée pour des valuations de rang 1.

Avant d’énoncer et de démontrer le théorème d’uniformisation locale plongée pour
des valuations de rang 1, nous allons donner un lemme un peu plus général et indépen-
dant de la caractéristique qui nous sera également utile dans le Chapitre V.

Lemme III.18 — ([S1], Lemme 16.3) Soient (A,m, k) un anneau local noethérien, ν une
valuation centrée en A et J un ν-idéal premier de A non maximal. Notons h = ht(J). Supposons
que AJ et A/J soient réguliers. Notons u = (u1, ..., un) un ensemble minimal de générateurs de
m et supposons que u = (x, y) avec x = (x1, ..., xl) et y = (y1, ..., yn−l) tels que :

(1) x induit un système régulier de paramètres de A/J ;

(2) il existe un ensemble minimal de générateurs (ŷ1, ..., ŷn−l) de J et des monômes
̟1, ...,̟n−l en x tels que ̟1/.../̟n−l de sorte que (ŷn−l−h+1, ..., ŷn−l) induit un
système régulier de paramètres de AJ et, pour tout N ∈ N∗, il existe vj ∈ A× tel que :

ŷj − yj − ̟jvj ∈ ̟jm
N ,
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1 6 j 6 n− l. Remarquons que, par convention, on peut avoir yj = ŷj, ̟j = 0, vj = 1
et (y) = J.

Soient f1, ..., fs ∈ A tels que :
ν( f1) 6 ... 6 ν( fs).

Soit (T,mT) un sous-anneau local de A non nécessairement noethérien tel que T/mT = k. Enfin,
supposons que pour tout g1, ..., gt ∈ A tels que :

ν(g1) 6 ... 6 ν(gt),

il existe une suite locale encadrée (A, u) → (A′, u′) indépendante de y et définie sur T telle que,
pour tout 1 6 j 6 t, gj mod J′ est un monôme en u′ et gq mod J′ divise gi mod J′, 1 6 q 6 i 6 t
(où J′ est le transformé strict de J dans A′).
Il existe alors une suite locale encadrée (A, u) → (A′′, u′′) par rapport à ν et définie sur T telle
que A′′ soit régulier.
Supposons de plus que l’une au moins des deux conditions suivantes est vérifiée :

(3) fi /∈ J, 1 6 i 6 s ;

(4) yj = ŷj, 1 6 j 6 n − l (donc J = (y)), T = A et, pour tout 1 6 i 6 s, fi est un
monôme en (yn−l−h+1, ..., yn−l) et fi/ fi+1 dans AJ .

La suite locale encadrée (A, u) → (A′′, u′′) précédente peut alors être choisie de telle sorte que
les fi soient des monômes en u′′ multipliés par une unité de A′′ et telle que fi/ fi+1 dans A′′,
1 6 i 6 s.

Preuve : Nous ne donnerons qu’une idée de preuve, pour plus de détails, on peut consul-
ter [S1]. Si J = (0), il n’y a rien à montrer ; supposons donc que J 6= (0). À partir de
la suite locale encadrée (A, u) → (A′, u′), on veut construire une suite locale encadrée
(A, u) → (A′′, u′′) définie sur T telle que A′′ soit régulier. Pour cela il suffit d’avoir :

A′′ = Fitth(J
′′/J′′2),

où Fitth(J
′′/J′′2) est le h-ième idéal de Fitting de J′′/J′′2. Par hypothèse et après une suite

locale encadrée n’impliquant que des variables en x, on peut se ramener à la situation où
Fitth(J

′/J′2) est principal et engendré par un monôme en x noté a. Quitte à renuméroter
les variables de y, on peut supposer qu’il existe n− l − h relations de la forme :

ψj = aŷj +
n−l

∑
q=n−l−h+1

aj,q ŷq + gj,

où gj ∈ J′2 et a divise aj,q pour 1 6 j 6 n− l − h et n− l − h+ 1 6 q 6 n− l. Si on a (4),
alors :

ν0,u(yj) > ν(a), 1 6 j 6 n− l.

Comme J est un ν-idéal alors yj ∈ J et a /∈ J. Supposons que l’on n’a pas (4) et prenons
N ∈ N tel que :

N >
1

ν0,u(m)


ν(̟n−l) + max

16q6s
fq/∈J

{ν( f ), ν(a)}


 .

Considérons une variable xj de x telle que xα
j divise ̟1 pour un certain α ∈ N∗. On

éclate l’idéal (y, xj) et on répète cette procédure α fois. On fait de même pour toutes les
autrs variables divisant ̟1. On arrive à la situation où :

ν0,u′(y
′
1) > ν(a) + ν(̟n−l)− ν(̟1).
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On refait pareil pour toutes les autres variables de y, on est ainsi ramené à la situation
où, pour ces nouvelles variables, on a :

ν0,u(y′j) > ν(a), 1 6 j 6 n− l.

Pour chaque variable xj de x divisant a, on éclate en l’idéal (y, xj). Ces éclatements ont
pour effet de multiplier a et les aj,q par xj ainsi que les g1, ..., gt par x

γ
j où γ > 2. Après

un nombre fini de fois, a divise gj et donc a divise ψj, 1 6 j 6 n − l − h. Ainsi, pour
1 6 j 6 n− l− h, les yj s’expriment comme une fonction des variables restantes modulo
m

2. Ceci fait donc décroître emb.dim(A) et donc A est régulier, à une suite formelle
encadrée près.
À partir de maintenant on peut supposer que h = n− l ; pour terminer il faut montrer
que les fi sont des monômes en u′′ multipliés par une unité de A′′. Quitte à diviser fi
par un monôme en y, on peut supposer que (3) est toujours vérifiée. Si (4) est vérifiée
alors :

ν0,u(yj) > ν( fi), 1 6 j 6 n− l, 1 6 i 6 s.

Si (4) n’est pas vérifiée, l’inégalité précédente reste vraie par le choix de N. Ainsi, pour
1 6 i 6 s, on a :

fi = ρi + f̃i,

où ρi est un monôme en x et ν0,u( f̃i) > ν0,u(ρi). On applique le Corollaire I.96 à chaque
fi, 1 6 i 6 s et on obtient le résultat cherché.

�

Passons maitenant au théorème d’uniformisation locale plongée pour des valuations
de rang 1 sur un anneau équicaractéristique dont le corps résiduel est de caractéristique
nulle.

Théorème III.19 — Soient (S,m, k) un anneau local intègre quasi-excellent de corps des
fractions L et µ une valuation de L de rang 1 et de groupe des valeurs Γ1 centrée en S telle que
car
(
kµ

)
= 0.

Notons u = (u1, ..., un) un ensemble minimal de générateurs de m.
Soient f1, ..., fs ∈ m tels que µ( f1) = min

16j6s
{µ( f j)}. Il existe alors une suite locale encadrée :

(S, u, k) =
(
S(0), u(0), k(0)

) ρ0 //
(
S(1), u(1), k(1)

) ρ1 // . . . ρi−1 //
(
S(i), u(i), k(i)

)
,

ayant les propriétés suivantes :

(1) Si est régulier ;

(2) Pour 1 6 j 6 s, f j est un monôme en u(i) fois une unité de Si ;

(3) Pour 1 6 j 6 s, f1 divise f j dans Si.

En d’autres termes, µ admet une uniformisation locale plongée au sens de la Propriété I.63.

Preuve : Reprenons les notations du Théorème III.17. On a vu qu’il existe un morphisme
surjectif :

ψ : Ŝ ։ Ŝ/H ≃ R/H.

Par le Théorème III.17, après une suite locale encadrée auxiliaire, on peut supposer
que Ŝ/H est régulier et donc que R/H ≃ k [[x1, ..., xl]]. Ainsi, il existe un ensemble de
générateurs ŷ = (ŷ1, ..., ŷn−l) de H et des séries formelles φj ∈ k [[x1, ..., xl]] tels que :

ŷj = yj + φj ∈ Ŝ, 1 6 j 6 n− l.
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Quitte à renuméroter les yj, on peut supposer que :

µ(y1) 6 µ(y2) 6 ... 6 µ(yn−l).

En appliquant le Corollaire I.96 aux monômes de φj, 1 6 j 6 n− l, on peut supposer
que :

φj = ̟jv̂j,

où les ̟j sont des monômes en x1, ..., xl, v̂j ∈ k [[x1, ..., xl]]
× et tels que :

̟1/.../̟n−l.

Ainsi, on en déduit que :

∀ j ∈ {1, ..., n− l}, ∀ N ∈ N∗, ∃ vj ∈ S×, ŷj − yj − ̟jvj ∈ ̟jm
N.

Enfin, rappelons que, par le Corollaire I.69, l’anneau ŜH est régulier. On applique alors
le Lemme III.18 à A = Ŝ, J = H, T = S et ν = µ. On en déduit alors une uniformisa-
tion locale plongée (Propriété I.63) de Ŝ. Comme S est quasi-excellent, par le (2) de la
Remarque I.12, on en déduit que S est régulier.

�

3.3. Théorèmes d’uniformisation locale plongée.

Corollaire III.20 — Soient (S,m, k) un anneau local intègre quasi-excellent de corps des
fractions L et ν une valuation de L centrée en S et de groupe des valeurs Γ telle que car (kν) = 0.
Alors, ν admet une uniformisation locale plongée au sens de la Propriété I.63.

Preuve : On applique le Théorème III.19 et le Théorème 1.3 de [NS].
�

Corollaire III.21 — Soient (S,m, k) un anneau local intègre quasi-excellent de corps des
fractions L et ν une valuation de L centrée en S et de groupe des valeurs Γ telle que car (kν) = 0.
Pour I un idéal de S, la paire (S, I) admet une uniformisation locale plongée par rapport à ν au
sens de la Définition I.61.

Preuve : C’est une application immédiate du Corollaire III.20.
�

Théorème III.22 — Soit (S,m, k) un anneau local (non nécessairement intègre) quasi-
excellent. Soient P un idéal premier minimal de S et ν une valuation du corps des fractions de
S/P centrée en S/P et de groupe des valeurs Γ telle que car (kν) = 0.
Il existe alors un éclatement local π : S → S′ par rapport à ν tel que S′red soit régulier et
Spec(S′) soit normalement plat le long de Spec(S′red), c’est-à-dire que l’anneau S admet une
uniformisation locale par rapport à ν au sens de la Propriété I.58.

Preuve : Nous reprenons la preuve du Théorème 16.5 de [S1]. Par le Corollaire III.21,
il existe une suite locale encadrée (S, u) → (S′, u′) le long de centres ne contenant
aucune composante irréductible du transformé strict de Spec (Sred), tel que Spec

(
S′red

)

soit régulier. On peut donc supposer que Sred est régulier. Il reste à montrer qu’il existe
une suite locale encadrée telle que Spec(S′) soit normalement plat le long de Spec(S′red).

Soit (y1, ..., yh) =
√
(0) ⊂ S, c’est l’idéal qui définit Spec (Sred) dans Spec(S).

Rappelons que pour un anneau local noethérien (R, n), le cône tangent de Spec(R) est
défini par :

Spec

(
⊕

n>0

n
n/nn+1

)
.
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Il suffit de construire une suite locale encadrée telle que le cône tangent de Spec(S′) soit

définit par un idéal engendré par des éléments de k
[
y′1, ..., y

′
h

]
, où y′j est le transformé

strict de yj dans S′ et yj est l’image naturelle de yj dans l’algèbre graduée de S′, 1 6 j 6 h.
Notons A = Sred, A′ = S′red, on peut alors écrire S sous-la forme :

S = A [y1, ..., yh] /I.

Notons f1, ..., fs ∈ A [y1, ..., yh] un ensemble de générateurs de I et (x1, ..., xr) un ensemble
minimal de générateurs de l’idéal maximal de A.
Pour 1 6 j 6 s, notons f j = ∑

α

cj,αyα ∈ A[y]. On va construire une suite locale encadrée

et une partition (u′) = (y′, x′) de (u′) où (y′) est le transformé strict de (y).

Soit ν0,x′ la valuation monomiale de A′ associée à x′ et à
{

ν
(
x′j
)}

j
(Corollaire I.50). Par

le Corollaire III.21, on peut construire une suite locale encadrée (S, u) → (S′, u′) telle
que les cj,α soient des monômes en x′ fois une unité de A′.
Pour tout j ∈ {1, ..., s}, notons µj = max{N ∈ N∗ | f j ∈ (y)N} et f ′j = ∑

α

c′j,αy
′α ∈ A′[y′]

le transformé strict de f j dans S′ = A′[y′]. Pour chaque x′t apparaissant dans c′j,α, pour
un certain j et un certain α tel que |α| = µj, éclatons en l’idéal (y′1, ..., y

′
h, x

′
t) un nombre

suffisant de fois. On arrête le processus lorsque, pour 1 6 j 6 s et α tel que |α| > µj,
il existe α̃ tel que c′j,α̃ divise c′j,α, avec |α̃| = µj. Par le Corollaire I.96, on sait que, pour
chaque j, il existe bien α̃ tel que |α̃| = µj et pour tout α, c′j,α̃ divise c′j,α. Ainsi, le cône

tangent de Spec(S′) est défini par des polynômes qui ne dépendent que de y′1, ..., y
′
h. On

en conclut que Spec(S′) est normalement plat le long de Spec(S′red).
�

Remarque III.23 — Cette preuve ce généralise indépendamment de la caractéris-
tique de kν lorsque la propriété d’uniformisation locale plongée est vérifiée au sens de
la Définition I.61.
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CHAPITRE IV

Monomialisation en caractéristique mixte

Soient (R,m, k) un anneau local régulier complet de caractéristique mixte de dimen-
sion n avec m = (x) = (x1, ..., xn) et ν une valuation de K = Frac(R) centrée en R, de
groupe des valeurs Γ. Soit Γ1 le plus petit sous-groupe isolé non-nul de Γ. On note :

H = { f ∈ R | ν( f ) /∈ Γ1}.
H est un idéal premier de R (voir Preuve du Théorème V.1). On suppose de plus que :

n = e(R, ν) = emb.dim (R/H) ,

c’est-à-dire que :
H ⊂ m

2.

On note également r = r(R, x, ν) = dimQ

(
n

∑
i=1

Qν(xi)

)
.

La valuation ν considérée est la composée de la valuation µ : L∗ → Γ1 de rang 1 centrée
en R/H, où L = Frac(R/H), avec la valuation θ : K∗ → Γ/Γ1, centrée en RH, telle que
kθ ≃ κ(H).
Par abus de notations, pour f ∈ R, on notera µ( f ) au lieu de µ( f mod H).

Remarque IV.1 — Si p ∈ H, alors R/H est équicaractéristique et on est sous les
hypothèses du Chapitre 15 de [S1]. Dans la suite on supposera donc que p /∈ H.

1. Suites formelles encadrées et anneaux de caractéristique mixte

Lemme IV.2 — Il existe g ∈ W [[u1, ..., un]] à coefficients dans W× tel que :

R ≃ W [[u1, ..., un]] /(p− g).

Preuve : On sait qu’il existe un morphisme surjectif :

ϕ : W [[u1, ..., un]] ։ R,

tel que ϕ(ui) = xi et ϕ|W = idW . Comme R est intègre (voir [G1], Corollaire 17.1.3), ker ϕ

est un idéal premier et, en comparant les dimensions, on en déduit que ht(ker ϕ) 6 1.
Or, W [[u1, ..., un]] est factoriel donc, ker ϕ est un idéal principal engendré par f . Comme
p ∈ m, il existe a1, ..., an ∈ R tels que :

p = a1x1 + ...+ anxn.

Or, ϕ est surjective, il existe donc b1, ..., bn ∈ W [[u1, ..., un]] tes que ϕ(bi) = ai, 1 6 i 6 n.
Notons g = b1u1 + ...+ bnun, alors, p− g ∈ ker ϕ.
Si un des bi est divisible par p, en notant bi = pb′i , b

′
i ∈ W [[u1, ..., un]], on remplace bi

par b′ig. En itérant ce processus, après un nombre au plus dénombrable de pas, on peut
supposer que tous les bi sont non-divisibles par p et donc bi ∈ W×, 1 6 i 6 n.
Vu que p est un paramètre régulier de W [[u1, ..., un]], l’idéal (p − g) est premier, de
hauteur 1 et inclu dans ker ϕ, d’où :

ker ϕ = (p− g).
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avec g ∈ (u1, ..., un)
2 à coefficients non-divisibles par p, donc dans W×.

�

Remarque IV.3 — Si R est ramifié alors g ∈ (u1, ..., un)
2.

A partir de maintenant on suppose que :

R = W [[u1, ..., un]] /(p− g),

avec g ∈ W [[u1, ..., un]] à coefficients dans W× et m = (u1, ..., un) son idéal maximal.

Pour j ∈ {1, ..., n}, notons Kj le corps des fractions de W
[[
u1, ..., uj

]]
. Pour j ∈

{r + 1, ..., n}, on note {Qj,i}i∈Λ j l’ensemble des polynômes-clés de l’extension Kj−1 →֒
Kj−1(uj). Si γ = (γ1, ...,γl), on note :

Q
γ
j,l+1 =

l

∏
i=1

Qγi
j,i.

Définition IV.4 — Soient j ∈ {r + 1, ..., n}, i = (ir+1, ..., ij) ∈ Λr+1 × ...× Λj et f ∈
Kr [ur+1, ..., un]. Un développement i-standard de f est défini par récurrence sur j comme
suit. C’est un développement de la forme :

f = ∑
γ

cγQ
γ
j,ij+1,

où chaque Qγ
j,ij+1 est un monôme ij-standard pour l’extension Kj−1 →֒ Kj−1(uj) et les cγ sont :

(1) tous nuls sauf pour un nombre fini d’entres eux ;

(2) des développements (ir+1, ..., ij−1)-standards, si j > r+ 1 ;

(3) des éléments de Kr, si j = r+ 1.

Un développement i-standard de f est dit strict si c’est un développement ij-standard de f pour
l’extension Kj−1 →֒ Kj−1(uj) et si l’une des conditions suivantes est vérifiée :

(4) j = r+ 1 ;

(5) j > r+ 1 et chaque cγ est un développement (ir+1, ..., ij−1)-standard strict.

Remarque IV.5 — Par la Section 2 du Chapitre II, tout f ∈ Kr [ur+1, ..., un] admet un
un développement i-standard strict.

Pour j ∈ {r, ..., n} et i = (ir+1, ..., ij) ∈ Λr+1 × ...× Λj, on définit par récurrence une
valuation νi de Kj comme suit.
Si j = r, on pose ν∅ = ν| Kr

. Supposons que la valuation ν(ir+1,...,ij−1) de Kj−1 soit déjà
construite. Si f ∈ Kj−1

[
uj
]
, νi( f ) est défini comme l’extension de ν(ir+1,...,ij−1)( f ) détermi-

née par Qj,ij+1. Si f ∈ Kr
[[
ur+1, ..., uj

]]
, posons N suffisamment grand de telle sorte que

f = f1 + f2 avec :

(1) f1 ∈ Kr
[[
ur+1, ..., uj−1

]] [
uj
]
,

(2) f2 ∈
(
uN
j

)
Kr
[[
ur+1, ..., uj

]]
,

(3) ν0,u( f2) > νi( f1).

On pose alors νi( f ) = νi( f1).
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Lemme IV.6 — Supposons que le Théorème III.12 soit vrai pour n’importe quel anneau de
caractéristique positive. Si ν(p) /∈ pΓ, alors, à une suite formelle encadrée près, on peut supposer
R de la forme :

R = R[r] [[ur+1, ..., un]] ,

où R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et tel que
ν|R[r] soit monomiale par rapport au système régulier de paramètres de R[r] et de rang rationnel
maximal.

Preuve : Considérons l’élément g ∈ W [[u1, ..., un]] du Lemme IV.2. Par le Théorème
II.10, pour tout j ∈ {r + 1, ..., n}, la collection {Qj,i}i∈Λ j forme un ensemble complet de
polynômes-clés, il existe donc i = (ir+1, ..., in) ∈ Λr+1 × ...× Λn tel que :

νi(g) = ν(g) et ν
(
Qj,i
)
< p,

pour tout i 6 ij, j ∈ {r+ 1, ..., n} (on rappelle que, vu la Remarque IV.1 et comme p = g
dans R, ν(g) ∈ Γ1).
Notons g l’image de g modulo p dans k [[u1, ..., un]] et νi la valuation définie sur
k ((u1, ..., ur)) [[ur+1, ..., un]] comme la valuation νi mais en regardant les éléments mo-
dulo p. En appliquant le Théorème III.12, supposé vrai dans le cas équicaractéristique, à
la valuation νi, il existe une suite formelle encadrée k [[u1, ..., un]] → k′

[[
u′1, ..., u

′
n
]]

telle
que g soit un monôme en u′ multiplié par une unité de k′

[[
u′1, ..., u

′
n
]]
. On a alors :

ν(g) = νi(g) = νi (g) = ν0,u′ (g) .

En appliquant à chaque étape de l’algorithme du Théorème III.12, supposé vrai dans le
cas équicaractéristique, les mêmes changements de variables à W [[u1, ..., un]], on obtient
une suite W [[u1, ..., un]] → (R(2), u(2)) telle que :

g = u(2)α1
1 ...u(2)αr

r z+ ph,

où α1, ..., αr ∈ Z, z ∈ R(2)×, h ∈ R(2). Or l’algorithme du Théorème III.12 consiste en
une répétition de n-suites élémentaires uniformisantes (Définition I.102), ainsi, par la
Proposition I.82 et par choix de i :

h ∈
(
u(2)1 , ..., u(2)n

)
.

On en déduit donc que :
h 6∈ R(2)×.

On peut alors écrire :

p− g = p(1− h)− u(2)α1
1 ...u(2)αr

r z = w(p− u(2)α1
1 ...u(2)αr

r z′),

où w = 1− h ∈ R(2)× et z′ = zw−1 ∈ R(2)×.
À une suite formelle encadrée près, on peut donc supposer que, dans R, on a :

p = uα1
1 ...uαr

r z

avec α1, ..., αr ∈ Z, z ∈ R×.
Par hypothèses, comme ν(p) /∈ pΓ et R est complet, il existe αi /∈ pZ tel que :

z1/αi ∈ R.

Quitte à faire le changement de variable :

vi = uiz
1/αi ,
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on peut supposer que :

p = uα1
1 ...uαr

r ∈ m
2.

On peut donc supposer, à une suite formelle encadrée près, que R s’écrit sous la forme :

R = W [[u1, ..., un]] /
(
p− uα1

1 ...uαr
r
)
≃ R[r] [[ur+1, ..., un]] ,

où R[r] = W [[u1, ..., ur]] /
(
p− uα1

1 ...uαr
r
)
est un anneau local régulier complet (éventuel-

lement ramifié) de dimension r tel que ν|R[r] = ν0,(u1 ,...,ur) et rg.rat
(

ν|R[r]
)
= r.

�

Remarque IV.7 — Pour que ce le Lemme IV.6 soit vrai, il faut supposer que le
Théorème III.12 est vrai pour n’importe quel anneau de caractéristique positive. On va
voir qu’il est vrai dans le cas où il existe un ensemble complet de polynômes-clés n’ayant
pas de polynômes-clés limites. Sinon il faut supposer que la Conjecture IV.15 est vraie.

2. L’idéal premier implicite est engendré par un polynôme unitaire

À partir de maintenant et ce jusqu’à la fin du Chapitre IV, on suppose que :

ν(p) /∈ pΓ,

R = R[r] [[ur+1, ..., un]] ,

où R[r] est un anneau local régulier complet (éventuellement ramifié) de dimension r et
tel que ν|R[r] soit monomiale par rapport au système régulier de paramètres de R[r] et
de rang rationnel maximal.

Proposition IV.8 — Par le Lemme IV.6, on peut supposer que R s’écrit sous la forme :

R = R[r] [[ur+1, ..., un]] ,

où R[r] est un anneau local régulier complet (éventuellement ramifié). Notons Rn−1 =
R[r] [[ur+1, ..., un−1]] et supposons que H 6⊂ Rn−1 et H ∩ Rn−1 = (0).
Soit f ∈ H \ {0}. À une suite formelle encadrée près, f s’écrit sous la forme :

f = α fn−1P;

où α ∈ R×, fn−1 ∈ Rn−1 et P est un polynôme unitaire en un.

Preuve : La preuve est la même que celle de la Proposition III.9.
�

Corollaire IV.9 — Sous les mêmes hypothèses que la Proposition IV.8, on a :

ht (H) 6 1.

Preuve : La preuve est la même que celle de la Proposition III.10.
�

Corollaire IV.10 — Sous les hypothèses de la Proposition IV.8, à une suite formelle encadrée
près, l’idéal H est principal engendré par un polynôme unitaire en un.

Preuve : C’est une conséquence directe du Corollaire IV.9.
�
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4. Monomialisation des polynômes.

3. Un premier théorème conjectural de monomialisation

Théorème IV.11 — Sous les hypothèses de la Section 2 et les notations de la sous-section
2.1 du Chapitre III, deux cas se présentent :

(1) Ou bien H 6= (0) et il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que :
(
e
(
R(l), ν(l)

)
, e
(
R(l), ν(l)

)
− r

(
R(l), u(l), ν(l)

))
<lex (e(R, ν), n− r) .

(2) Ou bien H = (0) et pour tout f ∈ R, il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que f soit un monôme en u(l) fois une unité de R(l).

Preuve : On procède par récurrence sur n − r. Si n = r alors ν(u1), ..., ν(un) sont Q-
linéairements indépendants et donc, tout f ∈ R contient un unique monôme de valua-
tion minimale. En particulier,

∀ f ∈ R, ν0,u( f ) = ν( f ).

Par la Remarque III.8, H = (0). Prenons alors un élément f ∈ R, par le Théorème I.99, il
existe une suite locale encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πi−2 //

(
R(i−1), u(i−1)

) πi−1 //
(
R(i), u(i)

)

telle que f soit un monôme en u(i) fois une unité de R(i). En passant au complété à
chaque pas, on obtient la suite formelle encadrée satisfaisant (2).

Supposons que n − r > 0 et que l’on a déjà construit une suite formelle encadrée
pour toutes les valeurs strictements plus petites et satisfaisant la conclusion du Théo-
rème IV.11.
Soit R(i) un anneau local apparaissant dans une suite formelle encadrée. Par le Lemme
IV.6, on peut écrire R(i) sous la forme B [[uni ]] où B est un anneau régulier (éventuelle-
ment ramifié) et si H(i) ∩ R(i) 6= (0), alors H(i) ⊂ m

(i)2. Par le Corollaire IV.10, H(i) est
engendré par un polynôme unitaire en uni .

4. Monomialisation des polynômes

Proposition IV.12 — Sous les hypothèses du Théorème IV.11, pour tout polynôme f ∈
R[r] [[ur+1, ..., un−1]] [un], il existe une suite formelle encadrée (R, u) → (R′, u′) telle que f soit
un monôme en u′ fois une unité de R′.

Preuve du Théorème IV.11 en supposant la Proposition IV.12 vraie :
Si H 6= (0), prenons f ∈ H ∩ R[r] [[ur+1, ..., un−1]] [un], f 6= 0, sinon, prenons
f ∈ R[r] [[ur+1, ..., un−1]] [un] \ {0}. Par hypothèses, il existe une suite formelle encadrée
(R, u) → (R′, u′) telle que f soit un monôme en u′ fois une unité de R′. Notons H′ le
transformé de H dans R′.
Si H 6= (0), alors, par définition, ν( f ) /∈ Γ1 et donc, il existe un j tel que ν(u′j) /∈ Γ1,
c’est-à-dire, u′j ∈ H′. Ainsi, e(R′, ν) = n− 1 < n = e(R, ν) et on est dans la situation (1)
du Théorème IV.11. Si H = (0) et f ∈ R[r] [[ur+1, ..., un−1]] [un] \ {0} on se retrouve dans
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Chapitre IV. Monomialisation en caractéristique mixte.

la situation (2) par hypothèses.
Enfin, si H = (0) et f ∈ R \ {0}, non-nécessairement un polynôme en un, écrivons
f = f ′ + f ′′ avec ν0,u( f ′′) > ν( f ) (et donc ν( f ) = ν( f ′)). Par le cas polynomial vu avant,
il existe une suite formelle encadrée (R, u) → (R′, u′) telle que f ′ soit un monôme en u′

multiplié par une unité de R′. Or ν0,u′( f
′′) > ν0,u( f ′′) > ν( f ) = ν( f ′). Par le Corollaire

I.96, quitte à compléter, il existe une suite formelle encadrée (R′, u′) → (R′′, u′′) telle
que f soit un monôme en u′′ multiplié par une unité de R′′.

�

Preuve de la Proposition IV.12 : On va montrer le résultat par récurrence sur le de-
gré de f . Si d ◦

un( f ) = 1, la Proposition IV.12 est évidente.
Soit f ∈ R[r] [[ur+1, ..., un−1]] [un] de degré d > 1. Par hypothèse de récurrence on
suppose que la Proposition IV.12 est vraie pour tout polynôme de degré strictement
inférieur à d.
Par le Théorème II.10, il existe un ordinal i ∈ Λn tel que ν( f ) = νn,i( f ). Ceci veut dire
qu’il existe un développement (n, i)-standard de f de la forme :

f =
N

∑
j=0

cjQ
j
n,i,

où les cj sont des développements (n, i)-standard n’impliquant pas Qn,i.
On rappelle que pour i ∈ Λn, on note αn,i = d ◦

Qn,i−1
(Qn,i), si i possède un prédéces-

seur immédiat, sinon, il existe un indice i0, i-inessentiel, tel que i = i0+, on note alors
αn,i = d ◦

Qn,i0
(Qn,i).

Supposons qu’il existe l ∈ Λn tel que αn,l > 1, prenons alors ce l. S’il n’en existe pas,

prenons un l suffisamment grand tel que f =
N

∑
j=0

cjQ
j
n,l. Dans tous les cas, par définition

des polynômes-clés, l 6 ω.
Si l < ω, notons l0 = l − 1. Si l = ω, prenons l0 ∈ N tel que l = l0+ et suffisam-
ment grand tel que f admette un développement (n,ω)-standard n’impliquant que les
polynômes-clés Qn,ω et Qn,l0 .
Pour conclure, il nous suffit d’avoir le résultat voulu sur les polynômes-clés comme nous
allons le voir dans la Section 5 et la Proposition IV.13.

5. Monomialisation des polynômes-clés

Proposition IV.13 — Sous les hypothèses du Théorème IV.11, il existe une suite formelle
encadrée :

(R, u) → (R′, u′)
où u = (u1, ..., un), u′ = (u′1, ..., u

′
n), vérifiant les propriétés suivantes :

(1) Pour tout q ∈ N tel que 1 6 q 6 l0, les polynômes-clés Qn,q et Qn,l sont des monômes
en u′ fois une unité de R′ ;

(2) Dans R′, u′n divise Qn,l mais u′2n ne divise pas Qn,l.

Preuve de la Proposition IV.12 en supposant la Proposition IV.13 vraie :
Par hypothèse de récurrence sur n − r, n’importe quelle collection d’éléments de
Frac (R[r] [[ur+1, ..., un−1]]) peut être transformée simultanément en monômes via une
suite formelle encadrée. De plus, en appliquant n − r − 1 fois la Proposition I.100, on
peut supposer que seuls les u′1, ..., u

′
r apparaissent dans ces monômes.

88



5. Monomialisation des polynômes-clés.

Si αn,l = 1, on applique la Proposition I.100 à chaque polynôme-clé Qn,1, ...,Qn,l et la
Proposition IV.12 est démontrée.

Supposons que αn,l > 1. Notons f =
d

∑
j=0

aju
j
n, aj ∈ R[r] [[ur+1, ..., un−1]]. Soit j0 le plus

grand j ∈ {0, ..., d} tel que ν(aj0 ) = min
06j6d

{ν(aj)}. Par le Corollaire I.96, après une

suite locale encadrée indépendante de un, et quitte à compléter, on peut supposer
que aj0 divise aj, pour tout j ∈ {0, ..., d}. En appliquant le théorème de préparation de
Weierstrass ([L], Théorème 4.9.2), on peut supposer que f est un polynôme unitaire en
un de degré d.

Soit f =
N

∑
j=0

cjQ
j
n,l, N =

⌊
d

αn,l

⌋
, le développement (n, l)-standard de f . Par la Proposition

IV.13, il existe une suite formelle encadrée telle que le développement (n, l)-standard de

f dans R′ soit de la forme
N

∑
j=0

c′ju
′j
n , c′j ∈ R′[r]

[[
u′r+1, ..., u

′
n−1
]]
, multiplié par une unité

de R′.
Notons j′0 le plus grand j ∈ {0, ...,N} tel que ν(c′j′0 ) = min

06j6N
{ν(c′j)}. Toujours par

le Corollaire I.96, après une suite locale encadrée indépendante de u′n, et quitte à
compléter, on peut supposer que c′j′0 divise c′j, pour tout j ∈ {0, ...,N}. En appliquant le
théorème de préparation de Weierstrass ([L], Théorème 4.9.2), on peut supposer que f
est un polynôme unitaire en u′n de degré inférieur ou égal à N < d. Pour conclure il
nous suffit juste d’appliquer l’hypothèse de récurrence.

�

Preuve de la Proposition IV.13 : Si l ∈ N, alors l possède un prédécesseur immé-
diat. Considérons le développement standard de Qn,l :

Qn,l = Qαn,l
n,l−1 +

αn,l−1

∑
j=0


 ∑

γn,l−1

cn,l,j,γn,l−1
Q

γn,l−1
n,l−1


Qj

n,l−1.

Par hypothèse de récurrence, pour des valeurs strictement inférieures à n− r, il existe
une suite formelle encadrée (R, u) → (R′, u′), indépendante de un telle que chaque
élément cn,l,j,γn,l−1

soit un monôme en u′1, ..., u
′
n−1 multiplié par une unité de R′.

Pour chaque j ∈ {r + 1, ..., n − 1}, appliquons la suite uniformisante j-élémentaire de
la Définition I.102, suivie à chaque fois d’une complétion formelle. On arrive alors à la

situation où les ∑
γn,l−1

cn,l,j,γn,l−1
Q

γn,l−1
n,l−1 sont des monômes en u′1, ..., u

′
r fois une unité de R′.

Appliquons l − 1 fois la Proposition I.100, on peut alors supposer de plus que :

Qn,l−1 = ηu′n,

où η est un monôme en u′1, ..., u
′
n−1 fois une unité de R′.

En appliquant la Proposition I.100 à u′1, ..., u
′
r, u

′
n, quitte à passer au complété, on ob-

tient une suite formelle encadrée (R′, u′) → (R′′, u′′) telle que Qn,l soit un monôme en
u′′1 , ..., u

′′
r , u

′′
n . On en déduit immédiatement (1) et (2) par construction.

Supposons que l = ω. Fixons-nous une injection Γ1 →֒ R. On note alors :

βn,ω = lim
i→+∞

βn,i ∈ R ∪ {∞}.
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Chapitre IV. Monomialisation en caractéristique mixte.

Considérons l0 < ω l’indice ω-inessentiel apparaissant dans le développement (n, l0)-
standard :

Qn,ω =
αn,ω

∑
j=0

cj,l0Q
j
n,l0

,

avec la condition cj,l0 = 0 si l’on est dans l’un des deux cas suivants :

(1) βn,ω < ∞, j 6= 0, j 6= ps ;

(2) βn,ω = ∞, pen,ω ∤ j.

où αn,ω = pen,ω . Par définition, d ◦
un(Qn,l0) = 1 et donc d ◦

un(Qn,ω) = pen,ω .
Appliquons la Proposition I.100 l0-fois (c’est-à-dire appliquée aux polynômes-clés
Qn,1, ...,Qn,l0), on peut supposer de plus que l0 = 1, c’est-à-dire que Qn,l0 = un. Ainsi,
Qn,ω s’écrit sous la forme d’un polynôme unitaire en un (que l’on peut voir comme un
polynôme d’Artin-Schreier généralisé) :

Qn,ω = upen,ω
n +

en,ω−1

∑
j=0

cpju
pj
n + c0,

où c0, cpj ∈ R[r] [[ur+1, ..., un−1]], 1 6 j 6 en,ω − 1. Pour conclure, il faut monomialiser le
premier polynôme-clé limite : c’est la Conjecture IV.15 de la Section 6.

On peut remarquer que, si l’ensemble de polynômes-clés {Qj,i}(j,i)∈{1,...,n}×Λ j

ne possède aucuns polynômes-clés limites, alors la preuve de la Proposition IV.13 est
complète et le Théorème IV.11 est démontré. Remarquons également que si R est de ca-
ractéristique p, on peut l’écrire sous la forme R[r] [[ur+1, ..., un]] avec R [r] = k [[u1, ..., ur]]
et lui appliquer la même méthode pour monomialiser ses éléments. L’hypothèse
ν(p) /∈ pΓ est alors superflue. On peut résumer cela dans le Théorème IV.14 suivant.

Théorème IV.14 — Soit R un anneau local régulier complet de caractéristique p ou mixte
et de dimension n. Soit ν une valuation de Frac(R) centrée en R et de groupe des valeurs Γ. Soit
Γ1 le plus petit sous-groupe isolé non-nul de Γ. On note :

H = { f ∈ R | ν( f ) /∈ Γ1}.
On suppose que n = e(R, ν) et ν(p) /∈ pΓ si R est de caractéristique mixte. Si on se donne un
ensemble de polynômes-clés pour R ne possédant pas de polynômes-clés limites, alors :

(1) Ou bien H 6= (0) et il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que :
(
e
(
R(l), ν(l)

)
, e
(
R(l), ν(l)

)
− r

(
R(l), u(l), ν(l)

))
<lex (e(R, ν), n− r) .

(2) Ou bien H = (0) et pour tout f ∈ R, il existe une suite formelle encadrée :

(R, u)
π0 //

(
R(1), u(1)

)
π1 // . . . πl−2 //

(
R(l−1), u(l−1)

) πl−1 //
(
R(l), u(l)

)

telle que f soit un monôme en u(l) fois une unité de R(l).
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6. Une conjecture de monomialisation pour le premier polynôme-clé limite.

6. Une conjecture de monomialisation pour le premier polynôme-clé limite

Pour achever la preuve de la Proposition IV.13 et donc du Théorème IV.11, il nous
faut monomialiser le premier polynôme-clé limite. Nous proposons ici une conjecture
qui, si elle est vraie, nous permet d’obtenir, via le Théorème IV.16 ainsi que le Chapitre V,
une uniformisation locale des anneaux locaux quasi-excellents de caractéristique mixte
sous les hypothèses [k : kp] < +∞ et ν(p) /∈ pΓ.

Conjecture IV.15 — On suppose que (R,m, k) est de la forme R[r] [[ur+1, ..., un]] où R[r]
est un anneau local régulier complet de dimension r et tel que ν|R[r] soit monomiale par rapport
au système régulier de paramètres de R[r] et de rang rationnel r. Supposons que le premier
polynôme-clé limite Qn,ω de l’extension Kn−1 →֒ Kn−1(un) s’écrit sous la forme :

Qn,ω = upen,ω
n +

en,ω−1

∑
j=0

cpju
pj
n + c0,

où c0, cpj ∈ R[r] [[ur+1, ..., un−1]], 1 6 j 6 en,ω − 1. On suppose de plus que :

[
k : kp

en,ω
]
< +∞.

Il existe alors une suite formelle encadrée :

(R, u) → (R′, u′),

où u = (u1, ..., un), u′ = (u′1, ..., u
′
n), telle que :

(1) Qn,ω est un monôme en u′ fois une unité de R′ ;

(2) Dans R′, u′n divise Qn,ω mais u′2n ne divise pas Qn,ω.

Plus précisément, à une suite formelle encadrée près, il existe j ∈ {r + 1, ..., n− 1} et e ∈ N,
e < en,ω, tels que :

(3) Il existe g, h ∈ R[r] [[ur+1, ..., un−1]] tels que c0 = g+ h ;

(4) ν0,u(h) > pen,ω βn,ω, en particulier, h = 0 si βn,ω = ∞ ;

(5) g contient un monôme de la forme ̟upe

j où ̟ est un monôme en u1, ..., ur et, pour

tous les autres monômes de la forme ̟′ud
j avec ̟′ monôme en u1, ..., uj−1, uj+1, ..., un,

apparaissant dans Qn,ω, ν(̟′) > ν(̟) ;

(6) Si βn,ω = ∞ alors j = n− 1.

Nous allons donner quelques idées pour essayer de démontrer cette conjecture. Il
faut procéder par récurrence sur le degré de Qn,ω. Le fait d’obtenir dans c0 un monôme
de la forme ̟upe

j avec ̟ monôme en u1, ..., ur va nous permettre d’échanger un et uj

et de conclure par récurrence. Il faut donc trouver des invariants par changements de
variables qui soient décroissants. L’idée est d’utiliser les séries de Puiseux pour obtenir
ces invariants qui sont fortement liés aux suites

(
ε j,i
)
i, r + 1 6 j 6 n. Mais on a vu

dans la Remarque II.21 que ces suites ne sont pas invariantes par changements de va-
riables. Il faut donc utiliser les séries de Puiseux universelles pour trouver des invariants
convenables.
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7. Un deuxième théorème de monomialisation via la Conjecture IV.15

Soient (R,m, k) un anneau local régulier complet de caractéristique mixte et de di-
mension n tel que m = (u) = (u1, ..., un). Soient ν une valuation de K = Frac(R) centrée
en R et de groupe des valeurs Γ. Notons Γ1 le plus petit sous-groupe isolé non-nul de Γ.
On pose :

H = { f ∈ R | ν( f ) /∈ Γ1}.
On suppose de plus que :

[k : kp] < +∞,
ν(p) /∈ pΓ

et :
n = e(R, ν), c’est-à-dire, H ⊂ m

2.
La valuation ν considérée est la composée de la valuation µ : L∗ → Γ1 de rang 1 centrée
en R/H, où L = Frac(R/H), avec la valuation θ : K∗ → Γ/Γ1, centrée en RH, telle que
kθ ≃ κ(H).

Considérons un sous-anneau local (T,mT) de R, non-nécessairement noethérien,
contenant u1, ..., un et tel que T/mT ≃ k.

Théorème IV.16 — Sous les hypothèses précédentes et en supposant que la Conjecture
IV.15 soit vraie :

(1) (a) Ou bien H 6= (0) et il existe une suite locale encadrée (R, u) → (R′, u′) telle que :

e(R′, ν) < e(R, ν).

(b) Ou bien H = (0) et pour tout f ∈ R, il existe une suite locale encadrée (R, u) →
(R′, u′) telle que f soit un monôme en u′ fois une unité de R′.

(2) La suite locale encadrée (R, u) → (R′, u′) de (1) peut être choisie définie sur T (voir
Définition III.15).

Preuve : Comme ν(p) /∈ pΓ, par le Lemme IV.6, à une suite formelle encadrée près,
on peut supposer que R est de la forme R[r] [[ur+1, ..., un]] où R[r] est un anneau local
régulier complet de dimension r et tel que ν|R[r] soit monomiale par rapport au système
régulier de paramètres de R[r] et de rang rationnel r.
Or, [k : kp] < +∞, les hypothès de la Conjecture IV.15 sont donc vérifiées et le Théorème
IV.11 est vrai pour l’anneau R. Comme le Théorème IV.11 est l’analogue du Théorème
III.12, alors le Théorème III.16 est vrai pour notre anneau R de caractéristique mixte. Or
ceci n’est rien d’autre que le Théorème IV.16.

�

Remarque IV.17 — Si l’on supprime l’hypothèse ν(p) /∈ pΓ, en faisant la même
preuve et en supposant que la Conjecture IV.15 est vraie, on obtient le même résultat
que celui du Théorème IV.16 pour un anneau de caractéristique p.
Enfin, si l’on suppose qu’il existe un ensemble de polynômes-clés pour R ne possédant
pas de polynômes-clés limites, alors, par le Corollaire IV.14, le Théorème IV.16 est vrai.
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CHAPITRE V

Uniformisation locale en caractéristique mixte

Soit S un anneau local noethérien. Pour montrer que S est transformé en un anneau
régulier via une suite locale encadrée, il faut montrer que ŜH et Ŝ/H le sont, H étant
l’idéal premier implicite de Ŝ. Par le Théorème I.69, si S est quasi-excellent alors ŜH est
régulier. Nous allons montrer que, sous certaines hypothèses, Ŝ/H est aussi régulier.
Ensuite nous montrerons le théorème d’uniformisation locale pour des valuations de
rang 1 puis grâce à [NS], pour des valuations de rang quelconque.

La plupart des preuves de ce chapitre sont les mêmes que celles du Chapitre III,
nous les avons réécrite dans le cas mixte pour plus de clarté.

On suppose que la Conjecture IV.15 est vraie ce qui implique que le Théorème IV.16

est vrai. Remarquons que s’il existe un ensemble de polynômes-clés ne possédant pas de
polynômes-clés limites, la conjecture IV.15 est inutile et le Théorème IV.16 est toujours
vrai.

1. Un théorème préliminaire d’uniformisation locale via la Conjecture IV.15

Théorème V.1 — Soient (S,m, k) un anneau local noethérien intègre de caractéristique
mixte de corps des fractions L et µ une valuation de L de rang 1 et de groupe des valeurs Γ1

centrée en S.
Supposons que [k : kp] < +∞ ainsi que µ(p) 6∈ pΓ1, où p = car(k).
Notons u = (u1, ..., un) un ensemble minimal de générateurs de m et H l’idéal premier implicite
de Ŝ.
Soient f1, ..., fs ∈ m tels que µ( f1) = min

16j6s
{µ( f j)}. Si la Conjecture IV.15 est vraie, alors, il

existe une suite locale encadrée :

(S, u, k) =
(
S(0), u(0), k(0)

) ρ0 //
(
S(1), u(1), k(1)

) ρ1 // . . . ρi−1 //
(
S(i), u(i), k(i)

)
,

ayant les propriétés suivantes :
notons Hi l’idéal premier implicite de Ŝi et f j l’image de f j mod Hi, 1 6 j 6 s, alors :

(1) Ŝi/Hi est régulier ;

(2) Pour 1 6 j 6 s, f j est un monôme en u(i) fois une unité de Ŝi/Hi ;

(3) Pour 1 6 j 6 s, f1 divise f j dans Ŝi/H i.

Preuve : Notons σ : S → Ŝ le morphisme de complétion formelle. Par le Théorème I.67,
µ s’étend de manière unique en une valuation µ̂ centrée en Ŝ/H. Notons u = (y, x) tel
que x = (x1, ..., xl), l = e(S, µ), y = (y1, ..., yn−l) et les images des x1, ..., xl dans Ŝ/H
induisent un ensemble minimal de générateurs de (mŜ)/H.
Par le Théorème I.5 de structure de Cohen, on sait qu’il existe un anneau local régulier
complet de caractéristique mixte R et un morphisme ϕ surjectif :

ϕ : R ։ Ŝ/H.
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Notons H = ker ϕ, comme H est un idéal premier (Théorème I.67), H est un idéal
premier de R. On choisit R de telle sorte que dim(R) = l. Notons K le corps des fractions
de R. Soit θ une valuation de K centrée en RH telle que kθ = κ(H). Si l’on regarde
µ̂ comme une valuation centrée en R/H via le morphisme ϕ, on peut considérer la
valuation ν = µ̂ ◦ θ centrée en R et de groupe des valeurs Γ. Alors, Γ1 est le plus petit
sous-groupe isolé non-nul de Γ et :

H = { f ∈ R | ν( f ) 6∈ Γ1}.

On s’est donc ramené aux hypothèses du Chapitre IV.
Soit T = ϕ−1(σ(S)), c’est un sous-anneau local de R d’idéal maximal ϕ−1(σ(m)) =
m∩ T. Ainsi, T contient x1, ..., xl et :

T/(m ∩ T) ≃ k.

Comme on suppose la Conjecture IV.15 vraie, par le Théorème IV.16, plusieurs cas se
présentent :

(1) Si H 6= (0), il existe une suite locale encadrée (R, x) →
(
R(i), x(i)

)
telle que

e(R, ν) décroisse strictement. En particulier, ce cas ne peut arriver qu’un nombre
fini de fois, ainsi, on arrive à la situation où H = (0) et donc R/H est régulier.

(2) Si H = (0), alors pour chaque f j, 1 6 j 6 s, il existe une suite locale encadrée

(R, x) →
(
R(i), x(i)

)
telle que f j soit un monôme en x(i) multiplié par une unité

de R(i).

Par la Proposition I.79, la propriété d’être un monôme fois une unité est préservée par
les suites locales encadrées. Ainsi, en itérant la procédure de (2), on arrive à la situation
où tous les f1, ..., fs sont simultanéments des monômes en x(i). Après une suite locale
encadrée de plus (R, x) →

(
R′, x′

)
, on peut supposer que les f j sont des monômes

uniquement en x′1, ..., x
′
r, 1 6 j 6 s, r = r(R, x, ν). Enfin, en appliquant plusieurs fois le

Corollaire I.92, on est ramené à la situation où chaque f j est un monôme en x′1, ..., x
′
r,

1 6 j 6 s et, pour j, j′ ∈ {1, ..., s}, f j divise f j′ ou f j′ divise f j. De plus, toutes ces suites
locales encadrées sont définies sur T. Considérons alors le diagramme suivant :

(R, x, k)
π0 //

��

(
R(1), x(1), k(1)

)
π1 //

��

. . . πi−1 //
(
R(i), x(i), k(i)

)

��(
Ŝ/H, x, k

)
π̃0 //

(
S̃(1), x(1), k(1)

)
π̃1 // . . . π̃i−1 //

(
S̃(i), x(i), k(i)

)

(S, u, k)
ρ0 //

OO

(
S(1), u(1), k(1)

) ρ1 //

OO

. . . ρi−1 //
(
S(i), u(i), k(i)

)

OO

Par ce que l’on vient de voir, la première colonne et la première ligne on déjà été
construit. En passant au transformé strict de R/H ≃ Ŝ/H à chaque étape de la suite
(πj)16j6i−1, on construit la suite d’éclatements encadrés

(
π̃j
)
16j6i−1 de Ŝ/H définie sur

S. Enfin, la suite
(
π̃j
)
16j6i−1 se relève en une suite locale encadrée (ρj)16j6i−1.

Si R/H est singulier, par le Théorème III.12, il existe une suite locale encadrée (πj)16j6i−1
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qui fasse décroître e(R, ν). Ainsi, la suite locale encadrée (ρj)16j6i−1 résultante possède
la propriété :

e
(
S(i), µ

)
< e(S, µ).

Ceci n’arrive qu’un nombre fini de fois. Ainsi, après un nombre fini de pas, on arrive à la

situation où Ŝ(i)/H
(i)

est régulier. Maintenant, si l’on suppose que Ŝ(i)/H
(i)

est régulier,
considérons f1, ..., fs des éléments non-nuls de S tels que µ( f1) = min

16j6s
{µ( f j)}, alors, par

le (2) vu plus haut, on en déduit que, pour 1 6 j 6 s, f j mod Hi sont des monômes en
u(i) et f1 mod Hi divise f j mod Hi.

�

2. Uniformisation locale plongée pour des valuations de rang 1

Théorème V.2 — Soient (S,m, k) un anneau local intègre quasi-excellent de caractéristique
mixte de corps des fractions L et µ une valuation de L de rang 1 et de groupe des valeurs Γ1
centrée en S.
Supposons que [k : kp] < +∞ ainsi que µ(p) 6∈ pΓ1, où p = car(k).
Notons u = (u1, ..., un) un ensemble minimal de générateurs de m.
Soient f1, ..., fs ∈ m tels que µ( f1) = min

16j6s
{µ( f j)}. Si la Conjecture IV.15 est vraie, alors, il

existe une suite locale encadrée :

(S, u, k) =
(
S(0), u(0), k(0)

) ρ0 //
(
S(1), u(1), k(1)

) ρ1 // . . . ρi−1 //
(
S(i), u(i), k(i)

)
,

ayant les propriétés suivantes :

(1) Si est régulier ;

(2) Pour 1 6 j 6 s, f j est un monôme en u(i) fois une unité de Si ;

(3) Pour 1 6 j 6 s, f1 divise f j dans Si.

En d’autres termes, µ admet une uniformisation locale plongée au sens de la Propriété I.63.

Preuve : Reprenons les notations du Théorème V.1. On a vu qu’il existe un morphisme
surjectif :

ψ : Ŝ ։ Ŝ/H ≃ R/H.
Par le Théorème V.1, après une suite locale encadrée auxiliaire, on peut supposer que
Ŝ/H est régulier. Par le Lemme IV.6, on peut supposer que R/H ≃ R[r] [[xr+1, ..., xl]].
Ainsi, il existe un ensemble de générateurs ŷ = (ŷ1, ..., ŷn−l) de H et des séries formelles
φj ∈ R[r] [[xr+1, ..., xl]] tels que :

ŷj = yj + φj ∈ Ŝ, 1 6 j 6 n− l.

Quitte à renuméroter les yj, on peut supposer que :

µ(y1) 6 µ(y2) 6 ... 6 µ(yn−l).

Comme µ| R[r] est monomiale, par le Théorème I.99, on peut supposer que les coefficients
de φj, 1 6 j 6 n− l, sont des monômes en x1, ..., xr. En appliquant le Corollaire I.96 aux
monômes de φj, 1 6 j 6 n− l, on peut supposer que :

φj = ̟jv̂j,

où les ̟j sont des monômes en x1, ..., xl, v̂j ∈ R[r] [[xr+1, ..., xl]]
× et tels que :

̟1/.../̟n−l.
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Ainsi, on en déduit que :

∀ j ∈ {1, ..., n− l}, ∀ N ∈ N∗, ∃ vj ∈ S×, ŷj − yj − ̟jvj ∈ ̟jm
N .

Enfin, rappelons que, par le Corollaire I.69, l’anneau ŜH est régulier. On applique alors
le Lemme III.18 à A = Ŝ, J = H, T = S et ν = µ. On en déduit alors une uniformisa-
tion locale plongée (Propriété I.63) de Ŝ. Comme S est quasi-excellent, par le (2) de la
Remarque I.12, on en déduit que S est régulier.

�

3. Théorèmes d’uniformisation locale plongée via la Conjecture IV.15

Corollaire V.3 — Soient (S,m, k) un anneau local intègre quasi-excellent de caractéristique
mixte de corps des fractions L et ν une valuation de L centrée en S et de groupe des valeurs Γ.
Supposons que [k : kp] < +∞ ainsi que ν(p) 6∈ pΓ, où p = car(k).
Si la Conjecture IV.15 est vraie, alors, ν admet une uniformisation locale plongée au sens de la
Propriété I.63.

Preuve : On applique le Théorème V.2 et le Théorème 1.3 de [NS].
�

Corollaire V.4 — Soient (S,m, k) un anneau local intègre quasi-excellent de caractéristique
mixte de corps des fractions L et ν une valuation de L centrée en S et de groupe des valeurs Γ.
Supposons que [k : kp] < +∞ ainsi que ν(p) 6∈ pΓ, où p = car(k).
Si la Conjecture IV.15 est vraie, alors, pour I un idéal de S, la paire (S, I) admet une uniformi-
sation locale plongée par rapport à ν au sens de la Définition I.61.

Preuve : C’est une application immédiate du Corollaire V.3.
�

Théorème V.5 — Soit (S,m, k) un anneau local (non nécessairement intègre), quasi-
excellent et de caractéristique mixte. Soient P un idéal premier minimal de S et ν une valuation
du corps des fractions de S/P centrée en S/P et de groupe des valeurs Γ.
Supposons que [k : kp] < +∞ ainsi que ν(p) 6∈ pΓ, où p = car(k).
Si la Conjecture IV.15 est vraie, alors, il existe un éclatement local π : S → S′ par rapport à ν tel
que S′red soit régulier et Spec(S′) soit normalement plat le long de Spec(S′red), c’est-à-dire que
l’anneau S admet une uniformisation locale par rapport à ν au sens de la Propriété I.58.

Preuve : La preuve est la même que celle du Théorème III.22.
�
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