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Chapter 1

Introduction

1.1 Overview

Suppose k is a field of characteristic p > 0 such that [k : kP] is finite. Let K = k((¢)) be the field of

Laurent series over k. The field K is a valued field with respect to the valuation v given by

o(f) =min{i€Z| fi #0}

for f =3 iz fitt € K, f # 0. The thesis studies the elementary theory of K as a K-module
equipped with the Frobenius map A +— A\ and with the valuation ring Vi = k|[[¢]] as a distinguished
subgroup. This study is meant as a step towards determining the elementary theory of K as a valued
field, which is arguably the main problem left open by the famous papers of Ax-Kochen [AK1],
[AK2] and Ershov [E1], [E2] in the sixties on the elementary theory of local fields of characteristic
Zero.

Let R = K[®] be the ring of twisted polynomials in the variable ® over K determined by the
relations @A = W& for A € K. We make K into a left R-module by A\ - p:= Ay for all A € K and
D= pP.

Let L be the language that has for every element r of R a unary function symbol r- and for
every ¢ € Z a unary predicate V;. We make K into an L-structure by interpreting r- as the action
of r on K and V; as the subgroup of elements with valuation greater than or equal to 7. A main
aim of the thesis is to determine the first order L-theory of this structure K.

In the model theory of modules, so-called positive primitive formulas (short: pp-formulas) play

an important role. A pp-formula of L is an L-formula a(z1,...,2,,) of the form

i, Yn (X1, Ty Y1y e s Yn)

where x1,...,Zm,y1,...,ys are distinct variables and o’ is a conjunction of atomic formulas. The
solution set in the L-structure K of such a pp-formula «(z,...,x,,) is a subgroup of the additive
product group K™, and is called a pp-definable subset (or pp-definable subgroup) of K™.
(Since R is not commutative, a pp-definable subgroup of K™ is not always an R-submodule of the
product module K™.)



A general result about the model theory of modules (see [Ba], [Mo]) stated in Theorem 5.13
implies that every subset of K™ that is definable in the L-structure K is a boolean combination of
pp-definable subsets of K™. Also, the first order theory of the L-structure K is determined by the
indices |a(K)/(a(K)NB(K))| € NU{oo} for all pp-formulas a(z),3(z). Here, and throughout
the thesis, “definable” means “definable without parameters” unless indicated otherwise.

One goal of the thesis is to obtain a procedure to compute the quantity |B/A| for pp-definable
subgroups A and B of K with A C B. The dissertation will also contain results on the structure
of pp-definable subsets of K. For example, such sets are closed with respect to the valuation
topology (see Corollary 7.28). Another result about the model theory of the L-structure K is the
following: If k is model-complete as a module over the subring k[®] of K[®], then the L-structure K
is model-complete. In particular, the L-structure K is model-complete, if k is finite or algebraically
closed.

As the main step, results on the “small” and “large” structure of a pp-definable set are obtained.
Here the “small” structure of a pp-definable set is the structure of the set after intersecting with
a sufficiently small valuation ball V; (i.e. for some large enough ). The “large” structure of a
pp-definable set is the structure of the set after adding a sufficiently large valuation ball V; (i.e. for
some small 7), which results in blurring the small details.

More generally, one can consider an arbitrary valued field (K, v) instead of (k((¢)),v) and replace
the Frobenius map A — AP in the commutation rule @\ = A ® by an arbitrary self-embedding ¢
of the valued field (K, v) to obtain a ring K[®] with ®X = ¢(N\)® for A € K. Many considerations
go through in this more general setting with the following additional assumptions, which are true
for K =k((t)) and ¢ the Frobenius map:

1. The value group I' = v(K \ {0}) is non-trivial and ¢ increases positive valuations (see

Definition 6.12 and Assumption 6.18). This generalizes the Frobenius case v(AP) = pv(A).

2. K has finite dimension over its subfield ¢(K'), and there exists a weakly valuation independent
basis of K over ¢(K) (see Definition 6.3). Such a basis allows one to obtain upper estimates

on the valuation of a linear combination of basis elements in terms of the coefficients. For
K =k((t)) and B a basis of k over k?, the set { bt’| b € B,0 <i < p} is such a basis.

3. Certain pp-definable subsets S of K satisfy a weak optimal approximation property (see
Definition 7.2 and Assumption 7.15). This means that for every point a € K, there is among

elements of S one that is closest to a in some weak sense.

In the situation where the value group of K is Z, for example, if K = k((t)), this is trivially
satisfied. But it also holds in all maximally valued fields (see Proposition 7.13). This as-
sumption is used to obtain a nice “large”-asymptotic notion of size for pp-definable sets (see
Lemma 7.14, Definition 7.16).

4. K is linear ¢-henselian (see Definition 7.20). For K = k((¢)), this holds, because k((t)) is

henselian. This assumption is used to obtain a nice “small” structure of the pp-definable sets
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(see Proposition 7.27).

Every finite system of homogeneous linear equations in the finite set of variables X with coef-
ficients in K[®] can be written as M - x = 07 where M is a matrix over K[®] with some finite row
index set I and column index set X, where 07 is a column vector of zeros with row index set I,
and where z is a column vector whose entries are the variables in X. Since pp-formulas are closely
related to such systems of linear equations, a study of matrices over K[®] seems natural.

As preparation, some known properties of the ring K|[®] are summarized in Chapter 2. Most
important here is the Division Lemma 2.6, which is a non-commutative analogue to the Euclidean
property for a polynomial ring over a field. In Chapter 3, we study matrices over the ring K[®].
The aim is to obtain ways to transform an arbitrary matrix into a nicer form using elementary row
and column operations. For example, using elementary row operations, one can always transform a
matrix into an upper triangular form (see Definition 3.7). Lemma 3.15 will be crucial in showing that
in the “small”, pp-definable sets are just defined by systems of homogeneous linear equations (so no
projection is necessary) after applying some definable bijection (see Proposition 7.27). Proposition
3.18 will be crucial in showing that in the “large”, pp-definable sets are just given as images under
a term map, so no equations are necessary in some sense (see Proposition 7.5).

In Chapter 5, the K|[®]-module structure of K is formally defined and some general results
in the model theory of modules summarized. Chapter 6 deals with the basic valuation estimates
needed to analyze the “small” and “large” structure of pp-definable sets. Most crucial here is
Proposition 6.26, which provides a lower estimate for the valuation of A\; € K in terms v(}_, fi- A\;)
when the f; € K[®] are strongly independent (see Definition 3.16). This proposition is used later
in the proof of Lemma 7.11 and Proposition 7.13.

Chapter 7 deals with the “large” (see Section 7.1) and “small” (see Section 7.2) structure of
pp-definable sets. In both subsections, first a result is obtained that shows that the asymptotic
structure of pp-definable sets is less complicated: In the “large” case, one can essentially dispense
with equational constraints (see Proposition 7.5) and in the “small” case, one can essentially dis-
pense with projections (existential quantifiers) (see Proposition 7.27). Using this simplified struc-
ture, one can in both cases define an asymptotic measure of the size for a pp-definable set, denoted
by dimg (dimension in the “small” setting, i.e. for large positive valuations) and dim, (dimension

in the “large” setting, i.e. for large negative valuations) respectively. These dimensions have values

U

The dimensions are not definable invariants, but depend on the ambient space K". Let C C A C K"
be pp-definable sets. Then dimy, C' < dimy A and dimg C < dimg A, dimy, C = dim, A if and
only if there exists some (possibly large) valuation ball By in K™ such that A+ By = C + By, and
dimy C' = dimg A if and only if there exists some (possibly small) valuation ball By in K™ such that
ANB; = CNBy. If dimy C < dimg A or dimg C' < dimg A, then |A/C| is infinite. Otherwise, one
can reduce the computation of |A/C| to the computation of |A’/C’| for some pp-definable sets A’,

in

z‘eN,je{[K:gb(K)]mymeN}}.



C’ in some simpler factor module (see Result 8.11).

Chapter 4 provides some results about finitely generated free modules over K [®] and submodules
of such modules. These results are needed for the definition of dim,, and dimg. It turns out that
for dims, the free right K[®]-modules play a role (see Section 4.1), and for dimg the free left
K[®]-modules play a role (see Section 4.2).

In Chapter 8, the asymptotic description of pp-definable sets is used to reduce the computation
of pp-indices to certain factor modules of the valuation ring of K, which have in general a simpler
structure than the module K. We also obtain a statement that model-completeness of all these
factor modules implies model completeness of the K, if the valuation ring is pp-definable in K. In
Section 8.2, we obtain a corresponding reduction to statements about the residue field k of K, if
the value group I' of K is Z and k is embedded in K with ¢(k) C k.

1.2 Notations and Conventions

We let N denote the set of natural numbers including 0. If not otherwise stated, the letters i, j,
k, m and n denote elements of N. For example, the statement "7 < n” means i,n € N and ¢ < n.
The set { i| i < n} is sometimes simply denoted by n.

For sets S and I the symbol S’ stands for the set of maps from I to S. An element of S’ is also
called a tuple indexed by I over S. Saying that a = (a;)ics is a tuple over S means that a € S’
and a(i) = a; for all i € I. Such a tuple is said to be finite, if its index set I is finite. Let S™
denote the set ST17<"} We identify this set with the n-fold Cartesian product S x - -- x S. For a
function f:A — B, its restriction to Ag C A is denoted by f[4,-

Throughout we assume that languages and formulas are first-order and one-sorted.



Chapter 2

Rings

This section summarizes properties of twisted polynomial rings over fields and of some auxiliary
rings. In parts, the treatment is more general than needed for later applications. “Ring” always

means “not necessarily commutative ring with 1”.

2.1 Definition. Let R be a ring. A unit in R is an element of R with a two-sided multiplicative
inverse, and R* denotes the set of units of R. An element » € R is called right regular, if s =0
for every s € R with rs = 0. An element r € R is called a left zero-divisor, if r # 0 and rs =0
for some non-zero s € R. There are corresponding definitions with right and left interchanged. We

call R a domain, if R has no left and no right zero-divisors, and 0 # 1 in R.

2.2 Remark. Let R be a ring.
1. An element in R is a left zero-divisor if and only if it is non-zero and not right regular.
2. The units in R form a group with respect to the multiplication.

3. Suppose R is a domain. If r € R has a left (or right) inverse, then this inverse is actually a

two-sided inverse.
2.3 Definition. Let R be a ring and ¢ be a ring endomorphism of R. Let
R[[®]] := R"
be the set of sequences over R. Define the operations

+, - R[®]] x R[[®]] — R[[®]

(f +9)(@) == f(i) + g(i)

and

(F-9)() == 3 F(G)& (gl — ) -

Jj<i



An element f is also denoted by >, f(i)®’. These operations make R[[®]] a ring with 1 = 19Y;

it is called the ring of (left) twisted power series over R with respect to ¢. Let
R[®] :={ f € R[[®]]| f(¢) = 0 for all but finitely many i € N} .

This is a subring of R[[®]], called the ring of twisted polynomials over R with respect to ¢.
For f in R[®]\ {0}, define the degree of f by

deg(f) := max { i € N| f(i) £0}

and call f(deg(f)) the leading coefficient of f. Furthermore, set deg(0) := —oo. For f in
R[[®]] \ {0}, define the order (or lower degree) of f by

ldeg(f) :=min{ie N| f(i) #0}

and call f(ldeg(f)) the trailing coefficient of f. Furthermore, set ldeg(0) := co. We write @ for
the element 10! € R[[®]].

2.4 Remark. Consider the situation of the previous definition.

1. Usually, the ring endomorphism ¢ is given and so does not appear in the notation for the

twisted power series and twisted polynomial ring.

2. R becomes a subring of R[[®]] via the embedding r + r®°. Note that then ®r = ¢(r)® for
r € R.

3. R[®] satisfies the following universal property: For every ring homomorphism p:R — S
and every element s € S such that sp(r) = p(¢(r))s for all » € R, there exists a unique ring
homomorphism p :R[®] — S that extends p and maps ® to s.

4. Suppose [ is a two-sided ideal of R such that ¢(I) C I. Then ¢ induces a ring endomorphism
¢ of R/I by ¢(r/I) = ¢(r)/I. Let (R/I)[[®]] denote the twisted power series ring with respect
to the endomorphism ¢. Let I[[®]] := { 3,y f(i)®" | f € IN }. Then I[[®]] is a two-sided
ideal of R[[®]] and R[[®]]/I[[®]] is canonically isomorphic to (R/I)[[®]]. A similar statement
holds for twisted polynomial rings instead of twisted power series rings.

2.5 Lemma.

1. Let f,g € R[®]. Then
deg(f — g) < max {deg(f),deg(g) }

and
deg(fg) < deg(f) + deg(g) -

If g # 0 and the leading coefficient of g is a unit in R, then the second inequality becomes an
equality.



2. Let f,g € R[[®]]. Then
ldeg(f — g) > min {1deg(f),ldeg(g) }

and

ldeg(fg) > ldeg(f) + ldeg(g) -

If g # 0 and the trailing coefficient of g is a unit in R, then the second inequality becomes an
equality.

3. Suppose R is a domain and ¢ is injective. Then the equality deg(fg) = deg(f)+ deg(g) holds
in R[®] and ldeg(fg) = ldeg(f) + ldeg(g) holds in R[[®]]. Furthermore, R[[®]] and R[®] are

domains.
The proof is obvious.

2.6 Lemma (Division lemma). Let f,g € R[®] such that g # 0 and the leading coefficient of g
is a unit. Then there exist unique q,r € R[®] such that f = qg + r and deg(r) < deg(g).

Proof. Existence: We proceed by induction on the degree of f. If deg(f) < deg(g), one can choose
g=0and r = f. Sosuppose f =Y, fi® and g = > .., ¢;®® with f,, # 0 and g, # 0 and
m > n. Let qo := f,®" "g,!. Then }' = f — qog has deéree less than m, so by the induction
hypothesis, there exist ¢/, € R[®] with f" = ¢'g + r' and deg(r’) < deg(g). Now let ¢ = qo + ¢
and r =1'. Then f = qog+ f' = (q0 + ¢')g + r, and deg(r) < deg(g). This proves existence.
Uniqueness: It suffices to show that for ¢, € R[®] the conditions gg+r = 0 and deg(r) < deg(g)
imply ¢ = 0 and » = 0. But by the previous lemma, since the leading coefficient of g is a unit,
deg(g) > deg(r) = deg(qg) = deg(q) + deg(g), which implies g = 0. O

2.7 Remark.

1. d(f,g) := 2~ 1deg(f=9) Jefines a complete metric on R[[®]].

2. If f € R[[®]] with ldeg(f) > 0, then the sequence (31 %), converges in the above metric.
The limit denoted by >,y f#is a two-sided inverse of 1 — f.

3. f =Y ey fi®" is a unit in R[[®]] if and only if fj is a unit in R.

4. For a complete commutative local ring R and a local ring endomorphism ¢ of R, the following
one-sided analogue of the Weierstrass division theorem holds in R[[®]]: Let m be the maximal
ideal of R. Let f =Y. f(:)®* € R[[®]] and d € N such that f(i) € m for i < d and f(d) is
a unit in R. Then for each g € R[[®]] there exist unique ¢ € R[[®]] and r € R[®] such that
g =qf +r and deg(r) < d. (The statement is not true in general, if ¢f is replaced by fq.)

This version of the Weierstrass division is not used in the thesis.
2.8 Definition. Let R be a ring and S be a multiplicative subset of R, i.e. S contains 1 and is

closed under multiplication. The set S is said to be a left denominator set if the following two

conditions hold:



1. left Ore condition: RsNSr # () for all s € S and r € R (equivalently Rs N Sr # () for all
seSandre R\{0}).

2. If rs=0for r € R and s € S, then there exists s’ € S such that s'r = 0.

2.9 Remark (compare [Row], section 3.1). Let the multiplicative subset S of R be a left denominator
set. Then there exist a ring 7" and a ring homomorphism p :R — T such that p(s) is a unit
for all s € S and p is universal with this property. The universality means that for every ring
homomorphism p' :R — T’ such that p(s) is a unit for all s € S there exists a unique ring
homomorphism 7 :T — T” with p’ = 7p. It follows that, as an R-ring, T is unique up to unique
isomorphism. Every element in 7' can be written as p(s)p(r) for r € R and s € S. The ring T is
called the ring of left fractions of R with respect to S and is denoted by S~!'R.

For every left ideal I of R, the set S™'I = { p(s)~'p(r)| s € S,r € I} is a left ideal of S™'R;
every left ideal of S™!'R is of this form.

If in addition every element in S is right regular, then p is an embedding. In particular, if R
is a domain, then for every multiplicative subset S of R\ {0} that satisfies the left Ore condition
the canonical map R — S™'R is an embedding, and we shall identify R with a subring of S™'R
via this embedding.

2.10 Lemma/Definition. Let K be a field and ¢ be a self-embedding of K.
1. K[[®]] and K[®] are domains. The group of units of K[®]is K* =K\ {0}.
2. Every left ideal of K[®] is a principal left ideal. In particular K[®] is left Noetherian.

3. The left ideal of K[®] generated by ®" is a two-sided ideal. The two-sided ideal m := K[®]®
is maximal as a right and as a left ideal; the map K — K[®]/m, A — A+ m is a ring

isomorphism.

4. The sets Sy = K[®]\ {0} and Sy, = K[®] \ m are left denominator sets of K[®]. The ring
of left fractions (Sp) 1 K[®] is denoted by Q(K[®]) and the ring of left fractions (Sm) LK |[®]
by K[®]m.

5. The left ideal of K[®],, generated by ® is a two-sided ideal and it is a largest proper left and
a largest proper right ideal.

Proof. 1. This follows from Lemma 2.5.

2. Let I be a left ideal of K[®]. If I = {0}, then I = K[®]0. Otherwise, there exists an
element g € I\ {0} with minimal degree. Now let f € I. By the division lemma, there exist
q,r € K[®] such that f = qg + r and deg(r) < deg(g). Since f,g € I, and I is a left ideal,
we have r € I, so by the choice of g it follows that r is 0. Therefore f € K[®]g. This shows
I = K[®]g.



fi®' € K[®] we have ®"f = (3_._  ¢"(f;)®")®", the left
ideal K[®]P" is also a right ideal. It is easy to see that the inclusion K — K[®] induces a

3. Since for every element f =3, _ i<m
ring isomorphism K ~ K[®]/m, which yields also the maximality of m as a left and as a right

ideal.

4. Since K[®]/0 and K[®]/m are domains, the sets Sy and Sy, are multiplicative. Since they
don’t contain 0 and K[®] is a domain, they satisfy the second condition of being a left

denominator set.

We first show the left Ore condition for Sp. Let r € K[®] and s € Sy. We have to show that
there exist f € Sy and g € K|[®] such that fr = gs. If r = 0, then one can choose f =1 and

g = 0, so assume now r # 0.

Consider K[®]<; := { h € K[®]| degh < i} as K-vector space where the action is given by
left multiplication viewing K as a subset of K[®]. We have dimg K[®|<; =i+ 1.

Consider the K-linear map

K[q>]§degs X K[(I)]gdegr I K[(I)]gdegs-i-degra (fa g) = f’l" —gs.

It maps the (deg s+ 1+degr+1)-dimensional K-vector space K[®]<degs X K[P]<degr into the
(deg s +degr + 1)-dimensional K-vector space K[®]<deg s+degr- Thus, there exists a non-zero
element in the kernel of this map, i.e. there exists f € K[®]<qegs and g € K[P|<gegr With
fr—gs=0,and f # 0 or g # 0. Since K[®] is a domain and s # 0, we can conclude that
f#0,s0 f €5y, and we are done.

Next, we show the left Ore condition for Sy. Let r € K[®] and s € Sy, so ldegs = 0. We
have to show that there exist f € S, and g € K[®] such that fr = gs. Again, we can assume
r # 0. Applying the left Ore condition for Sy, we obtain f' € Sy and ¢’ € K[®] such that
f'r = ¢'s. We have ldegg’ = ldegg's = ldeg f'r > ldeg f’. With j := ldeg f’, we obtain
g, f € K[®]®/. Let B C K be a basis of the ¢/(K)-vector space K. The tuple (b®7),cp
is a basis of the right K[®]-module K[®]®7. Therefore, there exist (f3)peB, (g5)ren € K[®]P
with f, = 0, g, = 0 for all but finitely b € B and > ,c g 0P’ fy, = f', 3,5 bP7g, = ¢'. Since
f'r = ¢’s and (b®7)ycp is independent in the right K[®]-module K[®], we obtain f,r = gps
for b € B. Because ldeg f' = j, there exists b € B such that ldeg f, = 0, and for such b we
can take f = f, and g = gp.

5. Let m’ denote the left ideal generated by ® in K[®]n. As in the proof of part 3, one shows
that m’ is a right ideal. It is easy to see that 1 ¢ m’ and that every element in K[®], \ m’ is

a unit.
L]

Similar arguments prove the next lemma.



2.11 Lemma. Let K be a field and ¢ be a self-embedding of K.

1.

2.

The left ideal of K[[®]] generated by ®" is a two-sided ideal.
The set of units of K[[®]] is K[[®]] \ K[[P]]®.

Every left ideal of K[[®]] is a principal left ideal of the form K[[®]]®" for some n, and every
left ideal is a right ideal. In particular, K[[®]] is left Noetherian.

Let m := K[[®]]®. Then m is a two-sided ideal of K[[®]] and it is a largest proper left and a
largest proper right ideal.

The map K — K[[®]]/m, A — XA+ m is a ring isomorphism.
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Chapter 3

Matrix Operations

3.1 Definition. A matrix over the set R with row index set I; and column index set I5 is a map
from I; x Is to R. The set of all such matrices is denoted by RIxI2,

3.2 Remark/Definition. Let R be a ring and V; be a left R-module and V,. be a right R-module.
Let 14, I, I3, I be finite sets. The set Vl[ has naturally the structure of a left R-module by adding

and multiplying componentwise. Then we have the usual operations of matrix multiplication

RI1><12 % ‘/lI2X]3 _ ‘/211><I37 (M, N) — MN
WI1XIQ % R[2><13 N V’thIg’ (]\4‘7 N) — MN
R11><12 > R12><13 _ R11><13, (M,N) — MN

given by (MN)(i1,i3) = 3, cp, M(i1,i2)N(ig,3). If My € Rh*%2 My € RI2* and N € V1,
then (M;M;)N = M, (M,N).

The set MAT;(R) := R"™/ forms a ring with the natural operations. The group of units of
MAT/(R) is denoted by GL;(R). The identity matrix of MAT;(R) is denoted by Id or Id; to
emphasize the index set I.

We call M € RI1*!2 invertible if there exists N € R2*!t such that M N = Id;, and NM = Idy,.

Given disjoint sets Iy, I, disjoint sets Jy, J; and M; € R'*Ji for i = 0,1, define My U M; €
RULL)X(JoL ) Yoy (Mo U My )T, 5 = M; and (Mo U M) [y, = 0 for i =0, 1.

3.3 Definition. Let I be an index set and R be a ring. For 4,i1,i0 € I and r € R, define
Dim’w Ei1,i2ﬂ"’ Fiﬂ” in MATI(R) by Di1,i2 (j17j2> = 5i17j15i27j2 for ji,jo € I, Ei17i2,7’ =1d +rDi1,i2 and
Fiﬂn =1d —i—(r — 1)Dz,z

A restricted elementary matrix in MAT(R) is a matrix of the form E; ;,, with i; # is.
An elementary matrix in MAT(R) is a restricted elementary matrix or a matrix of the form Fj,
with r a unit in R.
3.4 Remark.

1. The elementary matrices lie in GL;(R) and have inverses that are also elementary matrices:

E L = FEi iy (i1 #ig) and Fl_T1 = F; -1 (r a unit of R).

11,82,T
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2. The result of multiplying a matrix M € R!*’ by Ei, i,r € MAT[(R) from the left is the
same as adding the is-row of M multiplied on the left by r to the i;-row of M. The result of
multiplying a matrix M € R™*/ by Ej, j,» € MAT(R) from the right is the same as adding
the ji-column of M multiplied on the right by r to the jo-column of M.

3. An upper triangular matrix in MAT;(R) with all diagonal entries equal to 1 is a product of

restricted elementary matrices.

From now on, assume that K is a field, ¢ a self-embedding of K and K[®] the associated ring

of twisted polynomials.

3.5 Remark/Definition. Let  be the unique ring homomorphism K[®] — K that is the
identity on K and maps ® to 0. Let M € K[®]"*/. By M we denote the matrix in K7*7 that is
obtained by applying  to the entries of M.

We define rankg M as the rank of the matrix M and call M row regular, if rankx M is equal
to the number of rows |I| of M. Similarly, M is called column regular, if ranky M is equal to

the number of columns |J| of M.

3.6 Remark. Let M € K[®)*/ and E € GL;(K[®]). Then rankx EM = ranky M. In particular,
being row regular and being column regular are preserved by multiplying M on the left with

elements in GL;(K[®]). The analogous statements are true for multiplication with elements in
GL;(K[®]) on the right.

3.7 Definition. Let M € K[@]IXJ. Then M is said to be in upper triangular form with respect

to Iy C I, an injection ¢ :Iy — J and a total order < on I, if
1. M is zero on ((I\Io) X J) U{ (il,L(iz))| 11,19 € Iy, 11 > ig};

2. for all 71,19 € Iy with 71 < 19,

ldeg M (i1, ¢(i1)) < ldeg M (ig,t(i2)) < o0}

3. forallz € Iyand j € J,
ldeg M (4, (7)) < ldeg M (i, j).

Note that, if M has some upper triangular form, Iy is uniquely determined as the set of indices
of non-zero rows. We call M . ; the non-zero part of M. If we say M is in upper triangular

form, we fix + and < as above.

Here is a picture of a matrix M € K[®]/*7 that is in upper triangular form with respect to
Ip = {i1,...,im }, < given by 41 < 49 < ... < iy, and some injection ¢ :Ij — J. Note that
J\ «(Iy) ={J1,--.,Jn } in this picture:
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M(il,[,(il)) ........................ M(il,l,(im)) M(il’jl) ........... M(Z‘l’j/n/)
0 0 M itim)) M) Mip g
0 ..................................................................................................... 0
O ..................................................................................................... O

3.8 Remark. Suppose M € K[®]'*/ is in upper triangular form with respect to ¢ :Ip — I and
< as above. Then rankx M = [{7 € Iy| ldeg M (i,:(i)) = 0}| and the non-zero part of M is row
regular if and only if 1deg M (i, (7)) = 0 for all i € Ij.

3.9 Lemma. Let I, J be finite sets, M € K[®|'*/. Then there exists a (possibly empty) product
E of restricted elementary matrices in MAT (K [®]) such that EM is in upper triangular form.

Proof. We start the proof by noting that for each j € J the value min;crldeg M (i, 5) is determined
by the left ideal of K[®] generated by the elements in the j-column, so min;cyldeg M(7,j5) =
min;ey ldeg (EM) (i, j) for every product E of elementary matrices.

The proof is by induction on the cardinality of J. If all entries of M are zero, then M is
already in upper triangular form with respect to Iy = 0. Otherwise, pick a column with index
Jjo € J such that ldeg M (ig, jo) = minses, jesldeg M (i, j) for some ig € I. If for some iy € I\ {io }
the entry M (i1, jo) is non-zero, one can by the division lemma find an element r € K[®] such that
for By := Ej, i, » (in case deg M (i1, jo) < deg M (io, jo)) or Eq := Ej, 4, (in case deg M (ig, jo) <
deg M (i1,jo)) the sum of degrees of non-zero entries in the jg-column of EjM is smaller than
the corresponding sum for the matrix M. By induction on this sum, one can find a product
of restricted elementary matrices Es such that the jp-column of E9M has exactly one non-zero
entry, say in the ig-row. By the note at the start of the proof, we have ldeg (EoM)(ig, jo) =
min;er jesldeg (EoM)(i, 7). By applying the induction hypothesis to the sub-matrix M’ of EsM
with row index set I’ = I\ {i2} and column index set J' = J \ {jo }, we find a product E’ of
restricted elementary matrices in MAT /(K [®]) and data I} C I, /' :I} — J' and <’ on I) such
that E'M’ is in upper triangular form with respect to the data. Then E* € MAT(K[®]) defined
by E*(i,j) = E(i,j) for i,j5 € I', E*(ig,i2) = 1 and E*(i,i2) = 0, E*(ig,i) = 0 for i € I' is a
product of restricted elementary matrices in MAT(K[®]). Set E := E*Ey. Then EM is in upper
triangular form with respect to Iy := I U{ iz }, ¢ := ¢/ U{ (2, jo) } and the order < on I obtained

by extending ¢/ with io as the new smallest element. O

3.10 Corollary. The group of units of MAT (K [®]) is generated as a semigroup by the elementary

matrices.

For the rest of the chapter, assume that K is a finite dimensional vector space over ¢(K). We
fix some basis B of K over ¢(K).
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.11 Remark. One has a natural bijection K¥ — K given by (Ap)sen — Y _pep @(Ap)b. Let T be

the inverse of this map. Denote by 77 the component-wise extension of T' to column vectors in K7’

so Ty : KT — KU*B)y and by T¢ : KT — KI*B' for i € N the composition Ty, gi-10---0T7f, so
I IxB

T? is the identity on K! and T}™ = Ty, pi o T} for all i € N. If the context is clear, the index I

will be dropped in the notation 77 and T}.

3.12 Definition (row and column enlargement of matrices). Let I, J be finite sets.

1. For M € K[®)'*/, define the column enlargement col(M) € (K[®]®)/*(/*B) of M by
col(M)(i, (4, b)) := M(i,7)b®. One can also do column enlargement for a subset Jy of J:
Define coly, (M) = M.\ jo) Y cOl(M [y ,) (regarding the sets J \ Jo and Jo x B as
disjoint); thus, coly, (M) € K[®)'*/" where J* = (J \ Jo) U (Jo x B).

2. For M € (K[®]®)/*/, define the row enlargement row (M) € K[®]U*B)*J of M by the
equations M (7,7) = > pcp(b®) row(M)((4,b),7). Because B is a basis of K over ¢(K), for
every element f € K[®]|® there are unique f, € K[®] with f = >, 5(b®)f,. This is easy to
see for f € K® (then the f are in K) and the general case follows by right linearity of the

relation over K[®].

For I C I and M € K[®]"*/ with M|} ,; € (K[®]®)"*/  define (regarding the sets I\ Iy
and Iy x B as disjoint)

row o (M) = Mr(l\fo)XJ U TOW(M[IOXJ) ;

thus, row, (M) € K[®]"*7 where I* = (I \ Ip) U (I x B).

In the following, row and row;, are viewed as partial functions on K[®]/*/

“rowy, (M) is defined” means M|, ; € (K[®]®)0*/.

i.e. saying

3.13 Remark. Let I, J be finite sets, M € K|[®]/*7.
L. col(M) = (col((M(i,7)))) i, )erxs where (M(i, j)) is considered as a 1-by-1-matrix.

2. row(M) = (row ((M (i, 5)))) ¢ jyerx.s where (M (3, j)) is considered as a 1-by-1-matrix and the
left side is defined if and only if the right hand side is defined.

3. Let A € K and consider the 1-by-1 matrix M = (). Then row(col(M)) € MATp(K).
Considering V = K as a vector space over K via the action p-w = ¢(u)w for p,w € K, the

matrix row (col(M)) represents the K-linear map
V —-V,we dw

with respect to the basis B of V.

4. Let Jo € J and Iy C I. Then coly,(rows,(M)) = rowy,(coly,(M)) whenever rowy, (M) is
defined.
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5. Let L be a finite set and N € K[®]”*£. Then col(M N) = col(M)row(col(N)).

3.14 Lemma. Let I, J be finite sets, M € K[®]'*/. Then there exist t € N, finite sets I, ..., I;
and for each i € {1,...,t} a partial operation op; on K[®)1i-1*7 taking values in K[®]1*  with
Iy = I, such that:

1. Fori=1,...,t, one of the following conditions hold:

(a) I; = I;_1 and op; is left multiplication by a restricted elementary matriz in MAT, (K [®]).
(b) For some I C I;_1, the operator op; is row; and I; = (I;—y \I)U( x B).

2. M := op;o---oop,(M) is defined and a matriz in K[®)"**/ in upper triangular form whose

non-zero part is row regular.

Proof. The proof is similar to that of Lemma 3.9. Again, we do induction on the cardinality of J.
Let M € K[®)"*/ and assume the lemma holds for column sets of smaller cardinality than .J. If
all entries of M are zero, then M is already in upper triangular form with respect to Iy = (), and
the non-zero part of M is the empty matrix, which is row regular.

Otherwise, consider the natural number m := min;er jesldeg M (7,5). Then M is an element
of (K[®]®™)/*7 and we can perform row enlargement on the matrix m times to get a matrix
M € K[®U*B™)*J) with minyerxpm jesldeg M(i',j) = 0. Then we proceed as in Lemma 3.9
to find a product Es of restricted elementary matrices (in MAT . pm (K[®])) such that EsM has
a column with exactly one non-zero entry, and this entry has ldeg 0. Now, one can apply the
induction hypothesis in a similar way as in the proof of Lemma 3.9. Note that here it is essential
to do the induction on the number of columns, since the number of rows of the involved matrices

may increase during the procedure. O
The following lemma is essential in the proof of Proposition 7.27.

3.15 Lemma. Let I, J, Jy be finite sets, J, and Jy, being disjoint, and let J = J, U Jy. Let
M € K[®]*7. Then there exist c,t € N, finite sets Ir, ..., I; and for eachi € {1,...,t} a partial
operation op; on K[®1i-1*7 taking values in K[®)*/ with Iy = I and J = (J, x B¢) U J,, such
that:

1. Fori=1,...,t, one of the following conditions holds:

(a) I; = I;_1 and op; is left multiplication by a restricted elementary matriz in MAT, (K [®]);
(b) for some I* C I;_y, the operator op; is rowp« and I; = (I;_1 \ I*) U (I* x B).

2. With M := (coly, ype-10---0coly o) (M) € K[®*/ where J, x B is identified with J,
in the obvious way, the matriz M := (op,0---oop;)(M) € K[®]/**/ is defined and has the
following form: There exists I C I, such that

(a) Mr(lt\f)ny is a row regular matriz in K[P] (IADX Ty iy upper triangular form;
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(b) Mrfx(Jxch) is a matrix in K[@]fX(JIXBC) in upper triangular form whose non-zero part

is row reqular;
(c) Mrfoy =0.

Here is a picture of M:

upper
L\ * triangular,
row regular

upper
. triangular,
I non-zero part 0
row regular
Jy X B¢ Jy
Proof. Consider the submatrix M, ; and find operations opj for i = 1,...,t" as in the previous
lemma to convert this submatrix to upper triangular form whose non-zero part is row regular. Let
I, ..., Iy be the corresponding finite sets such that op/ is a partial operation on K[®]/i-1*/v with
values in K[®]/*7v. Set Iy = I. Let ¢ be the number of indices i € {1,...,#} such that op} is a
row enlargement, and let M := (coly, wpe-10---0coly ypo)(M). We now let op; for i = 1,...,¢

be the partial operation on K [q)][iflxj with values in K [@]Iixj defined as follows: if op] is left
multiplication with the restricted elementary matrix E in MAT;, | (K[®]), then op; is also left
multiplication with E; if op} is row« for some I* C I;_1, then op; is row-. One verifies easily that
then M’ := (opy o---oop;)(M) is defined and has the following form: There exists I’ C I such
that

1. M’} YxJ, is a row regular matrix in K[(P](It’\f/)x‘]y in upper triangular form.

(It’\f,

2. M'| 0.

f’ny =
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Here is a picture of M’

upper
I\ I’ * triangular,
row regular

J, x B° Jy

Now, we apply the previous lemma to the matrix M’| ) and view the corresponding

I'x(JyxBe
operations as acting on the whole matrix M’. In this case, extending row enlargement is not a

problem, since M’ i 0. U

f’><Jy =
3.16 Definition. Let I be a finite (index) set.

1. Let f = (f;)ier € K[®]!. The degree deg f of f is defined to be max;cs deg f; where max () :=
—oo. If f has degree less than or equal to d € N, then f can be expressed as ngd v].q)j with
v; € K! (where K! is viewed as embedded in K[®]/). If deg f = d, call v, the leading
coefficient vector and G(f) := vq¢?(K) C K the associated subgroup of f.

2. Let J be an index set. A tuple (f;);es over K [®]! is called strongly independent, if all
fj are non-zero and the tuple of additive subgroups (G(f;));es is independent, i.e. for all

(Uj)jEJ S HjGJ G(f]) one has

Zvj:O = vj=0forall jeJ.
JjeJ

3.17 Remark. 1t is easy to see (and shown in Section 4.1) that a strongly independent tuple (f;);es

over K[®]! is independent in the sense of K[®]’ as a right K[®]-module. The converse is not true.

3.18 Proposition. Let I, J be finite sets, M € K[®)'*/. Then there exists a (possibly empty) prod-
uct E of restricted elementary matrices in MAT ;(K[®]) such that non-zero column vectors of ME
are strongly independent, i.e. setting f; == (ME)(i,5))ier € K[®)! and J.o ={je J| f; #0}
the tuple (fj)jer,, is strongly independent.

Proof. The statement is proved by induction on the well-founded pre-order on K [®]7*/ that is given
by comparing the degrees of matching columns, i.e. My < My if deg(M1(i,7))ier < deg(Ma(i,J))icr
for all j € J and deg(M;(,7))icr < deg(Ma(i,7))ier for some j € J. It would also work to do the

induction on the sum of the degrees of the non-zero columns of M.
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So assume the statement holds for all matrices that are smaller than M in the above sense.
Define f; := (M(i,5))ier € K[®)! for j € J and let Jzo:={je J| f; #0}.

Case a) The tuple of non-zero elements among the f; is strongly independent, i.e. (fj)jej;éo is
independent. Then the choice F := Id; works to satisfy the statement.

Case b) (fj)je.., is dependent. Then pick a minimal set J' C Jxo such that (f;);ec is depen-
dent. For j € J', let d; be the degree and v; the leading coefficient vector of f; (note that f; # 0).
Pick k € J' such that dy = max{ d;| j € J'}, and set f = fi, v = vy, d = di. Because (f;);jey is
dependent, there are A\; € K for j € J' such that not all \; are zero and

0= vo” ().

jeJ’

By the minimal choice of J’, all \; are non-zero; in particular X := A is non-zero. Then, setting
i = Aj(¢? % (X\)~! for j € J' and J” = J'\ {k}, the following holds:

0=v+ Y ve%(u).
jeJ”
Now, let g; := ,uj<1>d_dj € K[®]. Then [’ := f+ ZjeJ" fjg; has degree < d = deg f, because
degg; = d — dj = deg(f) — deg(f;). The term of degree d of f’is

v®? + Z vjq)diujcbd_di
jeJ”
=pd? + Z ;% (1) ®?
jeJ”
=0.

So performing the appropriate column operations on M yields a matrix M with the same columns
as M except the k-column, which has smaller degree than the corresponding column in M. Mul-
tiplication with restricted elementary matrices on the right corresponds to performing column
operations.

O

3.19 Proposition. Let I, J be finite sets, M € K[®]'*/ and < be a total order on I. Then there
exists a (possibly empty) product E of restricted elementary matrices in MAT ;(K|[®]) and pairwise
disjoint (possibly empty) subsets J; C J fori € I such that for alli € I:

1. (ME)(i,5) =0 for all j € J\ U<; -
2. (ME)(i,j) #0 for all j € J;.

3. The tuple (ME)(i,7))jes, over K[®] is strongly independent.
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Here is a picture of ME with I = {1,...,n} in the natural ordering, Joo := J \ U;es Ji, vi :=
(ME)(i,j))je:

1 U1 0 0 0 0 0

2 * (%) 0 0 0 0

* * L 0 0 0

n—1 * * * Un—1 0 0

n * * * * Unp, 0
J1 Jo e Jn—1 JIn Joo

Proof. The proof operates by induction on the number of rows (i.e. the cardinality of the set I).
Assume I # (), 41 := min I and that the proposition holds for all matrices with row index set I :=
I'\ {i1}. Then it suffices to show the following:

Claim. There is a product of restricted elementary matrices Ey € MAT j(K[®]) and a subset J; C .J
such that

1. (MEy)(i1,j) =0forall j € J\ Ji;
2. (MEs)(i1,5) # 0 for all j € Jy;
3. the tuple (M E1)(i1,7))jes, of elements in K[®] is strongly independent.

The claim follows by applying the previous proposition to the matrix MTy; 1. ;-

Using this claim, we apply the induction hypothesis to the matrix M’ := ME[y,, ;« where
J* = J\ Ji, to obtain a product Es of restricted elementary matrices in MAT s, (K[®]) and
pairwise disjoint subsets J; C Js for ¢ € I3 satisfying the analogue of the claims of the proposition
for M’. Then, setting J;, := J; and E = ElEQ where Eg := Idj, LE>, one obtains the data that

satisfy the conclusion of the proposition for M. O
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Chapter 4

Finitely generated free modules over
K[P]

4.1 K[®]™ as right K[®]-module

Assume K is a field and ¢ is a self-embedding of K such that [K : ¢(K)] is finite. Let I be a
finite (index) set and consider N := K[®]' as a right K[®]-module (the action just being right
multiplication on the entries of the tuples). For n € N, let N¢,, :== { f€ N|degf <n}, and
Nep:={feN|degf <n}. Alsodefine N, :={ (u;i®")ier| p; € K fori e1}.

4.1 Remark.

1. The sets N<j, N<, and N,, are right K-vector subspaces of the right K-vector space N,

where K acts via its inclusion in K[®].

2. We have N<;, = Ny @ Np, Ny® = Npp1. Every f € N can be uniquely written as ), f;
with f; € N; and only finitely many f; being non-zero. We call f; the degree i component
of f.

3. Suppose V is a right K-vector space and n € N. We give V' a new right K-vector space
structure Vg via v © p := v¢™ () for p € K and v € V. Then

dimg (Vo) = dimg (V) [K : ¢(K)]" .

The right K-vector space N,, is isomorphic to Ké via (i ®™)ier — (i)ier-
4. dimp(Np) = |I|[K : ¢(K)]", dimg (N<p) = 1] 30,2, [K : ¢(K)]".

5. In the rest of the section, N will always be understood as a right K [®]-module or with the
above defined (right) K-vector space structure, so we will simply talk about K[®]-modules

or K-vector spaces.

4.2 Remark. Suppose J, K are finite sets, T € K[®]/*/ E ¢ K[®]”*X. Let M be the submodule
of N = K[®]! generated by the columns of 7' and M’ be the submodule of N generated by the
columns of TE. Then M’ C M. If K = J and F € GL;(K|[®]), then M = M.
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4.3 Lemma. Suppose (fj)j<n with f; € N is strongly independent (see Definition 3.16). Then for
all (gj)j<n € K[®]", we have

deg Zf]gj max (deg f; + degg;) -
i<n

In particular, (f;)j<n is independent in the right K[®]-module N, i.e. for all (g;)j<n € K[®]",

S figi=0 = g;=0 forallj <n.
j<n

Proof. Clearly, deg f;g; = deg f; + deg g; for every j < n, and so

deg ijgj ) < max(deg fj+degyg;).

i<n

If all the g; are zero, the statement is clear. So assume now that at least one g; is non-zero. Let
d := max;y, deg(fjg;) and note that 0 < d. Let J := {j <n|deg(fjg;) =d} and for j € J let
w; € K be the leading coefficient of g; and v; € K I be the leading coefficient vector of fj- The
degree d component of Zj<n fjgj is

Z qu)deg i qu)deggj — Z vj¢deg fj (Mj)(l)deg fi+degg;
jeJ jeJ

= (D vote ().

jeJ

We have ngbdegfj (1) € G(fj) \ {0}, since pj # 0. Because the f; are strongly independent,
ey v;$9°8 73 (1) # 0 holds, so deg(>-;,, fi95) = d. O

4.4 Remark. Not every independent tuple in N is strongly independent: If ¢ € K \ ¢(K), then
for fi = ®2 + t® and fo = ®2 the tuple (fi, f2) is not strongly independent, but independent (in
N = K|[®]) because (f1 + fa(—1), f2) = (t®, ®?) is strongly independent, so independent.

4.5 Lemma. Let V be a K-subspace of N<y,. Let M be the K[®]-submodule generated by V in N.
Then
VONN<, CV <= MNN<,=V.

Proof. The direction from right to left is clear, since V® C M. To show the other implication,
assume V® N N<,. Because V is a K-subspace of IV, it suffices to show that

Vel ...+ Ve )N N, CV

for all I € N. This will be proved by induction on [. We have V®° = V| so the case [ = 0 is clear.
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One has

(VO 4 4 VO NNy, = (V4 (VOO + -+ + VD) N Ny,
CVAH (V' 4.4+ VOHD N N,),

since V C N<j,. So it suffices to show (V®? + ... + VOH® N N, C V. Let
€ (VO + - +VOHd N N,.

Then x = 2'® for some 2’ € VO + ...+ V&l Because z € N<,, the element 2’ lies in N, € N<p,.
Now by the induction assumption ' € V', and therefore x € V® N N<,,, which by assumption is a
subset of V. O

4.6 Remark. The map f :N<, — N<u41, v — v® is in general not K-linear, but it is K-linear,
where N<,, is equipped with the K-vector space structure given by v ® p := v¢(u) for v € N<,, and
peK: floopu) = flvop(p) =vé(p)® =vdu = f(v)p.

Suppose V' is a K-subspace of N<,, (with respect to the original K-space structure of N<y).
Then it is also a K-subspace with respect to the structure given by ®, and denoted by V as a
vector space with this structure. If T is a basis of V' (in the sense of the original K) and B is a
basis of K over ¢(K), then { vu| v € T,u € B} is a basis of V. In particular, the dimension of
Vo is dimg (V)[K : ¢(K)].

4.7 Remark. Let S C N be a finite set and M the K[®]-submodule generated by S. One can
effectively find a K-basis of M N N<,, (modulo performing field operations in K, checking equality
for elements in K and applying ¢).

Here is an explanation: Note that N<; is an effective (right) K-vector space for every i € N (see
Remark 4.1). We may assume that S C N<,. Otherwise, just choose n’ > n so that S C N,
and after computing a basis of M N N<,/, compute a basis of the intersection with N<,,, which is
just linear algebra over K.

By Remark 4.6, the map f :N<,, — N<p41, v — v® is K-linear, if one equips N<,, with the
structure given by ®. Given a basis T of V' with respect to the original structure, one can obtain
one with respect to the ® structure and then compute a basis of f(V') using K-linear algebra.

If one defines V}y as the K-span of S and then inductively V;; = (V; +V;®) N N<,,, one gets an
increasing sequence of K-subspaces of N<,,: V; C V;11 C N, for all i. So for some igp < dimg (N<p,),
one has V;; = Vj for all j > ip. In particular, V;;® N N<,, C V;;, so M N N<,, = V;, by Lemma 4.5.

So to determine a basis of M N N<,,, one only has to successively determine bases of the V; for
i=0,...,dimg(N<y).

4.8 Proposition. Suppose M is a finitely generated submodule of N and n1,no € N are such that
ng > ny > degg for all g in some set of generators of M. Then

dimg (M O Neny )/ (M 0 Ny ))[K : ¢(K)"27™ = dimg (M N Nen, ) /(M 0 Nepy)) 5
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in other words, if m; denotes the canonical map N<; — N<;/N<; for i = ny,ng, then
dimp (7, (M N Nepy ) [K 2 ¢(K)]" 7™ = dimg (7n, (M N N<py)) -

4.9 Definition. For M as in the previous proposition, define dim,, M as the value of

dimg (M N N<p)/(M N Ney))
[K = (K]

for n > nj.

Proof of Proposition 4.8. After proving the case ny = mj + 1, the general statement follows by
induction. So let n € N be greater than or equal to the maximum of the degrees of some set of

generators of M.
Claim. M N N§n+1 = (M N Ngn) + (M N Ngn)q).

The inclusion 2O is obvious. For the other inclusion, let W = M NN<, and V = W +W®. Then
the claim says that M N N<,41 = V. Since M is generated by elements in N<,, it is generated by
W, hence by V. O W. Also V. C N<p41, so by Lemma 4.5 it suffices to show that V@ N N<, 11 C V.
Let v € V be such that v® € N<j,41. Then v € N<,,. Also v € M, since W C M, sov € W.
Therefore v® € W® C V, and the claim is proved.

The map

[ +Nen — N<pqr, v 0@

induces a bijection f between N<n/N<p and N<yy1/Nept1, and the claim shows that

f(mn (M N N<p)) = mnp1(M N Nepgr) -
A direct consequence of this last equality and Remark 4.6 is that

dimg (M1 (M N Neni)) = [K ¢ ¢(K)]dimg (ma (M 0 N<y))

4.10 Definition. Assume B is a basis of K over ¢(K).

1. For b = (by)g<n € B", the basis polynomial ¢ € K[®] with respect to B and b is
Hk<n bkq)

2. For f € N and b = (b)k<n € B™, let
for="fa €N

and call the tuple (f)pepn the n-enlargement of f with respect to B. Call the K-
subspace of N generated by the f;, the n-enlargement space of f (this is independent of
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B).

. For a tuple (f;)jcs where J is some finite (index) set and f; € N\ {0} for j € J and n € N,

define
JB,n = { (.]7 b) | ] € J, deg fj < n,b = (bk)k<n—degfj S Bn—degf]- } .
For (j,b) € Jpn With b = (bg)r<n—deg ;s let f(;p) be the entry at index b of the (n — deg f;)-

enlargement of f; with respect to B, i.e.

Tup =1 H b ®,

k<n—deg f;

and call the tuple (f(;s)(jp)esp,, the common n-enlargement of (f;)jc; with respect
to B.

. For b = (bg)k<n € B™, the basis element wf € K with respect to B and bis ], _, oF (br).

Note that (wP)pepn is a basis of K over ¢"(K), so for every u € K, there exist unique scalars
AB(u) € K such that
p= Y OO (W)

beB™

4.11 Remark. Assume B is a basis of K over ¢(K).

1.

Viewing f € N as a matrix M in K[®]/ *{0} the n-enlargement of f with respect to B is just
obtained by applying column enlargements to M, i.e. the n-enlargement of f with respect to

B corresponds to the matrix

COl{O}XBn—l(. . .COl{O}XB(COI{O}(M)) .. ) .

A similar statement holds for the common enlargement of a tuple (f;);cs viewing it as an
element of K[®]7*7.

. P = wPo" for b € B" and (¢P)pepn is a (right) K-basis of K[®], = { u®"| u € K }, since

p®" =3 cpn aP AP (1) for all p € K.

. Let (f;)ier be the tuple of elements in N indexed by I corresponding to the identity matrix

in K[®]™*! ie. fori,jcIlet fi(j)=1if j =iand f;(j) = 0 otherwise.

Then the common n-enlargement of (f;);er with respect to B is a K-basis of N,,.

. All entries in a common n-enlargement with respect to B have degree equal to n.

. Let J be a finite index set, (fj)jes € N7 and nj € N for j € J. For j € J, let (fjp)peprs be

the nj-enlargement of f; with respect to B. Then (f;);cs is strongly independent if and only
if (fjb)jespepns 18 strongly independent.
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This follows from G(f) = @®pepnG(fp) for any f € N \ {0} and its corresponding n-
enlargement (fy)pcpn with respect to B.

4.12 Proposition. Suppose M is a finitely generated submodule of N. There exist a finite set J
and a strongly independent tuple (f;)jes € N7 such that { filj€J} generates M; in particular
M is free. Suppose that (fj)jecs is such a strongly independent generating tuple for M. Then:

1. If S is a generating set of M, then max,csdeg g > maxjecydeg f; (with max () := —o0).
2. Let B be a basis of K over ¢(K), d € N and g :N<q — N<q/N<4 the canonical map.

(a) Let (f(jp))(jp)essq be the common d-enlargement of (fj)jes with respect to B. Then
(Wd(f(j,b)))(j,b)EJBd is a K-basis of 7Td(M N Ngd).
(b) Put

J = (j,b)]je J degf; <d,be B', whereieN satisfies 0 < i < d — deg f; }

and let f;p be the entry at index b of the i-enlargement of f; with respect to B, for
(j,b) € J* and b € B'. Then (fjp)(jp)es« is a K-basis of M N N<g.

3. dimee M =3 _;[K : ¢(K)]~de8 /i,

JjEJ
Proof. The existence of a strongly independent generating tuple (f;)j<n € N J for M follows from
Remark 4.2 and Proposition 3.18. Suppose that (f;);jcs is such a strongly independent generating
tuple for M.

By Lemma 4.3, every element g € M is contained in the submodule generated by the f;
with deg f; < degg. In particular, if a set of generators of M would contain only elements that
have strictly lower degree than f;, for some jo € J, then this set of generators is contained in the
submodule generated by { f;| j € J\ {jo}}, so a proper subset of { f;| j € J } generates M. This
contradicts the fact that the f; are independent by Lemma 4.3 and establishes statement 1.

To prove statement 2, fix a basis B of K over ¢(K) and d € N, and note that M N N<g is
generated by { f;| j € J,deg fj < d}. So for the purpose of proving statement 2, we can assume
that deg f; < d for all j € J.

By Remark 4.11, the common d-enlargement (f(;u))(jp)ers, Of (fj)jes with respect to B is
strongly independent and, since all the polynomials in the enlargement have the same degree d,
the tuple (7a(f(;p)))(jp)esp, 18 K-independent. To prove that this tuple is a K-basis of m4(M),
it suffices to show that the K-vector space that the f(;; (with (j,b) € Jpg4) together with N4
generate contains M N N<g4. So let h € M N N<y4. Then there are g; € K[®] for j € J such that
h = ZjeJ fjg9;- By Lemma 4.3, degg; < d —deg f; for all j € J. For j € J, let ujéd_degfﬂ' be the
component of degree d — deg f; of g; (with u; € K). Using Remark 4.11, one has p;®?-de /i =
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ZbeBdfdegfj q{?)\{?(,uj), so the degree d component of f;g; is equal to the degree d component of

Fin @08l = N (£l )M (1)
be B8 ;i

and the elements ( quf ) constitute the common d-enlargement of (f;);e.; with respect to B. There-
fore, h lies in the K-span of this enlargement together with N_4. Part 2a is now proved, and part
2b follows easily by induction on d using part 2a.

For statement 3, let d € N such that d > max;c s deg f;, pick some basis B of K over ¢(K) and
apply part 2a to conclude that

dlmK((MﬁNSd)/(Mﬁ N<d)) = ‘JB,d’ = Z[K . ¢(K)]d—degfj

jedJ
and therefore
) dimg (M N N<g)/(M N Neg)) —deg f;
dime, M = = E K:o(K gli .

4.2 K[P]™ as left K[®]-module

Assume K is a field, ¢ a self-embedding of K.
Let J be a finite (index) set and consider N := K[®]7 as a left K[®]-module (the action just
being left multiplication on the entries of the tuples). Also I is assumed to be a finite set in this

section.

4.13 Remark. Let M € K[®]"*/. Then for every matrix E in MAT;(K[®]) the submodule of N
generated by the rows of EM is contained in the submodule of N generated by the rows of M. In
particular, if F is invertible, then the submodule generated by the rows of M and the submodule

generated by the rows of EM are the same.

4.14 Lemma. FEvery submodule M of N has an independent generating set of cardinality less than

or equal to |J|.

Proof. This follows from the previous remark and Lemma 3.9, using the fact that N is noetherian.
O

4.15 Definition. Let M be a submodule of N. Call M separable, if for all finite B C K that
are independent over ¢(K) and for all (z3)pep € NZ we have

> (0®)ay € M = (z, € M for all b€ B).
beB
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4.16 Remark. The submodules N and {0} of N are separable.

4.17 Remark/Definition. Every subset S of N is contained in a smallest separable submodule

M of N, which is called the separable submodule generated by S.
4.18 Remark. Suppose [K : ¢(K)] is finite and B is a basis of K over ¢(K).

1. Let M be a submodule of N and « be an automorphism of the left K[®]-module N. Then
M is separable if and only if a(M) is separable.

2. A submodule M of N is separable if and only if for all (z3),cp € NZ one has

> (6®)z, € M => (2, € M for allb € B).
beB

3. Suppose M € K[®]/*7 Iy C I and M’ = row;,(M) (the row enlargement of M with respect
to the basis B) exists. Then the separable submodule of N generated by the rows of M is

the same as the separable submodule of N generated by the rows of M’.
4.19 Definition.

1. Let I be an index set. A tuple (f;)ier with all f; € N is called left strongly independent, if
the tuple (f;)ics is independent over K in K” where is the ring homomorphism K[®] — K
with A=\ for all A € K and ® = 0.

2. Let M be a submodule of N, and M’ be the separable submodule it generates. Define
dimg M := dimg M'.

4.20 Remark. Let f = (fi)ier € N

1. If the tuple f is left strongly independent, then it is independent in the left module IV:
Suppose g; € K[®] for i € I and ) ,.;gifi = 0. Then ), ; Gifi = 0, so for i € I we have
gi € K[®]® and we can write g; = ) ;.5 0®g;p with g;, € K[®] for b € B. Because {0} is
separable, we obtain ) ;; g;»fi = 0 for b € B. If m is a bound on the degrees of the g;, then

repeating this procedure m times yields g; = 0 for all i € [I.

2. The tuple f is left strongly independent if and only if the matrix ((f)(§))icr jes € K[®)P*7

is row regular.

3. Let M be a submodule of N and a be an automorphism of the left K[®]-module N. Then
dimg M = dimg o(M).

For the rest of the section, assume that [K : ¢(K)] is finite and B is a basis of K over ¢(K).

4.21 Lemma.
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1. If f = (f:)ier € N is left strongly independent, then the submodule M generated by { fi| i € I}
is separable, and thus dimy M = |I|.

2. Suppose M is a separable submodule of N. Then there exists a left strongly independent tuple

over M whose entries generate M.

Proof. For the first part, let F = (f;)icr € N be left strongly independent, and let M be the
submodule generated by the f;, ¢ € I. Let o, € N for b € B and assume

(*) > (b®)xy, € M.
beB
By Remark 4.18, it suffices to show that x; € M for all b € B.
Regard F as an element of K[®]7*/ and X = (1)pep as an element of K[®]P*/. Regard
¢ = (b®)pep as a row vector (with column index set B). Then (*) can be expressed as the existence
of d = (d;)ie; € K[®)! (regarded as a row vector with column index set I) such that cX = dF. For

such d, we have
dF =¢X =0X =0

and because F' has full row rank this implies d = 0. Therefore, there exist G € K[®]?*! such that
di = Y e b®G(b, i) for all i € I. This yields X = GF, so every row x;, of X lies in M.

This argument can also be phrased in terms of a dual notion of row and column enlargement.

For the second part, choose a matrix H € K[®]"*/ for some index set I such that the rows of H
generate M. By Lemma 3.14, there exists a matrix H € K [<I>]I~ *J that is obtained from H via the
operations of multiplying by restricted elementary matrices from the left and row enlargement for
subsets of the rows such that H is in upper triangular form whose non-zero part is row regular. By
Remark 4.13 and Remark 4.18, the mentioned operations do not change the separable submodule
generated by the rows of the involved matrices, so the separable module generated by the rows of
H is M. The non-zero rows of H form a left strongly independent tuple and by the first part of
the lemma the submodule generated by this tuple is separable. Therefore, the non-zero rows of H

form a generating set for M. O

4.22 Remark. 1. The proof of the second part of the previous lemma also indicates a procedure
to compute a left strongly independent generating tuple for the separable module generated
by some elements of N: Suppose the elements are the rows of a matrix H € K[®]/*/ for some
index set I. If H € K [@]I~ *J is obtained from H according to Lemma 3.14, then the non-zero
rows of H form a left strongly independent generating tuple for the separable submodule

generated by the rows of H.

2. One can compute dimg M of a submodule M of N in the following way: Compute a left
strongly independent generating tuple f = (f;)ic; € N for the separable submodule gener-
ated by M. Then dimg M = |I|.
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4.23 Remark /Definition. If we regard the elements of N = K[®]/ as matrices with a single row
and column index set J, then column enlargement with respect to the basis B yields a homomor-
phism col :K[®] — K|[®](V*B) of left K[®]-modules. So, if M is a submodule of N, then col(M)
is a submodule of K [®](/*B). The module col(M) is called the column-enlargement of M with

respect to B.
4.24 Lemma. Let M be a submodule of N. Then dimgcol(M) = |B|dimg M.

Proof. Let M’ be the separable submodule generated by M and col(M)’ be the separable submod-
ule generated by col(M). Note that col(M') C col(M)’, since the inverse image of a separable
submodule of K[®](/*5) under the homomorphism col is a separable submodule of N. So the
separable submodule generated by col(M’) is col(M)'.

Pick a finite set I with |I| = dimg M and a row regular matrix H € K[®]/*/ whose rows generate
the submodule M’. By Remark 4.18, part 3, the rows of row(col(H)) and col(M’) generate the
same separable submodule, which is col(M)'.

Note that row(col(H)) = row(col(H)). Remark 3.13 shows that

rankx row(col(H)) = |B|ranky H ,

so rankg row(col(H)) = |B||I], and therefore row (col(H)) is row regular. By Lemma 4.21, the
submodule generated by the rows of row (col(H)) is separable, so the rows of row (col(H)) generate
col(M)', and we get

dimg col(M) = |B||I| = | B|dimg M .

O

4.25 Remark. There exist separable submodules M; and My of K|[®] such that M; ; My and
dimg My = dimg M5: Let M; be the left submodule of K[®] generated by 1+ ® and My = K|[®].
Then both M; and M> are separable with dimg M = dimg Mo = 1, and M; ; M.

Let m = K[®]® and K[®]y be the ring of left fractions of K [®] with respect to the multiplicative
set S = K[®] \ m (see Chapter 2 , Remark 2.9 and Lemma 2.10). We consider K[®] as a subring
of K[®] and Ny, := K[®] as a left K[®]y-module.

4.26 Remark/Definition. Let M be a submodule of N. Then
My :={ (g7 f)jes| 9 €5, (fj)jes € M}

is a submodule of Ny,. This submodule M, is the submodule generated by the subset M in Ny,.

4.27 Remark. By the universal property of the ring of fractions for K[®]y, there exists a unique
ring homomorphism — :K[®]y, — K extending :K[®] — K. For every submodule M of N,
we have M = My,
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4.28 Lemma. Let My, My be separable submodules of N such that My, C Msy. Then dimg My =
dimg Ms if and only if (M1)m = (M2)m.

Proof. Suppose (Mj)m = (M2)n. Then by the previous remark M; = Mj and since M; and My
are separable, this implies dimg M7 = dimy Mo.

For the other direction, assume dimg M7 = dimg M». Since M is separable, there exists Jy C J
and a row regular matrix M € K|[®]70*7 that is in upper triangular form with respect to .Jp and
v = idj, such that the rows of M generate M;. Given f € M, and using that the diagonal elements
of M are invertible in K[®]y, one can find an element g € (M)m such that for f/ = f — g we have
fj =0 for j € Jo. Write f' = h=1f" with h € S and f” € M,. It suffices to show that f” = 0. For

a contradiction, assume that this is not the case.
Claim. Suppose h € My \ {0} and h; = 0 for all j € Jy. Then there exists b’ € My \ {0} with
h; =0 for all j € Jo and h’; € S for some j € J \ Jo.

The claim follows by induction on minje s ldeg h; using the the separability of M> .
Applying the claim for h = f”, we obtain dimg(Ms) > |Jo| = dimg (M), contradicting
dimo M1 = dimo MQ. O
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Chapter 5

K as left K|®|-module and its
definable sets

Assume K is a field and ¢ is a self-embedding of K.

5.1 Definition. We expand the additive group of K to a left K[®]-module by requiring that for
all A\, u € K one has
(ADY) - v := Ap

and

5.2 Remark. The map K — K[®]/K[®]|(® —1), A — A+ K[®](® — 1) is an isomorphism of left
K[®]-modules. For f =37, A\i®" € K[®] with all \; € K, and p € K, one has

fn= Z)\ﬁbi(ﬂ)-

i<n
Let I, J be finite index sets.
5.3 Definition.

1. For M € K[®]*/ and A € K7, define M - A\ € K! by

(M- N)(6) = 37 M(i, ) - AG)

jeJ

for 4 € I. Similarly, we define f- A := Zje]fj'/\j € K for fe K[®7, Ae K7 and f -\ :=
(fi- Nier € K! for f € K[®]! and A € K.

2. For § C K[®]! and A C K, set S-A:={f-A| f€S, €A} Similarly, define S -\ :=
S-{A}and f-A:={f} A

3. For a subset S of K[®]’, define the annihilator of S in K as

Am(S):={XeK’| f-A=0forall fe S} .
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5.4 Remark.

1. Suppose S C K[®]!. If M is the right K[®]-submodule generated by S in K[®]!, then
desf K=M-K=M-1C K. If M is the right K-subspace generated by S in K[®],
then Yo f-K=M-K=M-1CK".

2. Suppose S C K[®]’ and M is the separable left K[®]-submodule generated by S in K[®]”.
Then Ann(S) = Ann(M).

3. For M € K[®]"*! (with finite H), N € K[®]/*/ and A € K’, one has (MN)-A= M- (N -\).

We will consider the left K[®]-module K as a structure in the following signature: ogq) =
(+,0, =, (f)fexa@]), where + is interpreted as the addition in K, 0 as the zero of K, — as the
additive inverse of K (considered as a unary function), and f- as the unary function given by

module multiplication with the ¢-polynomial f, for f € K[®].

5.5 Remark. If in addition to +, 0 and — we only add functions symbols f- for a set of f that
generates the ring K[®] (for example for f € KU{ ® }), then the structure in this reduced signature

has the same definable sets over the empty set and hence over an arbitrary subset of K.

If we specify some additive subgroups of K, we can expand the signature by adding unary

predicates for them. Given a set P of symbols for unary predicates, we consider the signature

oxla)p = oxla] U (P)prep

and K becomes a structure in this signature, if we interpret each P € P as an additive subgroup

of K. For convenience, we assume that P always contains a predicate Vo, for the zero subgroup.

5.6 Example. Let (K,v,I") be a valued field and put P := { V, | y € 'U{ oo} }. Interpret V, in
K as the additive subgroup { A € K'| v(A) > v }. Note that in the signature o) p the structure
K has the same definable sets as in the reduced signature o e (v; ) (over the empty set, and hence

over an arbitrary subset of K), because AVy = V(5 for A € K.

5.7 Convention. We fix here some notation for (first order) formulas. In referring to 7(X) as
a formula, we mean that 7 is a formula, X is a finite set of variables and the free variables of 7
are in X; formally we regard 7(X) as a pair (7, X) to specify the indexing set for the solutions.
Similarly, in referring to 7(X,Y’) as a formula, we mean that 7 is a formula, X and Y are finite
disjoint sets of variables and the free variables of 7 are in X UY. For a formula 7(X,Y"), we let
Y 7(X,Y) denote a formula 7/(X) = Jy 7 where y is a tuple of distinct variables enumerating Y.
Similarly, we use VY 7(X,Y).

For a formula 7(X) of signature o, M a o-structure, and a € M¥, the statement “M = 7(a)”
has the obvious meaning, and 7(M) := { a € M* | M = 7(a) }.

Now we recall some results on the model theory of modules with distinguished subgroups.
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5.8 Definition. Let Tk(g)p consist of the following sentences in the language determined by
ok [e),p Where f,g € K[®] and P € P:

L Va,y,z((z+y) +z=2+y+2)Az+y=y+aAz+0=zAz+(—z)=0),
2. Vo,y (f-(z+y)=(f2)+(fv),

3. Ve ((f+9) o= (f 2)+(g-2)),

4. vz ((fg)-x=f (g9-2)),

5. Va(l-z=ua),

6. P(0) AV, y ((P(x) A P(y)) — (P(z +y) A P(—z))) and

7. Yz (Voo(z) — 2 = 0).

These sentences express that a model of T (¢ p is a module over K [®] with distinguished subgroups

given by the predicates P € P and that V, is the trivial subgroup.

The structure K as defined above clearly satisfies the sentences in Ty p. It also satisfies
sentences that are not logical consequences of these, but these basic module axioms already ensure
that in each model the O-definable sets are boolean combinations of sets defined by pp-formulas as
defined below.

5.9 Remark. Suppose X is a finite set of variables, I some finite (index) set, M € K|[®]/*X and
P = (P))ier € PL. Then M - X € P stands for the conjunction of atomic formulas

el zeX

with distinguished set of variables X. In a model M of T [g)p, every such formula 7(X) defines
an additive subgroup of the product group MX (but not a submodule in general). Also every
conjunction of atomic formulas is equivalent modulo T[] p to a formula of this form (note that

one of the axioms says that V. is the trivial subgroup, so one does not need equations).

5.10 Definition. A positive primitive formula (short: pp-formula) is a formula in any language
of the form Y 7(X,Y’) where 7(X,Y) is a conjunction of atomic formulas. If I is a finite set, X and
Y are finite disjoint sets of variables, M € K[®]/*(XYY) and P € P!, then IY (M - (X UY) € P)

is a pp-formula in the signature o g p. A pp-formula of this form is called special.

5.11 Remark. In a model M of T (g p, every pp-formula 7(X) defines an additive subgroup of the
product group MX. Every such formula 7(X) is equivalent modulo T'k(),p to a special pp-formula
Y (M- (XUY)eP).
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The following is taken from Hodges’ book [Ho] with small changes in the formulation:

Let L be a a language whose signature includes symbols - (binary function symbol), ¢ (unary
function symbol) and 1 (constant symbol). Let the L-structure M be group-like, that is, -M, ;M
and 1M are the multiplication, inversion and identity of a group with the same underlying set as
M. A pp-formula 7(X) is called basic in M, if 7(M) is a subgroup of the product group M*X.
For pp-formulas a(X), B(X) in L and m > 1, let Inv,(x) g(x)m be an L-sentence such that for
each group-like L-structure M such that a(X) and 3(X) are basic in M,

M E=Tnvyxygx)ym = la(M)/(a(M)NnBM))] <m.

It is easy to construct such a sentence Inv,(x)gx)m from a(X), B(X), m. Such a sentence

Invy(x),5(x),m 1s called an invariant sentence.

5.12 Fact ([Ho], theorem A.1.1). Let X be a finite set of variables, y a single variable not in
X, ¥(X,y) a finite set of pp-formulas in L and ¥ (X,y) a boolean combination of formulas in W.
Then there exists a finite set © of pp-formulas in L and a formula 6(X) that is a boolean
combination of formulas in © and invariant sentences Invy(.) gz)m With a(2),6(2) € © and z a
single variable, such that the following holds:
If M is a group-like L-structure in which all formulas of ¥ are basic, then all formulas in ©
are basic in M and 3y (X, y) is equivalent to 0(X) in M.

A consequence of this is the following quantifier elimination theorem obtained by Baur and
Monk (see [Bal, [Mo]):

5.13 Theorem ([Ho], corollary A.1.2). Every formula 7(X) in the language of signature o kg p
is equivalent modulo Tk g p to a boolean combination of pp-formulas and invariant sentences.
In particular, every complete theory in the signature ok(g)p extending T (e)p is aviomatized by

Tke),p and a set of invariant sentences.

So to determine the complete theory of K as a o g] p-structure, it suffices to determine for
every two special pp-formulas a(z) and 3(z) of signature o kg p, the index |a(K)/(a(K)NB(K))| €
NU{oo}.
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Chapter 6

Valued settings and Estimates

Let (K,v,I") be a valued field with valuation v and value group I'. We assume that the valuation

v maps K onto I.

6.1 Definition. A valued vector space over (K,v,I") consists of a K-vector space W, a totally
ordered set A, an action + :I' x A — A of the group I on A and a surjective map v :W \ {0} —
A such that the following properties hold, where A, := AU{ coa } with the ordering on A extended
to a total order on Ay, by coa > § for all 6 € A and where v on W\ {0} is extended to W via
v(0) := ooa: Forall a,be W\ {0} and A\, p € K*,

1. v(a+b) > min{v(a),v(b) },
2. v(Aa) = v(A) + v(a), and

3. the action of I" on A preserves the order in the following way: v(\) < v(p) = v(Aa) <
v(pa), and v(a) < v(b) = v(Aa) < v(Ab).

From now on in this chapter, (W, A, v) is a valued vector space over (K, v,T’). For S C TU{ cor },
we let min S denote the minimum of S if it exists, with the convention that min () = cor. A similar
convention holds for S C AU {ocoa }.

6.2 Remark.

1. It is convenient to extend the action of I' on A to that of the ordered semigroup ' :=
T'U{oor} on Ay via cor + 8 = v + ooa = oop for all v € Ty, and § € A. Then the three
properties above hold for all a,b € W and A\, u € K.

2. Let |k and | be the binary relations on K and W respectively, given by the equivalences
N = v(3) < o(n)

and
alwb <= v(a) <v(b).

Then for all a,b,c € W and A\, u € K:
(a) if a|lwb and bl c, then alwe ;
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(b) alwb or blwa ;

(d
(e

These properties (a)-(e) are just a translation of the definition of valued vector space in terms

)
(c) if alwb and a|we, then alwb+ ¢ ;
) if a|wb, then Aa|w b ;

)

if A i, then Aalw pa.

of the divisibility relations |k and |y .

3. The structure (K, v,T) is a valued vector space over itself, with the action being the addition

onI.

4. The K-vector space W™ (with operations defined componentwise) becomes a valued vector

space over (K,v,T") by setting v((w;)i<m) := min;<,, v(w;) for (w;)icm € W™.

5. The structure (W, A,v) is also naturally a valued vector space over any valued subfield of
(K,v,T).

6.3 Definition. Let a = (a;);c; be a finite tuple over W. Then a is called weakly valuation
independent over K (in the valued vector space (W, A,v)), if there exists 6 € A such that for
all (\;)ier € K™,

v(D  Xiai) <v(Ng) + 0 for j eI,

el

We call a weakly valuation independent over a subfield K, if it is weakly valuation independent
with W being regarded as a valued vector space over Ky with its induced valuation. We call a
valuation independent over K, if a; # 0 for i € I and for all (\;);er € K",

U(ZEZI Aia;) = min v(A) 4+ v(a;) .
The tuple a is said to be a weak valuation basis of W over K, if a is weakly valuation
independent over K and a basis of W over K. Similarly, a is said to be a valuation basis of W

over K, if a is valuation independent over K and a basis of W over K.
6.4 Remark.

1. Let a = (a;)ier € W be a finite tuple. If a is weakly valuation independent in the valued

vector space (W, A, v) over K, then it is linearly independent over K.

2. If a = (a;);er is a valuation basis of K over a subfield Ky, then a is weakly valuation inde-

pendent over Ky (with K a valued vector space over K in the natural way).
6.5 Definition/Convention.

1. Recall that by our notational conventions W™*"™ is the set of matrices over W with row index

set {0,...,n—1} and column index set {0,...,m —1}.
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2. For a matrix M € W™*™ define v(M) := min{ v(M(i,5))| i <n,j <m}.

3. Tuples z = (z;)i<n € W™ are identified with elements of W!*" (row vectors) or W"™*! (column

vectors) as appropriate.

4. For matrices My € K™*™ and My € W™*" | define My M, € W™*" by

(MiMy)(i,j) = Y M(i, k) Ma(k. ) -

k<m

5. The above conventions and definitions are later also applied, if (W, v, A) is a valued field

extension of (K,v,T).
6.6 Remark.

1. Let M € K™ ™ and consider a = (a;)icn € W" as a column vector. Then v(Ma) >
v(M) + v(a). If M € GL,(K), then (—v(M~1Y)) + v(a) > v(Ma) > v(M) + v(a). Let
A = (\i)i<m and consider A as a row vector. Then v(AM) > v(A\) + v(M). If M € GL,,(K),
then v(\) — v(M 1) > v(AM) > v(\) + v(M).

2. Let a = (a;)i<n € W™ and regard it as a column vector. Then a is weakly valuation indepen-
dent over K if and only if there exists 6 € A such that for all A = (\;);<, € K™, which are
regarded as row vectors, v(Aa) < v(A) + 0.

6.7 Lemma. Let M € GL,(K) and assume a = (a;)i<n, € W" is weakly valuation independent

over K. Then Ma is weakly valuation independent over K, where a is regarded as a column vector.

Proof. Pick § € A as in the definition of weak valuation independence for a. Let A = (\;)j<p, € K"
and regard it as a row vector. Then \(Ma) = (AM)a and by valuation independence of a one has
v((AM)a) < v(AM) + 6. By the previous remark, v(AM) < v(A) + (—v(M 1)), so v(A(Ma)) <
v(A) + (—v(M 1) +6). O

6.8 Corollary. If W has a weak valuation basis over K, then every finite tuple over W that is

K-linearly independent is weakly valuation independent over K.

6.9 Lemma. Consider the valued vector space W™ with v((a;)i<m) = min;<m, v(a;). Suppose that
the tuple (b;)j<n over W is weakly valuation independent over K. Let H := m x n and consider
it as an index set for tuples. For h = (hi,ha) € H, define cp, = (0i p,bny )i<m, where 6;, i, =1 for
i1 =12 and 0, i, = 0 otherwise. Then ¢ = (cp)hem s a tuple indexed by H over W™. It is weakly

valuation independent over K in the valued vector space W™.

Proof. Pick § € A to witness that (b;);<,, is weakly valuation independent. Let u = (up)nen € KH.
Claim: v(pc) < v(u) +9.
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Let m; :W™ — W denote the canonical projection for ¢ < m. We have

v(pe) = o> pnen)

heH

= minv(m;( Y pnen))

<<m hell
=minv(y _ punmicn))
heH
- £I<H£U( Z M(hl,h2)5i7h1bh2)
(h17h2)€H
- ?22“(2 K(ig)bi)
<n

R N
min(min v(u;)) +9)

N QJ@?GH U (hy 1)) + 0

=v(p) +9

O

6.10 Corollary. If W is finite dimensional and has a weakly valuation independent basis over K,
then every finite tuple over W™ that is K -linearly independent is weakly valuation independent over

K in the valued vector space W™.

Proof. Apply the lemma to a weakly valuation independent basis of W. Then the tuple c is a
basis of W™ and it is weakly valuation independent over K, so by Corollary 6.8, every linearly

independent tuple over W™ is weakly valuation independent. O

6.11 Lemma. Suppose a = (a;)i<n, € W™ is weakly valuation independent in W over K, K is
a subfield of K and X\ = (\j)j<m € K™ is weakly valuation independent in K over Ko. Then for
H =nxm and b, j) = \ja; for (i,7) € H, the tuple (b(i’j))(i,j)eH s weakly valuation independent

over Ky in the valued vector space W'.

Proof. Let (i j))G.j)er € Ké{. Then

u( Z 1 gbe.g) = U(Z(Z (i) Aj)ai)

(i,5)eH i<n j<m

< minv(z B j)Aj) + 0

<n ‘
J<m
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for some § € A independent of p because a is weakly valuation independent over K. Because

A is weakly valuation independent over Ky, we can find v € ' independent of (,u(m))(i’j)e g such

that

151<1£1 U(Z B j)A) +6 < 12217111(]12172 v()) +v) +6
j<m

p— 1 . 6 .
(ifglgHv(u(z,J)) + (v +9)

O

In the following, there are some considerations on ordered abelian groups with a specific kind
of self-embedding. The purpose is to prepare the setting for the situation, where K is equipped
with a specific kind of self-embedding. So assume that (I', 4,0, <) is a an ordered abelian group
and ¢ an embedding of this ordered group into itself.

6.12 Definition. A modulus of growth ¢ for ¢ is a function ¢ :I' — I" such that for all e € '
and all v > g(e),

P(y) —v > €.

A modulus of size s for ¢ is a function s :I' — I such that for all e € T" and all v > s(e),

P(y) > €.

6.13 Remark.
1. If g is a modulus of growth for ¢, then s(e) := max { ¢, ¢(0) } is a modulus of size for ¢.

2. If g is a modulus of growth for ¢, then any function ¢’ :I' — T" such that ¢’(v) > g(v) for all

v is also a modulus of growth for ¢.

3. Assume that there is a rational number C' > 1 such that ¢(e) > Ce holds for all € € I" with
€ > 0. Then the function m defined by m(e) := (C — 1)"te for € > 0 and m(e) = 0 for e < 0
is a modulus of growth for ¢, provided I is divisible. If I' is not divisible, picking a natural
number D > (C — 1)~! and setting m(e) := De for € > 0 and m(e) = 0 for € < 0, yields a

modulus of growth for ¢.

4. If g; is a modulus of growth for a self-embedding ¢; of T for i = 1, 2, then g(€) := max{ g2(0), g1(€) }
is a modulus of growth for ¢ o ¢9. In particular, if g is a modulus of growth for ¢ and 7 > 0

is a natural number, then ¢/(e) := max { g(0), g(¢) } is a modulus of growth for ¢'.

5. ¢ is also a self-embedding of (I, 4,0, >), where the order is reversed, and if g is a modulus
of growth for ¢ in the structure (T, +,0, <), then the function defined by ¢'(€) := —g(—e) is
a modulus of growth for ¢ in (T, +,0, >).
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Assume below that g; is a modulus of growth for ¢’ for 4 > 0 and that s; is a modulus of size
for ¢ for i > 0.

6.14 Lemma. Given natural numbers 0 < ig < i1 and pg, 1 € I, there exist y—,v4+,0—,04 € T
such that for all v € T,

(= ) VY = () +po < () +
(= ) y< s = @) +po > ¢ (V) +
(max) ¢ (7) + po < max { ¢" (y) + 1,64 }
(min) ¢ () + po > min { ¢" (7) + p1, 8- } -

The same also holds for (= ;) and (= _) simultaneously replacing > by > and < by <.

Proof. It suffices to find 4,0+ and prove (= ;) and (max). The other two statements ( = _)
and (min) are just the dual of (= ) and (max) in the sense of Remark 6.13, part 5.
Set Y4+ = giy—io(Sio (o — p1)). Then for v € T" with v > ~4, we have

" () — ¢ (y) = ¢ (" (y) — )
> ¢ (sig (1o — 1))
> Ho — M1,

50 ¢ () 4+ o < ¢ (y) + p1. To obtain the statement with strict inequalities, choose some € > 0
if ' is non-trivial (otherwise the statement is trivially true) and apply the statement with weak
inequalities where p is replaced by pg + €.

The choice of §; = ¢ () + o obviously works to satisfy (max), because ¢® is monotone. [

6.15 Corollary. Given j € N, there exists y—,v+ € I' such that for all ig, i1 with ig < i1 < j and
all v € ', one has

¢"(y) < max { ¢" (7),74+ } ,
¢ (y) = min { ¢" (),7- } -

6.16 Lemma. Let ig,i1 € N with ig < i1 and 0y, 61,7 € I'. Then the set
{veT|¢"(v)+ 6 >min{¢"(y) +do,70 } }

1s bounded below.

Proof. By Lemma 6.14, there exist a y_ such that for all ¥ < v_, one has ¢ () + g > ¢ (7) + 1
and 7 > ¢ (y) + d1.
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Let v € T and ¢ () + 6; > min{¢>i0(7)+5g,70}. If v < v_, then ¢ (y) + 61 > 7o, s0
Y > 7o- U

6.17 Remark. Assume that ¢ is a self-embedding of K (only in the sense of pure fields) and
that there exists a rational number Cp > 1 such that for A € K with v(\) > 0, the inequality
v(¢p(N)) > Cpu(A) holds. One can interpret the multiplication of an element by a rational number
in the (up to isomorphism over I') unique divisible hull of T", or simply clear denominators in the
defining inequality.

For A\, € K, if v(A\) < v(p), then v(p(X)) < v(¢p(p)). For A = 0, this is clear and otherwise
this follows from v(¢(§)) > Cyv(5) > 0. Therefore ¢ induces an embedding (of ordered abelian
groups) of the value group into itself, which is also denoted by ¢, and this map has a modulus of
growth by Remark 6.13, part 3.

The map ¢ is actually a self-embedding of (K, v,T").

6.18 Assumption. More generally, in the rest of the chapter, ¢ is a self-embedding of (K,v,I").
Such a self-embedding consist of a self-embedding of the field K and a self-embedding of the value
group I, which are both denoted by ¢, such that v(¢(\)) = ¢(v(A)) for all A € K*. We assume
that ¢ :I' — I" has a modulus of growth ¢, and that I' is not trivial.

6.19 Lemma. Let f = Zigdl‘iqﬂ € K[®], whered € N and p; € K fori=0,...,d.
1. Setting § := min;<qv(w;), one has
o X) = min(@(0(X)) + (o)) > 5+ min 6 ()

forall X e K.

2. There exists v, € I' such that

o(f - 3) = min { 9 (0(N) + 6,7 }
forall A € K.

3. Suppose v € T and §, = min;<q(v(p;) + ¢*(7)). Then for all X € K with v(\) > v, the
inequality v(f - A) > 5 holds, hence { v(f - A)| v(A) >~} is bounded below.
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Proof. Let A € K. Then

o(f - A) =v(Y ' (N)

i<d
> min(v(ui) + v(¢'(N)))
= min(v(ui) + ¢'(v(N))
> min(d + ¢'(v(A)))
= 5 min (o ()

i<d

and the parts 1 and 3 follow. For part 2, apply Corollary 6.15 to obtain v_ € I' such that
¢'(7) = min { ¢%(7),7- } for i < d. Then v(f-X) > §+minj<q ¢*(v(A)) > §+min { ¢*(v(N)),7- } =
min { ¢?(v(X)) +6,7— + & } so one can choose v, as v_ + 4. O

6.20 Proposition. Let f =3, .-y wi® € K[®], where p; € K , ldeg f = do, deg f = dy. Then
there exists y—,v+ € I' such that for all A € K:

@ v(A) > yp = ' (v(N) + o) > o(f - X) = 6P (0(N)) + v(pay)
fordy < i <dy and
(h) v(A) <7- = o(f - A) = 6N () + v(pa,) < ¢ (0(N)) + v(1m)

for 0 <1i < d.
In particular, the first statement implies that the function f-:K — K, X\ +— f -\ is continuous

with respect to the valuation topology on K.

Proof. One has v(p;®%) - ) = v(p;) + ¢*(v(N)) for dy < i < dy, so

* > min (u(u) + 6 (0(0)

and equality holds, if the minimum is attained for a single 1.

Applying Lemma 6.14, there are vy ; for dyg < ¢ < d; such that v > 4 ; implies

¢* () + v(ay) < &' (7) + (i) -

Now assume dp < dy and set 74 = maxgy<i<d, Y+, - Lhen for dg <7 < d; and v > 4, one has

O™ (7) + v(tde) < ¢'(7) + v(ps)
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so in the inequality (*) actually equality holds for v(\) > 74 and the statement (1) is established.
The statement (h) is established similarly. O

6.21 Proposition. Let f = (fi)i<m € K[®]™ and d € N, such that deg f; < d for i < m. Then
there exists §,v—,~v € ' such that for all A € K:

(min) v(f+A) > min { qbd(v()\)) + 5,7}
and
(*) v(A) <v- = o(f-A) = ¢’ (v(N) +6

If one of the f; has degree equal to d, then one can choose 6,v_ € T' such that in (*) equality holds.

Proof. By Lemma 6.19, for ¢ < m, there exist d;,v; € I' such that

ofi - 2) > min { ¢((0(N) + 81,7 }

for all A € K. So

o(f-A) =minv(f; - A)

<m

> min min { oL ((v(N)) + 65,7 }

<m

> min { 6% (v(1)) + 6,7 }

for § := min;<y, §; and 7 := min;<y, 75, and (min) is proved.

By deleting the f; that are zero (which don’t influence the value of v(f-))), we may assume that
all f; are non-zero. For each i < m, there exists by Proposition 6.20 ;, §; such that for A € K with
v(A) < i, the equality v(f; - \) = ¢% (v()\)) + 6; holds where d; = deg f;. Let d’ be the maximum
of the d; and ¢ be the minimum of the §; with d; = d'.

For ¢ < m such that d; < d’, apply Lemma 6.14 to find +/ with the property that for all v < 4/,

¢%(7) +6; > 0% (1) +0
holds, and set
Y- =min{y|i<m}u{|i<md<d}.

Now let A € K with v(\) < v and i < m. Then v(f; - \) = ¢%(v(\)) + §; and if d; = d,
this is equal to ¢ (v(\)) + & > ¢ (v(\)) + 6 and equality holds for some such . If d; < d’, then
¢4 (0(N) +6; = ¢ (v(N)) + 6.
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This shows that

o(f - X) = minv(f; - )
= 6" () +9
U

6.22 Proposition. Let m,d € N and f; € K[®]™ with deg f; < d for i < m. Then there exists
v,8 € I' such that for all A = (\;)i<m € K™, one has

Zfl ) > mln{(‘ min v(¢%8i()\;))) + 4, ’y} > min{qﬁd(v()\)) +5,’y}

<m, f;#0
i<m i<m, fi#

where v(\) := minj<,, v(N;). In particular, for every v € T', the set

{Zf”

<<m

A= (Ni)icm € K™, 0(A) 2 7/}

is bounded below by min { v(¢? (7)) + 6,7 }.

Proof. Let i < m such that f; # 0. Apply Proposition 6.21 to f; to obtain ;,7; € I' such that

o(fi - ) = min { 995 (u(u)) + 83,7 |

for all u € K. Then for all A = (\;)i<m € K™,

Z fi-Ni) > mmv(fZ Ai)

<m

> W8 Li(0(\i) + bi, i
—Z<$;?¢omln{¢ (v(A)) + 05,7 }

> min{ (,_min 675/ (v(X))) +6,7 }

with § := min;<,, §; and 7 := min;«,, y;. Now by Corollary 6.15, there exists a y_ such that
@ (7) > min { dH(T), v } for all j < d and 7 € I'. This gives

i<m,f;7#0 <m

mind ( min %55 (0(\))) + 8,9 b > min (mmmm{w(v(xi)),%})+<w
{ f 2 mind }

<<m

in { d(w(N\) + 6,7 }

— min{ (min ¢ (v(A)) + 5,7/, + 9
\ }

for y =min{~v_ + 4,7 }. O
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6.23 Assumption. For the rest of the section, K has a weakly valuation independent basis over
¢(K) and [K : ¢(K)] is finite.

6.24 Remark. Every ¢"(K)-linearly independent tuple over K™ is weakly valuation independent
over ¢"(K) by Corollary 6.10 and Lemma 6.11.

6.25 Lemma. Given n and a basis B of K over ¢(K), there exists 6 € I' such that for all p € K,

() | v(k) = " (0(NF (1))pen)) 1< 6.
(For A\B(u), see Definition 4.10.)

Proof. With w? = [],_, #*(bk) for b € B" and p € K, we have

p= Y O W)y

beB"

SO

v(p) = min v(6" (A (1))w)

= min o(¢"(\ (1)) + v(wy)

> (min v(¢" (A (1)) + min v(w)’)

= ¢"(v((\) (1) Jben)) + 01

for 61 = minpepn v(wf). Because (wf)pepn is a basis of K over ¢"(K), and therefore weakly
valuation independent over ¢"(K), there exists d2 € T' such that for each tuple (up)pepn over
¢"(K), the inequality

o( D pmwy) < moin v(up) + 02
beB"™

holds. Applying this for u, = ¢"(AZ(u)), one gets

v(p) < min o(¢" (A (1)) + 62

= ¢"(0((A) (1))benn)) + 82
Now the choice § = max { —d7, 02 } will make (*) true. O
6.26 Proposition. Suppose f; € K[®|™ fori < mn and (f;)i<n is strongly strongly independent (in

the sense of Definition 3.16). Then there exist 0,79 € I' such that for all p = (p;)i<n € K™,

o ¢1€ % (v(p;)) > min { U(; i+ pi) + 6,70 } :
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Proof. Assume first that all f; have degree equal to d > 1. Write f; = g; + v;®¢ where g; € K[®]™
is of degree less than d and v; € K™. Then the v; are ¢%(K)-linearly independent, so they are by
Remark 6.24 weakly valuation independent over ¢%(K) and therefore one can pick dy € T' such that

for all pp = (pi)i<n € K™,
o) vig (1)) < v(¢h(w)) + g

<n

holds, where ¢(u1) := (¢*(11:))i<n-
By Proposition 6.22, there are 71,01 € I' such that for all 4 = (u;)i<n € K", the inequality

o(3 g o) = min { (6 () + 81,7 |

<n

holds. Apply Lemma 6.14 to find v_ € I such that for all v € T,
Y <y = )+ < () + 61

Take y2 € T with ¢4 (v2) + 01 < and set y3 = min {y_, 2 }.
Then for all p = (1;)icn € K™ with v(p) < vs,

v(D g (i) < v(¢*(1)) + do

= ¢ (v(u)) + do
< ¢ (o)) + 6

< min { 0(6" () + 61, } < oY g ).

v i) = v(O (i) ) + O gi - i)

= v vie (i)
< (6" (1)) + o
= ¢"(v(u)) + &,

i.e.

o (0()) = o3 fi- i) + 6

<n
for § := —&p. If v(p) > 3, then ¢%(v(p)) > ¢%(73), so the choice vy = ¢%(3) works.

Now we deal with the general case (where not necessarily all f; have degree equal to d). Fix

some d > 1 that is > deg f; for all ¢ and a basis B of K over ¢(K), and consider the common
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d-enlargement of the f; with respect to B: Let
I:= { (i,0) | i < n,b = (bg)ken—deg s, € BI I8 }
and for (i,b) € I with b= (bk)k<d—deg fis let

Jap) = fi H bp® .

k<d—deg f;

The tuple (f(; p))(ip)er is strongly independent and all f(; 3y have degree d, so by the special case
above there exists v1,61 € I" such that for all A = (A p))per € KT

¢*(v(N) =min ¢ v( Y fup Aap) T oLm
(i,b)el

Given p = (@i)icn € K™ and applying the above for A;; = MNP (wi), @ < n,b € Bi798 i one

obtains

¢d(v(/\)) > min { ’U(Z fi i) +01,m } .

<n

Using Lemma 6.25, one can find a d2 € I' (independent of u) such that
| (i) — 398 (N i) Jpe pa-aes 1)) |< 62
This implies
¢ (0(1i) 2 6 (0((Ai ) Dyepa-aes 1)) + ¢4 (62)

> min { U(Z fi- i) +61,m } + Iginﬁbdegfi((b)

i<n
= min{v(Zfi i) +5,70}
<n
for § = & + min;,, $3°8 i (83) and o = 1 + ming,, p3€ i (53). O

6.27 Corollary. In the same situation as in the last proposition, given v, there exists v such that

V(X e fi - i) =y implies v(p) >, dce. v(p) > for all i < n.

Proof. Let d = 0. Apply the previous proposition to find 4, and § € I' such that

v(p) < = v(p) > U(Zfi'ﬂi) +4.

Given v € T', set o = min { v,y — ¢ }. If v(p) </, then v(p) <y, so v(p) > v, ., fi - 1) + 0,
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SO

v fim) +6<(y=0)+5=7.

i<n
Thus, v(p) <+ implies v(3>°, ., fi- i) < v and therefore v(>°,_,, fi- i) > v implies v(p) >~'. O

6.28 Definition. 1. Suppose a € K and v € I'oo. Call Vy(a) := {be K| v(b—a) >~} the

ball of radius v centered at a.

2. Let § € ' with 6 > 0, and S C K. A function f:S — K is called d-contractive, if
v(f(a) — f(b)) >v(a—10b)+ 6 for all a,b € S.

The proof of the following two lemmas is an easy exercise.

6.29 Lemma. Suppose a € K, vy € ', 0 € I', § > 0 and f :V,(a) — V,(a) is §-contractive.
Then
F(Vy (@) € V(@) € Vi (a)

ford = f(a) and v =~ +94.

6.30 Lemma. Let I be a non-empty index set, a; € K and v; € T for i € I. Assume that
I :Uier Vai(ai) — K is 0-contractive and f(V,,(a;)) € V,,(a;) for alli € 1. If a € (N;ep Vo, (as),
then

f(Vy(a)) € Vy(a) € Vi (as)

for v =wv(f(a) —a) and all i € I.

6.31 Lemma. Let K be mazimally valued. Supposea € K,y €T's, 6 €', 0 >0 and f :V,(a) —
Vy(a) is §-contractive. Then f has a fized point.

Proof. The statement follows by a transfinite induction argument from the previous two lemmas.
O
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Chapter 7

Asymptotic analysis of pp-sets

In this chapter, let (K,v,I") be a valued field (with v(K*) =T) and I" # {0 }. Let ¢ be a self-
embedding of the valued field (K, v,T") that has a modulus of growth. We assume that [K : ¢(K)]
is finite and that K has a weakly valuation independent basis over ¢(K).

In addition, we fix a set P of unary predicate symbols such that Vo, € P. Every P € P is
interpreted as an additive subgroup of K. This interpretation is also denoted by P, and V is
interpreted as the zero subgroup. In this chapter, we consider K as a structure for the signature
ok[a),p, and accordingly, all formulas are with respect to this signature, and so is the notion of

pp-definable.

7.1 Definition. Let I be a finite index set. By a ball in K, we mean a set of the form
VW::{wGKI| v(w) >}

for some v € ' (i.e. a closed ball centered at 0). Note that each ball in K is an additive subgroup
of the K-vector space K.
A subset of K7 is said to be bounded if it is contained in a ball in K.

7.1 The large case (v(r) — —0)

In this section, each subgroup P with P € P is assumed to be bounded. We obtain results about
the structure of pp-definable sets in the large, i.e. modulo adding sufficiently large balls.

In this section, X is a finite index set, usually regarded as a set of variables. If Y is a set disjoint
from X and A C KXY, we put A(w) :={ue KX| (u,w) € A} forw e K.

7.2 Definition.

1. For subsets S, 52 C KX, we say that 57 is contained in S modulo large balls, if S1+ B C
Sy + B for some ball B in KX | and denote this by S; C Sy. Similarly, call S; and S, equal
modulo large balls, if S+ B = 59 + B for some ball B in KX and denote this by St = S,.

2. Let J be a set, (S;);jes be a family of subsets of KX, and § € I', § > 0. We say that (S;)
has the /-maximum property, if for all j € J the set © = {v(w)| w € S5, } is empty
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or bounded above by 6 + ¢ for some # € ©. We say that (S;) has the weak maximum
property, if it has the y-maximum property for some v > 0 in I". We say that (5;) has the
weak maximum property modulo large balls, if there exists a ball B in K~ such that

the family (S; + B)jes has the weak maximum property.

3. Let S C KX and 6 € T with 6 > 0. We say that S has the §-optimal approximation
property, if for all w € K* the set © = { v(w’ — w) | w’ € S} is bounded above by 6+ § for
some 6 € ©. Instead of “0-optimal approximation property” we also say “optimal approx-
imation property”. We say that S has the weak optimal approximation property
modulo large balls, if for some ball B in K* and some v > 0 in I" the set S + B has the

y-optimal approximation property.
7.8 Remark. Let 6 € T', 6 > 0.

o
1. The particular notion of ball is not important in defining C and =, i.e., if V is any collection
of subgroups of KX such that every element contained in V is contained in a ball in KX and

vice versa, then one can replace the notion of a ball in KX by being an element of V.

2. S C KX has the §-optimal approximation property if and only if S is non-empty and the

family (S + w),cxx has the J-maximum property.

3. Let Y be a finite set disjoint from X and A an additive subgroup of the product group KXY
The family (A(w)),exv has the -maximum property if and only if A(0) has the -optimal
approximation property. This is the case, since for every w € K the set A(w) is empty or a
coset of A(0).

4. Suppose the family (S;);es of subsets of KX has the §-maximum property, and B is a ball
in KX. Then the family (S; + B)jes has the é-maximum property: Let v € T such that
B=1V,. Let j € Jandset © :={v(w)|weS;}, 0 :={v(w)|weS;+B}. Ify<0 for
some 6 € ©, then co € ©'. If v > 0 for all § € ©, then O’ = ©.

5. Suppose S C KX has the d-optimal approximation property and B is a ball in K*X. Then
S + B has the §-optimal approximation property.

6. If I' = Z, then every non-empty subset of KX has the weak optimal approximation property

modulo large balls.
7.4 Lemma. Let I be a finite set, T € K[®)™*X and P € P!. The following are equivalent:
1. The subgroup of K~ defined by T - X € P is bounded.

2. There exists a product E of restricted elementary matrices in MAT x (K[®]) such that the

columns of TE are strongly independent.
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Proof. 2 = 1: Let E be a product of restricted elementary matrices in MAT x (K [®]) such that
the columns of T'E' are strongly independent. Because each P; is bounded (by the assumption that
the subgroups in P are bounded), Corollary 6.27 yields that the subgroup B of KX defined by
(TE)- X € P is bounded. Thus the image B’ of B under the map KX — KX v — E-vis
bounded. Note that B’ is the subgroup defined by T'- X € P.

1 = 2: By Proposition 3.18, there exists a product E of restricted elementary matrices
in MAT x (K [®]) such that the non-zero columns of TE are strongly independent. Suppose there
exists a zero column in TE, say with index zg € X. Define f € K[®]* by f(z) := E(z, ) for
z € X. Then f - K is unbounded, because I' is non-trivial. Since f - K is contained in the solution
set of T'- X € P, this solution set is unbounded. O

7.5 Proposition. Let A C KX be a pp-definable subgroup. Then there exist a finitely generated
right submodule M of K[®]X, a finite set of variables Y disjoint from X, a finite set I, an element
P e Pl and a matriz T € K[®]/*XYY) such that the subgroup of KXY defined by T- (X UY) € P
is bounded and for the subgroup B of KX defined by the formula 3Y (T - (X UY) € P), we have

A=B+ M K.

For any M,Y,I,P,T,B as above, B is bounded and A = M-K. If A is bounded, then A is the image
under the projection map KXYY — KX of a bounded subgroup of KXY defined by a conjunction

of atomic formulas.

Therefore, the study of pp-definable sets in KX up to (adding) large balls amounts to studying
sets of the form M - K for finitely generated K[®]-modules M C K|[®]X.

Proof. By Remark 5.11, there exist a finite set of variables Z disjoint from X, a finite set J, a tuple
Q € P’ and a matrix S € K[®]/*(XY%) such that A is defined by the formula 37 (S- (X UZ) € Q).
Set H = X U Z. By Proposition 3.18, there exists a (possibly empty) product E of restricted
elementary matrices in MAT (K [®]) such that the non-zero column vectors of SE are strongly
independent. Let Hy C H be the set of indices of zero columns and H;,q € H be the set of indices
of non-zero columns of SE. (The subscript “ind” stands for “strongly independent”.)

Now take as M the submodule of K[®]* generated by the columns of E y H,- Take a bijection
h :Hijng — Y where Y is disjoint from X. To keep notations simple we pretend that Y = Hj,q and
that h is the identity on Y. Set I := XU.J and define P = (P,);e; € P! by P|; = Q and P, = Vy,
for z € X, and define T € K[®]/*XWY) by Ty v = —Idx, Tlxxy = Elxxy, Tl7xx = 0 and
TTyxy = (SE)]jxy-
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Here is a picture of T'- (XUY) € P:

X —I Elxxy X {0}*
S X
J 0 (SE)jxy Y Y

X Y ~ Hmd

We claim that the first part of the proposition holds with these choices of M, Y, I, P,T. The
following proves this claim. Let Cp = K0 and Dj,q be the subgroup of KHind defined by the
formula (SE)[ g, Y € Q (recall that the set Y is identified with Hijnq). Then with C :=
{0}md % ¢y € K and D := Dy x {0} € K| the solution set of (SE) - (X UZ) € Q is
equal to C 4+ D. Therefore, the solution set of S - (X U Z) € Q is equal to C' + D’ for C' =
{EB-wlweC}yC Kl and D' = {E-w|we D} C KH. Furthermore, let C” and D" be the
images of C' and D’ respectively under the projection map K7 —s KX, Then A = C” + D". Note
that C" = Elp,p, - K70 and O = E|x,y, - K0, s0 C" = M - K. The set D" is defined by the
formula

Y UHo) (Idx X = Elxypg - (YUHo) A (Y UH) € D),

and because all elements of D are zero in the components Hy, this has the same solutions as
Y (Idx X = Elxupm, - Y ANSE) jxn,, Y €Q),

which is equivalent to
Y (T - (XUY) e P).

Observe that the matrix £/ € MATx y (K[®]) given by E'[x.x = Idx, E'ly.y = Idy
E'lxsy = Elxxy, F'lyxx = 0, is a product of restricted elementary matrices and TE' =
(—Idx) U (SE)[;«y has strongly independent columns. By Lemma 7.4, the subgroup of KXY
defined by T - (XUY') € P is bounded.

Suppose that M,Y, I, P,'T, B are as in the first part of the proposition. Clearly B is bounded and
thus A = M - K. Now suppose that A is bounded. Since the valuation on K is non-trivial, M must

be {0}, so A is the projection of the bounded subgroup defined by the formula 7- (XUY) € P. O

7.6 Example. Consider the pp-definable subsets S = ® - K and S = (¢ — 1) - K of K. Then
also S1 N Sy is pp-definable, so by the proposition there exists a finitely generated submodule M
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of K[®] with S; NSy = M - K. Here we show how to compute an element of K|[®] that generates
such a module M. We have x € S; N Sy if and only if

Also

where
13-92 @ 160 100 100
01-® 1 | =010 011 010
0 —d 1 001 001 0—-%1

is a product of restricted elementary matrices and the first and third column of (1 3 9) are strongly

independent. So we get

-~ P2 )
SlﬂSQZﬂ'l( 1-® -K):(CI)—(I))'K

where 7 denotes the projection on the first component.
Now assume that t € K \ ¢(K) and consider the pp-definable subsets S; = ®2 - K and Sy =
(®% — t®) - K of K. We will show that S; N Sy = {0}, so S1 NSy is bounded. Again, we have

x € 51N Sy if and only if
J21, 29 (} _52 @E@z) : (%) =(9).

Also

where
<1<1>2<I>2) (
01 1 |=
00 1

is a product of restricted elementary matrices and the columns of (}
dent. So we obtain S; NSy = {0}.

0
B2 ¢

E)I)) are strongly indepen-
The following lemma provides a uniform bound for the non-empty sections over a bounded set

of a family defined by a conjunction of atomic formulas. It is related to the last part of the previous

proposition.

7.7 Lemma. Suppose X and Z are disjoint finite sets of variables, J a finite set, P € P’ and
S e K[(I)]JX(XUZ)'

Let B be a ball in KX. Then there exists a ball B' in K% such that for allw € B: If there exists
u € K% such that K |= S - (w~u) € P, then there exists ' € B’ such that K = S - (w~u') € P.

Proof. We assume that J and X are disjoint. Let C be a ball in K such that B = C¥X. Without

loss of generality, we may assume that P contains a predicate for C' (also denoted by C).
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Put H:= XUZ and J' := JUX. Define P’ € P’ by P', = P and P. = C for x € X. Define
S e K[®]7*H by S| jumr =S, S xxx = Idx and S’ xy = 0.

By Proposition 3.18, there exists a (possibly empty) product E of restricted elementary matrices
in MAT i (K[®]) such the non-zero column vectors of S’E are strongly independent. Let Hy C H
be the set of indices of zero columns and H,,q € H be the set of indices of non-zero columns of
S'E.

Consider the following additive subgroups of K*:

A={beK"|K[ES beP},
Ana=E-({ae K" | K = S'El g,
Ag = E - ({0 }Hind  gHoy

cae Py x {0}),

nd

Note that A = { (w,u) € Bx K| K | S (w~u) € P}. We have A = Ajpq + Ag. Let 7 :KH —
KX denote the canonical projection. Then 7m(A4) = 7(Ajnq) +7(Ap). Note that 7(Ag) is unbounded
or equal to {0}, because I' is non-trivial and 7(Ap) is an image under a term map. Because 7(A)
is bounded, we get m(A) = 7(Ajna) € B and 7(Ag) ={0}.

We have that A;,q is bounded, since the non-zero columns of S’E are strongly independent.
Now it is clear that choosing as B’ any ball in K Z such that Ajnq € B x B’ will satisfy the conclusion

of the lemma. O
7.8 Lemma. Given any non-empty X, the following conditions are equivalent:

1. For every finitely generated submodule M of K[®], the set M - K C K has the weak optimal

approximation property modulo large balls.

2. For every finitely generated submodule M of K[®]X, the set M - K has the weak optimal

approzimation property modulo large balls.
3. Every pp-definable set in KX has the weak optimal approzimation property modulo large balls.

4. For each finite set Y disjoint from X and each pp-definable set A C KXY the family

(A(w))wery has the weak mazimum property modulo large balls.

5. For each finite set Y disjoint from X and each A C KXY defined by a pp-formula with
parameters from K, the family (A(w)),exy has the weak mazimum property modulo large
balls.

Proof. The implication 2 = 3 follows from Proposition 7.5 and Remark 7.3, part 5. The
implication 3 = 4 follows from Remark 7.3, part 3. The implication 4 = 5 is trivial. The
implication 5 = 2 follows from Remark 7.3, part 2. The implication 2 = 1 is trivial. Last,
we show the implication 1 = 2. We may assume without loss of generality that X = B™ where
B is a basis of K over ¢(K).
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Let (gj)jes be a finite tuple of elements of K[®]X, and put TGy = qPg;(b) € K[®] for j € J
and b € B™ where qf € K|[®] is the basis polynomial with respect to B and b. Suppose condition
1 holds; so E( Jb)ESxBn J(p) - K has the weak optimal approximation property modulo large balls.
Then by Lemma 6.25, the set > jes 9 K has the weak optimal approximation property modulo
large balls. O

In the rest of this section, we set N := K[®]X, and consider N as a right K[®]-module.

7.9 Lemma. Let (fi)icm € N™ and (g;)j<n € N™. Assume that the 1-enlargement space of each
gj is contained in the (right) K-linear span of { fi| i <m}U{ gr | k <n}. Then there exists 6 € I'
such that for all (A\j)j<n € K", there exists (11;)j<n € K™ with the property

S(v((1)j<n)) = 0(Nj)j<n) + 0 and Y g;- N €Y gj-pj+ »_ fi- K C KX,
j<n i<n <m

Proof. Pick a basis B of K over ¢(K). Since the 1-enlargement space of each g; is contained in the
(right) K-linear span of all the f; and g;, one can find Cjjp, Dyjp € K for i < m,j < n,k < n and
b € B such that for each j and b,

gjb® = Z fiCijp + Z kD -

<m k<n

Fix (A\j)j<n € K". Take py € K for j <n and b € B such that \j = >, 5(b®) - s for each
j < n. Then

dogidi= > (90®)-

j<n j<n,beB
= > (O fiCijp) - mjp + O grDij) - 1135)
j<n,beB i<m k<n
=> i (> Cippp)+ Y 9k ( D Drjijp)
i<m j<n,beEB k<n j<n,beEB
= fi- (> Cipn) + D ge -
<m j<n,beB k<n

with pg = 2j<n7b€B Dy jppjp. Observe that

DL (Y Ciypmp) €Y fir K

<m j<n,beB <m

which yields the desired inclusion in the lemma. Next, note that v((i;)j<n) > 01 +v((1j)j<npeB)
((n

i<
for 61 = min;p, jenpen V(Dijp). Hence ¢p(v((15)j<n)) = #(01) + ¢(v((tjp)j<npen)). By Lemma
6.25, there exists do € I independent of (\;);j<y such that ¢(v((;p)per)) = v(Aj) + 2, so

P(v((1))j<n)) = v((Aj)j<n) + (¢(01) + d2) -
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O

A problem with the last lemma is that later we would like to choose (g;)j<n as a strongly

independent generating tuple of some submodule M of N, and (f;)i<m should induce a basis of
(M N N<a)/(M N Nea)

for some d > max;., deg g;. In this situation, we have to relax the condition that the enlargement
of g; is in the K-linear span of the g; and f; to also allow multiplying the g; with certain elements
of K[®]. This is stated in the following lemma, whose proof proceeds roughly as the proof of the

previous lemma, with slightly more involved notation.

7.10 Lemma. Let d € N, (fi)icm € N™ and (g;)j<n € N". Assume that for all j < n, we have
gj # 0 and dj := deg g; < d. Also assume that for each j < n, the (d — d;)-enlargement space of g;
is contained in the (right) K-linear subspace of N generated by

{fili<m}U U l-enlargement space of gy .
k<n,l<d—dj

For a tuple (\j)j<n € K™, define

((Aj)j<n) = min¢® (v()))) -

j<n
Then there exist 8,y € I' such that for all (A\;)j<n, € K", there exists (j15)j<n € K™ with the property
$(0((17)j<n)) = min { 2((Aj)jn)) + 6.7} and Y g5 N €Y gi-pi+ Y fir K CKX.
i<n j<n <m
Proof. Pick a basis B of K over ¢(K). Let j < n. By the hypothesis on g;, one can find Cyj € K,

Dyjp € K[®]<q—g, fori <m,k <n,be B4 guch that

9508 =Y _ fiCijo + > _ grDrjv »

<m k<n

where ¢f is the basis polynomial with respect to B and b (see Definition 4.10). For h € K[®], one
can find d;, € I" such that v(h-\) > 6, + minj<qeg ¢*(v(N)) for all A € K. Choose §; € T such that
01 < Oy for all h = Dyjp,, j < n,k <n,be B4=d; By Corollary 6.15, we choose d5 € I' such that
for all 4/ € T" and all ig,4; with ig <41 < d, one has

¢™(v') > min { ¢" (7'),62 } .

Fix (Aj)j<n € K". For j < m, let (ujp),.pi-a; € KB be the unique tuple such that
Aj = ZbeBd—dj qf - ftj5- Then by Lemma 6.25, there exists 03 € I" independent of ();) such that
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for all j < n and b e B4,
¢7 U (v(pgp)) = v(Ng) + b3

We have

dogihi= D (99w

Jj<n j<nbeBi 4
= > (O fiCiw) i+ O gk Drgp) - pn)
j<n,b€Bd_dj i<m k<n
=> fi-C > Cipmp)+D> 9-( D> Digy-pp)
i<mo j<nbeB? T k<n j<nbeB?%
=Y fi(C > Cijpnin) + Y gk
<m j<7’L,b€Bd7d]‘ k<n

with pg = Zj<n pepd—; Drjy - o € K for k < n. Observe that

Sfic( D). Ciapp) € fir K,

i<m j<TL,bEBd_dj i<m

which yields the desired inclusion in the lemma. Next, let £ < n, and note that

v(pk) > 61+ min &' (v(5p)) ,
j<n,beBY™Y i<d—dy
SO

S(¢™ (v(pr))) = o™+ (31 + min &' (v(je)))

j<n,beBYY i<d—dy

= ¢ (01) + min ¢ (@ (0(p)))
j<npeBYY i<d—dy,
= ¢ (81) + min 6" (v(n))

j<nbeB* % dy+1<i<d

> ¢™*1(61)+  min  min { ¢ (v(pgp)) » 0o }

j<n,beBY"%

= ¢%H(5) +  min  min { ¢% (6% (v(uzp))) , 62 }

j<n,beBY"%

> ¢%t(5)+  min  min { ¢ (v(\j) + 83) , 02 }
j<nbeB*%

5 1 5.5
j<n

> min { 640161 + min 6 3a) + min 6 (0()) . 02 + 610 |

>min{0+ 0((Aj)j<n), v}

o7



with § = minj<, $%+1(61) + minj<,, ¢% (03) and v = d2 + min;j<, % +1(51). It follows that

$(0((15)j<n)) = min $(6% (v(u;))) > min {8 +0((Aj)j<n) 7} -

<n

Below, the subscripts “h” and “1” stand for “high” and “low”.

7.11 Lemma. Suppose M is a finitely generated submodule of N, and d € N is greater than or equal
to the degrees of the elements of some generating set of M. Let My C M N N<q be a K-subspace
such that M N N<gq is contained in My + N.q. Also let M; = M N Nq.

1. There exist 6,y € T such that for all w € M;- K there exists w' € M;- K with w—w" € My, - K
and ¢(v(w')) > min{ v(w) + 6,7 }.

2. If My, - K N M; - K has the weak optimal approximation property modulo large balls, then
o
M-KCM, K.

Proof. We start proving the first statement. Pick f; € N for ¢ < m such that they generate M,
as a K-subspace. Also, using Proposition 4.12, pick a strongly independent tuple (g;)j<n € N"
that generates the same submodule of N as M;. By Proposition 4.12, part 1, every g; has degree
<d-1,s0g; € M.

Claim. The hypothesis of Lemma 7.10 is satisfied for the above chosen f; and g;.

Let j < n, and g be any element of the (d — deg g;)-enlargement space of g;. Then g lies in the
submodule generated by M;, so also in M, and has degree < d. By the assumption on M}, there
exists f € M} (so f is a K-linear combination of the f;) such that g — f has degree < d — 1. Since
f—g € M, and therefore f — g € M, it follows by Proposition 4.12, part 2, that the element f — g

lies in the K-linear span of

U l[-enlargement space of gy, .
k<n,l<d—deg g

This proves the claim.

Let w € M; - K. Then there exist pu; € K for j < n such that w = Zj<n gj - ij. By Lemma
7.10, there exist dp, v € I' (independent of the ;1; and therefore independent of w) and ,u; € K for
Jj < n such that setting w' = )., g; - p; one has w —w’ € M, - K and

G(0((1j)j<n)) = min { 5((115)j<n)) + J0, 70 }

where ©((\;)j<n) is defined to be min;<, 389 (v();)) for all (\;)j<, € K™ Because the g; are
strongly independent, Proposition 6.26 ensures the existence of 41,71 € I' (independent of the 1)
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such that

8((17)j<n) = min 6% (v(py)) 2 min { v(¥_ g5+ py) + 61, p = min {v(w) + 51,71} -

<n

By Proposition 6.22, there exist da,72 € I' (independent of the M;) such that

v(w') =v(d_ gj - 1) > min { (min (¢ (15))) + 02,72 } = min { () j<n) + 02,72 } -
j<n

Assembling the previous statements, one gets

¢(v(w')) > ¢(min { 0((1)j<n) + 02, 72 })

min { ¢(0((1)j<n)) + ¢(52) , d(72) }

min { min { 9((1;)j<n) + 00, 70 } + ¢(02) , ¢(72) }

min { min { min { v(w) + 1, v1 } + 00, Y0 } + #(52), d(72) }
min {v(w) + 6, v}

AV AV

for v = min { ¢(72), 70 + ¢(2), 71 + o + ¢(d2) } and 6 = 61 + o + ¢(d2).

To prove the second statement, let S = M, - KN M;- K and assume that S has the weak optimal
approximation property modulo large balls. So there exist a ball B/ C KX and ¢’ € T’ with 6’ > 0
such that S + B’ has the ¢’-optimal approximation property. Now let x € M - K and consider the
set 8" ={we M;-K|xz—wée M- K }. This set is non-empty, because M - K = M;- K+ M- K,
and therefore is a coset of the subgroup S of KX. So S’ + B’ has the §’-optimal approximation

property.
Pick w € S§" and y € B’ such that for all u € S" + B’ one has v(u) < v(w + y) + ¢§'. Because
w € M; - K, there exists by the first part w’ € M; - K such that w — w’ € M}, - K and

d(v(w')) > min { v(w) + 6,7} .

We have w' € S, because w' € M;- K and x —w' = (x —w) + (w —w') € My, - K. So v(w') <
v(w+y) + §. Assume first that w ¢ B’. Then v(w + y) = v(w), so

v(w') <v(w)+ 9.

This yields
P(v(w')) < o(v(w)) + ¢(d),
min { o(w) + 6,7} < (o(w)) + ¢(&)

By Lemma 6.16, the set { u € K~ | min{v(u) + 6,7} < ¢(v(u)) + ¢(8’) } is contained in a ball B”
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in KX. Then for B=B'"UB", wehavew € B,sox € w+ M),- K C B+ M), - K. O

7.12 Lemma. Suppose I is some finite index set with disjoint subsets Iy and Iy and (fi)icr a

strongly independent tuple of elements in N. Then for any v € ', the subset

Q_fi K+V))N(Y_ fi- K+ V)

i€l i€l
of KX is bounded.

Proof. Let v € T'. By Corollary 6.27, there exists 7/ € T" such that

Zfz >'Y:>U()‘)2’Y/
i€l

for all A = ()\;);er € K'. By Lemma 6.19, part 3, there exists § € I' such that v(>;c; fi- Ai) >0
for all A = (\;)ies € K! with v(\) > +/. Set 4, = min{~,d }. Now if

e firK+Vy)nO_fi-K+V,),

i€l 1€ls

there is A = (\;)ser € K7 such that w € Zz‘eh fi-Xi+Vyand we Zielg fi - i +V,. Then

v fi MDY fir (<) =y
S i€l

so v(A) > ' and therefore v(} ;. fi- Ai) > d. This shows that w € V. O

7.13 Proposition. Suppose K is mazimally valued and M is a finitely generated submodule of N .
Then M - K has the weak optimal approximation property modulo large balls.

Proof. By Proposition 4.12, there exists a strongly independent tuple (f;)i<n, with f; € M such
that { fi| i <n} generates M. In particular, M - K = >, fi- K. Since (fi)i<n is strongly
independent, Proposition 6.26 yields 7,09 € I' such that for all A = (\;);<,, € K",

(lower) min ¢ /i (v();)) > mln{ Z fi - Ai) + 60,7 } .

<n
<n

Also, Proposition 6.22 yields 71, d; € I such that for all A = (\;);j<, € K",
(upper) o( fi - A) > min { (min (655 (1)) + 61,7 }
Z<'I'L

where min () = +oc.
Set v := min{vg,71 } and 6 := max{—dy —01,0}. We will show that M - K + V, has the

d-optimal approximation property.
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We prove by induction on the cardinality of I C {i € N|[i <n} that } ., f; - K + V, has the
d-optimal approximation property.

For I = (), this is clear. Solet I C {i € N| i <n} benon-empty, S =", ; fi- K+V,, w € KX
and © = { v(w' —w)| w € S}. For a contradiction, assume that there is no # € © such that ©
is bounded above by 6 + § for some # € ©. Then we can find a limit ordinal x > w and a strictly
increasing sequence (6;);c. in © that is cofinal in © such that 6; + 6 < ;41 for all j € k. By
passing to a subsequence, we may assume that the cofinality of k is equal to k, so k is a cardinal.
Note that §; < v for all j € k. In particular, © = { v(vw' —w) | w' € > .., f; - K }. Pick pj; € K
for j € k and i € I such that 0; = v((>_,c; fi - pji) — w).

Let j1,j2 € k with 51 < jo. We have

VO fi (s = 1320) = (O fie s —w) = O fi- i — w))

iel il el

:0j17

because 0;, < 0;,. Set
Gjrga 1= MiN YT (0(pjy i — pjni) -
Note that 6;, + dy < 70, so by the inequality (lower) one obtains
<j17j2 = I{1€1}1 ¢deg Ji (U(Njhi - :ujz,i))
> U(Z fl ’ (:ujd,i - ,Uj2,i)) + do
icl
= 9]'1 + o .
Also 0}, < 71, so by the inequality (upper) one obtains

0, =0 fi+ (i1 — Hai))

i€l
> (min 6" (0(1,, — 1jni))) + 01
= thjz + 1.
Combining the previous two inequalities, one gets
ejl +do < Girgz < HJ' —01.

Now let j1, jo, j3 € k with j1 < jo < j3. One has

le,jz < ejl -0 < ‘93'2 —0—0 < Cj2,j3 —0—0—04 < Cj27j3 )
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SO le,]é < ijjg and thh = le,jg. Let i(jl,jg) € I be such that

dee fir. -
Ciryje = @ egfz(“’m)(U('ujhi(jhjé) - Mj2,i(j1,j2))) :

Then
d (i1 i d o
B9 (01, i1, 2) = Pnsitin,g2)) = VBT (015, i) = HisiGig)) -

Take imin € I and a cofinal J C k such that i(j,j + 1) = imin for all j € J, hence
(*) I’Lrlel}l ¢deg fl (U<:u‘j177; - MJQ)Z>) = ¢degfimin (’U(/’[’jluimin - /’[’j%imin))
for all ji, jo € J. By passing to a subsequence, we may assume that (*) holds for all ji, j2 € k. Set
d = deg f; ., and p; = pj; . for j € k.

For j1,j2,j3 € £ with j1 < j2 < j3, we have v(:“’]i - sz) < U(HjQ - :uj3)7 because Cj;,jo < Cja,ja
and ¢ is a self-embedding of I". Thus (1;)jex is a pseudo Cauchy sequence. (For the definition
and some facts about pseudo Cauchy sequences, see [Kal].) Since K is maximally valued, we have
a pseudo limit pu € K for this sequence.

Let I =1\ {imn}, ®=w— fi,,, -pand © ={v(w —d)|w €3, ;fi K} Clearly © CO.
Claim. The set © is cofinal in ©.

Let jo € . It suffices to show that 6;, < 6 for some 6 € ©. Let | = jo+ 1. Then

v(w — Zfi i) =0

iel

= v(z fir (i — p41,6)

iel
< ¢ (v(m — 1)) — &
< M (v(m — ) — o,

because v(p — p) = v(p — pu+1), since g is a pseudo limit of (y15)jex. Thus

w(O i) =) = 0O fi ) = W+ Fingy - (10— 1))

iel iel
> min { V(O i 1) = W), 0(Fin - (11— 1)) }
el
= min { 04, v(fi, - (1 — 1)) }
> min { O, 0(¢(pu — 1)) + 61,7 } by inequality (upper)
> min { 6,6, + o + 01 }
> min {0, +9,0;, + 5+ 6o+ 1 }
> 0o
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and since v((D_, .7 fi - i) — W) € O, the claim is proved.

By induction assumption, S := Zie i fi - K +V, has the d-optimal approximation property, so
there exist § € © := { v(w —w)| w' e S*} such that 6 + & is an upper bound for ©. We have
© C O CO,s00+4is an upper bound for © by the claim, and we arrive at a contradiction. [

7.14 Lemma. Let My and My be finitely generated submodules of N such that My C M.

1.
M, -KE M, K = dimy, M = dime, M, .

2. Suppose that for every finitely generated submodule M of N, the set M - K has the weak opti-
mal approzimation property modulo large balls. (Hence by Proposition 7.5 every pp-definable

subset of KX has the weak optimal approxzimation property modulo large balls.) Then

dima, My = dimeg My = M, - K= M, - K .

Proof. Because My C Mo, one has dimy, M7 < dimy, My and M - K C Ms - K.

To prove the first statement, assume that dim., M7 < dimy, M. We will show that My - K C
M; - K + B holds for no ball B in KX. Pick a strongly independent finite tuple (f;);c; of elements
of N such that { f;| i € I} generates M;. Let d € N be such that d > degf; for all i € I
and d is an upper bound for the degrees of the elements of some generating set of Ms. Because
dime, My < dime, My and My C Ms, we know that (M; N N<g) + N4 is properly contained in
(M3N N<g)+ N.g by Proposition 4.8. Pick g € (MaNN<g)\ ((M1NN<4)+ N<g). Then by Remark
4.11, part 5, the tuple (f;)icr~(g) is strongly independent. Given a ball B in KX, there exists by
Lemma 7.12 a ball B’ in K% such that

> fi-K+B)n(g-K+B)CB.
el
Because I' is not zero, the set g- K is unbounded and therefore not contained in ) ;. fi- K + B =
M, - K+ B.

For the proof of the second statement, assume that dim., M7 = dimy, Ms. Pick d € N such
that d is an upper bound for the degrees of the elements of some generating set of M; and also an
upper bound for the degrees of the elements of some generating set of Ma. Let M}, := M; N N<g.
Because dimg, M7 = dimy, Ma, we have My N N<g € My + Nog. Let M; = Ms N N4. Note
that My - K = My - K + M; - K. By Lemma 7.11 and the implication 2 = 3 of Lemma 7.8,
My K CM,-K: thus My - K C M, - K. 0

7.15 Assumption. For the rest of the section, the set M - K C K has the weak optimal approxi-
mation property modulo large balls for every finitely generated submodule M of K[®].

Then for every finite set X and for every finitely generated submodule M of K[®]¥, the set
M - K has the weak optimal approximation property modulo large balls by Lemma 7.8, 1 — 2.
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7.16 Definition. Suppose S is a pp-definable subset of K. By Proposition 7.5, there exists a
finitely generated submodule M of N = K[®]¥X such that S = M - K. By Lemma 7.14, the value
dimy, M does not depend on the choice of M. Define dimy, S as dimy, M.

7.17 Theorem. Suppose S, S, Sy are pp-definable subsets of KX. Then
1.8 €8 = dimy S < dima, S5,
2. (S, Ogo Sy and dimy, S7 = dimy, S2) = 51 = 9y,
3. dims {0} =0,
4. dim,, KX = |X]|.

Proof. For the first two statements, assume S OQO So and pick for ¢ = 1,2 finitely generated
submodules M; of N with M; - K = S; using Proposition 7.5. Let M, = M; + My. Then M} - K =
Ms - K, so replacing My by M) we may assume that M; C M. The first two statements are now
direct consequences of Lemma 7.14.

For the submodule M = {0} of N, we have dimeec M =0 and M - K = {0}, so dims {0} = 0.
For the submodule M = N, we have dims M = |X| and M - K = K¥ | so dimy, K~ = | X]|. O

7.18 Remark. 1. The quantity dim., for pp-definable sets is not always invariant under definable
bijections, not even when the definable bijection on KX is induced by multiplying with an
elementary matrix in MAT x (K [®]): Suppose that t € K\ ¢(K), X ={1,2},

D=(%7%) . E=(7)

and M is the submodule of N generated by the columns of D and M’ is the submodule of N
generated by the columns of £D. Then

dime M =1+ [K : ¢(K)]™" and dimy, M’ = 2[K : ¢(K)] ™

by proposition 4.12, part 3, since
ED=('§7)

and the columns of both D and ED are strongly independent. So with S := M - K and S’ :=
M’ - K, we have dimy, S # dime, S’, but (i;) — F - <§;> is a bijection KX — KX that

sends S onto S'.

2. For pp-definable sets Si,S> C KX, one does not have in general that dima S; + Sy <
dimy, S1 4 dimy, S2, even if dimy, S1 NSy = 0: Assume that ¢ € K \ ¢(K) and consider
S; =®%. K and S5 = (92 — t®) - K. Then S; + Sy = ®?- K +t® - K, and hence

dimoee S + 82 = [K : ¢(K)] 7> + [K : ¢(K)] ",
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because ®2 and t® are strongly independent. On the other hand, dim., S; = [K : ¢(K)] 2
for i = 1,2. Also S1 N Ss is bounded by Example 7.6, so dim, S1 NSy = 0.

7.19 Proposition. Suppose there exists a pp-definable set C C K that is bounded and contains a
ball. Let S be a pp-definable set in KX. Then there exists a pp-definable set S, in KX such that
S+ S.=KX and SN S. is bounded.

o0

Proof. Take a finitely generated submodule M of N such that S = M - K. Let (f;)jes be a
strongly independent finite tuple of elements of N such that { f;| j € J } generates M. Let V =
ZjeJ G(fj) € KX. Let d € N such that d > deg f; for all j € J. Then V is a ¢?(K)-subspace of
KX. Pick a set J' disjoint from J and v; € KX for j € J' such that (v;);e is a ¢?(K)-basis of a
% (K)-subspace of KX that is complementary to V in K.

For j € J', let f; := v;®?. Then the tuple (f;);esus is strongly independent and > jequr GUfj) =
KX. Let M’ be the submodule of N generated by { f;| j € J'}. We have dimoo M - K + M'- K =
dime, M + M’ = |X|, thus M - K + M’ - K = KX, Since C contains a ball, there exists A € K such
that M - K +M'- K + (AC)X = KX and M - K + (AC)* = S+ (AC)X. Let S. = M'- K + (AC)%;
then S + S. = K*. The set S, is clearly pp-definable. Because (AC)% is bounded and (f;) jeJuT
strongly independent, Lemma 7.12 yields that S N S, is bounded. U

7.2 The small case (v(z) — +00)

In this section, we look at the structure of pp-definable sets near 0, i.e. after intersecting with an
appropriately small ball. Let B be a basis of K over ¢(K), and let X and Y denote finite index
sets. We assume in this section that for each P € P either P = {0} or P contains a ball. In this
section, all K[®]’ for finite J are considered as left K [®]-modules, as in Section 4.2.

7.20 Definition.

1. For subsets S1,55 C KX, say that S is contained in S; inside small balls, if SNU C SoNU

0
for some ball U in K X, and denote this by S; C S,. Similarly, call S; and S5 equal inside
small balls, if S; NU = Sy N U for some ball U in KX, and denote this by S; 9 Ss.

2. We call the valued field K linear ¢-henselian, if for every f € K[®]\ K[®]® and every ball
U in K, there exists a ball V in K such that f-U D V.

7.21 Remark. If K is of characteristic p and henselian and ¢ is the Frobenius self-embedding A — AP,

then K is linear ¢-henselian.

We equip KX with the product topology of the valuation topology on K. The translates of
balls in KX form a base of this topology on K.

7.22 Lemma. Suppose K is maximally valued. Then K is linear ¢-henselian.
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Proof. Let f =>" , u®" € K[®]\ K[®]®. We want to show that for every ball U in K, there exists
a ball V in K such that f-U 2 V. Because the map K — K, A — p 1)\ is a homeomorphism of
K, we may assume that g = 1. Let h :K — K be the map given by h(\) = (Z?Zl ,uiq)i) Y
Claim. Given § € I" with § > 0, there exists g € I" such that h(V,) C V s for all v > 5.

If Y7, ;@ = 0, the claim is clear. Suppose > i, 1;®* # 0. Then by Proposition 6.20, there
exist 74,80 € ' and d € N with d > 0 such that v(h(\)) = ¢%(v()\)) + g for all A € K with
v(A) > v4. Let 6 € I'. We can apply Lemma 6.14 to obtain 7/ € T" such that v+ ¢ < d*(v) + o
for all v > /.. Pick 79 > 74,7, using the assumption that I' is non-trivial. Then we have
h(V,) C V45 for all v > v, so the claim is proved.

Now let U be a ball in K. Pick any § > 0 in I" and apply the claim to obtain vy € I" such that
Vi, € U and h(V,) C V45 for all ¥ > . For any a € V,, the map h, :K — K,\ — a — h(})
restricts to a map from V. into V., and this restriction is d-contractive. Therefore h, has a fixed
point b in V., by Lemma 6.31. So b = a—h(b), and therefore f-b = a. This shows that f-V,, D V,,

so we can choose V =V, . O
7.23 Lemma.

1. Suppose that M € K[®]Y*X. Then the map KX — KY | w s M -w is continuous.

2. The bijection KB — K given by (Ap)oen — > pep #(Mo)b is a homeomorphism.
Proof. Part 1 follows from Lemma 6.20, part 1. Part 2 follows from Lemma 6.25. U

7.24 Lemma. Suppose that M € K[®]Y*X is column regular. Then there exists a ball U in KX

such that the map KX — KY, w— M - w restricted to U is an injection.

Proof. By Lemma 3.9, we may assume that M is in upper triangular form with respect to < and
t. We may assume that the upper triangular form has no zero part. Because M is column regular,
¢ is a bijection, and ldeg M (y,t(y)) =0 for y € Y.

Use Lemma 6.20, part 1 to find a ball W in K such that

M(y,u(y)) - A=0 = A=0

for y € Y and A € W. Then the map w — M - w is an injection on U = W¥. O

7.25 Lemma. Suppose that M € K[®)Y*X. If there exists a ball U in KX such that M -U =
{0} C KY, then M = 0.

Proof. It suffices to show this in the case where |X| = 1 and |Y| = 1. Apply Lemma 6.20, part
1. O

7.26 Lemma. Assume that K is linear ¢-henselian. Then the following generalization of the linear
p-henselian property holds for matrices: Let M € K[®]Y*X be row regular. Then for every ball U
in KX, there exist a ball V in KY such that M -U D V.
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Proof. 1t suffices to prove the conclusion of the lemma with M replaced by EM where E €
GLy (K[®]). So by Lemma 3.9, we can assume M is in upper triangular form (with empty zero
part) with respect to the injection ¢ : X — Y and the total order < on X.

Let U be a ball in KX. We apply the henselian property to the diagonal elements inductively

using continuity in the other elements:

Claim. Let Uy be a ball in K such that U(f( C U. There exist balls V, W, in K for y € Y such
that for all y € Y, we have

1. V, C Uy,
2. M(y',u(y)) - Vy S Wy forally € Y with 3/ <y,
3. M(y,uy)) - Vy 2 W,

Denote the conjunction of the 3 Properties by P(y). Let y € Y, and suppose V;;, W, are balls in
K for 3/ < y such that for each 3y < y we have P(y’). Since the map K — K, A — My, t(y)) - A
is continuous for ¥’ € Y, we can pick V, that satisfies the first two properties. Since M is row
regular, we have M (y,t(y)) € K[®]®, so the existence of W), satisfying the third property follows,
because K is linear ¢-henselian. This finishes the proof of the claim.

It follows from the claim that

M-U2Mlyzwy: [ Viow 2 [T W -

O

7.27 Proposition. Assume that K is linear ¢-henselian. Let A C KX be a pp-definable subgroup.
Then there exist ¢ € N and a separable submodule N of K[®]7 with J := X x B¢ such that
T(A) 2 Ann(N) where T¢ is the canonical bijection KX — KX*B° = K7/ determined by the
basis B, as defined in Remark 3.11.

This means that inside some ball in K7, the image of A under T°¢ is the same as the solution set
of a finite system of linear equations. So to study the small asymptotic behaviour of pp-definable

sets, we can reduce to the simpler situation of solution sets of linear equations.

Proof. Since A is pp-definable, we can find finite index sets H and Y with Y disjoint from X,
S € K[®)H*(XWY) and P € PH such that A is defined by the formula 3Y (S - (X UY) € P). Let
I'={ieH|P,={0}} and

H*:={ie H| P; contains a ball in K } .

Then INH* =0 and I U H* = H. Pick a ball U in K such that U C P, for all : € H*.
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Apply Lemma 3.15 to the matrix M := S[;,(xuy) to obtain ¢ € N, disjoint finite index sets
I, I, and M € K[®]'*/, where J = JUY and I = I, U I, such that with

My, = Mrflxj € K@)/

Mis = My € K[@]Y,
My = M1, € K[@]* and

we have the following properties:
1. M12 is row regular.
2. My = 0.
3. The non-zero rows of Mgl form a row regular matrix.

4. For all u € KX and w € KY, we have
M- (u~w) =0 <= M- (Tu)~w)=0.

Note that M has the form (AZI“MH )
N1 Moo X

Let N be the submodule of K[®]/ generated by the rows of Ms;. This submodule is separable
because of the condition 3 on M above. In the following, we will construct a ball W in K7 such
that T(A) N W = Ann(N) N W.

First pick a ball Uy in KX and a ball Uy in K such that S-(Ux xUy) C U¥. By Lemma 7.26,
there exists a ball V in K I with V C Mlz - Uy, since M12 is row regular and K linear ¢-henselian.
Choose W as a ball in K7 such that My, - W CV and W C T¢(Ux).

To show T°(A) N W C Ann(N) N W, let u € A such that @ := T°(u) € W. Then there exists
w € UY such that S-(u~w) € [[;c g Pi- In particular, M-(u~w) € [[,c; P = {0 M, so M-(u~w) = 0.
By property 4 on M, it follows that M - (t~w) = 0. In particular, 0 = Moy -G+ Mg -w = Moy -0
and thus @ € Ann(N).

To show the other inclusion, let & € Ann(N) N W. So by definition of N, we have My - @ = 0.
Since MH - W C V and thus —MH -4 €V, we can find w € Uy with Mlg Cw = —Mn - . We get
M - (&~w) = 0 and therefore by condition 4 on M above, M - (u~w) =0 € [Tic; P where u € KX
satisfies (7¢)(u) = @. Since W C T¢(Ux), we know that S- (u~w) € U, so with U#" C [,y Pr,
we obtain K =5 - (u~w) € P. O

7.28 Corollary. Assume that K is linear ¢-henselian. Then each pp-definable subgroup of KX is
closed; if I' = 7, then each pp-definable subgroup of KX has the optimal approzimation property.

This corollary is a generalization of theorem 1 in [VDK].
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Proof. Let A be a pp-definable subgroup of KX, and take ¢ and N as in Proposition 7.27. Since
T¢:KX — K7 is a homeomorphism and an additive group homomorphism, it suffices to show
that T¢(A) is closed in some ball in K, which holds, because T¢(A) 2 Ann(N) and Ann(N) is
closed. O

7.29 Remark. Let M C K[®]X be a submodule. Then Ann(col(M)) 2 T(Ann(M)) where T is the
canonical bijection KX — KX = KX*B determined by the basis B and col is the homomorphism
in Remark 4.23.

In particular, the conclusion of the previous proposition can be strengthened in the following

way: There exists ¢ € N such that for every ¢ € N with ¢ > ¢ there exists a submodule N of
K[®)’ with J := X x B¢ such that T°(A) < Ann(N).

7.30 Lemma. Let J be a finite set and My, My be submodules of K[@]J such that M7 C M.

1.
dimo My = dlmo M, — AI]D(Ml) g AHH(MQ) .

2. If K is linear ¢-henselian, then

Ann(Ml) g AHH(MQ) — dim() M1 = dimo M2 .

Proof. If M is a submodule of K [@]J and M’ is the separable submodule generated by M, then by
Remark 5.4, part 2, Ann(M) = Ann(M’) and by definition, dimg M = dimg M’. So without loss of
generality, we may assume that M; and My are separable.

For the proof of the first statement, assume that dimg M; = dimg Ms. By Lemma 4.28, we
have My C (Mi)m. Let C be a finite generating set of M,. For each f € C, pick g € M; and
hy € K[®]\ m with f = h;lgf, so hyf = gy. Use Lemma 7.24 to pick a ball U in K such that for
all A € U and f € C, we have

hy - A=0 = A=0.

Then pick a ball V in K such that f-V C U for f € C.

We will show that Ann(M;) NV C Ann(Mz) N V; the other inclusion is obvious. Let w €
Ann(M;) NV and f € C. Then g - w =0,50 0= (hyf) -w=hs-(f-w). Since f-w € U, we get
f+w =0. This shows that w € Ann(C) = Ann(M2).

We now give the proof of the second statement. Assume that K is linear ¢-henselian and
Ann(M;) NU = Ann(Ms) N U where U is a ball in K/. By Lemma 4.28, it suffices to show
My C (Mj)m. Since M, is separable, there exist Jy C J and a row regular matrix M € K[tID]J()XJ
that is in upper triangular form with respect to Jy and ¢ = id;, such that the rows of M generate
M.

Claim. There exists a ball W in K7\’ such that W C T nJo(Ann(M1) N U) where 7 5, : K7 —

K7\o denotes the canonical projection.
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To find W, first pick balls Uy in K7 and U; in K7\ such that Uy x U; C U. Using that
K is linear ¢-henselian, by Lemma 7.26, we take a ball V in K7 such that V C (M|, ,) - Uo.
Then choose a ball W C Uy in K7\ such that (M1 jox(\Jo)) W C V. Given w € W, we can find
ug € Up such that (M 5,) w0 = —(M1 jyx(1\Jp)) - Ws 80 M - (ug~w) = 0. The claim is proved.

Suppose that f € Ms. Using that the diagonal elements of M are invertible in K|[®],, one can
find an element g € (M;)m such that for f' = f — g we have fI = 0 for j € Jo. Write f' = h=Lf"
with b € K[®]\ m and f” € M. It suffices to show f} = 0 for j € J\ Jo. By the claim and
Ann(M1) NU = Ann(Ms) N U, we see that f"[ s, - W = {0} and thus f’[ ) ;5 = 0 by Lemma
7.25. U

7.31 Assumption. For the rest of the section, K is linear ¢-henselian.
7.32 Lemma/Definition. Let A C K¥ be a pp-definable subgroup.

1. There exist ¢ € N and a separable submodule M of K[®]/ with J := X x B¢ such that
T5(A) 2 Ann(M) where T is the canonical bijection KX — KX*B° = K/ determined by
the basis B.

2. Let ¢ and M be as in part 1. Let B’ be a basis of K over ¢(K) and ¢ € N. Let M’ be a
separable submodule of K[®]7 with J' := X x B’ such that Tg (A) 2 Ann(M') where T,

is the canonical bijection KX — KXxB" — K/ determined by the basis B’. Then

dimo M - dimo M’

X|— —
T e T

Define dimg A as this common quantity.

Proof. Part 1 is Proposition 7.27. For part 2, assume without loss of generality that ¢ < .
Let col(M) denote the column enlargement of M with respect to B, which is defined in Remark
4.23. By using Lemma 4.24 and Ann(col(M)) 2 Tp(Ann(M)), we may assume ¢ = ¢/. There is
some invertible matrix F € K[®]5*B" such that for all a € KB°, we have T§,(a) = E - T§(a).
In the case where ¢ = 1, the matrix E can be chosen as the unique F € d)(K)BXB, such that
b= yep B,V for all b € B. Let E € K[®](X*BIX(XxB) he given by

Eb,V)  forxz=2a

E((:L‘,b),(:tl,b/)): 0 ‘ 4 /
or r X

for z,2' € X, b € B and b/ € B. Then E is invertible. We have F - Ann(M) 2 Ann(M’) and
E - Ann(M) = Ann(ME™Y), so dimg ME~' = dimg M’ by Lemma 7.30. Right multiplication by
E~" induces a module isomorphism from K[®]X*5 onto K[®]¥*5". So by Remark 4.20, part 3,
we have dimg M E~! = dimg M. O

7.33 Theorem. Suppose S, S1, Sy are pp-definable subsets of KX. Then:
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1. 5 & Sy — dimgS7 < dimg Ss.

2. (51 & Sy and dimg S; = dimg S2) = 51 2 So.
3. dime {0} = 0.

4. dimg KX = |X|.

Proof. For the first two statements, assume S & S9. By Proposition 7.27 and Remark 7.29, one
can find ¢ € N and submodules Ny, Ny of K[®]” with .J := X x B¢ such that T¢(S;) 2 Ann(N;) for
i =1,2. Let My = N1 + Ny and My = Ny. Then T¢(S7) 9 Ann(M;) because Sy & So. The first
two statements follow now from Lemma 7.30.

For the submodule M = K[®]X, we have dimg M = |X| and Ann(M) = {0}, so dimg {0} =
|X| —|X| = 0. For the submodule M = {0} of K[®]*, we have dimg M = 0 and Ann(M) = KX,
so dimg K¥ = |X| -0 = |X]|. O

7.34 Definition. Suppose h :K* — KY is an additive group homomorphism. We say that h has
the ¢-linear Greenberg property (compare [G], p.563, theorem 1), if for every ball V in KX,
there exists a ball U in K" such that for all a € KX, one has

hia) €U = 3d € KX (a—d €V AR(d)=0).

7.35 Proposition (¢-linear Greenberg theorem). Suppose M € K[®]Y*X. Then the map
h:KX — KY a+— M -a has the ¢-linear Greenberg property.

Proof. Suppose Y is a finite set and ' :KY — K" is an additive group isomorphism that is also
a homeomorphism. Then it suffices to show that h’ o h has the ¢-linear Greenberg property. So by
Lemma 3.14, we may assume that M is in upper triangular form with row regular non-zero part.
Then it suffices to show the ¢-linear Greenberg property for the map given by the non-zero part of
M, so we may assume that M is row regular. Let V be a ball in K¥X. By Lemma 7.26, there exists
a ball U in KY such that M-V D U. Let a € KX be such that M -a € U. Then there exists b € V
such that M -b=M -a,so a’ =a — bsatisfiesa—a € V and M -d’ = 0. O
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Chapter 8

Reduction to Factor Modules and
Residue Field

In this chapter, let (K,v,T") be a valued field (with v(K*) =T # {0}) and ¢ be a self-embedding
of the valued field K that has a modulus of growth. We assume

1. that K has a weakly valuation independent basis over ¢(K) and [K : ¢(K)] is finite,

2. that for every finite set X and finitely generated submodule M of K[®]X, the set M - K has

the weak optimal approximation property modulo large balls, and
3. that K is linear ¢-henselian.

In addition, we fix a set P of unary predicate symbols such that Vo, € P. Every P € P is
interpreted as an additive subgroup of K. This interpretation is also denoted by P and V. is
interpreted as the zero subgroup. We assume that for every P € P, the subset P of K is bounded
and either contains a ball in K or is equal to {0 }.

Let V.=Vy ={ A€ K| v(A) >0} be the valuation ring of K, Vog ={ A€ K| v(\) >0} its
maximal ideal, and k = V/V5( the residue field of K. Note that ¢(V) C V, so ¢ induces a self-
embedding of the ring V. The K[®]-module K is also a module over the subring V[®] of K[®].
Let U C V. Then U is a V[®]-submodule of V' if and only if U is an ideal of V' that is closed under
¢. If v € T satisfies v > 0 and ¢(7y) > v, then V; is a V[®]-submodule of K. In particular, V" and
V, for v > g(0) where g is a modulus of growth for ¢, are V[®]-submodules of K. So every small
enough ball in K is a V[®]-submodule of K.

To transfer the structure given by the predicates in P to V, we have to allow translates of
those predicates. Consider P = K* x P as a set of unary predicate symbols. The symbol (u, P) is
denoted by uP. We regard V as a Oy () prstructure by interpreting uP as (uP(K))NV. If U is a
V[®]-submodule of V', then let

Pui={QeP|QV)={0} or UCQV)}.

Note that for V[®]-submodules U; C Uy of V' we have 75U1 2 75U0 and that every finite subset of
P is contained in Py for some V[®]-submodule U of V. Let U be a V[®]-submodule of V. We
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regard V/U as a Oy (g) P, -StrUCtUre by interpreting Q € Py as Q(V)/U, if U C Q(V), and as U/U,
if Q(V) = {0}. Alternatively, we can regard V/U as (V/U)[®] ~ V[®]/U|[®]-module (see Remark
2.4) with the same predicates as above. The distinction is not important, since f € V[®] acts on
V/U the same as f/U[®].

Since ¢(V~g) C V<, the self-embedding ¢ induces a self-embedding of the residue field k, which
is also denoted by ¢. So k becomes a k[®]-module with respect to this self-embedding.

We will show in the next section, how to reduce certain questions about the K[®]-module
structure of K to questions about the V[®]-module structure of V/U where U is a V[®]-submodule
of V. In Section 8.2, this will be specialized to the situation where I' = Z and the residue field is
embedded in K and mapped into itself by ¢. In this situation, one can reduce the questions to the
k[®]-module structure of k.

8.1 The general case

We start with two simple lemmas about (additive) abelian groups. The first one will be used to

compute indices of pp-definable sets and the second one in connection with model-completeness.
8.1 Lemma. Let G be an abelian group and E, F, By, By be subgroups of G such that

1. EDF,

2. By 2 By,

3. E4+ By =F + By,

4. ENBy=FNBy.
Let E' = (ENBy) + By and F' = (FNBy)+ By. Then By CF' C A" C By and |E/F| = |E'/F'|.

Proof. The relation f = { (C,C") € (E/F) x (E'/F')| CNC" # ()} is an isomorphism of E/F onto
E/F. 0

In the next lemma, the subscripts ¢, m and s stand for “complementary”, “middle” and “small”,

respectively.

8.2 Lemma. Let G be an abelian group and A, Ac, Am, As, Bo, B1 be subgroups of G such that
1. A+A. =G,
2. AN A. C By,
3. AN By = As;N By,

4. ANByC A, CA+ B;.
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Then for all x € G, we have

(*) 2€A = Ve,eG((x—ax.€ ANz € AL) —
(xc € Ay ANVzs € G((xe — 25 € ANTs € By) — 25 € Ay))) .

Proof. = : Let x. € A, such that x — x. € A. Then z. € A, so x. € AN A. C By, and therefore
r. € ANBy C A,,. Let x5 € By such that z. — xs € A. Then x5 € A, because z. € A, and so
rs € AN By C As.

<—: Let x € G such that the right hand side of (*) holds. Since G = A + A, there are 1 € A
and z. € A, such that x = 21 + z.. So ¢ — z. = z1 € A. It follows that z. € A4,, and

(+) Vs € G((ze—xs € ANzs € By) — x5 € Ag) .

Since A,, C A + By, there are 29 € A and x5 € By with . = z9 + 25, so z. — x5 € A. By (+), we
can conclude x5 € Ag, so x5 € As N By C A. Thus we get . € A and then z € A. O

8.3 Corollary. In the situation of the previous lemma, suppose that (G,4+,—,0) is the reduct of
some structure G such that A, Ae, By are definable in G by existential formulas and A, As by

universal formulas. Then A is definable in G by a universal formula.

Next, we give a slightly technical statement about preservation of universal definability under
interpretations. For the definition of an interpretation and basic facts, see [Hol, sections 5.3 and
5.4 .

8.4 Lemma. Suppose L; is a language and M; an L;-structure for i = 0,1. Let A be a d-

dimensional interpretation of My in My consisting of
1. an Lq-formula OA(y1,---,Yd),

2. a map that assigns to each unnested atomic formula 7(z1,...,z,) of Lo an Li-formula

TA(ylb- > Yids - - Ynls - - 7ynd); and

3. a surjective map fa :0a(My) — My,

such that for each T(x1,...,xy) as in part 2 and all (ay,...,a,) € OA(M1)™, one has
MO |: T(fA(a1)7 sy fA(an)) — Ml |: TA(G’ll) <oy Q1dy - -5 Qnl,y - - 7and) )
where a; = (a;1,...,a;q) fori=1,...,n.

We assume the following:

(i) For every T(x1,...,xy) as in part 2, the formula TA(Y11,- -, Y1ds- - Ynls- - Ynd) 1S equivalent

i My to an existential and to a universal formula.
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(i1) Oa(y1,---,yq) is equivalent in Mi to an existential formula.
(iii) Oa(y1,--.,y4) is equivalent in M; to a universal formula.

Then for every subset Ag of M definable by a universal formula in My, the set

A1 = { (a11,. yQ1dy ey Aply - ,and) c 8A(M1)”| (fA((an,..,ald)),...,fA((anl,.. ,and))) € AQ}

is definable by a universal formula in M.

Proof. Let 9(x1,...,x,) be a universal formula of Ly defining A9 C M{ in My. By the proof
of [Ho], theorem 5.3.2, using assumptions (i) and (ii) above, we can find a universal L;-formula
Y (Y11s- s Yldy - -y Ynly - - » Yna) such that for all (aq,...,a,) € Oa(M1)", with a; = (a;1,..,a;q) for

i=1,...,n, we have

Mo }zw(fA(al),...,fA(an)) < M1 ):w’(an,..,ald,...,anl,..,and).

Thus the set A; is defined in M; by the Li-formula

n

w,(ylh - Yidy - - Ynls - - 7ynd) A /\ aA(yila . 7yid)7
=1

which by assumption (iii) is equivalent to a universal formula in M;. O

8.5 Remark. Let U be a V[®]-submodule of the valuation ring V. Suppose V C K is definable by
a formula 7/ (z) in K. Let p € K be such that uU = V. We exhibit a 1-dimensional interpretation
A of the oy4) p, -structure V/U in K: Define fo:V — V/U, w — w/U and for all distinct

variables x,y, z, set

oa(z) =1y (x

(z)
(x=y)a=1v(p- (w Y)),
(x4+y=2)a=1v(u-

v(p-(g-r—y)) forgeV[ ],

= Q(z) for Q € Py with U C Q(V),
=1y (u-z) for Q € Py with Q(V) ={0}.

(g-z=y)
Q(z)
Q(z)

A:

l>

l>

If V is definable in K by an existential and by a universal formula, then the interpretation A

satisfies the hypothesis of Lemma 8.4.

8.6 Definition. Let A € K*. Let I be a finite (index) set and P = (P;);e; € PL.
Let Z be a finite set of variables and M € K[®]!*#. If M is not the zero matrix and yu € K*

is such that —v(u) is equal to the minimum of the valuations of all coefficients of the polynomials
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M(i,2)A~! € K[®] where i € I, z € Z, then setting M := uMA~! we have M € V[®]'*Z and
we call M a \-translate of M with respect to w. If M is the zero matrix, the zero matrix in
V[®]1*Z is called a A-translate of M with respect 1.

For any A-translate M of M with respect to p € K*, the UV[¢]775—f0rmu1a M -Z € P with
P € P! defined by P; = puP; for i € I is called a A-translate of the oke),p-formula M - Z € P.

Let X and Y be finite disjoint sets of variables, Z := X UY and M € K[®)'*%. Let 7(Z) be
the formula M - Z € P. For any A-translate 7(Z) of 7(Z), the Oy (g p-formula JY 7(X,Y) is called
a A-translate of 3Y 7(X,Y).

8.7 Remark. Let A € K*. Let I be finite (index) set and P € PL. Let Z be a finite set of variables
and M € K[®]"*%. Let 7(Z) be the formula M - Z € P. The formula 7(Z) has a A-translate. If
Z = XUY, then the formula 3Y (M - Z € P) has a M-translate. So every special pp-formula has a
A-translate.

If 7(Z) is any M-translate of 7(Z), then for all w € KZ such that Aw € VZ, we have

KET(w) <= V E=T7(\w).

For special pp-formulas in general, we cannot expect to have such a nice relation of the solution

sets of 7 and a A-translate 7 of it, but a weakened version holds:

8.8 Lemma. Let I be a finite (index) set and P = (P;);e; € PL. Let X, Y be disjoint finite sets
of variables and M € K[®)/*(XUY),

1. Let B be a ball in KX. Then there exists v € T such that for all X € K* with v(\) > v and
all A-translates 7(X) of 7(X) =3Y (M - (X UY) € P), we have

(weBand K E71(w)) = (Aw e VX and V = F(Aw)).

2. Let U be a ball in KX and A € K*. Then there exists a ball U' C'V such that U’ is a V[®]-
submodule of V, every A-translate 7(X) of 7(X) = 3Y (M - (X UY) € P) is a Py:-formula

and

we KX and \w € VX and V/U' = 7(0w)

— there exists w' € K~ such that K = 7(w') and w —w' € U .

Proof. For the first part, we use Lemma 7.7 to find a ball B’ in K such that for all w € B the
following holds: If there exists u € KY such that K = M - (w~u) € P, then there exists v’ € B’
such that K = M - (w~u') € P.

Pick \g € K* with \gB C VX and \gB’ C VY, and set v = v()\g). The statement now follows
from the previous remark, since for all A € K with v(\) > v we have AB C VX and AB’ C VY.
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For the second part, let U be a ball in KX and A\ € K*. Let u € K* be such that M
is a A-translate of M with respect to u. Note that all such p have the same valuation. Let
7(X)=3Y (M- (XUY) € P)and 7#(X) =3Y (M- (XUY) € P) with P € P! defined by P, = uP;
fori e I.

Pick a ball Uy such that for all 7 € I, we have P; € Py,. Let Iy := {ie I| P(V) = {0}}
and Iy := I\ Iy. Pick a ball U; in KXY gsuch that U3 € U x KY and M, - U; C Uél where
My = My w(xuy)- Applying Proposition 7.35 to the matrix My = MTyx(xuy), we obtain a ball
U, in Ko such that for all a € KXY one has

My-a€elUy = Ha’GKXUY(a—a’EUl/\Mo-a’:()).

Now choose a ball U’ in K that is a V [®]-submodule of V such that U” := p~1U’ satisfies U” C Uy
and U C Us,, and note that the choice of U’ can be made independent of the choice of u. Also
note that 7(X) is a Py-formula.

Let w € KX such that Aw € VX and V/U’ = #(Aw). Then there exist wy € KY such that
Mwy € VY and M - (Xa) € [Lc; (PN V) +U') for a = wwy, so M -a € [[;c;(Pi+U").

For i € Iy, we have P; + U" = U", so My - a € U"0 C U,. Therefore we can pick o/ € KXY
such that a —a’ € Uy and My -a’ = 0. Since a — a’ € Uy, we obtain M; - (a —d') € UOIl C [Lies, B
For i € Iy, we have P, + U" = P;, so My - a € [[;c;, Pi, and thus My - a’ € [[;c;, B

We have shown that M -a’ € [];c;
in X, we have K |= 7(w') and w — w’ € U, because Uy C U x K. O

P;, so choosing w’ as the projection of @’ on the components

8.9 Theorem. Suppose that for all sufficiently small balls U, the oV (@] Py -structure V /U is model-
complete. Also assume that the subset V' of K is definable by a pp-formula and by a universal

formula in the o (q) p-structure K. Then the kg p-structure K is model-complete.

Proof. By Theorem 5.13, it suffices to show that every pp-definable set A in the structure K is
defined by a universal formula. So let X be a finite set of variables and A C KX be pp-definable.
By Proposition 7.19, there exists a pp-definable set A, C K X such that A+ A, = KX and AN A,
is bounded. Let By be a ball in KX such that AN A, C By. Let B be a basis of K over ¢(K).
By Proposition 7.27, there exists ¢ € N and a separable left submodule N of K[®]/ with J :=
X X B¢ such that T(A) 2 Ann(N) where T¢ is the canonical bijection KX — KX*B* = K/
determined by the basis B. The set Ann(N) and the graph of the function 7 can be defined by
conjunctions of atomic formulas. Thus the set Ag := (T¢)"!(Ann(N)) can be defined by a universal
formula. Because T°¢(A) 2 Ann(N), we have A % A, so there exists a ball By in KX such that
AN By = AsN B;. Because V is defined by an existential formula, so is B;. Now let 7(X) be a
special pp-formula that defines A. By part 1 of Lemma 8.8, there exists A € K* and a A-translate
7(X) of 7(X) such that

(« (we€ By and K | 7(w)) = (MAw e V¥ and V = 7(\w))
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for all w. By part 2 of Lemma 8.8, there exists a ball U’ C V that is a V[®]-submodule such that
7(X) is a Pyr-formula and

(D) we KX and Aw € VX and V/U' = 7(Aw)

— there exists w’ € K* such that K }=7(w') and w — v’ € By

for all w. By shrinking U’ if necessary (noting that (D) is still true), we can assume that the
Pyy-structure V/U’ is model-complete.
Let

A ={weVX|V/U EFw/U)},
Am::{wEKX‘)\wEA*}.

Then (C) yields AN By C A,,, and (D) yields A+ By 2 A,,. Since V/U’ is model-complete, there is
a universal Pyy-formula ¢)(X) that defines the set 7(V/U’). By Remark 8.5, the set A* is definable
by a universal formula in K, and thus the same holds for A,,. Now apply Corollary 8.3. O

8.10 Corollary. If the residue field k is finite, I' = Z and P contains a predicate whose interpre-

tation is V, then K s model-complete.

8.11 Result. Let a(X), Bo(X) be pp-formulas in the signature o g p- Let B(X) := a(X)ABo(X).
Here we outline a procedure to reduce the computation of the index |a(K)/B(K)| to the computation
of an index |&(V/U)/(&(V/U) N B(V/U))| in the structure V/U for some submodule U of V and
some pp-formulas &(X), 3(X) in the signature Ty (o) Py -

First, compute dimes a(X) and dime, 8(X). If dime 5(X) < dimes a(X), then |a(K)/B(K)| =
00, because a(K) C B(K) + Bo for no ball By in KX, and ' is non-trivial. Suppose dims, 3(X) =
dime a(X). Then we can determine a ball By in KX such that

a(K) + By = B(K) + By .

Next, compute dimg a(X) and dimg 5(X). If dimg 5(X) < dimg (X)), then |a(K)/B(K)| =
because a(K) N By C B(K) for no ball By in KX, and T is non-trivial. Suppose dimg B(X)
dimg a(X). Then we can determine a ball By in KX such that

oo,

O[(K)ﬂBl :ﬁ(K)ﬂBl

Without loss of generality, we may assume that P contains symbols V. for v € T' that are
interpreted as the ball V, in K, since the addition of such symbols does not introduce additional
structure in the ov[q)ms—structure V. So By and B1 are definable by a conjunction of atomic
formulas in K and (a(K) N By) + By and (B(K) N By) + By are definable by pp-formulas, say by
special pp-formulas o/ (X) and §'(X). By Lemma 8.1, we have |a(K)/B(K)| = |o/(K)/B (K)|. So
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we can replace a(X) by o/ (X) and B(X) by B'(X).
By Lemma 8.8, part 1, there exists A € K* and A-translates &(X) of a(X) and B(X) of 3(X)

such that for 7 = o, 3 and the corresponding A-translate 7 = &, 8 we have
(9) (we By and K E7(w)) = (Aw € VX and V = FAw)).

By Lemma 8.8, part 2, there exists a ball U C 'V that is a V[®]-submodule such that UX C \B;

and for T = «, B the corresponding A-translate T = &, B is a Py-formula and

(D) we KX and \w € VX and V/U |= 7(Ow)

— there exists w' € KX such that K |= 7(w') and w —w' € By .

Let h A7'WX — (V/U)X be the group homomorphism induced by multiplication by X. Let
T =o,0 and 7 = &, be the corresponding A-translate. Then the statement (C) yields T(K) N
By € h=Y(F(V/U)). Since 7(K) C By, we have 7(K) C h=Y(7(V/U). The statement (2) yields
7(K) + By 2 h"Y#(V/U)). Since 7(K) 2 By, we have 7(K) 2 h=1(7(V/U)). We obtain 7(K) =
h=YF(V/U)).

Since the image of h is (V/U)X and the kernel of h is contained in By C 7(K), we can conclude
that [a(K)/8(K)| = |&(V/0) | B(V/U)].

8.2 The case I' = Z, residue field embedded

In this section, we assume that I' = Z. By Remark 7.3, part 6, one does not have to assume in this
case that for every finite set X and finitely generated submodule M of K[®]¥, the set M - K has
the weak optimal approximation property modulo large balls, since it is trivially true.

We also assume that V' has a subfield k' such that ¢(k’) C k’ and the factor map V —
V/V~o = k restricted to k' is an isomorphism of fields.

We identify k’ with k via this isomorphism and simply write k for both fields.

In this situation, one can explicitly say what form the (V/U)[®]-modules V/U have. This is

established in the lemma after the following definition.

8.12 Remark/Definition. Let L be a field and ¢ be a self-embedding of L. As before we consider
L as a left L[®]-module via ® - u = ¢(u) for p € L.

Let L[z]| be the ordinary polynomial ring in one variable over L. Let f € L[z]. We can extend
¢ to a ring homomorphism ¢ of the ring L[z] by setting ¢f(x) = f. Every extension of ¢ to a ring
homomorphism of L[z]| has this form. We obtain a twisted polynomial ring L[z|[®f] over L[x], and
L[x] becomes a left L[z][® ¢]-module via (gq)?c) -h:=ghand ®; - g:= ¢s(g) for g,h € Lix].

Suppose f € xL[x]. For every n, the ideal I = z"L[x] of satisfies ¢¢(I) C I, so is a L[z]|[P]-
submodule of L[z]. Also I[®]is an ideal of L[z][®] and L[z]|[®f]/I[®] is canonically isomorphic to
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(L[z]/z™)[®¢]. On the other hand, every ring endomorphism of L[z|/z™ O L extending ¢ :L — L
is induced by ¢ for some f € xL[z] with deg f < n.

8.13 Lemma. Let m := ¢(1) where 1 € I' = 7Z. Note that m > 2 follows from the assumption that
¢ has a modulus of growth. Suppose U CV is a ball. Then U =V, for some n, and U is a V[®]-
submodule of V.. The ring V/U s isomorphic to k[z]/z™ overk, and for any such isomorphism, the
map induced by ¢ on V/U corresponds to the map induced by ¢ on klx]/a" for some f € x"k|x]
with deg f < n. In addition, identifying these two rings via such an isomorphism, the modules V/U

and k[z]/z"™ are isomorphic.

Proof. Recall, that we view k as subring of V. Let t € K with v(¢t) = 1. The subring k[t] of V
is isomorphic to the polynomial ring k[z] (mapping ¢ to z). It is easy to see that V/U = V/t" is
isomorphic to k[t]/t". By the previous remark, the ring homomorphism corresponding to the ring
homomorphism induced by ¢ on k[t]/t" is induced by ¢y for some f € zk[z] with deg f < n. Since
¢(t) € t™V, we have f € 2™k[x]. O

8.14 Assumption. For the rest of the section, P contains just the two symbols V; and V,, where
in K the symbol Vp is interpreted as V and Vi as {0}. Let m := ¢(1).

8.15 Corollary.

1. Suppose that for all n € N and f € x°k[z], the (k[z]/2™)[®s]-module k[z]/z™ is model-

complete in the signature O (k[z]/zm) @] then the o) p-structure K is model-complete.

2. The computation of pp-indices in the structure K can be reduced to those in the o (k] /zn)e -
structures k[z]/z™ forn € N, f € x2k[z].

Proof. Note that for any ball U C V and P € Py, the set P(V/U) is definable by an atomic formula
in the oy (g)-structure V/U.
So part 1 follows from Theorem 8.9 and part 2 follows from Result 8.11. O

In the following, we try to state the previous corollary in terms of the k[®]-module k instead
of the (k[z]/2™)[®¢]-module k[z]/z"™ where f € 2?k[z] and n € N. This is possible, since the two
structures are bi-interpretable for n > 1 in a nice way. As a preparation for the model-completeness

part, we state the following lemma.

8.16 Lemma. Suppose L; is a language and M; an L;-structure for i = 0,1. Fori= 0,1, let A;

be an d;-dimensional interpretation of M; in Mi_;, which consists of
1. an Li_;-formula Oa,(y1,---,Yd;),

2. a map that assigns to each unnested atomic formula T(x1,...,2,) of L; an Li_;-formula

TAi(ylla -y Yidys - - -5 Ynl, - - 7ynd¢)7 and

3. a surjective map fa,; :0a,(Mi_;) — M;
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such that for each T(x1,...,xy) as in part 2 and all (a1, ...,an) € Oa,(M1_;)", one has
Mi ): T(fA(al)a R fAz(an)) <~ lei ): TA(allv -5 Ald;y - -5 Anl, - - ,andi) )

where a; = (aj1,..,a5q,) forj=1,...,n.

Also suppose that:

(i) The composite interpretation Ay oAy of My in My is homotopic to the identity interpretation

on My via some existential formula, i.e. there exists an existential Lg-formula

X(xaylh s Yidys - 7Z/d017- . 7yd0d1)

that induces an isomorphism of My onto (A1 o Ag)(Mp).
(i1) Oa,(y1,---,Yd,) is equivalent in My to an existential formula.

(iii) For every T(x1,...,xy) as in part 2 with i =1, the formula Ta, (Y11, - Yidys---sYnly- - Yndy)

is equivalent in My to an existential and to a universal formula.
(iv) My is model-complete.
Then My is model-complete.

Proof. Suppose a(x1,...,x,) is an Lo-formula. It suffices to show that a(zq,...,z,) is equivalent
to an existential formula in Mj.

By the homotopy assumption (i), we know that a(z1,...,z,) is equivalent to

(8.1) Fyiits--»Yiidys-- > Yndols - - » Yndoda

n
(/\ X($]a Yj11s - -y Yjldys - -+ s Yjdols - - 7yjd0d1) A (QAO)A1 (3/111, sy Ylldys - - oy Yndols - - yndodl)) .
j=1

where x(Z,Y11,- -, Y1dys---»Ydols - - s Ydod,) 1S an existential formula. So it suffices it show that
(ng) A (Y1115 -+ Yldys - - - s Yndols - - » Yndody ) 1 €quivalent to an existential formula in M.
The formula aa, (Y11, - -, Yidgs - - - » Ynl, - - » Ynd,) 1S equivalent to an existential formula

ﬁ(ylla' 'ayldoa"' sy Ynly - - 7ynd0)

in My, since M7 is model-complete by assumption. By introducing additional existential quantifiers,
we may assume that the atomic subformulas of  are unnested. The assumptions (ii) and (iii) yield

that Ba, (Y111, - - Y11dys - - - » Yndols - - » Yndod, ) 1S €quivalent to an existential formula in M. O

8.17 Lemma. Let n > 1 and g € 2%k[z]. There exist an n-dimensional interpretation A (k[a]/2m)
of the (k[z]/x™)[®4]-module k[x]/x™ in the k[®]-module k and a 1-dimensional interpretation Ay of
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the k[®]-module k in the (k[z]/x™)[®4]-module klx]/x" such that the assumptions of the previous
lemma are satisfied for Ag = Ay, A1 = Aa)/en) and for Ay = Ay, Ag = Axfa)/an)-

Proof. We may assume that degg < n. For i < n, pick g; ; € k for j < n such that g' +klx]a™ =

Y jen 97’ + klz]z".
For A(y[z)/an), use fA(,.n) defined by

zz<n : Z)\x +k

<n

for (A;)i<n € k™, and

(z=2- y)A(k[z 1/an) /\ cj = Z(gi,jq)) “Yis

i<n <n
(Z =T- y)A(k[z]/ln) =ZzZ0 = 0 A /\ Z’i+1 = y’L 9

i<n—1

(2= X Paggm = N\ 2=

<n

for all variables y, z and A € k.

To construct Ay, use the following: For t,m € N with f € 2™k[z] and m' > n and a basis B, for
k over ¢'(k), we have (kz°)/z™ = 37,5 (b®") - (k[z]/2™). Thus the subset (kz”)/z" is existentially
definable in k[z]/z™. O

8.18 Corollary.

1. Suppose that the k[®]-module k is model-complete in the signature ox@]- Then the ok p

structure K is model-complete.

2. The computation of pp-indices in the o g) p-structure K can be reduced to the computation

of pp-indices in the oyg)-structure k.
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Appendix A

Additional Conjectures

Here are some other mathematical statements which I believe are true, and hope to prove in the

near future.

A.1 Conjecture. In Theorem 7.17 we also have
A) dims, Tg(S) = [K : ¢(K)]dime S where T is the canonical bijection KX — KX*B,
B) If E € KX'™*X then for ' :== E - S we have dim,, S’ < dim, S.

A.2 Conjecture. In Theorem 7.33 we also have
A) dimg Tp(S) = [K : ¢(K)]|dimg S where Tp is the canonical bijection KX —s KX*B.

B) If E € KX*X" has full row rank, then for S := { ae KX ’ E-a€e S} we have dimg S’ >
dimo S.

A.3 Conjecture. If S is a pp-definable set, then dimy, S < dimg S.

A.4 Conjecture. Let k be a field of characteristic p, K = k((t)) and ¢ the Frobenius. Then the
module K is not model-complete in the signature okg). If one adds a predicate for V', then it
is model-complete if k is finite or satisfies the Kaplansky condition. (To say that k satisfies the
Kaplansky condition means that f -k = k for every non-zero f € k[®|, cf. [Ka], p.312, hypothesis

A (1))
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