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Chapter 1

Introduction

1.1 Overview

Suppose k is a field of characteristic p > 0 such that [k : kp] is finite. Let K = k((t)) be the field of

Laurent series over k. The field K is a valued field with respect to the valuation v given by

v(f) = min { i ∈ Z | fi 6= 0 }

for f =
∑

i∈Z
fit

i ∈ K, f 6= 0. The thesis studies the elementary theory of K as a K-module

equipped with the Frobenius map λ 7→ λp and with the valuation ring V0 = k[[t]] as a distinguished

subgroup. This study is meant as a step towards determining the elementary theory ofK as a valued

field, which is arguably the main problem left open by the famous papers of Ax-Kochen [AK1],

[AK2] and Ershov [E1], [E2] in the sixties on the elementary theory of local fields of characteristic

zero.

Let R = K[Φ] be the ring of twisted polynomials in the variable Φ over K determined by the

relations Φλ = λpΦ for λ ∈ K. We make K into a left R-module by λ · µ := λµ for all λ ∈ K and

Φ · µ := µp.

Let L be the language that has for every element r of R a unary function symbol r· and for

every i ∈ Z a unary predicate Vi. We make K into an L-structure by interpreting r· as the action

of r on K and Vi as the subgroup of elements with valuation greater than or equal to i. A main

aim of the thesis is to determine the first order L-theory of this structure K.

In the model theory of modules, so-called positive primitive formulas (short: pp-formulas) play

an important role. A pp-formula of L is an L-formula α(x1, . . . , xm) of the form

∃y1, . . . , ynα
′(x1, . . . , xm, y1, . . . , yn)

where x1, . . . , xm, y1, . . . , yn are distinct variables and α′ is a conjunction of atomic formulas. The

solution set in the L-structure K of such a pp-formula α(x1, . . . , xm) is a subgroup of the additive

product group Km, and is called a pp-definable subset (or pp-definable subgroup) of Km.

(Since R is not commutative, a pp-definable subgroup of Km is not always an R-submodule of the

product module Km.)
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A general result about the model theory of modules (see [Ba], [Mo]) stated in Theorem 5.13

implies that every subset of Km that is definable in the L-structure K is a boolean combination of

pp-definable subsets of Km. Also, the first order theory of the L-structure K is determined by the

indices |α(K)/(α(K) ∩ β(K))| ∈ N ∪ {∞} for all pp-formulas α(x), β(x). Here, and throughout

the thesis, “definable” means “definable without parameters” unless indicated otherwise.

One goal of the thesis is to obtain a procedure to compute the quantity |B/A| for pp-definable

subgroups A and B of K with A ⊆ B. The dissertation will also contain results on the structure

of pp-definable subsets of Km. For example, such sets are closed with respect to the valuation

topology (see Corollary 7.28). Another result about the model theory of the L-structure K is the

following: If k is model-complete as a module over the subring k[Φ] of K[Φ], then the L-structure K

is model-complete. In particular, the L-structure K is model-complete, if k is finite or algebraically

closed.

As the main step, results on the “small” and “large” structure of a pp-definable set are obtained.

Here the “small” structure of a pp-definable set is the structure of the set after intersecting with

a sufficiently small valuation ball Vi (i.e. for some large enough i). The “large” structure of a

pp-definable set is the structure of the set after adding a sufficiently large valuation ball Vi (i.e. for

some small i), which results in blurring the small details.

More generally, one can consider an arbitrary valued field (K, v) instead of (k((t)), v) and replace

the Frobenius map λ 7→ λp in the commutation rule Φλ = λpΦ by an arbitrary self-embedding φ

of the valued field (K, v) to obtain a ring K[Φ] with Φλ = φ(λ)Φ for λ ∈ K. Many considerations

go through in this more general setting with the following additional assumptions, which are true

for K = k((t)) and φ the Frobenius map:

1. The value group Γ = v(K \ { 0 }) is non-trivial and φ increases positive valuations (see

Definition 6.12 and Assumption 6.18). This generalizes the Frobenius case v(λp) = pv(λ).

2. K has finite dimension over its subfield φ(K), and there exists a weakly valuation independent

basis of K over φ(K) (see Definition 6.3). Such a basis allows one to obtain upper estimates

on the valuation of a linear combination of basis elements in terms of the coefficients. For

K = k((t)) and B a basis of k over kp, the set
{

bti
∣

∣ b ∈ B, 0 ≤ i < p
}

is such a basis.

3. Certain pp-definable subsets S of K satisfy a weak optimal approximation property (see

Definition 7.2 and Assumption 7.15). This means that for every point a ∈ K, there is among

elements of S one that is closest to a in some weak sense.

In the situation where the value group of K is Z, for example, if K = k((t)), this is trivially

satisfied. But it also holds in all maximally valued fields (see Proposition 7.13). This as-

sumption is used to obtain a nice “large”-asymptotic notion of size for pp-definable sets (see

Lemma 7.14, Definition 7.16).

4. K is linear φ-henselian (see Definition 7.20). For K = k((t)), this holds, because k((t)) is

henselian. This assumption is used to obtain a nice “small” structure of the pp-definable sets
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(see Proposition 7.27).

Every finite system of homogeneous linear equations in the finite set of variables X with coef-

ficients in K[Φ] can be written as M · x = 0I where M is a matrix over K[Φ] with some finite row

index set I and column index set X, where 0I is a column vector of zeros with row index set I,

and where x is a column vector whose entries are the variables in X. Since pp-formulas are closely

related to such systems of linear equations, a study of matrices over K[Φ] seems natural.

As preparation, some known properties of the ring K[Φ] are summarized in Chapter 2. Most

important here is the Division Lemma 2.6, which is a non-commutative analogue to the Euclidean

property for a polynomial ring over a field. In Chapter 3, we study matrices over the ring K[Φ].

The aim is to obtain ways to transform an arbitrary matrix into a nicer form using elementary row

and column operations. For example, using elementary row operations, one can always transform a

matrix into an upper triangular form (see Definition 3.7). Lemma 3.15 will be crucial in showing that

in the “small”, pp-definable sets are just defined by systems of homogeneous linear equations (so no

projection is necessary) after applying some definable bijection (see Proposition 7.27). Proposition

3.18 will be crucial in showing that in the “large”, pp-definable sets are just given as images under

a term map, so no equations are necessary in some sense (see Proposition 7.5).

In Chapter 5, the K[Φ]-module structure of K is formally defined and some general results

in the model theory of modules summarized. Chapter 6 deals with the basic valuation estimates

needed to analyze the “small” and “large” structure of pp-definable sets. Most crucial here is

Proposition 6.26, which provides a lower estimate for the valuation of λi ∈ K in terms v(
∑

i fi ·λi)

when the fi ∈ K[Φ] are strongly independent (see Definition 3.16). This proposition is used later

in the proof of Lemma 7.11 and Proposition 7.13.

Chapter 7 deals with the “large” (see Section 7.1) and “small” (see Section 7.2) structure of

pp-definable sets. In both subsections, first a result is obtained that shows that the asymptotic

structure of pp-definable sets is less complicated: In the “large” case, one can essentially dispense

with equational constraints (see Proposition 7.5) and in the “small” case, one can essentially dis-

pense with projections (existential quantifiers) (see Proposition 7.27). Using this simplified struc-

ture, one can in both cases define an asymptotic measure of the size for a pp-definable set, denoted

by dim0 (dimension in the “small” setting, i.e. for large positive valuations) and dim∞ (dimension

in the “large” setting, i.e. for large negative valuations) respectively. These dimensions have values

in
{

i

j

∣

∣

∣

∣

i ∈ N, j ∈ { [K : φ(K)]m | m ∈ N }

}

.

The dimensions are not definable invariants, but depend on the ambient spaceKn. Let C ⊆ A ⊆ Kn

be pp-definable sets. Then dim∞C ≤ dim∞A and dim0C ≤ dim0A, dim∞C = dim∞A if and

only if there exists some (possibly large) valuation ball B0 in Kn such that A+B0 = C +B0, and

dim0C = dim0A if and only if there exists some (possibly small) valuation ball B1 in Kn such that

A∩B1 = C ∩B0. If dim∞C < dim∞A or dim0C < dim0A, then |A/C| is infinite. Otherwise, one

can reduce the computation of |A/C| to the computation of |A′/C ′| for some pp-definable sets A′,
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C ′ in some simpler factor module (see Result 8.11).

Chapter 4 provides some results about finitely generated free modules overK[Φ] and submodules

of such modules. These results are needed for the definition of dim∞ and dim0. It turns out that

for dim∞ the free right K[Φ]-modules play a role (see Section 4.1), and for dim0 the free left

K[Φ]-modules play a role (see Section 4.2).

In Chapter 8, the asymptotic description of pp-definable sets is used to reduce the computation

of pp-indices to certain factor modules of the valuation ring of K, which have in general a simpler

structure than the module K. We also obtain a statement that model-completeness of all these

factor modules implies model completeness of the K, if the valuation ring is pp-definable in K. In

Section 8.2, we obtain a corresponding reduction to statements about the residue field k of K, if

the value group Γ of K is Z and k is embedded in K with φ(k) ⊆ k.

1.2 Notations and Conventions

We let N denote the set of natural numbers including 0. If not otherwise stated, the letters i, j,

k, m and n denote elements of N. For example, the statement ”i < n” means i, n ∈ N and i < n.

The set { i | i < n } is sometimes simply denoted by n.

For sets S and I the symbol SI stands for the set of maps from I to S. An element of SI is also

called a tuple indexed by I over S. Saying that a = (ai)i∈I is a tuple over S means that a ∈ SI

and a(i) = ai for all i ∈ I. Such a tuple is said to be finite, if its index set I is finite. Let Sn

denote the set S{ i | i<n }. We identify this set with the n-fold Cartesian product S × · · · × S. For a

function f :A −→ B, its restriction to A0 ⊆ A is denoted by f�A0
.

Throughout we assume that languages and formulas are first-order and one-sorted.
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Chapter 2

Rings

This section summarizes properties of twisted polynomial rings over fields and of some auxiliary

rings. In parts, the treatment is more general than needed for later applications. “Ring” always

means “not necessarily commutative ring with 1”.

2.1 Definition. Let R be a ring. A unit in R is an element of R with a two-sided multiplicative

inverse, and R× denotes the set of units of R. An element r ∈ R is called right regular, if s = 0

for every s ∈ R with rs = 0. An element r ∈ R is called a left zero-divisor, if r 6= 0 and rs = 0

for some non-zero s ∈ R. There are corresponding definitions with right and left interchanged. We

call R a domain, if R has no left and no right zero-divisors, and 0 6= 1 in R.

2.2 Remark. Let R be a ring.

1. An element in R is a left zero-divisor if and only if it is non-zero and not right regular.

2. The units in R form a group with respect to the multiplication.

3. Suppose R is a domain. If r ∈ R has a left (or right) inverse, then this inverse is actually a

two-sided inverse.

2.3 Definition. Let R be a ring and φ be a ring endomorphism of R. Let

R[[Φ]] := RN

be the set of sequences over R. Define the operations

+ , · : R[[Φ]] ×R[[Φ]] −→ R[[Φ]]

by

(f + g)(i) := f(i) + g(i)

and

(f · g)(i) :=
∑

j≤i

f(j)φj(g(i− j)) .
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An element f is also denoted by
∑

i∈N
f(i)Φi. These operations make R[[Φ]] a ring with 1 = 1Φ0;

it is called the ring of (left) twisted power series over R with respect to φ. Let

R[Φ] := { f ∈ R[[Φ]] | f(i) = 0 for all but finitely many i ∈ N } .

This is a subring of R[[Φ]], called the ring of twisted polynomials over R with respect to φ.

For f in R[Φ] \ { 0 }, define the degree of f by

deg(f) := max { i ∈ N | f(i) 6= 0 }

and call f(deg(f)) the leading coefficient of f . Furthermore, set deg(0) := −∞. For f in

R[[Φ]] \ { 0 }, define the order (or lower degree) of f by

ldeg(f) := min { i ∈ N | f(i) 6= 0 }

and call f(ldeg(f)) the trailing coefficient of f . Furthermore, set ldeg(0) := ∞. We write Φ for

the element 1Φ1 ∈ R[[Φ]].

2.4 Remark. Consider the situation of the previous definition.

1. Usually, the ring endomorphism φ is given and so does not appear in the notation for the

twisted power series and twisted polynomial ring.

2. R becomes a subring of R[[Φ]] via the embedding r 7→ rΦ0. Note that then Φr = φ(r)Φ for

r ∈ R.

3. R[Φ] satisfies the following universal property: For every ring homomorphism ρ :R −→ S

and every element s ∈ S such that sρ(r) = ρ(φ(r))s for all r ∈ R, there exists a unique ring

homomorphism ρ̂ :R[Φ] −→ S that extends ρ and maps Φ to s.

4. Suppose I is a two-sided ideal of R such that φ(I) ⊆ I. Then φ induces a ring endomorphism

φ̄ of R/I by φ̄(r/I) = φ(r)/I. Let (R/I)[[Φ]] denote the twisted power series ring with respect

to the endomorphism φ̄. Let I[[Φ]] :=
{

∑

i∈N
f(i)Φi

∣

∣ f ∈ IN
}

. Then I[[Φ]] is a two-sided

ideal of R[[Φ]] and R[[Φ]]/I[[Φ]] is canonically isomorphic to (R/I)[[Φ]]. A similar statement

holds for twisted polynomial rings instead of twisted power series rings.

2.5 Lemma.

1. Let f, g ∈ R[Φ]. Then

deg(f − g) ≤ max {deg(f),deg(g) }

and

deg(fg) ≤ deg(f) + deg(g) .

If g 6= 0 and the leading coefficient of g is a unit in R, then the second inequality becomes an

equality.
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2. Let f, g ∈ R[[Φ]]. Then

ldeg(f − g) ≥ min { ldeg(f), ldeg(g) }

and

ldeg(fg) ≥ ldeg(f) + ldeg(g) .

If g 6= 0 and the trailing coefficient of g is a unit in R, then the second inequality becomes an

equality.

3. Suppose R is a domain and φ is injective. Then the equality deg(fg) = deg(f)+deg(g) holds

in R[Φ] and ldeg(fg) = ldeg(f) + ldeg(g) holds in R[[Φ]]. Furthermore, R[[Φ]] and R[Φ] are

domains.

The proof is obvious.

2.6 Lemma (Division lemma). Let f, g ∈ R[Φ] such that g 6= 0 and the leading coefficient of g

is a unit. Then there exist unique q, r ∈ R[Φ] such that f = qg + r and deg(r) < deg(g).

Proof. Existence: We proceed by induction on the degree of f . If deg(f) < deg(g), one can choose

q = 0 and r = f . So suppose f =
∑

i≤m fiΦ
i and g =

∑

i≤n giΦ
i with fm 6= 0 and gn 6= 0 and

m ≥ n. Let q0 := fmΦm−ng−1
n . Then f ′ := f − q0g has degree less than m, so by the induction

hypothesis, there exist q′, r′ ∈ R[Φ] with f ′ = q′g + r′ and deg(r′) < deg(g). Now let q = q0 + q′

and r = r′. Then f = q0g + f ′ = (q0 + q′)g + r, and deg(r) < deg(g). This proves existence.

Uniqueness: It suffices to show that for q, r ∈ R[Φ] the conditions qg+r = 0 and deg(r) < deg(g)

imply q = 0 and r = 0. But by the previous lemma, since the leading coefficient of g is a unit,

deg(g) > deg(r) = deg(qg) = deg(q) + deg(g), which implies q = 0.

2.7 Remark.

1. d(f, g) := 2− ldeg(f−g) defines a complete metric on R[[Φ]].

2. If f ∈ R[[Φ]] with ldeg(f) > 0, then the sequence (
∑n

i=0 f
i)n converges in the above metric.

The limit denoted by
∑

i∈N
f i is a two-sided inverse of 1 − f .

3. f =
∑

i∈N
fiΦ

i is a unit in R[[Φ]] if and only if f0 is a unit in R.

4. For a complete commutative local ring R and a local ring endomorphism φ of R, the following

one-sided analogue of the Weierstrass division theorem holds in R[[Φ]]: Let m be the maximal

ideal of R. Let f =
∑

i∈N
f(i)Φi ∈ R[[Φ]] and d ∈ N such that f(i) ∈ m for i < d and f(d) is

a unit in R. Then for each g ∈ R[[Φ]] there exist unique q ∈ R[[Φ]] and r ∈ R[Φ] such that

g = qf + r and deg(r) < d. (The statement is not true in general, if qf is replaced by fq.)

This version of the Weierstrass division is not used in the thesis.

2.8 Definition. Let R be a ring and S be a multiplicative subset of R, i.e. S contains 1 and is

closed under multiplication. The set S is said to be a left denominator set if the following two

conditions hold:
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1. left Ore condition: Rs ∩ Sr 6= ∅ for all s ∈ S and r ∈ R (equivalently Rs ∩ Sr 6= ∅ for all

s ∈ S and r ∈ R \ { 0 }).

2. If rs = 0 for r ∈ R and s ∈ S, then there exists s′ ∈ S such that s′r = 0.

2.9 Remark (compare [Row], section 3.1). Let the multiplicative subset S of R be a left denominator

set. Then there exist a ring T and a ring homomorphism ρ :R −→ T such that ρ(s) is a unit

for all s ∈ S and ρ is universal with this property. The universality means that for every ring

homomorphism ρ′ :R −→ T ′ such that ρ′(s) is a unit for all s ∈ S there exists a unique ring

homomorphism τ :T −→ T ′ with ρ′ = τρ. It follows that, as an R-ring, T is unique up to unique

isomorphism. Every element in T can be written as ρ(s)−1ρ(r) for r ∈ R and s ∈ S. The ring T is

called the ring of left fractions of R with respect to S and is denoted by S−1R.

For every left ideal I of R, the set S−1I =
{

ρ(s)−1ρ(r)
∣

∣ s ∈ S, r ∈ I
}

is a left ideal of S−1R;

every left ideal of S−1R is of this form.

If in addition every element in S is right regular, then ρ is an embedding. In particular, if R

is a domain, then for every multiplicative subset S of R \ { 0 } that satisfies the left Ore condition

the canonical map R −→ S−1R is an embedding, and we shall identify R with a subring of S−1R

via this embedding.

2.10 Lemma/Definition. Let K be a field and φ be a self-embedding of K.

1. K[[Φ]] and K[Φ] are domains. The group of units of K[Φ] is K× = K \ { 0 }.

2. Every left ideal of K[Φ] is a principal left ideal. In particular K[Φ] is left Noetherian.

3. The left ideal of K[Φ] generated by Φn is a two-sided ideal. The two-sided ideal m := K[Φ]Φ

is maximal as a right and as a left ideal; the map K −→ K[Φ]/m , λ 7→ λ + m is a ring

isomorphism.

4. The sets S0 = K[Φ] \ { 0 } and Sm = K[Φ] \ m are left denominator sets of K[Φ]. The ring

of left fractions (S0)
−1K[Φ] is denoted by Q(K[Φ]) and the ring of left fractions (Sm)−1K[Φ]

by K[Φ]m.

5. The left ideal of K[Φ]m generated by Φ is a two-sided ideal and it is a largest proper left and

a largest proper right ideal.

Proof. 1. This follows from Lemma 2.5.

2. Let I be a left ideal of K[Φ]. If I = { 0 }, then I = K[Φ]0. Otherwise, there exists an

element g ∈ I \ { 0 } with minimal degree. Now let f ∈ I. By the division lemma, there exist

q, r ∈ K[Φ] such that f = qg + r and deg(r) < deg(g). Since f, g ∈ I, and I is a left ideal,

we have r ∈ I, so by the choice of g it follows that r is 0. Therefore f ∈ K[Φ]g. This shows

I = K[Φ]g.

8



3. Since for every element f =
∑

i<m fiΦ
i ∈ K[Φ] we have Φnf = (

∑

i<m φn(fi)Φ
i)Φn, the left

ideal K[Φ]Φn is also a right ideal. It is easy to see that the inclusion K −→ K[Φ] induces a

ring isomorphism K ' K[Φ]/m, which yields also the maximality of m as a left and as a right

ideal.

4. Since K[Φ]/0 and K[Φ]/m are domains, the sets S0 and Sm are multiplicative. Since they

don’t contain 0 and K[Φ] is a domain, they satisfy the second condition of being a left

denominator set.

We first show the left Ore condition for S0. Let r ∈ K[Φ] and s ∈ S0. We have to show that

there exist f ∈ S0 and g ∈ K[Φ] such that fr = gs. If r = 0, then one can choose f = 1 and

g = 0, so assume now r 6= 0.

Consider K[Φ]≤i := { h ∈ K[Φ] | deg h ≤ i } as K-vector space where the action is given by

left multiplication viewing K as a subset of K[Φ]. We have dimK K[Φ]≤i = i+ 1.

Consider the K-linear map

K[Φ]≤deg s ×K[Φ]≤deg r −→ K[Φ]≤deg s+deg r , (f, g) 7→ fr − gs .

It maps the (deg s+1+deg r+1)-dimensional K-vector space K[Φ]≤deg s×K[Φ]≤deg r into the

(deg s+deg r+1)-dimensional K-vector space K[Φ]≤deg s+deg r. Thus, there exists a non-zero

element in the kernel of this map, i.e. there exists f ∈ K[Φ]≤deg s and g ∈ K[Φ]≤deg r with

fr − gs = 0, and f 6= 0 or g 6= 0. Since K[Φ] is a domain and s 6= 0, we can conclude that

f 6= 0, so f ∈ S0, and we are done.

Next, we show the left Ore condition for Sm. Let r ∈ K[Φ] and s ∈ Sm, so ldeg s = 0. We

have to show that there exist f ∈ Sm and g ∈ K[Φ] such that fr = gs. Again, we can assume

r 6= 0. Applying the left Ore condition for S0, we obtain f ′ ∈ S0 and g′ ∈ K[Φ] such that

f ′r = g′s. We have ldeg g′ = ldeg g′s = ldeg f ′r ≥ ldeg f ′. With j := ldeg f ′, we obtain

g′, f ′ ∈ K[Φ]Φj . Let B ⊆ K be a basis of the φj(K)-vector space K. The tuple (bΦj)b∈B

is a basis of the right K[Φ]-module K[Φ]Φj . Therefore, there exist (fb)b∈B, (gb)b∈B ∈ K[Φ]B

with fb = 0, gb = 0 for all but finitely b ∈ B and
∑

b∈B bΦ
jfb = f ′,

∑

b∈B bΦ
jgb = g′. Since

f ′r = g′s and (bΦj)b∈B is independent in the right K[Φ]-module K[Φ], we obtain fbr = gbs

for b ∈ B. Because ldeg f ′ = j, there exists b ∈ B such that ldeg fb = 0, and for such b we

can take f = fb and g = gb.

5. Let m
′ denote the left ideal generated by Φ in K[Φ]m. As in the proof of part 3, one shows

that m
′ is a right ideal. It is easy to see that 1 6∈ m

′ and that every element in K[Φ]m \ m
′ is

a unit.

Similar arguments prove the next lemma.
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2.11 Lemma. Let K be a field and φ be a self-embedding of K.

1. The left ideal of K[[Φ]] generated by Φn is a two-sided ideal.

2. The set of units of K[[Φ]] is K[[Φ]] \K[[Φ]]Φ.

3. Every left ideal of K[[Φ]] is a principal left ideal of the form K[[Φ]]Φn for some n, and every

left ideal is a right ideal. In particular, K[[Φ]] is left Noetherian.

4. Let m := K[[Φ]]Φ. Then m is a two-sided ideal of K[[Φ]] and it is a largest proper left and a

largest proper right ideal.

5. The map K −→ K[[Φ]]/m , λ 7→ λ+ m is a ring isomorphism.

10



Chapter 3

Matrix Operations

3.1 Definition. A matrix over the set R with row index set I1 and column index set I2 is a map

from I1 × I2 to R. The set of all such matrices is denoted by RI1×I2 .

3.2 Remark/Definition. Let R be a ring and Vl be a left R-module and Vr be a right R-module.

Let I1, I2, I3, I be finite sets. The set V I
l has naturally the structure of a left R-module by adding

and multiplying componentwise. Then we have the usual operations of matrix multiplication

RI1×I2 × V I2×I3
l −→ V I1×I3

l , (M,N) 7→MN

V I1×I2
r ×RI2×I3 −→ V I1×I3

r , (M,N) 7→MN

RI1×I2 ×RI2×I3 −→ RI1×I3 , (M,N) 7→MN

given by (MN)(i1, i3) =
∑

i2∈I2
M(i1, i2)N(i2, i3). If M1 ∈ RI1×I2 , M2 ∈ RI2×I3 and N ∈ V I3×I4

l ,

then (M1M2)N = M1(M2N).

The set MATI(R) := RI×I forms a ring with the natural operations. The group of units of

MATI(R) is denoted by GLI(R). The identity matrix of MATI(R) is denoted by Id or IdI to

emphasize the index set I.

We call M ∈ RI1×I2 invertible if there exists N ∈ RI2×I1 such that MN = IdI1 and NM = IdI2 .

Given disjoint sets I0, I1, disjoint sets J0, J1 and Mi ∈ RIi×Ji for i = 0, 1, define M0 tM1 ∈

R(I0∪I1)×(J0∪J1) by (M0 tM1)�Ii×Ji
= Mi and (M0 tM1)�Ii×J1−i

= 0 for i = 0, 1.

3.3 Definition. Let I be an index set and R be a ring. For i, i1, i2 ∈ I and r ∈ R, define

Di1,i2 , Ei1,i2,r, Fi,r in MATI(R) by Di1,i2(j1, j2) = δi1,j1δi2,j2 for j1, j2 ∈ I, Ei1,i2,r = Id+rDi1,i2 and

Fi,r = Id +(r − 1)Di,i.

A restricted elementary matrix in MATI(R) is a matrix of the form Ei1,i2,r with i1 6= i2.

An elementary matrix in MATI(R) is a restricted elementary matrix or a matrix of the form Fi,r

with r a unit in R.

3.4 Remark.

1. The elementary matrices lie in GLI(R) and have inverses that are also elementary matrices:

E−1
i1,i2,r = Ei1,i2,−r (i1 6= i2) and F−1

i,r = Fi,r−1 (r a unit of R).
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2. The result of multiplying a matrix M ∈ RI×J by Ei1,i2,r ∈ MATI(R) from the left is the

same as adding the i2-row of M multiplied on the left by r to the i1-row of M . The result of

multiplying a matrix M ∈ RI×J by Ej1,j2,r ∈ MATJ(R) from the right is the same as adding

the j1-column of M multiplied on the right by r to the j2-column of M .

3. An upper triangular matrix in MATI(R) with all diagonal entries equal to 1 is a product of

restricted elementary matrices.

From now on, assume that K is a field, φ a self-embedding of K and K[Φ] the associated ring

of twisted polynomials.

3.5 Remark/Definition. Let be the unique ring homomorphism K[Φ] −→ K that is the

identity on K and maps Φ to 0. Let M ∈ K[Φ]I×J . By M we denote the matrix in KI×J that is

obtained by applying to the entries of M .

We define rankK M as the rank of the matrix M and call M row regular, if rankK M is equal

to the number of rows |I| of M . Similarly, M is called column regular, if rankK M is equal to

the number of columns |J | of M .

3.6 Remark. Let M ∈ K[Φ]I×J , and E ∈ GLI(K[Φ]). Then rankK EM = rankK M . In particular,

being row regular and being column regular are preserved by multiplying M on the left with

elements in GLI(K[Φ]). The analogous statements are true for multiplication with elements in

GLJ(K[Φ]) on the right.

3.7 Definition. Let M ∈ K[Φ]I×J . Then M is said to be in upper triangular form with respect

to I0 ⊆ I, an injection ι :I0 −→ J and a total order ≤ on I0, if

1. M is zero on ((I \ I0) × J) ∪ { (i1, ι(i2)) | i1, i2 ∈ I0, i1 > i2 };

2. for all i1, i2 ∈ I0 with i1 ≤ i2,

ldegM(i1, ι(i1)) ≤ ldegM(i2, ι(i2)) <∞ ;

3. for all i ∈ I0 and j ∈ J ,

ldegM(i, ι(i)) ≤ ldegM(i, j) .

Note that, if M has some upper triangular form, I0 is uniquely determined as the set of indices

of non-zero rows. We call M�I0×J the non-zero part of M . If we say M is in upper triangular

form, we fix ι and ≤ as above.

Here is a picture of a matrix M ∈ K[Φ]I×J that is in upper triangular form with respect to

I0 = { i1, . . . , im }, ≤ given by i1 < i2 < . . . < im, and some injection ι :I0 −→ J . Note that

J \ ι(I0) = { j1, . . . , jn } in this picture:
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3.8 Remark. Suppose M ∈ K[Φ]I×J is in upper triangular form with respect to ι :I0 −→ I and

≤ as above. Then rankK M = |{ i ∈ I0 | ldegM(i, ι(i)) = 0 }| and the non-zero part of M is row

regular if and only if ldegM(i, ι(i)) = 0 for all i ∈ I0.

3.9 Lemma. Let I, J be finite sets, M ∈ K[Φ]I×J . Then there exists a (possibly empty) product

E of restricted elementary matrices in MATI(K[Φ]) such that EM is in upper triangular form.

Proof. We start the proof by noting that for each j ∈ J the value mini∈I ldegM(i, j) is determined

by the left ideal of K[Φ] generated by the elements in the j-column, so mini∈I ldegM(i, j) =

mini∈I ldeg (EM)(i, j) for every product E of elementary matrices.

The proof is by induction on the cardinality of J . If all entries of M are zero, then M is

already in upper triangular form with respect to I0 = ∅. Otherwise, pick a column with index

j0 ∈ J such that ldegM(i0, j0) = mini∈I,j∈J ldegM(i, j) for some i0 ∈ I. If for some i1 ∈ I \ { i0 }

the entry M(i1, j0) is non-zero, one can by the division lemma find an element r ∈ K[Φ] such that

for E1 := Ei0,i1,r (in case degM(i1, j0) ≤ degM(i0, j0)) or E1 := Ei1,i0,r (in case degM(i0, j0) ≤

degM(i1, j0)) the sum of degrees of non-zero entries in the j0-column of E1M is smaller than

the corresponding sum for the matrix M . By induction on this sum, one can find a product

of restricted elementary matrices E2 such that the j0-column of E2M has exactly one non-zero

entry, say in the i2-row. By the note at the start of the proof, we have ldeg (E2M)(i2, j0) =

mini∈I,j∈J ldeg (E2M)(i, j). By applying the induction hypothesis to the sub-matrix M ′ of E2M

with row index set I ′ = I \ { i2 } and column index set J ′ = J \ { j0 }, we find a product E′ of

restricted elementary matrices in MATI′(K[Φ]) and data I ′0 ⊆ I ′, ι′ :I ′0 −→ J ′ and ≤′ on I ′0 such

that E′M ′ is in upper triangular form with respect to the data. Then E∗ ∈ MATI(K[Φ]) defined

by E∗(i, j) = E(i, j) for i, j ∈ I ′, E∗(i2, i2) = 1 and E∗(i, i2) = 0, E∗(i2, i) = 0 for i ∈ I ′ is a

product of restricted elementary matrices in MATI(K[Φ]). Set E := E∗E2. Then EM is in upper

triangular form with respect to I0 := I ′0 ∪ { i2 }, ι := ι′ ∪ { (i2, j0) } and the order ≤ on I0 obtained

by extending ι′ with i2 as the new smallest element.

3.10 Corollary. The group of units of MATI(K[Φ]) is generated as a semigroup by the elementary

matrices.

For the rest of the chapter, assume that K is a finite dimensional vector space over φ(K). We

fix some basis B of K over φ(K).
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3.11 Remark. One has a natural bijection KB −→ K given by (λb)b∈B 7→
∑

b∈B φ(λb)b. Let T be

the inverse of this map. Denote by TI the component-wise extension of T to column vectors in KI

(so TI :KI −→ K(I×B)) and by T i
I :KI −→ KI×Bi

for i ∈ N the composition TI×Bi−1 ◦ · · · ◦ TI , so

T 0
I is the identity on KI and T i+1

I = TI×Bi ◦ T i
I for all i ∈ N. If the context is clear, the index I

will be dropped in the notation TI and T i
I .

3.12 Definition (row and column enlargement of matrices). Let I, J be finite sets.

1. For M ∈ K[Φ]I×J , define the column enlargement col(M) ∈ (K[Φ]Φ)I×(J×B) of M by

col(M)(i, (j, b)) := M(i, j)bΦ. One can also do column enlargement for a subset J0 of J :

Define colJ0(M) := M�I×(J\J0) ∪ col(M�I×J0
) (regarding the sets J \ J0 and J0 × B as

disjoint); thus, colJ0(M) ∈ K[Φ]I×J∗
where J∗ = (J \ J0) ∪ (J0 ×B).

2. For M ∈ (K[Φ]Φ)I×J , define the row enlargement row(M) ∈ K[Φ](I×B)×J of M by the

equations M(i, j) =
∑

b∈B(bΦ) row(M)((i, b), j). Because B is a basis of K over φ(K), for

every element f ∈ K[Φ]Φ there are unique fb ∈ K[Φ] with f =
∑

b∈B(bΦ)fb. This is easy to

see for f ∈ KΦ (then the fb are in K) and the general case follows by right linearity of the

relation over K[Φ].

For I0 ⊆ I and M ∈ K[Φ]I×J with M�I0×J ∈ (K[Φ]Φ)I0×J , define (regarding the sets I \ I0

and I0 ×B as disjoint)

rowI0(M) := M�(I\I0)×J ∪ row(M�I0×J) ;

thus, rowI0(M) ∈ K[Φ]I
∗×J where I∗ = (I \ I0) ∪ (I0 ×B).

In the following, row and rowI0 are viewed as partial functions on K[Φ]I×J , i.e. saying

“rowI0(M) is defined” means M�I0×J ∈ (K[Φ]Φ)I0×J .

3.13 Remark. Let I, J be finite sets, M ∈ K[Φ]I×J .

1. col(M) = (col((M(i, j))))(i,j)∈I×J where (M(i, j)) is considered as a 1-by-1-matrix.

2. row(M) = (row((M(i, j))))(i,j)∈I×J where (M(i, j)) is considered as a 1-by-1-matrix and the

left side is defined if and only if the right hand side is defined.

3. Let λ ∈ K and consider the 1-by-1 matrix M = ( λ ). Then row(col(M)) ∈ MATB(K).

Considering V = K as a vector space over K via the action µ · w = φ(µ)w for µ,w ∈ K, the

matrix row(col(M)) represents the K-linear map

V −→ V , w 7→ λw

with respect to the basis B of V .

4. Let J0 ⊆ J and I0 ⊆ I. Then colJ0(rowI0(M)) = rowI0(colJ0(M)) whenever rowI0(M) is

defined.
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5. Let L be a finite set and N ∈ K[Φ]J×L. Then col(MN) = col(M) row(col(N)).

3.14 Lemma. Let I, J be finite sets, M ∈ K[Φ]I×J . Then there exist t ∈ N, finite sets I1, . . . , It

and for each i ∈ { 1, . . . , t } a partial operation opi on K[Φ]Ii−1×J taking values in K[Φ]Ii×J , with

I0 = I, such that:

1. For i = 1, . . . , t, one of the following conditions hold:

(a) Ii = Ii−1 and opi is left multiplication by a restricted elementary matrix in MATIi(K[Φ]).

(b) For some Ĩ ⊆ Ii−1, the operator opi is rowĨ and Ii = (Ii−1 \ Ĩ)
.
∪ (Ĩ ×B).

2. M̂ := opt ◦ · · · ◦ op1(M) is defined and a matrix in K[Φ]It×J in upper triangular form whose

non-zero part is row regular.

Proof. The proof is similar to that of Lemma 3.9. Again, we do induction on the cardinality of J .

Let M ∈ K[Φ]I×J and assume the lemma holds for column sets of smaller cardinality than J . If

all entries of M are zero, then M is already in upper triangular form with respect to I0 = ∅, and

the non-zero part of M is the empty matrix, which is row regular.

Otherwise, consider the natural number m := mini∈I,j∈J ldegM(i, j). Then M is an element

of (K[Φ]Φm)I×J and we can perform row enlargement on the matrix m times to get a matrix

M̃ ∈ K[Φ](I×Bm)×J with mini′∈I×Bm,j∈J ldeg M̃(i′, j) = 0. Then we proceed as in Lemma 3.9

to find a product E2 of restricted elementary matrices (in MATI×Bm(K[Φ])) such that E2M has

a column with exactly one non-zero entry, and this entry has ldeg 0. Now, one can apply the

induction hypothesis in a similar way as in the proof of Lemma 3.9. Note that here it is essential

to do the induction on the number of columns, since the number of rows of the involved matrices

may increase during the procedure.

The following lemma is essential in the proof of Proposition 7.27.

3.15 Lemma. Let I, Jx, Jy be finite sets, Jx and Jy being disjoint, and let J = Jx ∪ Jy. Let

M ∈ K[Φ]I×J . Then there exist c, t ∈ N, finite sets I1, . . . , It and for each i ∈ { 1, . . . , t } a partial

operation opi on K[Φ]Ii−1×J̃ taking values in K[Φ]Ii×J̃ , with I0 = I and J̃ = (Jx × Bc)
.
∪ Jy, such

that:

1. For i = 1, . . . , t, one of the following conditions holds:

(a) Ii = Ii−1 and opi is left multiplication by a restricted elementary matrix in MATIi(K[Φ]);

(b) for some I∗ ⊆ Ii−1, the operator opi is rowI∗ and Ii = (Ii−1 \ I
∗)

.
∪ (I∗ ×B).

2. With M̃ := (colJx×Bc−1 ◦ · · · ◦ colJx×B0)(M) ∈ K[Φ]I×J̃ , where Jx × B0 is identified with Jx

in the obvious way, the matrix M̂ := (opt ◦ · · · ◦ op1)(M̃) ∈ K[Φ]It×J̃ is defined and has the

following form: There exists Î ⊆ It such that

(a) M̂�(It\Î)×Jy
is a row regular matrix in K[Φ](It\Î)×Jy in upper triangular form;
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(b) M̂�Î×(Jx×Bc) is a matrix in K[Φ]Î×(Jx×Bc) in upper triangular form whose non-zero part

is row regular;

(c) M̂�Î×Jy
= 0.

Here is a picture of M̂ :

It \ Î ∗
upper

triangular,
row regular

Î

upper
triangular,

non-zero part
row regular

0

Jx ×Bc Jy

Proof. Consider the submatrix M�I×Jy
and find operations op′

i for i = 1, . . . , t′ as in the previous

lemma to convert this submatrix to upper triangular form whose non-zero part is row regular. Let

I1, . . . , It′ be the corresponding finite sets such that op′
i is a partial operation on K[Φ]Ii−1×Jy with

values in K[Φ]Ii×Jy . Set I0 = I. Let c be the number of indices i ∈ { 1, . . . , t′ } such that op′
i is a

row enlargement, and let M̃ := (colJx×Bc−1 ◦ · · · ◦ colJx×B0)(M). We now let opi for i = 1, . . . , t′

be the partial operation on K[Φ]Ii−1×J̃ with values in K[Φ]Ii×J̃ defined as follows: if op′
i is left

multiplication with the restricted elementary matrix E in MATIi−1(K[Φ]), then opi is also left

multiplication with E; if op′
i is rowI∗ for some I∗ ⊆ Ii−1, then opi is rowI∗ . One verifies easily that

then M̂ ′ := (opt′ ◦ · · · ◦ op1)(M̃) is defined and has the following form: There exists Î ′ ⊆ It′ such

that

1. M̂ ′�(It′\Î
′)×Jy

is a row regular matrix in K[Φ](It′\Î
′)×Jy in upper triangular form.

2. M̂ ′�Î′×Jy
= 0.
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Here is a picture of M̂ ′:

It′ \ Î ′ ∗
upper

triangular,
row regular

Î ′ ∗ 0

Jx ×Bc Jy

Now, we apply the previous lemma to the matrix M̂ ′�Î′×(Jx×Bc) and view the corresponding

operations as acting on the whole matrix M̂ ′. In this case, extending row enlargement is not a

problem, since M̂ ′�Î′×Jy
= 0.

3.16 Definition. Let I be a finite (index) set.

1. Let f = (fi)i∈I ∈ K[Φ]I . The degree deg f of f is defined to be maxi∈I deg fi where max ∅ :=

−∞. If f has degree less than or equal to d ∈ N, then f can be expressed as
∑

j≤d vjΦ
j with

vj ∈ KI (where KI is viewed as embedded in K[Φ]I). If deg f = d, call vd the leading

coefficient vector and G(f) := vdφ
d(K) ⊆ KI the associated subgroup of f .

2. Let J be an index set. A tuple (fj)j∈J over K[Φ]I is called strongly independent, if all

fj are non-zero and the tuple of additive subgroups (G(fj))j∈J is independent, i.e. for all

(vj)j∈J ∈
∏

j∈J G(fj) one has

∑

j∈J

vj = 0 =⇒ vj = 0 for all j ∈ J .

3.17 Remark. It is easy to see (and shown in Section 4.1) that a strongly independent tuple (fj)j∈J

over K[Φ]I is independent in the sense of K[Φ]I as a right K[Φ]-module. The converse is not true.

3.18 Proposition. Let I, J be finite sets, M ∈ K[Φ]I×J . Then there exists a (possibly empty) prod-

uct E of restricted elementary matrices in MATJ(K[Φ]) such that non-zero column vectors of ME

are strongly independent, i.e. setting fj := ((ME)(i, j))i∈I ∈ K[Φ]I and J6=0 = { j ∈ J | fj 6= 0 }

the tuple (fj)j∈J 6=0
is strongly independent.

Proof. The statement is proved by induction on the well-founded pre-order onK[Φ]I×J that is given

by comparing the degrees of matching columns, i.e. M1 < M2 if deg(M1(i, j))i∈I ≤ deg(M2(i, j))i∈I

for all j ∈ J and deg(M1(i, j))i∈I < deg(M2(i, j))i∈I for some j ∈ J . It would also work to do the

induction on the sum of the degrees of the non-zero columns of M .
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So assume the statement holds for all matrices that are smaller than M in the above sense.

Define fj := (M(i, j))i∈I ∈ K[Φ]I for j ∈ J and let J6=0 := { j ∈ J | fj 6= 0 }.

Case a) The tuple of non-zero elements among the fj is strongly independent, i.e. (fj)j∈J 6=0
is

independent. Then the choice E := IdJ works to satisfy the statement.

Case b) (fj)j∈J 6=0
is dependent. Then pick a minimal set J ′ ⊆ J6=0 such that (fj)j∈J ′ is depen-

dent. For j ∈ J ′, let dj be the degree and vj the leading coefficient vector of fj (note that fj 6= 0).

Pick k ∈ J ′ such that dk = max { dj | j ∈ J ′ }, and set f = fk, v = vk, d = dk. Because (fj)j∈J ′ is

dependent, there are λj ∈ K for j ∈ J ′ such that not all λj are zero and

0 =
∑

j∈J ′

vjφ
dj (λj) .

By the minimal choice of J ′, all λj are non-zero; in particular λ := λk is non-zero. Then, setting

µj := λj(φ
d−dj (λ))−1 for j ∈ J ′ and J ′′ = J ′ \ { k }, the following holds:

0 = v +
∑

j∈J ′′

vjφ
dj (µj) .

Now, let gj := µjΦ
d−dj ∈ K[Φ]. Then f ′ := f +

∑

j∈J ′′ fjgj has degree ≤ d = deg f , because

deg gj = d− dj = deg(f) − deg(fj). The term of degree d of f ′ is

vΦd +
∑

j∈J ′′

vjΦ
djµjΦ

d−dj

= vΦd +
∑

j∈J ′′

vjφ
dj (µj)Φ

d

= 0 .

So performing the appropriate column operations on M yields a matrix M̃ with the same columns

as M except the k-column, which has smaller degree than the corresponding column in M . Mul-

tiplication with restricted elementary matrices on the right corresponds to performing column

operations.

3.19 Proposition. Let I, J be finite sets, M ∈ K[Φ]I×J and ≤ be a total order on I. Then there

exists a (possibly empty) product E of restricted elementary matrices in MATJ(K[Φ]) and pairwise

disjoint (possibly empty) subsets Ji ⊆ J for i ∈ I such that for all i ∈ I:

1. (ME)(i, j) = 0 for all j ∈ J \
⋃

l≤i Jl.

2. (ME)(i, j) 6= 0 for all j ∈ Ji.

3. The tuple ((ME)(i, j))j∈Ji over K[Φ] is strongly independent.
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Here is a picture of ME with I = { 1, . . . , n } in the natural ordering, J∞ := J \
⋃

i∈I Ji, vi :=

((ME)(i, j))j∈Ji :

1 v1 0 0 0 0 0

2 ∗ v2 0 0 0 0

... ∗ ∗ . . . 0 0 0

n− 1 ∗ ∗ ∗ vn−1 0 0

n ∗ ∗ ∗ ∗ vn 0

J1 J2 · · · Jn−1 Jn J∞

Proof. The proof operates by induction on the number of rows (i.e. the cardinality of the set I).

Assume I 6= ∅, i1 := min I and that the proposition holds for all matrices with row index set I2 :=

I \ { i1 }. Then it suffices to show the following:

Claim. There is a product of restricted elementary matrices E1 ∈ MATJ(K[Φ]) and a subset J1 ⊆ J

such that

1. (ME1)(i1, j) = 0 for all j ∈ J \ J1;

2. (ME1)(i1, j) 6= 0 for all j ∈ J1;

3. the tuple ((ME1)(i1, j))j∈J1 of elements in K[Φ] is strongly independent.

The claim follows by applying the previous proposition to the matrix M�{ i1 }×J .

Using this claim, we apply the induction hypothesis to the matrix M ′ := ME1�I2×J∗ where

J∗ := J \ J1, to obtain a product E2 of restricted elementary matrices in MATJ2(K[Φ]) and

pairwise disjoint subsets Ji ⊆ J2 for i ∈ I2 satisfying the analogue of the claims of the proposition

for M ′. Then, setting Ji1 := J1 and E = E1Ê2 where Ê2 := IdJ1 tE2, one obtains the data that

satisfy the conclusion of the proposition for M .
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Chapter 4

Finitely generated free modules over
K[Φ]

4.1 K[Φ]m as right K[Φ]-module

Assume K is a field and φ is a self-embedding of K such that [K : φ(K)] is finite. Let I be a

finite (index) set and consider N := K[Φ]I as a right K[Φ]-module (the action just being right

multiplication on the entries of the tuples). For n ∈ N, let N≤n := { f ∈ N | deg f ≤ n }, and

N<n := { f ∈ N | deg f < n }. Also define Nn := { (µiΦ
n)i∈I | µi ∈ K for i ∈ I }.

4.1 Remark.

1. The sets N≤n, N<n and Nn are right K-vector subspaces of the right K-vector space N ,

where K acts via its inclusion in K[Φ].

2. We have N≤n = N<n ⊕ Nn, NnΦ = Nn+1. Every f ∈ N can be uniquely written as
∑

i fi

with fi ∈ Ni and only finitely many fi being non-zero. We call fi the degree i component

of f .

3. Suppose V is a right K-vector space and n ∈ N . We give V a new right K-vector space

structure V� via v � µ := vφn(µ) for µ ∈ K and v ∈ V . Then

dimK(V�) = dimK(V )[K : φ(K)]n .

The right K-vector space Nn is isomorphic to KI
� via (µiΦ

n)i∈I 7→ (µi)i∈I .

4. dimK(Nn) = |I|[K : φ(K)]n, dimK(N≤n) = |I|
∑

i≤n[K : φ(K)]i.

5. In the rest of the section, N will always be understood as a right K[Φ]-module or with the

above defined (right) K-vector space structure, so we will simply talk about K[Φ]-modules

or K-vector spaces.

4.2 Remark. Suppose J,K are finite sets, T ∈ K[Φ]I×J , E ∈ K[Φ]J×K . Let M be the submodule

of N = K[Φ]I generated by the columns of T and M ′ be the submodule of N generated by the

columns of TE. Then M ′ ⊆M . If K = J and E ∈ GLJ(K[Φ]), then M = M ′.
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4.3 Lemma. Suppose (fj)j<n with fj ∈ N is strongly independent (see Definition 3.16). Then for

all (gj)j<n ∈ K[Φ]n, we have

deg(
∑

j<n

fjgj) = max
j<n

(deg fj + deg gj) .

In particular, (fj)j<n is independent in the right K[Φ]-module N , i.e. for all (gj)j<n ∈ K[Φ]n,

∑

j<n

fjgj = 0 =⇒ gj = 0 for all j < n .

Proof. Clearly, deg fjgj = deg fj + deg gj for every j < n, and so

deg(
∑

j<n

fjgj) ≤ max
j<n

(deg fj + deg gj) .

If all the gj are zero, the statement is clear. So assume now that at least one gj is non-zero. Let

d := maxj<n deg(fjgj) and note that 0 ≤ d. Let J := { j < n | deg(fjgj) = d } and for j ∈ J let

µj ∈ K be the leading coefficient of gj and vj ∈ KI be the leading coefficient vector of fj . The

degree d component of
∑

j<n fjgj is

∑

j∈J

vjΦ
deg fjµjΦ

deg gj =
∑

j∈J

vjφ
deg fj (µj)Φ

deg fj+deg gj

= (
∑

j∈J

vjφ
deg fj (µj))Φ

d .

We have vjφ
deg fj (µj) ∈ G(fj) \ { 0 }, since µj 6= 0. Because the fj are strongly independent,

∑

j∈J vjφ
deg fj (µj) 6= 0 holds, so deg(

∑

j<n fjgj) ≥ d.

4.4 Remark. Not every independent tuple in N is strongly independent: If t ∈ K \ φ(K), then

for f1 = Φ2 + tΦ and f2 = Φ2 the tuple (f1, f2) is not strongly independent, but independent (in

N = K[Φ]) because (f1 + f2(−1), f2) = (tΦ,Φ2) is strongly independent, so independent.

4.5 Lemma. Let V be a K-subspace of N≤n. Let M be the K[Φ]-submodule generated by V in N .

Then

V Φ ∩N≤n ⊆ V ⇐⇒ M ∩N≤n = V .

Proof. The direction from right to left is clear, since V Φ ⊆ M . To show the other implication,

assume V Φ ∩N≤n. Because V is a K-subspace of N , it suffices to show that

(V Φ0 + · · · + V Φl) ∩N≤n ⊆ V

for all l ∈ N. This will be proved by induction on l. We have V Φ0 = V , so the case l = 0 is clear.
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One has

(V Φ0 + · · · + V Φl+1) ∩N≤n = (V + (V Φ0 + · · · + V Φl)Φ) ∩N≤n

⊆ V + ((V Φ0 + · · · + V Φl)Φ ∩N≤n) ,

since V ⊆ N≤n. So it suffices to show (V Φ0 + · · · + V Φl)Φ ∩N≤n ⊆ V . Let

x ∈ (V Φ0 + · · · + V Φl)Φ ∩N≤n .

Then x = x′Φ for some x′ ∈ V Φ0 + · · ·+V Φl. Because x ∈ N≤n, the element x′ lies in N<n ⊆ N≤n.

Now by the induction assumption x′ ∈ V , and therefore x ∈ V Φ ∩N≤n, which by assumption is a

subset of V .

4.6 Remark. The map f :N≤n −→ N≤n+1, v 7→ vΦ is in general not K-linear, but it is K-linear,

where N≤n is equipped with the K-vector space structure given by v�µ := vφ(µ) for v ∈ N≤n and

µ ∈ K: f(v � µ) = f(vφ(µ)) = vφ(µ)Φ = vΦµ = f(v)µ.

Suppose V is a K-subspace of N≤n (with respect to the original K-space structure of N≤n).

Then it is also a K-subspace with respect to the structure given by �, and denoted by V� as a

vector space with this structure. If T is a basis of V (in the sense of the original K) and B is a

basis of K over φ(K), then { vµ | v ∈ T, µ ∈ B } is a basis of V�. In particular, the dimension of

V� is dimK(V )[K : φ(K)].

4.7 Remark. Let S ⊆ N be a finite set and M the K[Φ]-submodule generated by S. One can

effectively find a K-basis of M ∩N≤n (modulo performing field operations in K, checking equality

for elements in K and applying φ).

Here is an explanation: Note that N≤i is an effective (right) K-vector space for every i ∈ N (see

Remark 4.1). We may assume that S ⊆ N≤n. Otherwise, just choose n′ > n so that S ⊆ N≤n′ ,

and after computing a basis of M ∩N≤n′ , compute a basis of the intersection with N≤n, which is

just linear algebra over K.

By Remark 4.6, the map f :N≤n −→ N≤n+1, v 7→ vΦ is K-linear, if one equips N≤n with the

structure given by �. Given a basis T of V with respect to the original structure, one can obtain

one with respect to the � structure and then compute a basis of f(V ) using K-linear algebra.

If one defines V0 as the K-span of S and then inductively Vi+1 = (Vi + ViΦ)∩N≤n, one gets an

increasing sequence ofK-subspaces ofN≤n: Vi ⊆ Vi+1 ⊆ N≤n for all i. So for some i0 ≤ dimK(N≤n),

one has Vi0 = Vj for all j ≥ i0. In particular, Vi0Φ ∩N≤n ⊆ Vi0 , so M ∩N≤n = Vi0 by Lemma 4.5.

So to determine a basis of M ∩N≤n, one only has to successively determine bases of the Vi for

i = 0, . . . ,dimK(N≤n).

4.8 Proposition. Suppose M is a finitely generated submodule of N and n1, n2 ∈ N are such that

n2 ≥ n1 ≥ deg g for all g in some set of generators of M . Then

dimK((M ∩N≤n1)/(M ∩N<n1))[K : φ(K)]n2−n1 = dimK((M ∩N≤n2)/(M ∩N<n2)) ;
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in other words, if πi denotes the canonical map N≤i −→ N≤i/N<i for i = n1, n2, then

dimK(πn1(M ∩N≤n1))[K : φ(K)]n2−n1 = dimK(πn2(M ∩N≤n2)) .

4.9 Definition. For M as in the previous proposition, define dim∞M as the value of

dimK((M ∩N≤n)/(M ∩N<n))

[K : φ(K)]n

for n ≥ n1.

Proof of Proposition 4.8. After proving the case n2 = n1 + 1, the general statement follows by

induction. So let n ∈ N be greater than or equal to the maximum of the degrees of some set of

generators of M .

Claim. M ∩N≤n+1 = (M ∩N≤n) + (M ∩N≤n)Φ.

The inclusion ⊇ is obvious. For the other inclusion, let W = M ∩N≤n and V = W +WΦ. Then

the claim says that M ∩N≤n+1 = V . Since M is generated by elements in N≤n, it is generated by

W , hence by V ⊇W . Also V ⊆ N≤n+1, so by Lemma 4.5 it suffices to show that V Φ∩N≤n+1 ⊆ V .

Let v ∈ V be such that vΦ ∈ N≤n+1. Then v ∈ N≤n. Also v ∈ M , since W ⊆ M , so v ∈ W .

Therefore vΦ ∈WΦ ⊆ V , and the claim is proved.

The map

f :N≤n −→ N≤n+1 , v 7→ vΦ

induces a bijection f̄ between N≤n/N<n and N≤n+1/N<n+1, and the claim shows that

f̄(πn(M ∩N≤n)) = πn+1(M ∩N≤n+1) .

A direct consequence of this last equality and Remark 4.6 is that

dimK(πn+1(M ∩N≤n+1)) = [K : φ(K)]dimK(πn(M ∩N≤n)) .

4.10 Definition. Assume B is a basis of K over φ(K).

1. For b = (bk)k<n ∈ Bn, the basis polynomial qB
b ∈ K[Φ] with respect to B and b is

∏

k<n bkΦ.

2. For f ∈ N and b = (bk)k<n ∈ Bn, let

fb := fqB
b ∈ N

and call the tuple (fb)b∈Bn the n-enlargement of f with respect to B. Call the K-

subspace of N generated by the fb the n-enlargement space of f (this is independent of
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B).

3. For a tuple (fj)j∈J where J is some finite (index) set and fj ∈ N \ { 0 } for j ∈ J and n ∈ N,

define

JB,n :=
{

(j, b) | j ∈ J,deg fj ≤ n, b = (bk)k<n−deg fj ∈ Bn−deg fj

}

.

For (j, b) ∈ JB,n with b = (bk)k<n−deg fj , let f(j,b) be the entry at index b of the (n− deg fj)-

enlargement of fj with respect to B, i.e.

f(j,b) := fj

∏

k<n−deg fj

bkΦ ,

and call the tuple (f(j,b))(j,b)∈JB,n
the common n-enlargement of (fj)j∈J with respect

to B.

4. For b = (bk)k<n ∈ Bn, the basis element ωB
b ∈ K with respect to B and b is

∏

k<n φ
k(bk).

Note that (ωB
b )b∈Bn is a basis of K over φn(K), so for every µ ∈ K, there exist unique scalars

λB
b (µ) ∈ K such that

µ =
∑

b∈Bn

φn(λB
b (µ))ωB

b .

4.11 Remark. Assume B is a basis of K over φ(K).

1. Viewing f ∈ N as a matrix M in K[Φ]I×{ 0 }, the n-enlargement of f with respect to B is just

obtained by applying column enlargements to M , i.e. the n-enlargement of f with respect to

B corresponds to the matrix

col{ 0 }×Bn−1(. . . col{ 0 }×B(col{ 0 }(M)) . . .) .

A similar statement holds for the common enlargement of a tuple (fj)j∈J viewing it as an

element of K[Φ]I×J .

2. qB
b = ωB

b Φn for b ∈ Bn and (qB
b )b∈Bn is a (right) K-basis of K[Φ]n = { µΦn | µ ∈ K }, since

µΦn =
∑

b∈Bn qB
b λ

B
b (µ) for all µ ∈ K.

3. Let (fi)i∈I be the tuple of elements in N indexed by I corresponding to the identity matrix

in K[Φ]I×I , i.e. for i, j ∈ I let fi(j) = 1 if j = i and fi(j) = 0 otherwise.

Then the common n-enlargement of (fi)i∈I with respect to B is a K-basis of Nn.

4. All entries in a common n-enlargement with respect to B have degree equal to n.

5. Let J be a finite index set, (fj)j∈J ∈ NJ and nj ∈ N for j ∈ J . For j ∈ J , let (fj,b)b∈Bnj be

the nj-enlargement of fj with respect to B. Then (fj)j∈J is strongly independent if and only

if (fj,b)j∈J,b∈Bnj is strongly independent.
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This follows from G(f) = ⊕b∈BnG(fb) for any f ∈ N \ { 0 } and its corresponding n-

enlargement (fb)b∈Bn with respect to B.

4.12 Proposition. Suppose M is a finitely generated submodule of N . There exist a finite set J

and a strongly independent tuple (fj)j∈J ∈ NJ such that { fj | j ∈ J } generates M ; in particular

M is free. Suppose that (fj)j∈J is such a strongly independent generating tuple for M . Then:

1. If S is a generating set of M , then maxg∈S deg g ≥ maxj∈J deg fj (with max ∅ := −∞).

2. Let B be a basis of K over φ(K), d ∈ N and πd :N≤d −→ N≤d/N<d the canonical map.

(a) Let (f(j,b))(j,b)∈JB,d
be the common d-enlargement of (fj)j∈J with respect to B. Then

(πd(f(j,b)))(j,b)∈JB,d
is a K-basis of πd(M ∩N≤d).

(b) Put

J∗ :=
{

(j, b) | j ∈ J,deg fj ≤ d, b ∈ Bi , where i ∈ N satisfies 0 ≤ i ≤ d− deg fj

}

and let fj,b be the entry at index b of the i-enlargement of fj with respect to B, for

(j, b) ∈ J∗ and b ∈ Bi. Then (fj,b)(j,b)∈J∗ is a K-basis of M ∩N≤d.

3. dim∞M =
∑

j∈J [K : φ(K)]− deg fj .

Proof. The existence of a strongly independent generating tuple (fj)j<n ∈ NJ for M follows from

Remark 4.2 and Proposition 3.18. Suppose that (fj)j∈J is such a strongly independent generating

tuple for M .

By Lemma 4.3, every element g ∈ M is contained in the submodule generated by the fj

with deg fj ≤ deg g. In particular, if a set of generators of M would contain only elements that

have strictly lower degree than fj0 for some j0 ∈ J , then this set of generators is contained in the

submodule generated by { fj | j ∈ J \ { j0 } }, so a proper subset of { fj | j ∈ J } generates M . This

contradicts the fact that the fj are independent by Lemma 4.3 and establishes statement 1.

To prove statement 2, fix a basis B of K over φ(K) and d ∈ N, and note that M ∩ N≤d is

generated by { fj | j ∈ J,deg fj ≤ d }. So for the purpose of proving statement 2, we can assume

that deg fj ≤ d for all j ∈ J .

By Remark 4.11, the common d-enlargement (f(j,b))(j,b)∈JB,d
of (fj)j∈J with respect to B is

strongly independent and, since all the polynomials in the enlargement have the same degree d,

the tuple (πd(f(j,b)))(j,b)∈JB,d
is K-independent. To prove that this tuple is a K-basis of πd(M),

it suffices to show that the K-vector space that the f(j,b) (with (j, b) ∈ JB,d) together with N<d

generate contains M ∩ N≤d. So let h ∈ M ∩ N≤d. Then there are gj ∈ K[Φ] for j ∈ J such that

h =
∑

j∈J fjgj . By Lemma 4.3, deg gj ≤ d− deg fj for all j ∈ J . For j ∈ J , let µjΦ
d−deg fj be the

component of degree d − deg fj of gj (with µj ∈ K). Using Remark 4.11, one has µjΦ
d−deg fj =
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∑

b∈Bd−deg fj q
B
b λ

B
b (µj), so the degree d component of fjgj is equal to the degree d component of

fjµjΦ
d−deg fj =

∑

b∈Bd−deg fj

(fjq
B
b )λB

b (µj)

and the elements (fjq
B
b ) constitute the common d-enlargement of (fj)j∈J with respect to B. There-

fore, h lies in the K-span of this enlargement together with N<d. Part 2a is now proved, and part

2b follows easily by induction on d using part 2a.

For statement 3, let d ∈ N such that d ≥ maxj∈J deg fj , pick some basis B of K over φ(K) and

apply part 2a to conclude that

dimK((M ∩N≤d)/(M ∩N<d)) = |JB,d| =
∑

j∈J

[K : φ(K)]d−deg fj

and therefore

dim∞M =
dimK((M ∩N≤d)/(M ∩N<d))

[K : φ(K)]d
=

∑

j∈J

[K : φ(K)]− deg fj .

4.2 K[Φ]m as left K[Φ]-module

Assume K is a field, φ a self-embedding of K.

Let J be a finite (index) set and consider N := K[Φ]J as a left K[Φ]-module (the action just

being left multiplication on the entries of the tuples). Also I is assumed to be a finite set in this

section.

4.13 Remark. Let M ∈ K[Φ]I×J . Then for every matrix E in MATI(K[Φ]) the submodule of N

generated by the rows of EM is contained in the submodule of N generated by the rows of M . In

particular, if E is invertible, then the submodule generated by the rows of M and the submodule

generated by the rows of EM are the same.

4.14 Lemma. Every submodule M of N has an independent generating set of cardinality less than

or equal to |J |.

Proof. This follows from the previous remark and Lemma 3.9, using the fact that N is noetherian.

4.15 Definition. Let M be a submodule of N . Call M separable, if for all finite B ⊆ K that

are independent over φ(K) and for all (xb)b∈B ∈ NB we have

∑

b∈B

(bΦ)xb ∈M =⇒ (xb ∈M for all b ∈ B) .
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4.16 Remark. The submodules N and { 0 } of N are separable.

4.17 Remark/Definition. Every subset S of N is contained in a smallest separable submodule

M of N , which is called the separable submodule generated by S.

4.18 Remark. Suppose [K : φ(K)] is finite and B is a basis of K over φ(K).

1. Let M be a submodule of N and α be an automorphism of the left K[Φ]-module N . Then

M is separable if and only if α(M) is separable.

2. A submodule M of N is separable if and only if for all (xb)b∈B ∈ NB one has

∑

b∈B

(bΦ)xb ∈M =⇒ (xb ∈M for all b ∈ B) .

3. Suppose M ∈ K[Φ]I×J , I0 ⊆ I and M ′ = rowI0(M) (the row enlargement of M with respect

to the basis B) exists. Then the separable submodule of N generated by the rows of M is

the same as the separable submodule of N generated by the rows of M ′.

4.19 Definition.

1. Let I be an index set. A tuple (fi)i∈I with all fi ∈ N is called left strongly independent, if

the tuple (fi)i∈I is independent over K in KJ where is the ring homomorphism K[Φ] −→ K

with λ = λ for all λ ∈ K and Φ = 0.

2. Let M be a submodule of N , and M ′ be the separable submodule it generates. Define

dim0M := dimK M ′.

4.20 Remark. Let f = (fi)i∈I ∈ N I .

1. If the tuple f is left strongly independent, then it is independent in the left module N :

Suppose gi ∈ K[Φ] for i ∈ I and
∑

i∈I gifi = 0. Then
∑

i∈I gifi = 0, so for i ∈ I we have

gi ∈ K[Φ]Φ and we can write gi =
∑

b∈B bΦgi,b with gi,b ∈ K[Φ] for b ∈ B. Because { 0 } is

separable, we obtain
∑

i∈I gi,bfi = 0 for b ∈ B. If m is a bound on the degrees of the gi, then

repeating this procedure m times yields gi = 0 for all i ∈ I.

2. The tuple f is left strongly independent if and only if the matrix ((fi)(j))i∈I,j∈J ∈ K[Φ]I×J

is row regular.

3. Let M be a submodule of N and α be an automorphism of the left K[Φ]-module N . Then

dim0M = dim0 α(M).

For the rest of the section, assume that [K : φ(K)] is finite and B is a basis of K over φ(K).

4.21 Lemma.
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1. If f = (fi)i∈I ∈ N I is left strongly independent, then the submoduleM generated by { fi | i ∈ I }

is separable, and thus dim0M = |I|.

2. Suppose M is a separable submodule of N . Then there exists a left strongly independent tuple

over M whose entries generate M .

Proof. For the first part, let F = (fi)i∈I ∈ N I be left strongly independent, and let M be the

submodule generated by the fi, i ∈ I. Let xb ∈ N for b ∈ B and assume

(*)
∑

b∈B

(bΦ)xb ∈M .

By Remark 4.18, it suffices to show that xb ∈M for all b ∈ B.

Regard F as an element of K[Φ]I×J and X = (xb)b∈B as an element of K[Φ]B×J . Regard

c = (bΦ)b∈B as a row vector (with column index set B). Then (*) can be expressed as the existence

of d = (di)i∈I ∈ K[Φ]I (regarded as a row vector with column index set I) such that cX = dF . For

such d, we have

dF = cX = 0X = 0

and because F has full row rank this implies d = 0. Therefore, there exist G ∈ K[Φ]B×I such that

di =
∑

b∈B bΦG(b, i) for all i ∈ I. This yields X = GF , so every row xb of X lies in M .

This argument can also be phrased in terms of a dual notion of row and column enlargement.

For the second part, choose a matrix H ∈ K[Φ]I×J for some index set I such that the rows of H

generate M . By Lemma 3.14, there exists a matrix H̃ ∈ K[Φ]Ĩ×J that is obtained from H via the

operations of multiplying by restricted elementary matrices from the left and row enlargement for

subsets of the rows such that Ĥ is in upper triangular form whose non-zero part is row regular. By

Remark 4.13 and Remark 4.18, the mentioned operations do not change the separable submodule

generated by the rows of the involved matrices, so the separable module generated by the rows of

Ĥ is M . The non-zero rows of Ĥ form a left strongly independent tuple and by the first part of

the lemma the submodule generated by this tuple is separable. Therefore, the non-zero rows of Ĥ

form a generating set for M .

4.22 Remark. 1. The proof of the second part of the previous lemma also indicates a procedure

to compute a left strongly independent generating tuple for the separable module generated

by some elements of N : Suppose the elements are the rows of a matrix H ∈ K[Φ]I×J for some

index set I. If H̃ ∈ K[Φ]Ĩ×J is obtained from H according to Lemma 3.14, then the non-zero

rows of H̃ form a left strongly independent generating tuple for the separable submodule

generated by the rows of H.

2. One can compute dim0M of a submodule M of N in the following way: Compute a left

strongly independent generating tuple f = (fi)i∈I ∈ N I for the separable submodule gener-

ated by M . Then dim0M = |I|.
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4.23 Remark/Definition. If we regard the elements of N = K[Φ]J as matrices with a single row

and column index set J , then column enlargement with respect to the basis B yields a homomor-

phism col :K[Φ]J −→ K[Φ](J×B) of left K[Φ]-modules. So, if M is a submodule of N , then col(M)

is a submodule of K[Φ](J×B). The module col(M) is called the column-enlargement of M with

respect to B.

4.24 Lemma. Let M be a submodule of N . Then dim0 col(M) = |B|dim0M .

Proof. Let M ′ be the separable submodule generated by M and col(M)′ be the separable submod-

ule generated by col(M). Note that col(M ′) ⊆ col(M)′, since the inverse image of a separable

submodule of K[Φ](J×B) under the homomorphism col is a separable submodule of N . So the

separable submodule generated by col(M ′) is col(M)′.

Pick a finite set I with |I| = dim0M and a row regular matrixH ∈ K[Φ]I×J whose rows generate

the submodule M ′. By Remark 4.18, part 3, the rows of row(col(H)) and col(M ′) generate the

same separable submodule, which is col(M)′.

Note that row(col(H)) = row(col(H)). Remark 3.13 shows that

rankK row(col(H)) = |B| rankK H ,

so rankK row(col(H)) = |B||I|, and therefore row(col(H)) is row regular. By Lemma 4.21, the

submodule generated by the rows of row(col(H)) is separable, so the rows of row(col(H)) generate

col(M)′, and we get

dim0 col(M) = |B||I| = |B|dim0M .

4.25 Remark. There exist separable submodules M1 and M2 of K[Φ] such that M1 $ M2 and

dim0M1 = dim0M2: Let M1 be the left submodule of K[Φ] generated by 1 + Φ and M2 = K[Φ].

Then both M1 and M2 are separable with dim0M1 = dim0M2 = 1, and M1 $ M2.

Let m = K[Φ]Φ and K[Φ]m be the ring of left fractions of K[Φ] with respect to the multiplicative

set S = K[Φ] \ m (see Chapter 2 , Remark 2.9 and Lemma 2.10). We consider K[Φ] as a subring

of K[Φ]m and Nm := K[Φ]J
m

as a left K[Φ]m-module.

4.26 Remark/Definition. Let M be a submodule of N . Then

Mm :=
{

(g−1fj)j∈J

∣

∣ g ∈ S, (fj)j∈J ∈M
}

is a submodule of Nm. This submodule Mm is the submodule generated by the subset M in Nm.

4.27 Remark. By the universal property of the ring of fractions for K[Φ]m, there exists a unique

ring homomorphism :K[Φ]m −→ K extending :K[Φ] −→ K. For every submodule M of N ,

we have M = Mm.
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4.28 Lemma. Let M1,M2 be separable submodules of N such that M1 ⊆ M2. Then dim0M1 =

dim0M2 if and only if (M1)m = (M2)m.

Proof. Suppose (M1)m = (M2)m. Then by the previous remark M1 = M2 and since M1 and M2

are separable, this implies dim0M1 = dim0M2.

For the other direction, assume dim0M1 = dim0M2. Since M1 is separable, there exists J0 ⊆ J

and a row regular matrix M ∈ K[Φ]J0×J that is in upper triangular form with respect to J0 and

ι = idJ0 such that the rows of M generate M1. Given f ∈M2 and using that the diagonal elements

of M are invertible in K[Φ]m, one can find an element g ∈ (M1)m such that for f ′ = f − g we have

f ′j = 0 for j ∈ J0. Write f ′ = h−1f ′′ with h ∈ S and f ′′ ∈M2. It suffices to show that f ′′ = 0. For

a contradiction, assume that this is not the case.

Claim. Suppose h ∈ M2 \ { 0 } and hj = 0 for all j ∈ J0. Then there exists h′ ∈ M2 \ { 0 } with

h′j = 0 for all j ∈ J0 and h′j ∈ S for some j ∈ J \ J0.

The claim follows by induction on minj∈J ldeg hj using the the separability of M2 .

Applying the claim for h = f ′′, we obtain dimK(M2) > |J0| = dimK(M1), contradicting

dim0M1 = dim0M2.
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Chapter 5

K as left K[Φ]-module and its
definable sets

Assume K is a field and φ is a self-embedding of K.

5.1 Definition. We expand the additive group of K to a left K[Φ]-module by requiring that for

all λ, µ ∈ K one has

(λΦ0) · µ := λµ

and

Φ · µ := φ(µ) .

5.2 Remark. The map K −→ K[Φ]/K[Φ](Φ − 1) , λ 7→ λ +K[Φ](Φ − 1) is an isomorphism of left

K[Φ]-modules. For f =
∑

i≤n λiΦ
i ∈ K[Φ] with all λi ∈ K, and µ ∈ K, one has

f · µ =
∑

i≤n

λiφ
i(µ) .

Let I, J be finite index sets.

5.3 Definition.

1. For M ∈ K[Φ]I×J and λ ∈ KJ , define M · λ ∈ KI by

(M · λ)(i) =
∑

j∈J

M(i, j) · λ(j)

for i ∈ I. Similarly, we define f · λ :=
∑

j∈J fj · λj ∈ K for f ∈ K[Φ]J , λ ∈ KJ and f · λ :=

(fi · λ)i∈I ∈ KI for f ∈ K[Φ]I and λ ∈ K.

2. For S ⊆ K[Φ]I and Λ ⊆ K, set S · Λ := { f · λ | f ∈ S, λ ∈ Λ }. Similarly, define S · λ :=

S · {λ } and f · Λ := { f } · Λ.

3. For a subset S of K[Φ]J , define the annihilator of S in K as

Ann(S) :=
{

λ ∈ KJ
∣

∣ f · λ = 0 for all f ∈ S
}

.
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5.4 Remark.

1. Suppose S ⊆ K[Φ]I . If M is the right K[Φ]-submodule generated by S in K[Φ]I , then
∑

f∈S f ·K = M ·K = M · 1 ⊆ KI . If M is the right K-subspace generated by S in K[Φ]I ,

then
∑

f∈S f ·K = M ·K = M · 1 ⊆ KI .

2. Suppose S ⊆ K[Φ]J and M is the separable left K[Φ]-submodule generated by S in K[Φ]J .

Then Ann(S) = Ann(M).

3. For M ∈ K[Φ]H×I (with finite H), N ∈ K[Φ]I×J and λ ∈ KJ , one has (MN) ·λ = M ·(N ·λ).

We will consider the left K[Φ]-module K as a structure in the following signature: σK[Φ] =

(+, 0,−, (f ·)f∈K[Φ]), where + is interpreted as the addition in K, 0 as the zero of K, − as the

additive inverse of K (considered as a unary function), and f · as the unary function given by

module multiplication with the φ-polynomial f , for f ∈ K[Φ].

5.5 Remark. If in addition to +, 0 and − we only add functions symbols f · for a set of f that

generates the ring K[Φ] (for example for f ∈ K∪{Φ }), then the structure in this reduced signature

has the same definable sets over the empty set and hence over an arbitrary subset of K.

If we specify some additive subgroups of K, we can expand the signature by adding unary

predicates for them. Given a set P of symbols for unary predicates, we consider the signature

σK[Φ],P = σK[Φ] t (P )P∈P ,

and K becomes a structure in this signature, if we interpret each P ∈ P as an additive subgroup

of K. For convenience, we assume that P always contains a predicate V∞ for the zero subgroup.

5.6 Example. Let (K, v,Γ) be a valued field and put P := { Vγ | γ ∈ Γ ∪ {∞}}. Interpret Vγ in

K as the additive subgroup { λ ∈ K | v(λ) ≥ γ }. Note that in the signature σK[Φ],P the structure

K has the same definable sets as in the reduced signature σK[Φ],{V0 } (over the empty set, and hence

over an arbitrary subset of K), because λV0 = Vv(λ) for λ ∈ K.

5.7 Convention. We fix here some notation for (first order) formulas. In referring to τ(X) as

a formula, we mean that τ is a formula, X is a finite set of variables and the free variables of τ

are in X; formally we regard τ(X) as a pair (τ,X) to specify the indexing set for the solutions.

Similarly, in referring to τ(X,Y ) as a formula, we mean that τ is a formula, X and Y are finite

disjoint sets of variables and the free variables of τ are in X ∪ Y . For a formula τ(X,Y ), we let

∃Y τ(X,Y ) denote a formula τ ′(X) = ∃y τ where y is a tuple of distinct variables enumerating Y .

Similarly, we use ∀Y τ(X,Y ).

For a formula τ(X) of signature σ, M a σ-structure, and a ∈ MX , the statement “M |= τ(a)”

has the obvious meaning, and τ(M) :=
{

a ∈ MX
∣

∣ M |= τ(a)
}

.

Now we recall some results on the model theory of modules with distinguished subgroups.
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5.8 Definition. Let TK[Φ],P consist of the following sentences in the language determined by

σK[Φ],P where f, g ∈ K[Φ] and P ∈ P:

1. ∀x, y, z
(

(x+ y) + z = x+ (y + z) ∧ x+ y = y + x ∧ x+ 0 = x ∧ x+ (−x) = 0
)

,

2. ∀x, y
(

f · (x+ y) = (f · x) + (f · y)
)

,

3. ∀x
(

(f + g) · x = (f · x) + (g · x)
)

,

4. ∀x
(

(fg) · x = f · (g · x)
)

,

5. ∀x
(

1 · x = x
)

,

6. P (0) ∧ ∀x, y
(

(P (x) ∧ P (y)) → (P (x+ y) ∧ P (−x))
)

and

7. ∀x
(

V∞(x) → x = 0
)

.

These sentences express that a model of TK[Φ],P is a module over K[Φ] with distinguished subgroups

given by the predicates P ∈ P and that V∞ is the trivial subgroup.

The structure K as defined above clearly satisfies the sentences in TK[Φ],P . It also satisfies

sentences that are not logical consequences of these, but these basic module axioms already ensure

that in each model the 0-definable sets are boolean combinations of sets defined by pp-formulas as

defined below.

5.9 Remark. Suppose X is a finite set of variables, I some finite (index) set, M ∈ K[Φ]I×X and

P = (Pi)i∈I ∈ PI . Then M ·X ∈ P stands for the conjunction of atomic formulas

∧

i∈I

Pi(
∑

x∈X

M(i, x) · x)

with distinguished set of variables X. In a model M of TK[Φ],P , every such formula τ(X) defines

an additive subgroup of the product group MX (but not a submodule in general). Also every

conjunction of atomic formulas is equivalent modulo TK[Φ],P to a formula of this form (note that

one of the axioms says that V∞ is the trivial subgroup, so one does not need equations).

5.10 Definition. A positive primitive formula (short: pp-formula) is a formula in any language

of the form ∃Y τ(X,Y ) where τ(X,Y ) is a conjunction of atomic formulas. If I is a finite set, X and

Y are finite disjoint sets of variables, M ∈ K[Φ]I×(X∪Y ) and P ∈ PI , then ∃Y (M · (X ∪ Y ) ∈ P )

is a pp-formula in the signature σK[Φ],P . A pp-formula of this form is called special.

5.11 Remark. In a model M of TK[Φ],P , every pp-formula τ(X) defines an additive subgroup of the

product group MX . Every such formula τ(X) is equivalent modulo TK[Φ],P to a special pp-formula

∃Y (M · (X ∪ Y ) ∈ P ).
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The following is taken from Hodges’ book [Ho] with small changes in the formulation:

Let L be a a language whose signature includes symbols · (binary function symbol), ι (unary

function symbol) and 1 (constant symbol). Let the L-structure M be group-like, that is, ·M, ιM

and 1M are the multiplication, inversion and identity of a group with the same underlying set as

M. A pp-formula τ(X) is called basic in M, if τ(M) is a subgroup of the product group MX .

For pp-formulas α(X), β(X) in L and m ≥ 1, let Invα(X),β(X),m be an L-sentence such that for

each group-like L-structure M such that α(X) and β(X) are basic in M,

M |= Invα(X),β(X),m ⇐⇒ |α(M)/(α(M) ∩ β(M))| ≤ m.

It is easy to construct such a sentence Invα(X),β(X),m from α(X), β(X), m. Such a sentence

Invα(X),β(X),m is called an invariant sentence.

5.12 Fact ([Ho], theorem A.1.1). Let X be a finite set of variables, y a single variable not in

X, Ψ(X, y) a finite set of pp-formulas in L and ψ(X, y) a boolean combination of formulas in Ψ.

Then there exists a finite set Θ of pp-formulas in L and a formula θ(X) that is a boolean

combination of formulas in Θ and invariant sentences Invα(z),β(z),m with α(z), β(z) ∈ Θ and z a

single variable, such that the following holds:

If M is a group-like L-structure in which all formulas of Ψ are basic, then all formulas in Θ

are basic in M and ∃y ψ(X, y) is equivalent to θ(X) in M.

A consequence of this is the following quantifier elimination theorem obtained by Baur and

Monk (see [Ba], [Mo]):

5.13 Theorem ([Ho], corollary A.1.2). Every formula τ(X) in the language of signature σK[Φ],P

is equivalent modulo TK[Φ],P to a boolean combination of pp-formulas and invariant sentences.

In particular, every complete theory in the signature σK[Φ],P extending TK[Φ],P is axiomatized by

TK[Φ],P and a set of invariant sentences.

So to determine the complete theory of K as a σK[Φ],P -structure, it suffices to determine for

every two special pp-formulas α(z) and β(z) of signature σK[Φ],P , the index |α(K)/(α(K)∩β(K))| ∈

N ∪ {∞}.
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Chapter 6

Valued settings and Estimates

Let (K, v,Γ) be a valued field with valuation v and value group Γ. We assume that the valuation

v maps K× onto Γ.

6.1 Definition. A valued vector space over (K, v,Γ) consists of a K-vector space W , a totally

ordered set ∆, an action + :Γ × ∆ −→ ∆ of the group Γ on ∆ and a surjective map v :W \ { 0 } −→

∆ such that the following properties hold, where ∆∞ := ∆∪̇ {∞∆ } with the ordering on ∆ extended

to a total order on ∆∞ by ∞∆ > δ for all δ ∈ ∆ and where v on W \ { 0 } is extended to W via

v(0) := ∞∆: For all a, b ∈W \ { 0 } and λ, µ ∈ K×,

1. v(a+ b) ≥ min { v(a), v(b) },

2. v(λa) = v(λ) + v(a), and

3. the action of Γ on ∆ preserves the order in the following way: v(λ) ≤ v(µ) =⇒ v(λa) ≤

v(µa), and v(a) ≤ v(b) =⇒ v(λa) ≤ v(λb).

From now on in this chapter, (W,∆, v) is a valued vector space over (K, v,Γ). For S ⊆ Γ∪{∞Γ },

we let minS denote the minimum of S if it exists, with the convention that min ∅ = ∞Γ. A similar

convention holds for S ⊆ ∆ ∪ {∞∆ }.

6.2 Remark.

1. It is convenient to extend the action of Γ on ∆ to that of the ordered semigroup Γ∞ :=

Γ∪̇ {∞Γ } on ∆∞ via ∞Γ + δ = γ + ∞∆ = ∞∆ for all γ ∈ Γ∞ and δ ∈ ∆∞. Then the three

properties above hold for all a, b ∈W and λ, µ ∈ K.

2. Let |K and |W be the binary relations on K and W respectively, given by the equivalences

λ|Kµ ⇐⇒ v(λ) ≤ v(µ)

and

a|W b ⇐⇒ v(a) ≤ v(b) .

Then for all a, b, c ∈W and λ, µ ∈ K:

(a) if a|W b and b|W c, then a|W c ;
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(b) a|W b or b|Wa ;

(c) if a|W b and a|W c, then a|W b+ c ;

(d) if a|W b, then λa|Wλb ;

(e) if λ|Kµ, then λa|Wµa.

These properties (a)-(e) are just a translation of the definition of valued vector space in terms

of the divisibility relations |K and |W .

3. The structure (K, v,Γ) is a valued vector space over itself, with the action being the addition

on Γ.

4. The K-vector space Wm (with operations defined componentwise) becomes a valued vector

space over (K, v,Γ) by setting v((wi)i<m) := mini<m v(wi) for (wi)i<m ∈Wm.

5. The structure (W,∆, v) is also naturally a valued vector space over any valued subfield of

(K, v,Γ).

6.3 Definition. Let a = (ai)i∈I be a finite tuple over W . Then a is called weakly valuation

independent over K (in the valued vector space (W,∆, v)), if there exists δ ∈ ∆ such that for

all (λi)i∈I ∈ Kn,

v(
∑

i∈I

λiai) ≤ v(λj) + δ for j ∈ I .

We call aweakly valuation independent over a subfield K0, if it is weakly valuation independent

with W being regarded as a valued vector space over K0 with its induced valuation. We call a

valuation independent over K, if ai 6= 0 for i ∈ I and for all (λi)i∈I ∈ Kn,

v(
∑

i∈I

λiai) = min
i∈I

v(λi) + v(ai) .

The tuple a is said to be a weak valuation basis of W over K, if a is weakly valuation

independent over K and a basis of W over K. Similarly, a is said to be a valuation basis of W

over K, if a is valuation independent over K and a basis of W over K.

6.4 Remark.

1. Let a = (ai)i∈I ∈ W I be a finite tuple. If a is weakly valuation independent in the valued

vector space (W,∆, v) over K, then it is linearly independent over K.

2. If a = (ai)i∈I is a valuation basis of K over a subfield K0, then a is weakly valuation inde-

pendent over K0 (with K a valued vector space over K0 in the natural way).

6.5 Definition/Convention.

1. Recall that by our notational conventions Wn×m is the set of matrices over W with row index

set { 0, . . . , n− 1 } and column index set { 0, . . . ,m− 1 }.
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2. For a matrix M ∈Wn×m, define v(M) := min { v(M(i, j)) | i < n, j < m }.

3. Tuples x = (xi)i<n ∈Wn are identified with elements ofW 1×n (row vectors) orWn×1 (column

vectors) as appropriate.

4. For matrices M1 ∈ Kn×m and M2 ∈Wm×r, define M1M2 ∈Wn×r by

(M1M2)(i, j) =
∑

k<m

M1(i, k)M2(k, j) .

5. The above conventions and definitions are later also applied, if (W, v,∆) is a valued field

extension of (K, v,Γ).

6.6 Remark.

1. Let M ∈ Km×n and consider a = (ai)i<n ∈ Wn as a column vector. Then v(Ma) ≥

v(M) + v(a). If M ∈ GLn(K), then (−v(M−1)) + v(a) ≥ v(Ma) ≥ v(M) + v(a). Let

λ = (λi)i<m and consider λ as a row vector. Then v(λM) ≥ v(λ) + v(M). If M ∈ GLm(K),

then v(λ) − v(M−1) ≥ v(λM) ≥ v(λ) + v(M).

2. Let a = (ai)i<n ∈Wn and regard it as a column vector. Then a is weakly valuation indepen-

dent over K if and only if there exists δ ∈ ∆ such that for all λ = (λi)i<n ∈ Kn, which are

regarded as row vectors, v(λa) ≤ v(λ) + δ.

6.7 Lemma. Let M ∈ GLn(K) and assume a = (ai)i<n ∈ Wn is weakly valuation independent

over K. Then Ma is weakly valuation independent over K, where a is regarded as a column vector.

Proof. Pick δ ∈ ∆ as in the definition of weak valuation independence for a. Let λ = (λi)i<n ∈ Kn

and regard it as a row vector. Then λ(Ma) = (λM)a and by valuation independence of a one has

v((λM)a) ≤ v(λM) + δ. By the previous remark, v(λM) ≤ v(λ) + (−v(M−1)), so v(λ(Ma)) ≤

v(λ) + (−v(M−1) + δ).

6.8 Corollary. If W has a weak valuation basis over K, then every finite tuple over W that is

K-linearly independent is weakly valuation independent over K.

6.9 Lemma. Consider the valued vector space Wm with v((ai)i<m) = mini<m v(ai). Suppose that

the tuple (bj)j<n over W is weakly valuation independent over K. Let H := m × n and consider

it as an index set for tuples. For h = (h1, h2) ∈ H, define ch = (δi,h1bh2)i<m, where δi1,i2 = 1 for

i1 = i2 and δi1,i2 = 0 otherwise. Then c = (ch)h∈H is a tuple indexed by H over Wm. It is weakly

valuation independent over K in the valued vector space Wm.

Proof. Pick δ ∈ ∆ to witness that (bj)j<n is weakly valuation independent. Let µ = (µh)h∈H ∈ KH .

Claim: v(µc) ≤ v(µ) + δ.

37



Let πi :Wm −→W denote the canonical projection for i < m. We have

v(µc) = v(
∑

h∈H

µhch)

= min
i<m

v(πi(
∑

h∈H

µhch))

= min
i<m

v(
∑

h∈H

µhπi(ch))

= min
i<m

v(
∑

(h1,h2)∈H

µ(h1,h2)δi,h1bh2)

= min
i<m

v(
∑

j<n

µ(i,j)bj)

≤ min
i<m

(min
j<n

v(µ(i,j)) + δ)

= ( min
(h1,h2)∈H

v(µ(h1,h2))) + δ

= v(µ) + δ

6.10 Corollary. If W is finite dimensional and has a weakly valuation independent basis over K,

then every finite tuple over Wm that is K-linearly independent is weakly valuation independent over

K in the valued vector space Wm.

Proof. Apply the lemma to a weakly valuation independent basis of W . Then the tuple c is a

basis of Wm and it is weakly valuation independent over K, so by Corollary 6.8, every linearly

independent tuple over Wm is weakly valuation independent.

6.11 Lemma. Suppose a = (ai)i<n ∈ Wn is weakly valuation independent in W over K, K0 is

a subfield of K and λ = (λj)j<m ∈ Km is weakly valuation independent in K over K0. Then for

H = n×m and b(i,j) = λjai for (i, j) ∈ H, the tuple (b(i,j))(i,j)∈H is weakly valuation independent

over K0 in the valued vector space W .

Proof. Let (µ(i,j))(i,j)∈H ∈ KH
0 . Then

v(
∑

(i,j)∈H

µ(i,j)b(i,j)) = v(
∑

i<n

(
∑

j<m

µ(i,j)λj)ai)

≤ min
i<n

v(
∑

j<m

µ(i,j)λj) + δ
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for some δ ∈ ∆ independent of µ(i,j), because a is weakly valuation independent over K. Because

λ is weakly valuation independent over K0, we can find γ ∈ Γ independent of (µ(i,j))(i,j)∈H such

that

min
i<n

v(
∑

j<m

µ(i,j)λj) + δ ≤ min
i<n

(min
j<m

v(µ(i,j)) + γ) + δ

= min
(i,j)∈H

v(µ(i,j)) + (γ + δ) .

In the following, there are some considerations on ordered abelian groups with a specific kind

of self-embedding. The purpose is to prepare the setting for the situation, where K is equipped

with a specific kind of self-embedding. So assume that (Γ,+, 0,≤) is a an ordered abelian group

and φ an embedding of this ordered group into itself.

6.12 Definition. A modulus of growth g for φ is a function g :Γ −→ Γ such that for all ε ∈ Γ

and all γ ≥ g(ε),

φ(γ) − γ ≥ ε .

A modulus of size s for φ is a function s :Γ −→ Γ such that for all ε ∈ Γ and all γ ≥ s(ε),

φ(γ) ≥ ε .

6.13 Remark.

1. If g is a modulus of growth for φ, then s(ε) := max { ε, g(0) } is a modulus of size for φ.

2. If g is a modulus of growth for φ, then any function g′ :Γ −→ Γ such that g′(γ) ≥ g(γ) for all

γ is also a modulus of growth for φ.

3. Assume that there is a rational number C > 1 such that φ(ε) ≥ Cε holds for all ε ∈ Γ with

ε ≥ 0. Then the function m defined by m(ε) := (C − 1)−1ε for ε ≥ 0 and m(ε) = 0 for ε < 0

is a modulus of growth for φ, provided Γ is divisible. If Γ is not divisible, picking a natural

number D ≥ (C − 1)−1 and setting m(ε) := Dε for ε ≥ 0 and m(ε) = 0 for ε < 0, yields a

modulus of growth for φ.

4. If gi is a modulus of growth for a self-embedding φi of Γ for i = 1, 2, then g(ε) := max { g2(0), g1(ε) }

is a modulus of growth for φ1 ◦ φ2. In particular, if g is a modulus of growth for φ and i > 0

is a natural number, then g′(ε) := max { g(0), g(ε) } is a modulus of growth for φi.

5. φ is also a self-embedding of (Γ,+, 0,≥), where the order is reversed, and if g is a modulus

of growth for φ in the structure (Γ,+, 0,≤), then the function defined by g′(ε) := −g(−ε) is

a modulus of growth for φ in (Γ,+, 0,≥).
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Assume below that gi is a modulus of growth for φi for i > 0 and that si is a modulus of size

for φi for i ≥ 0.

6.14 Lemma. Given natural numbers 0 ≤ i0 < i1 and µ0, µ1 ∈ Γ, there exist γ−, γ+, δ−, δ+ ∈ Γ

such that for all γ ∈ Γ,

γ ≥ γ+ =⇒ φi0(γ) + µ0 ≤ φi1(γ) + µ1 ,( =⇒ +)

γ ≤ γ− =⇒ φi0(γ) + µ0 ≥ φi1(γ) + µ1 ,( =⇒ −)

φi0(γ) + µ0 ≤ max
{

φi1(γ) + µ1, δ+
}

,(max)

φi0(γ) + µ0 ≥ min
{

φi1(γ) + µ1, δ−
}

.(min)

The same also holds for ( =⇒ +) and ( =⇒ −) simultaneously replacing ≥ by > and ≤ by <.

Proof. It suffices to find γ+, δ+ and prove ( =⇒ +) and (max). The other two statements ( =⇒ −)

and (min) are just the dual of ( =⇒ +) and (max) in the sense of Remark 6.13, part 5.

Set γ+ = gi1−i0(si0(µ0 − µ1)). Then for γ ∈ Γ with γ ≥ γ+, we have

φi1(γ) − φi0(γ) = φi0(φi1−i0(γ) − γ)

≥ φi0(si0(µ0 − µ1))

≥ µ0 − µ1 ,

so φi0(γ) + µ0 ≤ φi1(γ) + µ1. To obtain the statement with strict inequalities, choose some ε > 0

if Γ is non-trivial (otherwise the statement is trivially true) and apply the statement with weak

inequalities where µ0 is replaced by µ0 + ε.

The choice of δ+ = φi0(γ+)+µ0 obviously works to satisfy (max), because φi0 is monotone.

6.15 Corollary. Given j ∈ N, there exists γ−, γ+ ∈ Γ such that for all i0, i1 with i0 ≤ i1 ≤ j and

all γ ∈ Γ, one has

φi0(γ) ≤ max
{

φi1(γ), γ+

}

,

φi0(γ) ≥ min
{

φi1(γ), γ−
}

.

6.16 Lemma. Let i0, i1 ∈ N with i0 < i1 and δ0, δ1, γ0 ∈ Γ. Then the set

{

γ ∈ Γ | φi1(γ) + δ1 ≥ min
{

φi0(γ) + δ0, γ0

} }

is bounded below.

Proof. By Lemma 6.14, there exist a γ− such that for all γ < γ−, one has φi0(γ) + δ0 > φi1(γ) + δ1

and γ > φi1(γ) + δ1.
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Let γ ∈ Γ and φi1(γ) + δ1 ≥ min
{

φi0(γ) + δ0, γ0

}

. If γ < γ−, then φi1(γ) + δ1 ≥ γ0, so

γ > γ0.

6.17 Remark. Assume that φ is a self-embedding of K (only in the sense of pure fields) and

that there exists a rational number Cφ > 1 such that for λ ∈ K with v(λ) ≥ 0, the inequality

v(φ(λ)) ≥ Cφv(λ) holds. One can interpret the multiplication of an element by a rational number

in the (up to isomorphism over Γ) unique divisible hull of Γ, or simply clear denominators in the

defining inequality.

For λ, µ ∈ K, if v(λ) ≤ v(µ), then v(φ(λ)) ≤ v(φ(µ)). For λ = 0, this is clear and otherwise

this follows from v(φ(µ
λ )) ≥ Cφv(

µ
λ) ≥ 0. Therefore φ induces an embedding (of ordered abelian

groups) of the value group into itself, which is also denoted by φ, and this map has a modulus of

growth by Remark 6.13, part 3.

The map φ is actually a self-embedding of (K, v,Γ).

6.18 Assumption. More generally, in the rest of the chapter, φ is a self-embedding of (K, v,Γ).

Such a self-embedding consist of a self-embedding of the field K and a self-embedding of the value

group Γ, which are both denoted by φ, such that v(φ(λ)) = φ(v(λ)) for all λ ∈ K×. We assume

that φ :Γ −→ Γ has a modulus of growth g, and that Γ is not trivial.

6.19 Lemma. Let f =
∑

i≤d µiΦ
i ∈ K[Φ], where d ∈ N and µi ∈ K for i = 0, . . . , d.

1. Setting δ := mini≤d v(µi), one has

v(f · λ) ≥ min
i≤d

(φi(v(λ)) + v(µi)) ≥ δ + min
i≤d

φi(v(λ))

for all λ ∈ K.

2. There exists γb ∈ Γ such that

v(f · λ) ≥ min
{

φd(v(λ)) + δ, γb

}

for all λ ∈ K.

3. Suppose γ ∈ Γ and δγ = mini≤d(v(µi) + φi(γ)). Then for all λ ∈ K with v(λ) ≥ γ, the

inequality v(f · λ) ≥ δγ holds, hence { v(f · λ) | v(λ) ≥ γ } is bounded below.
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Proof. Let λ ∈ K. Then

v(f · λ) = v(
∑

i≤d

µiφ
i(λ))

≥ min
i≤d

(v(µi) + v(φi(λ)))

= min
i≤d

(v(µi) + φi(v(λ)))

≥ min
i≤d

(δ + φi(v(λ)))

= δ + min
i≤d

φi(v(λ))

and the parts 1 and 3 follow. For part 2, apply Corollary 6.15 to obtain γ− ∈ Γ such that

φi(γ) ≥ min
{

φd(γ), γ−
}

for i ≤ d. Then v(f ·λ) ≥ δ+mini≤d φ
i(v(λ)) ≥ δ+min

{

φd(v(λ)), γ−
}

=

min
{

φd(v(λ)) + δ, γ− + δ
}

so one can choose γb as γ− + δ.

6.20 Proposition. Let f =
∑

d0≤i≤d1
µiΦ

i ∈ K[Φ], where µi ∈ K , ldeg f = d0, deg f = d1. Then

there exists γ−, γ+ ∈ Γ such that for all λ ∈ K:

(l) v(λ) > γ+ =⇒ φi(v(λ)) + v(µi) > v(f · λ) = φd0(v(λ)) + v(µd0)

for d0 < i ≤ d1 and

(h) v(λ) < γ− =⇒ v(f · λ) = φd1(v(λ)) + v(µd1) < φi(v(λ)) + v(µi)

for 0 ≤ i < d1.

In particular, the first statement implies that the function f · :K −→ K,λ 7→ f · λ is continuous

with respect to the valuation topology on K.

Proof. One has v(µiΦ
i) · λ) = v(µi) + φi(v(λ)) for d0 ≤ i ≤ d1, so

v(f · λ) = v((
∑

d0≤i≤d1

µiΦ
i) · λ)

≥ min
d0≤i≤d1

(v(µi) + φi(v(λ)))(*)

and equality holds, if the minimum is attained for a single i.

Applying Lemma 6.14, there are γ+,i for d0 < i ≤ d1 such that γ > γ+,i implies

φd0(γ) + v(µd0) < φi(γ) + v(µi) .

Now assume d0 < d1 and set γ+ = maxd0<i≤d1 γ+,i . Then for d0 < i ≤ d1 and γ > γ+, one has

φd0(γ) + v(µd0) < φi(γ) + v(µi) ,

42



so in the inequality (*) actually equality holds for v(λ) > γ+ and the statement (l) is established.

The statement (h) is established similarly.

6.21 Proposition. Let f = (fi)i<m ∈ K[Φ]m and d ∈ N, such that deg fi ≤ d for i < m. Then

there exists δ, γ−, γ ∈ Γ such that for all λ ∈ K:

(min) v(f · λ) ≥ min
{

φd(v(λ)) + δ, γ
}

and

(*) v(λ) < γ− =⇒ v(f · λ) ≥ φd(v(λ)) + δ

If one of the fi has degree equal to d, then one can choose δ, γ− ∈ Γ such that in (*) equality holds.

Proof. By Lemma 6.19, for i < m, there exist δi, γi ∈ Γ such that

v(fi · λ) ≥ min
{

φd((v(λ)) + δi, γi

}

for all λ ∈ K. So

v(f · λ) = min
i<m

v(fi · λ)

≥ min
i<m

min
{

φd((v(λ)) + δi, γi

}

≥ min
{

φd(v(λ)) + δ, γ
}

for δ := mini<m δi and γ := mini<m γi, and (min) is proved.

By deleting the fi that are zero (which don’t influence the value of v(f ·λ)), we may assume that

all fi are non-zero. For each i < m, there exists by Proposition 6.20 γi, δi such that for λ ∈ K with

v(λ) < γi, the equality v(fi · λ) = φdi(v(λ)) + δi holds where di = deg fi. Let d′ be the maximum

of the di and δ be the minimum of the δi with di = d′.

For i < m such that di < d′, apply Lemma 6.14 to find γ′i with the property that for all γ ≤ γ′i,

φdi(γ) + δi ≥ φd′(γ) + δ

holds, and set

γ− = min { γi | i < m } ∪
{

γ′i
∣

∣ i < m, di < d′
}

.

Now let λ ∈ K with v(λ) < γ and i < m. Then v(fi · λ) = φdi(v(λ)) + δi and if di = d′,

this is equal to φd′(v(λ)) + δi ≥ φd′(v(λ)) + δ and equality holds for some such i. If di < d′, then

φdi(v(λ)) + δi ≥ φd′(v(λ)) + δ.
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This shows that

v(f · λ) = min
i<m

v(fi · λ)

= φd′(v(λ)) + δ

6.22 Proposition. Let m, d ∈ N and fi ∈ K[Φ]m with deg fi ≤ d for i < m. Then there exists

γ, δ ∈ Γ such that for all λ = (λi)i<m ∈ Km, one has

v(
∑

i<m

fi · λi) ≥ min

{

( min
i<m,fi 6=0

v(φdeg fi(λi))) + δ, γ

}

≥ min
{

φd(v(λ)) + δ, γ
}

where v(λ) := mini<m v(λi). In particular, for every γ′ ∈ Γ, the set

{

v(
∑

i<m

fi · λi)

∣

∣

∣

∣

∣

λ = (λi)i<m ∈ Km, v(λ) ≥ γ′

}

is bounded below by min
{

v(φd(γ′)) + δ, γ
}

.

Proof. Let i < m such that fi 6= 0. Apply Proposition 6.21 to fi to obtain δi, γi ∈ Γ such that

v(fi · µ) ≥ min
{

φdeg fi(v(µ)) + δi, γi

}

for all µ ∈ K. Then for all λ = (λi)i<m ∈ Km,

v(
∑

i<m

fi · λi) ≥ min
i<m

v(fi · λi)

≥ min
i<m,fi 6=0

min
{

φdeg fi(v(λi)) + δi, γi

}

≥ min

{

( min
i<m,fi 6=0

φdeg fi(v(λi))) + δ, γ′
}

with δ := mini<m δi and γ′ := mini<m γi. Now by Corollary 6.15, there exists a γ− such that

φj(τ) ≥ min
{

φd(τ), γ−
}

for all j ≤ d and τ ∈ Γ. This gives

min

{

( min
i<m,fi 6=0

φdeg fi(v(λi))) + δ, γ′
}

≥ min

{

(min
i<m

min
{

φd(v(λi)), γ−

}

) + δ, γ′
}

= min

{

(min
i<m

φd(v(λi))) + δ, γ′, γ− + δ

}

= min
{

φd(v(λ)) + δ, γ
}

for γ = min { γ− + δ, γ′ }.
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6.23 Assumption. For the rest of the section, K has a weakly valuation independent basis over

φ(K) and [K : φ(K)] is finite.

6.24 Remark. Every φn(K)-linearly independent tuple over Km is weakly valuation independent

over φn(K) by Corollary 6.10 and Lemma 6.11.

6.25 Lemma. Given n and a basis B of K over φ(K), there exists δ ∈ Γ such that for all µ ∈ K,

(*) | v(µ) − φn(v((λB
b (µ))b∈Bn)) |≤ δ .

(For λB
b (µ), see Definition 4.10.)

Proof. With ωB
b =

∏

k<n φ
k(bk) for b ∈ Bn and µ ∈ K, we have

µ =
∑

b∈Bn

φn(λB
b (µ))ωB

b ,

so

v(µ) ≥ min
b∈Bn

v(φn(λB
b (µ))ωB

b )

= min
b∈Bn

v(φn(λB
b (µ))) + v(ωB

b )

≥ (min
b∈Bn

v(φn(λB
b (µ)))) + min

b∈Bn
v(ωB

b )

= φn(v((λB
b (µ))b∈Bn)) + δ1

for δ1 = minb∈Bn v(ωB
b ). Because (ωB

b )b∈Bn is a basis of K over φn(K), and therefore weakly

valuation independent over φn(K), there exists δ2 ∈ Γ such that for each tuple (µb)b∈Bn over

φn(K), the inequality

v(
∑

b∈Bn

µbω
B
b ) ≤ min

b∈Bn
v(µb) + δ2

holds. Applying this for µb = φn(λB
b (µ)), one gets

v(µ) ≤ min
b∈Bn

v(φn(λB
b (µ))) + δ2

= φn(v((λB
b (µ))b∈Bn)) + δ2

Now the choice δ = max {−δ1, δ2 } will make (*) true.

6.26 Proposition. Suppose fi ∈ K[Φ]m for i < n and (fi)i<n is strongly strongly independent (in

the sense of Definition 3.16). Then there exist δ, γ0 ∈ Γ such that for all µ = (µi)i<n ∈ Kn,

min
i<n

φdeg fi(v(µi)) ≥ min

{

v(
∑

i<n

fi · µi) + δ, γ0

}

.

45



Proof. Assume first that all fi have degree equal to d ≥ 1. Write fi = gi + viΦ
d where gi ∈ K[Φ]m

is of degree less than d and vi ∈ Km. Then the vi are φd(K)-linearly independent, so they are by

Remark 6.24 weakly valuation independent over φd(K) and therefore one can pick δ0 ∈ Γ such that

for all µ = (µi)i<n ∈ Kn,

v(
∑

i<n

viφ
d(µi)) ≤ v(φd(µ)) + δ0

holds, where φd(µ) := (φd(µi))i<n.

By Proposition 6.22, there are γ1, δ1 ∈ Γ such that for all µ = (µi)i<n ∈ Kn, the inequality

v(
∑

i<n

gi · µi) ≥ min
{

v(φd−1(µ)) + δ1, γ1

}

holds. Apply Lemma 6.14 to find γ− ∈ Γ such that for all γ ∈ Γ,

γ < γ− =⇒ φd(γ) + δ0 < φd−1(γ) + δ1 .

Take γ2 ∈ Γ with φd−1(γ2) + δ1 ≤ γ1 and set γ3 = min { γ−, γ2 }.

Then for all µ = (µi)i<n ∈ Kn with v(µ) < γ3,

v(
∑

i<n

viφ
d(µi)) ≤ v(φd(µ)) + δ0

= φd(v(µ)) + δ0

< φd−1(v(µ)) + δ1

≤ min
{

v(φd−1(µ)) + δ1, γ1

}

≤ v(
∑

i<n

gi · µi) ,

so

v(
∑

i<n

fi · µi) = v((
∑

i<n

(viΦ
d) · µi) + (

∑

i<n

gi · µi))

= v(
∑

i<n

viφ
d(µi))

≤ v(φd(µ)) + δ0

= φd(v(µ)) + δ0 ,

i.e.

φd(v(µ)) ≥ v(
∑

i<n

fi · µi) + δ

for δ := −δ0. If v(µ) ≥ γ3, then φd(v(µ)) ≥ φd(γ3), so the choice γ0 = φd(γ3) works.

Now we deal with the general case (where not necessarily all fi have degree equal to d). Fix

some d ≥ 1 that is ≥ deg fi for all i and a basis B of K over φ(K), and consider the common
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d-enlargement of the fi with respect to B: Let

I :=
{

(i, b) | i < n, b = (bk)k<n−deg fi ∈ Bd−deg fi

}

and for (i, b) ∈ I with b = (bk)k<d−deg fi , let

f(i,b) := fi

∏

k<d−deg fi

bkΦ .

The tuple (f(i,b))(i,b)∈I is strongly independent and all f(i,b) have degree d, so by the special case

above there exists γ1, δ1 ∈ Γ such that for all λ = (λ(i,b))(i,b)∈I ∈ KI ,

φd(v(λ)) ≥ min







v(
∑

(i,b)∈I

f(i,b) · λ(i,b)) + δ1, γ1







.

Given µ = (µi)i<n ∈ Kn and applying the above for λ(i,b) = λB
b (µi), i < n, b ∈ Bd−deg fi , one

obtains

φd(v(λ)) ≥ min

{

v(
∑

i<n

fi · µi) + δ1, γ1

}

.

Using Lemma 6.25, one can find a δ2 ∈ Γ (independent of µ) such that

| v(µi) − φd−deg fi(v((λ(i,b))b∈Bd−deg fi )) |≤ δ2 .

This implies

φdeg fi(v(µi)) ≥ φd(v((λ(i,b))b∈Bd−deg fi )) + φdeg fi(δ2)

≥ min

{

v(
∑

i<n

fi · µi) + δ1, γ1

}

+ min
i<n

φdeg fi(δ2)

= min

{

v(
∑

i<n

fi · µi) + δ, γ0

}

for δ = δ1 + mini<n φ
deg fi(δ2) and γ0 = γ1 + mini<n φ

deg fi(δ2).

6.27 Corollary. In the same situation as in the last proposition, given γ, there exists γ′ such that

v(
∑

i<n fi · µi) ≥ γ implies v(µ) ≥ γ′ , i.e. v(µi) ≥ γ′ for all i < n.

Proof. Let d = 0. Apply the previous proposition to find γb and δ ∈ Γ such that

v(µ) < γb =⇒ v(µ) ≥ v(
∑

i<n

fi · µi) + δ .

Given γ ∈ Γ, set γ′ = min { γb, γ − δ }. If v(µ) < γ′, then v(µ) < γb, so v(µ) ≥ v(
∑

i<n fi · µi) + δ,

47



so

v(
∑

i<n

fi · µi) + δ < (γ − δ) + δ = γ .

Thus, v(µ) < γ′ implies v(
∑

i<n fi ·µi) < γ and therefore v(
∑

i<n fi ·µi) ≥ γ implies v(µ) ≥ γ′.

6.28 Definition. 1. Suppose a ∈ K and γ ∈ Γ∞. Call Vγ(a) := { b ∈ K | v(b− a) ≥ γ } the

ball of radius γ centered at a.

2. Let δ ∈ Γ with δ ≥ 0, and S ⊆ K. A function f :S −→ K is called δ-contractive, if

v(f(a) − f(b)) ≥ v(a− b) + δ for all a, b ∈ S.

The proof of the following two lemmas is an easy exercise.

6.29 Lemma. Suppose a ∈ K, γ ∈ Γ∞, δ ∈ Γ, δ ≥ 0 and f :Vγ(a) −→ Vγ(a) is δ-contractive.

Then

f(Vγ′(a′)) ⊆ Vγ′(a′) ⊆ Vγ(a)

for a′ = f(a) and γ′ = γ + δ.

6.30 Lemma. Let I be a non-empty index set, ai ∈ K and γi ∈ Γ∞ for i ∈ I. Assume that

f :
⋃

i∈I Vγi(ai) −→ K is 0-contractive and f(Vγi(ai)) ⊆ Vγi(ai) for all i ∈ I. If a ∈
⋂

i∈I Vγi(ai),

then

f(Vγ(a)) ⊆ Vγ(a) ⊆ Vγi(ai)

for γ = v(f(a) − a) and all i ∈ I.

6.31 Lemma. Let K be maximally valued. Suppose a ∈ K, γ ∈ Γ∞, δ ∈ Γ, δ > 0 and f :Vγ(a) −→

Vγ(a) is δ-contractive. Then f has a fixed point.

Proof. The statement follows by a transfinite induction argument from the previous two lemmas.
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Chapter 7

Asymptotic analysis of pp-sets

In this chapter, let (K, v,Γ) be a valued field (with v(K×) = Γ) and Γ 6= { 0 }. Let φ be a self-

embedding of the valued field (K, v,Γ) that has a modulus of growth. We assume that [K : φ(K)]

is finite and that K has a weakly valuation independent basis over φ(K).

In addition, we fix a set P of unary predicate symbols such that V∞ ∈ P. Every P ∈ P is

interpreted as an additive subgroup of K. This interpretation is also denoted by P , and V∞ is

interpreted as the zero subgroup. In this chapter, we consider K as a structure for the signature

σK[Φ],P , and accordingly, all formulas are with respect to this signature, and so is the notion of

pp-definable.

7.1 Definition. Let I be a finite index set. By a ball in KI , we mean a set of the form

Vγ :=
{

w ∈ KI
∣

∣ v(w) ≥ γ
}

for some γ ∈ Γ (i.e. a closed ball centered at 0). Note that each ball in KI is an additive subgroup

of the K-vector space KI .

A subset of KI is said to be bounded if it is contained in a ball in KI .

7.1 The large case (v(x) → −∞)

In this section, each subgroup P with P ∈ P is assumed to be bounded. We obtain results about

the structure of pp-definable sets in the large, i.e. modulo adding sufficiently large balls.

In this section, X is a finite index set, usually regarded as a set of variables. If Y is a set disjoint

from X and A ⊆ KX∪Y , we put A(w) :=
{

u ∈ KX
∣

∣ (u,w) ∈ A
}

for w ∈ KY .

7.2 Definition.

1. For subsets S1, S2 ⊆ KX , we say that S1 is contained in S2 modulo large balls, if S1+B ⊆

S2 +B for some ball B in KX , and denote this by S1

∞
⊆ S2. Similarly, call S1 and S2 equal

modulo large balls, if S1 +B = S2 +B for some ball B in KX , and denote this by S1
∞
= S2.

2. Let J be a set, (Sj)j∈J be a family of subsets of KX , and δ ∈ Γ, δ ≥ 0. We say that (Sj)

has the δ-maximum property, if for all j ∈ J the set Θ = { v(w) | w ∈ Sj } is empty
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or bounded above by θ + δ for some θ ∈ Θ. We say that (Sj) has the weak maximum

property, if it has the γ-maximum property for some γ ≥ 0 in Γ. We say that (Sj) has the

weak maximum property modulo large balls, if there exists a ball B in KX such that

the family (Sj +B)j∈J has the weak maximum property.

3. Let S ⊆ KX and δ ∈ Γ with δ ≥ 0. We say that S has the δ-optimal approximation

property, if for all w ∈ KX the set Θ = { v(w′ − w) | w′ ∈ S } is bounded above by θ+ δ for

some θ ∈ Θ. Instead of “0-optimal approximation property” we also say “optimal approx-

imation property”. We say that S has the weak optimal approximation property

modulo large balls, if for some ball B in KX and some γ ≥ 0 in Γ the set S + B has the

γ-optimal approximation property.

7.3 Remark. Let δ ∈ Γ, δ ≥ 0.

1. The particular notion of ball is not important in defining
∞
⊆ and

∞
=, i.e., if V is any collection

of subgroups of KX such that every element contained in V is contained in a ball in KX and

vice versa, then one can replace the notion of a ball in KX by being an element of V.

2. S ⊆ KX has the δ-optimal approximation property if and only if S is non-empty and the

family (S + w)w∈KX has the δ-maximum property.

3. Let Y be a finite set disjoint from X and A an additive subgroup of the product group KX∪Y .

The family (A(w))w∈KY has the δ-maximum property if and only if A(0) has the δ-optimal

approximation property. This is the case, since for every w ∈ KY the set A(w) is empty or a

coset of A(0).

4. Suppose the family (Sj)j∈J of subsets of KX has the δ-maximum property, and B is a ball

in KX . Then the family (Sj + B)j∈J has the δ-maximum property: Let γ ∈ Γ such that

B = Vγ . Let j ∈ J and set Θ := { v(w) | w ∈ Sj }, Θ′ := { v(w) | w ∈ Sj +B }. If γ ≤ θ for

some θ ∈ Θ, then ∞ ∈ Θ′. If γ > θ for all θ ∈ Θ, then Θ′ = Θ.

5. Suppose S ⊆ KX has the δ-optimal approximation property and B is a ball in KX . Then

S +B has the δ-optimal approximation property.

6. If Γ = Z, then every non-empty subset of KX has the weak optimal approximation property

modulo large balls.

7.4 Lemma. Let I be a finite set, T ∈ K[Φ]I×X and P ∈ PI . The following are equivalent:

1. The subgroup of KX defined by T ·X ∈ P is bounded.

2. There exists a product E of restricted elementary matrices in MATX(K[Φ]) such that the

columns of TE are strongly independent.
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Proof. 2 =⇒ 1: Let E be a product of restricted elementary matrices in MATX(K[Φ]) such that

the columns of TE are strongly independent. Because each Pi is bounded (by the assumption that

the subgroups in P are bounded), Corollary 6.27 yields that the subgroup B of KX defined by

(TE) · X ∈ P is bounded. Thus the image B′ of B under the map KX −→ KX , v 7→ E · v is

bounded. Note that B′ is the subgroup defined by T ·X ∈ P .

1 =⇒ 2: By Proposition 3.18, there exists a product E of restricted elementary matrices

in MATX(K[Φ]) such that the non-zero columns of TE are strongly independent. Suppose there

exists a zero column in TE, say with index x0 ∈ X. Define f ∈ K[Φ]X by f(x) := E(x, x0) for

x ∈ X. Then f ·K is unbounded, because Γ is non-trivial. Since f ·K is contained in the solution

set of T ·X ∈ P , this solution set is unbounded.

7.5 Proposition. Let A ⊆ KX be a pp-definable subgroup. Then there exist a finitely generated

right submodule M of K[Φ]X , a finite set of variables Y disjoint from X, a finite set I, an element

P ∈ PI and a matrix T ∈ K[Φ]I×(X∪Y ) such that the subgroup of KX∪Y defined by T · (X ∪Y ) ∈ P

is bounded and for the subgroup B of KX defined by the formula ∃Y (T · (X ∪ Y ) ∈ P ), we have

A = B +M ·K .

For any M,Y, I, P, T,B as above, B is bounded and A
∞
= M ·K. If A is bounded, then A is the image

under the projection map KX∪Y −→ KX of a bounded subgroup of KX∪Y defined by a conjunction

of atomic formulas.

Therefore, the study of pp-definable sets in KX up to (adding) large balls amounts to studying

sets of the form M ·K for finitely generated K[Φ]-modules M ⊆ K[Φ]X .

Proof. By Remark 5.11, there exist a finite set of variables Z disjoint from X, a finite set J , a tuple

Q ∈ PJ and a matrix S ∈ K[Φ]J×(X∪Z) such that A is defined by the formula ∃Z (S · (X ∪Z) ∈ Q).

Set H = X ∪ Z. By Proposition 3.18, there exists a (possibly empty) product E of restricted

elementary matrices in MATH(K[Φ]) such that the non-zero column vectors of SE are strongly

independent. Let H0 ⊆ H be the set of indices of zero columns and Hind ⊆ H be the set of indices

of non-zero columns of SE. (The subscript “ind” stands for “strongly independent”.)

Now take as M the submodule of K[Φ]X generated by the columns of E�X×H0
. Take a bijection

h :Hind −→ Y where Y is disjoint from X. To keep notations simple we pretend that Y = Hind and

that h is the identity on Y . Set I := X∪̇J and define P = (Pi)i∈I ∈ PI by P �J = Q and Px = V∞

for x ∈ X, and define T ∈ K[Φ]I×(X∪̇Y ) by T �X×X = − IdX , T �X×Y = E�X×Y , T �J×X = 0 and

T �J×Y = (SE)�J×Y .
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Here is a picture of T · (X∪̇Y ) ∈ P :

X −I E�X×Y X

∈

{ 0 }X

×

J 0 (SE)�J×Y Y
∏

j∈J Qj

X Y ' Hind

We claim that the first part of the proposition holds with these choices of M,Y, I, P, T . The

following proves this claim. Let C0 = KH0 and Dind be the subgroup of KHind defined by the

formula (SE)�J×Hind
· Y ∈ Q (recall that the set Y is identified with Hind). Then with C :=

{ 0 }Hind × C0 ⊆ KH and D := Dind × { 0 }H0 ⊆ KH , the solution set of (SE) · (X ∪ Z) ∈ Q is

equal to C + D. Therefore, the solution set of S · (X ∪ Z) ∈ Q is equal to C ′ + D′ for C ′ =

{ E · w | w ∈ C } ⊆ KH and D′ = { E · w | w ∈ D } ⊆ KH . Furthermore, let C ′′ and D′′ be the

images of C ′ and D′ respectively under the projection map KH −→ KX . Then A = C ′′+D′′. Note

that C ′ = E�H×H0
·KH0 and C ′′ = E�X×H0

·KH0 , so C ′′ = M ·K. The set D′′ is defined by the

formula

∃(Y ∪H0) (IdX ·X = E�X×H · (Y ∪H0) ∧ (Y ∪H0) ∈ D) ,

and because all elements of D are zero in the components H0, this has the same solutions as

∃Y (IdX ·X = E�X×Hind
· Y ∧ (SE)�J×Hind

· Y ∈ Q) ,

which is equivalent to

∃Y (T · (X∪̇Y ) ∈ P ) .

Observe that the matrix E′ ∈ MATX∪Y (K[Φ]) given by E′�X×X = IdX , E′�Y ×Y = IdY

E′�X×Y = E�X×Y , E′�Y ×X = 0, is a product of restricted elementary matrices and TE′ =

(− IdX) t (SE)�J×Y has strongly independent columns. By Lemma 7.4, the subgroup of KX∪Y

defined by T · (X∪̇Y ) ∈ P is bounded.

Suppose thatM,Y, I, P, T,B are as in the first part of the proposition. Clearly B is bounded and

thus A
∞
= M ·K. Now suppose that A is bounded. Since the valuation on K is non-trivial, M must

be { 0 }, so A is the projection of the bounded subgroup defined by the formula T · (X∪̇Y ) ∈ P .

7.6 Example. Consider the pp-definable subsets S1 = Φ · K and S2 = (Φ − 1) · K of K. Then

also S1 ∩ S2 is pp-definable, so by the proposition there exists a finitely generated submodule M
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of K[Φ] with S1 ∩ S2
∞
= M ·K. Here we show how to compute an element of K[Φ] that generates

such a module M . We have x ∈ S1 ∩ S2 if and only if

∃z1, z2
(

1 −Φ 0
1 0 1−Φ

)

·
(

x
z1
z2

)

= ( 0
0 ) .

Also

(

1 −Φ 0
1 0 1−Φ

)

(

1 Φ−Φ2 Φ
0 1−Φ 1
0 −Φ 1

)

= ( 1 0 0
1 0 1 ) ,

where
(

1 Φ−Φ2 Φ
0 1−Φ 1
0 −Φ 1

)

=
(

1 Φ 0
0 1 0
0 0 1

) (

1 0 0
0 1 1
0 0 1

) (

1 0 0
0 1 0
0 −Φ 1

)

is a product of restricted elementary matrices and the first and third column of ( 1 0 0
1 0 1 ) are strongly

independent. So we get

S1 ∩ S2
∞
= π1(

(

Φ−Φ2

1−Φ
−Φ

)

·K) = (Φ − Φ2) ·K

where π1 denotes the projection on the first component.

Now assume that t ∈ K \ φ(K) and consider the pp-definable subsets S1 = Φ2 · K and S2 =

(Φ2 − tΦ) · K of K. We will show that S1 ∩ S2
∞
= { 0 }, so S1 ∩ S2 is bounded. Again, we have

x ∈ S1 ∩ S2 if and only if

∃z1, z2
(

1 −Φ2 0
1 0 tΦ−Φ2

)

·
(

x
z1
z2

)

= ( 0
0 ) .

Also
(

1 −Φ2 0
1 0 tΦ−Φ2

) (

1 Φ2 Φ2

0 1 1
0 0 1

)

=
(

1 0 0
1 Φ2 tΦ

)

,

where
(

1 Φ2 Φ2

0 1 1
0 0 1

)

=
(

1 Φ2 0
0 1 0
0 0 1

) (

1 0 0
0 1 1
0 0 1

)

is a product of restricted elementary matrices and the columns of
(

1 0 0
1 Φ2 tΦ

)

are strongly indepen-

dent. So we obtain S1 ∩ S2
∞
= { 0 }.

The following lemma provides a uniform bound for the non-empty sections over a bounded set

of a family defined by a conjunction of atomic formulas. It is related to the last part of the previous

proposition.

7.7 Lemma. Suppose X and Z are disjoint finite sets of variables, J a finite set, P ∈ PJ and

S ∈ K[Φ]J×(X∪Z).

Let B be a ball in KX . Then there exists a ball B′ in KZ such that for all w ∈ B: If there exists

u ∈ KZ such that K |= S · (wau) ∈ P , then there exists u′ ∈ B′ such that K |= S · (wau′) ∈ P .

Proof. We assume that J and X are disjoint. Let C be a ball in K such that B = CX . Without

loss of generality, we may assume that P contains a predicate for C (also denoted by C).
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Put H := X ∪Z and J ′ := J ∪X. Define P ′ ∈ PJ ′
by P ′�J = P and P ′

x = C for x ∈ X. Define

S′ ∈ K[Φ]J
′×H by S′�J×H = S, S′�X×X = IdX and S′�X×Z = 0.

By Proposition 3.18, there exists a (possibly empty) product E of restricted elementary matrices

in MATH(K[Φ]) such the non-zero column vectors of S′E are strongly independent. Let H0 ⊆ H

be the set of indices of zero columns and Hind ⊆ H be the set of indices of non-zero columns of

S′E.

Consider the following additive subgroups of KH :

A =
{

b ∈ KH
∣

∣ K |= S′ · b ∈ P ′
}

,

Aind = E · (
{

a ∈ KHind
∣

∣ K |= S′E�J ′×Hind
· a ∈ P ′

}

× { 0 }H0) ,

A0 = E · ({ 0 }Hind ×KH0) .

Note that A =
{

(w, u) ∈ B ×KZ
∣

∣ K |= S · (wau) ∈ P
}

. We have A = Aind +A0. Let π :KH −→

KX denote the canonical projection. Then π(A) = π(Aind)+π(A0). Note that π(A0) is unbounded

or equal to { 0 }, because Γ is non-trivial and π(A0) is an image under a term map. Because π(A)

is bounded, we get π(A) = π(Aind) ⊆ B and π(A0) = { 0 }.

We have that Aind is bounded, since the non-zero columns of S′E are strongly independent.

Now it is clear that choosing as B′ any ball in KZ such that Aind ⊆ B×B′ will satisfy the conclusion

of the lemma.

7.8 Lemma. Given any non-empty X, the following conditions are equivalent:

1. For every finitely generated submodule M of K[Φ], the set M ·K ⊂ K has the weak optimal

approximation property modulo large balls.

2. For every finitely generated submodule M of K[Φ]X , the set M · K has the weak optimal

approximation property modulo large balls.

3. Every pp-definable set in KX has the weak optimal approximation property modulo large balls.

4. For each finite set Y disjoint from X and each pp-definable set A ⊆ KX∪Y , the family

(A(w))w∈KY has the weak maximum property modulo large balls.

5. For each finite set Y disjoint from X and each A ⊆ KX∪Y defined by a pp-formula with

parameters from K, the family (A(w))w∈KY has the weak maximum property modulo large

balls.

Proof. The implication 2 =⇒ 3 follows from Proposition 7.5 and Remark 7.3, part 5. The

implication 3 =⇒ 4 follows from Remark 7.3, part 3. The implication 4 =⇒ 5 is trivial. The

implication 5 =⇒ 2 follows from Remark 7.3, part 2. The implication 2 =⇒ 1 is trivial. Last,

we show the implication 1 =⇒ 2. We may assume without loss of generality that X = Bn where

B is a basis of K over φ(K).
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Let (gj)j∈J be a finite tuple of elements of K[Φ]X , and put f(j,b) := qB
b gj(b) ∈ K[Φ] for j ∈ J

and b ∈ Bn where qB
b ∈ K[Φ] is the basis polynomial with respect to B and b. Suppose condition

1 holds; so
∑

(j,b)∈J×Bn f(j,b) ·K has the weak optimal approximation property modulo large balls.

Then by Lemma 6.25, the set
∑

j∈J gj ·K has the weak optimal approximation property modulo

large balls.

In the rest of this section, we set N := K[Φ]X , and consider N as a right K[Φ]-module.

7.9 Lemma. Let (fi)i<m ∈ Nm and (gj)j<n ∈ Nn. Assume that the 1-enlargement space of each

gj is contained in the (right) K-linear span of { fi | i < m }∪{ gk | k < n }. Then there exists δ ∈ Γ

such that for all (λj)j<n ∈ Kn, there exists (µj)j<n ∈ Kn with the property

φ(v((µj)j<n)) ≥ v((λj)j<n) + δ and
∑

j<n

gj · λj ∈
∑

j<n

gj · µj +
∑

i<m

fi ·K ⊆ KX .

Proof. Pick a basis B of K over φ(K). Since the 1-enlargement space of each gj is contained in the

(right) K-linear span of all the fi and gj , one can find Cijb, Dkjb ∈ K for i < m, j < n, k < n and

b ∈ B such that for each j and b,

gjbΦ =
∑

i<m

fiCijb +
∑

k<n

gkDkjb .

Fix (λj)j<n ∈ Kn. Take µjb ∈ K for j < n and b ∈ B such that λj =
∑

b∈B(bΦ) · µjb for each

j < n. Then

∑

j<n

gj · λj =
∑

j<n,b∈B

(gjbΦ) · µjb

=
∑

j<n,b∈B

(

(
∑

i<m

fiCijb) · µjb + (
∑

k<n

gkDkjb) · µjb

)

=
∑

i<m

fi · (
∑

j<n,b∈B

Cijbµjb) +
∑

k<n

gk · (
∑

j<n,b∈B

Dkjbµjb)

=
∑

i<m

fi · (
∑

j<n,b∈B

Cijbµjb) +
∑

k<n

gk · µk

with µk :=
∑

j<n,b∈B Dkjbµjb. Observe that

∑

i<m

fi · (
∑

j<n,b∈B

Cijbµjb) ∈
∑

i<m

fi ·K ,

which yields the desired inclusion in the lemma. Next, note that v((µj)j<n) ≥ δ1 + v((µjb)j<n,b∈B)

for δ1 = mini<m,j<n,b∈B v(Dijb). Hence φ(v((µj)j<n)) ≥ φ(δ1) + φ(v((µjb)j<n,b∈B)). By Lemma

6.25, there exists δ2 ∈ Γ independent of (λj)j<n such that φ(v((µjb)b∈B)) ≥ v(λj) + δ2, so

φ(v((µj)j<n)) ≥ v((λj)j<n) + (φ(δ1) + δ2) .
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A problem with the last lemma is that later we would like to choose (gj)j<n as a strongly

independent generating tuple of some submodule M of N , and (fi)i<m should induce a basis of

(M ∩N≤d)/(M ∩N<d)

for some d ≥ maxj<n deg gj . In this situation, we have to relax the condition that the enlargement

of gj is in the K-linear span of the gj and fi to also allow multiplying the gj with certain elements

of K[Φ]. This is stated in the following lemma, whose proof proceeds roughly as the proof of the

previous lemma, with slightly more involved notation.

7.10 Lemma. Let d ∈ N, (fi)i<m ∈ Nm and (gj)j<n ∈ Nn. Assume that for all j < n, we have

gj 6= 0 and dj := deg gj ≤ d. Also assume that for each j < n, the (d− dj)-enlargement space of gj

is contained in the (right) K-linear subspace of N generated by

{ fi | i < m } ∪
⋃

k<n,l<d−dk

l-enlargement space of gk .

For a tuple (λj)j<n ∈ Kn, define

v̂((λj)j<n) = min
j<n

φdj (v(λj)) .

Then there exist δ, γ ∈ Γ such that for all (λj)j<n ∈ Kn, there exists (µj)j<n ∈ Kn with the property

φ(v̂((µj)j<n)) ≥ min { v̂((λj)j<n)) + δ, γ } and
∑

j<n

gj · λj ∈
∑

j<n

gj · µj +
∑

i<m

fi ·K ⊆ KX .

Proof. Pick a basis B of K over φ(K). Let j < n. By the hypothesis on gj , one can find Cijb ∈ K,

Dkjb ∈ K[Φ]<d−dk
for i < m, k < n, b ∈ Bd−dj such that

gjq
B
b =

∑

i<m

fiCijb +
∑

k<n

gkDkjb ,

where qB
b is the basis polynomial with respect to B and b (see Definition 4.10). For h ∈ K[Φ], one

can find δh ∈ Γ such that v(h ·λ) ≥ δh + mini≤deg h φ
i(v(λ)) for all λ ∈ K. Choose δ1 ∈ Γ such that

δ1 ≤ δh for all h = Dkjb, j < n, k < n, b ∈ Bd−dj . By Corollary 6.15, we choose δ2 ∈ Γ such that

for all γ′ ∈ Γ and all i0, i1 with i0 ≤ i1 ≤ d, one has

φi0(γ′) ≥ min
{

φi1(γ′), δ2
}

.

Fix (λj)j<n ∈ Kn. For j < n, let (µjb)b∈Bd−dj ∈ KBd−dj
be the unique tuple such that

λj =
∑

b∈Bd−dj q
B
b · µjb. Then by Lemma 6.25, there exists δ3 ∈ Γ independent of (λj) such that
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for all j < n and b ∈ Bd−dj ,

φd−dj (v(µjb)) ≥ v(λj) + δ3 .

We have

∑

j<n

gj · λj =
∑

j<n,b∈Bd−dj

(gjq
B
b ) · µjb

=
∑

j<n,b∈Bd−dj

(

(
∑

i<m

fiCijb) · µjb + (
∑

k<n

gkDkjb) · µjb

)

=
∑

i<m

fi · (
∑

j<n,b∈Bd−dj

Cijbµjb) +
∑

k<n

gk · (
∑

j<n,b∈Bd−dj

Dkjb · µjb)

=
∑

i<m

fi · (
∑

j<n,b∈Bd−dj

Cijbµjb) +
∑

k<n

gk · µk

with µk :=
∑

j<n,b∈Bd−dj Dkjb · µjb ∈ K for k < n. Observe that

∑

i<m

fi · (
∑

j<n,b∈Bd−dj

Cijbµjb) ∈
∑

i<m

fi ·K ,

which yields the desired inclusion in the lemma. Next, let k < n, and note that

v(µk) ≥ δ1 + min
j<n,b∈Bd−dj ,i<d−dk

φi(v(µjb)) ,

so

φ(φdk(v(µk))) ≥ φdk+1
(

δ1 + min
j<n,b∈Bd−dj ,i<d−dk

φi(v(µjb))
)

= φdk+1(δ1) + min
j<n,b∈Bd−dj ,i<d−dk

φdk+1(φi(v(µjb)))

= φdk+1(δ1) + min
j<n,b∈Bd−dj ,dk+1≤i≤d

φi(v(µjb))

≥ φdk+1(δ1) + min
j<n,b∈Bd−dj

min
{

φd(v(µjb)) , δ2

}

= φdk+1(δ1) + min
j<n,b∈Bd−dj

min
{

φdj (φd−dj (v(µjb))) , δ2

}

≥ φdk+1(δ1) + min
j<n,b∈Bd−dj

min
{

φdj (v(λj) + δ3) , δ2

}

= φdk+1(δ1) + min
j<n

min
{

φdj (v(λj) + δ3) , δ2

}

≥ min

{

φdk+1(δ1) + min
j<n

φdj (δ3) + min
j<n

φdj (v(λj)) , δ2 + φdk+1(δ1)

}

≥ min { δ + v̂((λj)j<n) , γ }
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with δ = minj<n φ
dj+1(δ1) + minj<n φ

dj (δ3) and γ = δ2 + minj<n φ
dj+1(δ1). It follows that

φ(v̂((µj)j<n)) = min
j<n

φ(φdj (v(µj))) ≥ min { δ + v̂((λj)j<n), γ } .

Below, the subscripts “h” and “l” stand for “high” and “low”.

7.11 Lemma. Suppose M is a finitely generated submodule of N , and d ∈ N is greater than or equal

to the degrees of the elements of some generating set of M . Let Mh ⊆ M ∩N≤d be a K-subspace

such that M ∩N≤d is contained in Mh +N<d. Also let Ml = M ∩N<d.

1. There exist δ, γ ∈ Γ such that for all w ∈Ml ·K there exists w′ ∈Ml ·K with w−w′ ∈Mh ·K

and φ(v(w′)) ≥ min { v(w) + δ, γ }.

2. If Mh · K ∩ Ml · K has the weak optimal approximation property modulo large balls, then

M ·K
∞
⊆Mh ·K.

Proof. We start proving the first statement. Pick fi ∈ N for i < m such that they generate Mh

as a K-subspace. Also, using Proposition 4.12, pick a strongly independent tuple (gj)j<n ∈ Nn

that generates the same submodule of N as Ml. By Proposition 4.12, part 1, every gj has degree

≤ d− 1, so gj ∈Ml.

Claim. The hypothesis of Lemma 7.10 is satisfied for the above chosen fi and gj .

Let j < n, and g be any element of the (d− deg gj)-enlargement space of gj . Then g lies in the

submodule generated by Ml, so also in M , and has degree ≤ d. By the assumption on Mh, there

exists f ∈Mh (so f is a K-linear combination of the fi) such that g − f has degree ≤ d− 1. Since

f − g ∈M , and therefore f − g ∈Ml, it follows by Proposition 4.12, part 2, that the element f − g

lies in the K-linear span of

⋃

k<n,l<d−deg gk

l-enlargement space of gk .

This proves the claim.

Let w ∈ Ml ·K. Then there exist µj ∈ K for j < n such that w =
∑

j<n gj · µj . By Lemma

7.10, there exist δ0, γ0 ∈ Γ (independent of the µj and therefore independent of w) and µ′j ∈ K for

j < n such that setting w′ =
∑

j<n gj · µ
′
j one has w − w′ ∈Mh ·K and

φ(v̂((µ′j)j<n)) ≥ min { v̂((µj)j<n)) + δ0, γ0 }

where v̂((λj)j<n) is defined to be minj<n φ
deg gj (v(λj)) for all (λj)j<n ∈ Kn. Because the gj are

strongly independent, Proposition 6.26 ensures the existence of δ1, γ1 ∈ Γ (independent of the µj)
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such that

v̂((µj)j<n) = min
j<n

φdeg gj (v(µj)) ≥ min
{

v(
∑

j<n
gj · µj) + δ1, γ1

}

= min { v(w) + δ1, γ1 } .

By Proposition 6.22, there exist δ2, γ2 ∈ Γ (independent of the µ′j) such that

v(w′) = v(
∑

j<n

gj · µ
′
j) ≥ min

{

(min
j<n

v(φdeg gj (µ′j))) + δ2, γ2

}

= min
{

v̂((µ′j)j<n) + δ2, γ2

}

.

Assembling the previous statements, one gets

φ(v(w′)) ≥ φ(min
{

v̂((µ′j)j<n) + δ2 , γ2

}

)

= min
{

φ(v̂((µ′j)j<n)) + φ(δ2) , φ(γ2)
}

≥ min {min { v̂((µj)j<n) + δ0 , γ0 } + φ(δ2) , φ(γ2) }

≥ min {min {min { v(w) + δ1 , γ1 } + δ0 , γ0 } + φ(δ2) , φ(γ2) }

= min { v(w) + δ , γ }

for γ = min {φ(γ2), γ0 + φ(δ2), γ1 + δ0 + φ(δ2) } and δ = δ1 + δ0 + φ(δ2).

To prove the second statement, let S = Mh ·K∩Ml ·K and assume that S has the weak optimal

approximation property modulo large balls. So there exist a ball B′ ⊆ KX and δ′ ∈ Γ with δ′ ≥ 0

such that S +B′ has the δ′-optimal approximation property. Now let x ∈M ·K and consider the

set S′ = { w ∈Ml ·K | x− w ∈Mh ·K }. This set is non-empty, because M ·K = Ml ·K+Mh ·K,

and therefore is a coset of the subgroup S of KX . So S′ + B′ has the δ′-optimal approximation

property.

Pick w ∈ S′ and y ∈ B′ such that for all u ∈ S′ + B′ one has v(u) ≤ v(w + y) + δ′. Because

w ∈Ml ·K, there exists by the first part w′ ∈Ml ·K such that w − w′ ∈Mh ·K and

φ(v(w′)) ≥ min { v(w) + δ, γ } .

We have w′ ∈ S′, because w′ ∈ Ml · K and x − w′ = (x − w) + (w − w′) ∈ Mh · K. So v(w′) ≤

v(w + y) + δ′. Assume first that w 6∈ B′. Then v(w + y) = v(w), so

v(w′) ≤ v(w) + δ′ .

This yields

φ(v(w′)) ≤ φ(v(w)) + φ(δ′) ,

so

min { v(w) + δ, γ } ≤ φ(v(w)) + φ(δ′) .

By Lemma 6.16, the set
{

u ∈ KX
∣

∣ min { v(u) + δ, γ } ≤ φ(v(u)) + φ(δ′)
}

is contained in a ball B′′
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in KX . Then for B = B′ ∪B′′, we have w ∈ B, so x ∈ w +Mh ·K ⊆ B +Mh ·K.

7.12 Lemma. Suppose I is some finite index set with disjoint subsets I1 and I2 and (fi)i∈I a

strongly independent tuple of elements in N . Then for any γ ∈ Γ, the subset

(
∑

i∈I1

fi ·K + Vγ) ∩ (
∑

i∈I2

fi ·K + Vγ)

of KX is bounded.

Proof. Let γ ∈ Γ. By Corollary 6.27, there exists γ′ ∈ Γ such that

v(
∑

i∈I

fi · λi) ≥ γ =⇒ v(λ) ≥ γ′

for all λ = (λi)i∈I ∈ KI . By Lemma 6.19, part 3, there exists δ ∈ Γ such that v(
∑

i∈I fi · λi) ≥ δ

for all λ = (λi)i∈I ∈ KI with v(λ) ≥ γ′. Set γb = min { γ, δ }. Now if

w ∈ (
∑

i∈I1

fi ·K + Vγ) ∩ (
∑

i∈I2

fi ·K + Vγ) ,

there is λ = (λi)i∈I ∈ KI such that w ∈
∑

i∈I1
fi · λi + Vγ and w ∈

∑

i∈I2
fi · λi + Vγ . Then

v(
∑

i∈I1

fi · λi +
∑

i∈I2

fi · (−λi)) ≥ γ ,

so v(λ) ≥ γ′ and therefore v(
∑

i∈I1
fi · λi) ≥ δ. This shows that w ∈ Vγb

.

7.13 Proposition. Suppose K is maximally valued and M is a finitely generated submodule of N .

Then M ·K has the weak optimal approximation property modulo large balls.

Proof. By Proposition 4.12, there exists a strongly independent tuple (fi)i<n with fi ∈ M such

that { fi | i < n } generates M . In particular, M · K =
∑

i<n fi · K. Since (fi)i<n is strongly

independent, Proposition 6.26 yields γ0, δ0 ∈ Γ such that for all λ = (λi)i<n ∈ Kn,

(lower) min
i<n

φdeg fi(v(λi)) ≥ min

{

v(
∑

i<n

fi · λi) + δ0, γ0

}

.

Also, Proposition 6.22 yields γ1, δ1 ∈ Γ such that for all λ = (λi)i<n ∈ Kn,

(upper) v(
∑

i<n

fi · λi) ≥ min

{

(min
i<n

v(φdeg fi(λi))) + δ1, γ1

}

where min ∅ = +∞.

Set γ := min { γ0, γ1 } and δ := max {−δ0 − δ1, 0 }. We will show that M · K + Vγ has the

δ-optimal approximation property.
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We prove by induction on the cardinality of I ⊆ { i ∈ N | i < n } that
∑

i∈I fi ·K + Vγ has the

δ-optimal approximation property.

For I = ∅, this is clear. So let I ⊆ { i ∈ N | i < n } be non-empty, S =
∑

i∈I fi ·K+Vγ , w ∈ KX

and Θ = { v(w′ − w) | w′ ∈ S }. For a contradiction, assume that there is no θ ∈ Θ such that Θ

is bounded above by θ + δ for some θ ∈ Θ. Then we can find a limit ordinal κ ≥ ω and a strictly

increasing sequence (θj)j∈κ in Θ that is cofinal in Θ such that θj + δ < θj+1 for all j ∈ κ. By

passing to a subsequence, we may assume that the cofinality of κ is equal to κ, so κ is a cardinal.

Note that θj < γ for all j ∈ κ. In particular, Θ =
{

v(w′ − w) | w′ ∈
∑

i∈I fi ·K
}

. Pick µj,i ∈ K

for j ∈ κ and i ∈ I such that θj = v((
∑

i∈I fi · µj,i) − w).

Let j1, j2 ∈ κ with j1 < j2. We have

v(
∑

i∈I

fi · (µj1,i − µj2,i)) = v((
∑

i∈I

fi · µj1,i − w) − (
∑

i∈I

fi · µj2,i − w))

= θj1 ,

because θj1 < θj2 . Set

ζj1,j2 := min
i∈I

φdeg fi(v(µj1,i − µj2,i)) .

Note that θj1 + δ0 < γ0, so by the inequality (lower) one obtains

ζj1,j2 = min
i∈I

φdeg fi(v(µj1,i − µj2,i))

≥ v(
∑

i∈I

fi · (µj1,i − µj2,i)) + δ0

= θj1 + δ0 .

Also θj1 < γ1, so by the inequality (upper) one obtains

θj1 = v(
∑

i∈I

fi · (µj1,i − µj2,i))

≥ (min
i∈I

φdeg fi(v(µj1,i − µj2,i))) + δ1

= ζj1,j2 + δ1 .

Combining the previous two inequalities, one gets

θj1 + δ0 ≤ ζj1,j2 ≤ θj1 − δ1 .

Now let j1, j2, j3 ∈ κ with j1 < j2 < j3. One has

ζj1,j2 ≤ θj1 − δ1 < θj2 − δ − δ1 ≤ ζj2,j3 − δ0 − δ − δ1 ≤ ζj2,j3 ,
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so ζj1,j2 < ζj2,j3 and ζj1,j2 = ζj1,j3 . Let i(j1, j2) ∈ I be such that

ζj1,j2 = φdeg fi(j1,j2)(v(µj1,i(j1,j2) − µj2,i(j1,j2))) .

Then

φdeg fi(j1,j2)(v(µj1,i(j1,j2) − µj2,i(j1,j2))) = φdeg fi(j1,j2)(v(µj1,i(j1,j2) − µj3,i(j1,j2))) .

Take imin ∈ I and a cofinal J ⊆ κ such that i(j, j + 1) = imin for all j ∈ J , hence

(*) min
i∈I

φdeg fi(v(µj1,i − µj2,i)) = φdeg fimin (v(µj1,imin − µj2,imin))

for all j1, j2 ∈ J . By passing to a subsequence, we may assume that (*) holds for all j1, j2 ∈ κ. Set

d = deg fimin and µj = µj,imin for j ∈ κ.

For j1, j2, j3 ∈ κ with j1 < j2 < j3, we have v(µj1 − µj2) < v(µj2 − µj3), because ζj1,j2 < ζj2,j3

and φ is a self-embedding of Γ. Thus (µj)j∈κ is a pseudo Cauchy sequence. (For the definition

and some facts about pseudo Cauchy sequences, see [Ka].) Since K is maximally valued, we have

a pseudo limit µ ∈ K for this sequence.

Let Ĩ = I \ { imin }, w̃ = w− fimin · µ and Θ̃ =
{

v(w′ − w̃) | w′ ∈
∑

i∈Ĩ fi ·K
}

. Clearly Θ̃ ⊆ Θ.

Claim. The set Θ̃ is cofinal in Θ.

Let j0 ∈ κ. It suffices to show that θj0 < θ̃ for some θ̃ ∈ Θ̃. Let l = j0 + 1. Then

v(w −
∑

i∈I

fi · µl,i) = θl

= v(
∑

i∈I

fi · (µl,i − µl+1,i)

≤ φd(v(µl − µl+1)) − δ0

≤ φd(v(µl − µ)) − δ0 ,

because v(µl − µ) = v(µl − µl+1), since µ is a pseudo limit of (µj)j∈κ. Thus

v((
∑

i∈Ĩ

fi · µl,i) − w̃) = v((
∑

i∈I

fi · µl,i) − w + fimin · (µ− µl))

≥ min

{

v((
∑

i∈I

fi · µl,i) − w), v(fimin · (µ− µl))

}

= min { θl, v(fimin · (µl − µ)) }

≥ min
{

θl, v(φ
d(µl − µ)) + δ1, γ1

}

by inequality (upper)

≥ min { θl, θl + δ0 + δ1 }

> min { θj0 + δ, θj0 + δ + δ0 + δ1 }

≥ θj0
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and since v((
∑

i∈Ĩ fi · µl,i) − w̃) ∈ Θ̃, the claim is proved.

By induction assumption, Ŝ :=
∑

i∈Ĩ fi ·K + Vγ has the δ-optimal approximation property, so

there exist θ ∈ Θ̂ :=
{

v(w′ − w̃) | w′ ∈ Ŝ
}

such that θ + δ is an upper bound for Θ̂. We have

Θ̃ ⊆ Θ̂ ⊆ Θ, so θ + δ is an upper bound for Θ by the claim, and we arrive at a contradiction.

7.14 Lemma. Let M1 and M2 be finitely generated submodules of N such that M1 ⊆M2.

1.

M1 ·K
∞
= M2 ·K =⇒ dim∞M1 = dim∞M2 .

2. Suppose that for every finitely generated submodule M of N , the set M ·K has the weak opti-

mal approximation property modulo large balls. (Hence by Proposition 7.5 every pp-definable

subset of KX has the weak optimal approximation property modulo large balls.) Then

dim∞M1 = dim∞M2 =⇒ M1 ·K
∞
= M2 ·K .

Proof. Because M1 ⊆M2, one has dim∞M1 ≤ dim∞M2 and M1 ·K ⊆M2 ·K.

To prove the first statement, assume that dim∞M1 < dim∞M2. We will show that M2 ·K ⊆

M1 ·K +B holds for no ball B in KX . Pick a strongly independent finite tuple (fi)i∈I of elements

of N such that { fi | i ∈ I } generates M1. Let d ∈ N be such that d ≥ deg fi for all i ∈ I

and d is an upper bound for the degrees of the elements of some generating set of M2. Because

dim∞M1 < dim∞M2 and M1 ⊆ M2, we know that (M1 ∩ N≤d) + N<d is properly contained in

(M2∩N≤d)+N<d by Proposition 4.8. Pick g ∈ (M2∩N≤d)\((M1∩N≤d)+N<d). Then by Remark

4.11, part 5, the tuple (fi)i∈I
a(g) is strongly independent. Given a ball B in KX , there exists by

Lemma 7.12 a ball B′ in KX such that

(
∑

i∈I

fi ·K +B) ∩ (g ·K +B) ⊆ B′ .

Because Γ is not zero, the set g ·K is unbounded and therefore not contained in
∑

i∈I fi ·K +B =

M1 ·K +B.

For the proof of the second statement, assume that dim∞M1 = dim∞M2. Pick d ∈ N such

that d is an upper bound for the degrees of the elements of some generating set of M1 and also an

upper bound for the degrees of the elements of some generating set of M2. Let Mh := M1 ∩N≤d.

Because dim∞M1 = dim∞M2, we have M2 ∩ N≤d ⊆ Mh + N<d. Let Ml = M2 ∩ N<d. Note

that M2 · K = Mh · K + Ml · K. By Lemma 7.11 and the implication 2 =⇒ 3 of Lemma 7.8,

M2 ·K
∞
⊆Mh ·K; thus M2 ·K

∞
⊆M1 ·K.

7.15 Assumption. For the rest of the section, the set M ·K ⊆ K has the weak optimal approxi-

mation property modulo large balls for every finitely generated submodule M of K[Φ].

Then for every finite set X and for every finitely generated submodule M of K[Φ]X , the set

M ·K has the weak optimal approximation property modulo large balls by Lemma 7.8, 1 =⇒ 2.
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7.16 Definition. Suppose S is a pp-definable subset of KX . By Proposition 7.5, there exists a

finitely generated submodule M of N = K[Φ]X such that S
∞
= M ·K. By Lemma 7.14, the value

dim∞M does not depend on the choice of M . Define dim∞ S as dim∞M .

7.17 Theorem. Suppose S, S1, S2 are pp-definable subsets of KX . Then

1. S1

∞
⊆ S2 =⇒ dim∞ S1 ≤ dim∞ S2,

2. (S1

∞
⊆ S2 and dim∞ S1 = dim∞ S2) =⇒ S1

∞
= S2,

3. dim∞ { 0 } = 0,

4. dim∞KX = |X|.

Proof. For the first two statements, assume S1

∞
⊆ S2 and pick for i = 1, 2 finitely generated

submodules Mi of N with Mi ·K
∞
= Si using Proposition 7.5. Let M ′

2 = M1 +M2. Then M ′
2 ·K

∞
=

M2 ·K, so replacing M2 by M ′
2 we may assume that M1 ⊆ M2. The first two statements are now

direct consequences of Lemma 7.14.

For the submodule M = { 0 } of N , we have dim∞M = 0 and M ·K = { 0 }, so dim∞ { 0 } = 0.

For the submodule M = N , we have dim∞M = |X| and M ·K = KX , so dim∞KX = |X|.

7.18 Remark. 1. The quantity dim∞ for pp-definable sets is not always invariant under definable

bijections, not even when the definable bijection on KX is induced by multiplying with an

elementary matrix in MATX(K[Φ]): Suppose that t ∈ K \ φ(K), X = { 1, 2 },

D =
(

tΦ 0
0 1

)

, E =
(

1 Φ
0 1

)

and M is the submodule of N generated by the columns of D and M ′ is the submodule of N

generated by the columns of ED. Then

dim∞M = 1 + [K : φ(K)]−1 and dim∞M ′ = 2[K : φ(K)]−1

by proposition 4.12, part 3, since

ED =
(

tΦ Φ
0 1

)

and the columns of both D and ED are strongly independent. So with S := M ·K and S′ :=

M ′ ·K, we have dim∞ S 6= dim∞ S′, but
(

λ1
λ2

)

7→ E ·
(

λ1
λ2

)

is a bijection KX −→ KX that

sends S onto S′.

2. For pp-definable sets S1, S2 ⊆ KX , one does not have in general that dim∞ S1 + S2 ≤

dim∞ S1 + dim∞ S2, even if dim∞ S1 ∩ S2 = 0: Assume that t ∈ K \ φ(K) and consider

S1 = Φ2 ·K and S2 = (Φ2 − tΦ) ·K. Then S1 + S2 = Φ2 ·K + tΦ ·K, and hence

dim∞ S1 + S2 = [K : φ(K)]−2 + [K : φ(K)]−1 ,
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because Φ2 and tΦ are strongly independent. On the other hand, dim∞ Si = [K : φ(K)]−2

for i = 1, 2. Also S1 ∩ S2 is bounded by Example 7.6, so dim∞ S1 ∩ S2 = 0.

7.19 Proposition. Suppose there exists a pp-definable set C ⊆ K that is bounded and contains a

ball. Let S be a pp-definable set in KX . Then there exists a pp-definable set Sc in KX such that

S + Sc = KX and S ∩ Sc is bounded.

Proof. Take a finitely generated submodule M of N such that S
∞
= M · K. Let (fj)j∈J be a

strongly independent finite tuple of elements of N such that { fj | j ∈ J } generates M . Let V =
∑

j∈J G(fj) ⊆ KX . Let d ∈ N such that d ≥ deg fj for all j ∈ J . Then V is a φd(K)-subspace of

KX . Pick a set J ′ disjoint from J and vj ∈ KX for j ∈ J ′ such that (vj)j∈J ′ is a φd(K)-basis of a

φd(K)-subspace of KX that is complementary to V in KX .

For j ∈ J ′, let fj := vjΦ
d. Then the tuple (fj)j∈J∪J ′ is strongly independent and

∑

j∈J∪J ′ G(fj) =

KX . Let M ′ be the submodule of N generated by { fj | j ∈ J ′ }. We have dim∞M ·K +M ′ ·K =

dim∞M +M ′ = |X|, thus M ·K +M ′ ·K
∞
= KX . Since C contains a ball, there exists λ ∈ K such

that M ·K +M ′ ·K + (λC)X = KX and M ·K + (λC)X = S + (λC)X . Let Sc = M ′ ·K + (λC)X ;

then S + Sc = KX . The set Sc is clearly pp-definable. Because (λC)X is bounded and (fj)j∈J∪J ′

strongly independent, Lemma 7.12 yields that S ∩ Sc is bounded.

7.2 The small case (v(x) → +∞)

In this section, we look at the structure of pp-definable sets near 0, i.e. after intersecting with an

appropriately small ball. Let B be a basis of K over φ(K), and let X and Y denote finite index

sets. We assume in this section that for each P ∈ P either P = { 0 } or P contains a ball. In this

section, all K[Φ]J for finite J are considered as left K[Φ]-modules, as in Section 4.2.

7.20 Definition.

1. For subsets S1, S2 ⊆ KX , say that S1 is contained in S2 inside small balls, if S1∩U ⊆ S2∩U

for some ball U in KX , and denote this by S1

0
⊆ S2. Similarly, call S1 and S2 equal inside

small balls, if S1 ∩ U = S2 ∩ U for some ball U in KX , and denote this by S1
0
= S2.

2. We call the valued field K linear φ-henselian, if for every f ∈ K[Φ] \K[Φ]Φ and every ball

U in K, there exists a ball V in K such that f · U ⊇ V .

7.21 Remark. IfK is of characteristic p and henselian and φ is the Frobenius self-embedding λ 7→ λp,

then K is linear φ-henselian.

We equip KX with the product topology of the valuation topology on K. The translates of

balls in KX form a base of this topology on KX .

7.22 Lemma. Suppose K is maximally valued. Then K is linear φ-henselian.
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Proof. Let f =
∑n

i=0 µiΦ
i ∈ K[Φ]\K[Φ]Φ. We want to show that for every ball U in K, there exists

a ball V in K such that f ·U ⊇ V . Because the map K −→ K , λ 7→ µ−1
0 λ is a homeomorphism of

K, we may assume that µ0 = 1. Let h :K −→ K be the map given by h(λ) = (
∑n

i=1 µiΦ
i) · λ.

Claim. Given δ ∈ Γ with δ ≥ 0, there exists γ0 ∈ Γ such that h(Vγ) ⊆ Vγ+δ for all γ ≥ γ0.

If
∑n

i=1 µiΦ
i = 0, the claim is clear. Suppose

∑n
i=1 µiΦ

i 6= 0. Then by Proposition 6.20, there

exist γ+, δ0 ∈ Γ and d ∈ N with d > 0 such that v(h(λ)) = φd(v(λ)) + δ0 for all λ ∈ K with

v(λ) > γ+. Let δ ∈ Γ. We can apply Lemma 6.14 to obtain γ′+ ∈ Γ such that γ + δ ≤ φd(γ) + δ0

for all γ ≥ γ′+. Pick γ0 > γ+, γ
′
+ using the assumption that Γ is non-trivial. Then we have

h(Vγ) ⊆ Vγ+δ for all γ ≥ γ0, so the claim is proved.

Now let U be a ball in K. Pick any δ > 0 in Γ and apply the claim to obtain γ0 ∈ Γ such that

Vγ0 ⊆ U and h(Vγ) ⊆ Vγ+δ for all γ ≥ γ0. For any a ∈ Vγ0 , the map ha :K −→ K,λ 7→ a − h(λ)

restricts to a map from Vγ0 into Vγ0 , and this restriction is δ-contractive. Therefore ha has a fixed

point b in Vγ0 by Lemma 6.31. So b = a−h(b), and therefore f ·b = a. This shows that f ·Vγ0 ⊇ Vγ0 ,

so we can choose V = Vγ0 .

7.23 Lemma.

1. Suppose that M ∈ K[Φ]Y ×X . Then the map KX −→ KY , w 7→M · w is continuous.

2. The bijection KB −→ K given by (λb)b∈B 7→
∑

b∈B φ(λb)b is a homeomorphism.

Proof. Part 1 follows from Lemma 6.20, part l. Part 2 follows from Lemma 6.25.

7.24 Lemma. Suppose that M ∈ K[Φ]Y ×X is column regular. Then there exists a ball U in KX

such that the map KX −→ KY , w 7→M · w restricted to U is an injection.

Proof. By Lemma 3.9, we may assume that M is in upper triangular form with respect to ≤ and

ι. We may assume that the upper triangular form has no zero part. Because M is column regular,

ι is a bijection, and ldegM(y, ι(y)) = 0 for y ∈ Y .

Use Lemma 6.20, part l to find a ball W in K such that

M(y, ι(y)) · λ = 0 =⇒ λ = 0

for y ∈ Y and λ ∈W . Then the map w 7→M · w is an injection on U = WX .

7.25 Lemma. Suppose that M ∈ K[Φ]Y ×X . If there exists a ball U in KX such that M · U =

{ 0 } ⊆ KY , then M = 0.

Proof. It suffices to show this in the case where |X| = 1 and |Y | = 1. Apply Lemma 6.20, part

l.

7.26 Lemma. Assume that K is linear φ-henselian. Then the following generalization of the linear

φ-henselian property holds for matrices: Let M ∈ K[Φ]Y ×X be row regular. Then for every ball U

in KX , there exist a ball V in KY such that M · U ⊇ V .
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Proof. It suffices to prove the conclusion of the lemma with M replaced by EM where E ∈

GLY (K[Φ]). So by Lemma 3.9, we can assume M is in upper triangular form (with empty zero

part) with respect to the injection ι :X −→ Y and the total order ≤ on X.

Let U be a ball in KX . We apply the henselian property to the diagonal elements inductively

using continuity in the other elements:

Claim. Let U0 be a ball in K such that UX
0 ⊆ U . There exist balls Vy,Wy in K for y ∈ Y such

that for all y ∈ Y , we have

1. Vy ⊆ U0,

2. M(y′, ι(y)) · Vy ⊆Wy′ for all y′ ∈ Y with y′ < y,

3. M(y, ι(y)) · Vy ⊇Wy.

Denote the conjunction of the 3 Properties by P (y). Let y ∈ Y , and suppose V ′
y , W ′

y are balls in

K for y′ < y such that for each y′ < y we have P (y′). Since the map K −→ K , λ 7→M(y′, ι(y)) · λ

is continuous for y′ ∈ Y , we can pick Vy that satisfies the first two properties. Since M is row

regular, we have M(y, ι(y)) 6∈ K[Φ]Φ, so the existence of Wy satisfying the third property follows,

because K is linear φ-henselian. This finishes the proof of the claim.

It follows from the claim that

M · U ⊇M�Y ×ι(Y ) ·
∏

x∈ι(Y )

Vι−1(x) ⊇
∏

y∈Y

Wy .

7.27 Proposition. Assume that K is linear φ-henselian. Let A ⊆ KX be a pp-definable subgroup.

Then there exist c ∈ N and a separable submodule N of K[Φ]J with J := X × Bc such that

T c(A)
0
= Ann(N) where T c is the canonical bijection KX −→ KX×Bc

= KJ determined by the

basis B, as defined in Remark 3.11.

This means that inside some ball in KJ , the image of A under T c is the same as the solution set

of a finite system of linear equations. So to study the small asymptotic behaviour of pp-definable

sets, we can reduce to the simpler situation of solution sets of linear equations.

Proof. Since A is pp-definable, we can find finite index sets H and Y with Y disjoint from X,

S ∈ K[Φ]H×(X∪Y ) and P ∈ PH such that A is defined by the formula ∃Y (S · (X ∪ Y ) ∈ P ). Let

I := { i ∈ H | Pi = { 0 } } and

H∗ := { i ∈ H | Pi contains a ball in K } .

Then I ∩H∗ = ∅ and I ∪H∗ = H. Pick a ball U in K such that U ⊆ Pi for all i ∈ H∗.
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Apply Lemma 3.15 to the matrix M := S�I×(X∪Y ) to obtain c ∈ N, disjoint finite index sets

Î1, Î2, and M̂ ∈ K[Φ]Î×Ĵ , where Ĵ = J∪̇Y and Î = Î1 ∪ Î2, such that with

M̂11 := M̂�Î1×J ∈ K[Φ]Î1×J ,

M̂12 := M̂�Î1×Y ∈ K[Φ]Î1×Y ,

M̂21 := M̂�Î2×J ∈ K[Φ]Î2×J and

M̂22 := M̂�Î2×Y ∈ K[Φ]Î2×Y ,

we have the following properties:

1. M̂12 is row regular.

2. M̂22 = 0.

3. The non-zero rows of M̂21 form a row regular matrix.

4. For all u ∈ KX and w ∈ KY , we have

M · (uaw) = 0 ⇐⇒ M̂ · (T c(u)aw) = 0 .

Note that M̂ has the form
(

M̂11M̂12

M̂21M̂22

)

.

Let N be the submodule of K[Φ]J generated by the rows of M̂21. This submodule is separable

because of the condition 3 on M̂ above. In the following, we will construct a ball W in KJ such

that T c(A) ∩W = Ann(N) ∩W .

First pick a ball UX in KX and a ball UY in KY such that S ·(UX×UY ) ⊆ UH . By Lemma 7.26,

there exists a ball V in K Î1 with V ⊆ M̂12 ·UY , since M̂12 is row regular and K linear φ-henselian.

Choose W as a ball in KJ such that M̂11 ·W ⊆ V and W ⊆ T c(UX).

To show T c(A) ∩W ⊆ Ann(N) ∩W , let u ∈ A such that û := T c(u) ∈ W . Then there exists

w ∈ UY such that S·(uaw) ∈
∏

i∈H Pi. In particular,M ·(uaw) ∈
∏

i∈I Pi = { 0 }I , soM ·(uaw) = 0.

By property 4 on M̂ , it follows that M̂ · (ûaw) = 0. In particular, 0 = M̂21 · û+ M̂22 ·w = M̂21 · û

and thus û ∈ Ann(N).

To show the other inclusion, let û ∈ Ann(N) ∩W . So by definition of N , we have M̂21 · û = 0.

Since M̂11 ·W ⊆ V and thus −M̂11 · û ∈ V , we can find w ∈ UY with M̂12 · w = −M̂11 · û. We get

M̂ · (ûaw) = 0 and therefore by condition 4 on M̂ above, M · (uaw) = 0 ∈
∏

i∈I Pi where u ∈ KX

satisfies (T c)(u) = û. Since W ⊆ T c(UX), we know that S ·(uaw) ∈ UH , so with UH∗
⊆

∏

h∈H∗ Ph,

we obtain K |= S · (uaw) ∈ P .

7.28 Corollary. Assume that K is linear φ-henselian. Then each pp-definable subgroup of KX is

closed; if Γ = Z, then each pp-definable subgroup of KX has the optimal approximation property.

This corollary is a generalization of theorem 1 in [VDK].
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Proof. Let A be a pp-definable subgroup of KX , and take c and N as in Proposition 7.27. Since

T c :KX −→ KJ is a homeomorphism and an additive group homomorphism, it suffices to show

that T c(A) is closed in some ball in KJ , which holds, because T c(A)
0
= Ann(N) and Ann(N) is

closed.

7.29 Remark. Let M ⊆ K[Φ]X be a submodule. Then Ann(col(M))
0
= T (Ann(M)) where T is the

canonical bijection KX −→ KX = KX×B determined by the basis B and col is the homomorphism

in Remark 4.23.

In particular, the conclusion of the previous proposition can be strengthened in the following

way: There exists c′ ∈ N such that for every c ∈ N with c ≥ c′ there exists a submodule N of

K[Φ]J with J := X ×Bc such that T c(A)
0
= Ann(N).

7.30 Lemma. Let J be a finite set and M1, M2 be submodules of K[Φ]J such that M1 ⊆M2.

1.

dim0M1 = dim0M2 =⇒ Ann(M1)
0
= Ann(M2) .

2. If K is linear φ-henselian, then

Ann(M1)
0
= Ann(M2) =⇒ dim0M1 = dim0M2 .

Proof. If M is a submodule of K[Φ]J and M ′ is the separable submodule generated by M , then by

Remark 5.4, part 2, Ann(M) = Ann(M ′) and by definition, dim0M = dim0M
′. So without loss of

generality, we may assume that M1 and M2 are separable.

For the proof of the first statement, assume that dim0M1 = dim0M2. By Lemma 4.28, we

have M2 ⊆ (M1)m. Let C be a finite generating set of M2. For each f ∈ C, pick gf ∈ M1 and

hf ∈ K[Φ] \ m with f = h−1
f gf , so hff = gf . Use Lemma 7.24 to pick a ball U in K such that for

all λ ∈ U and f ∈ C, we have

hf · λ = 0 =⇒ λ = 0 .

Then pick a ball V in KJ such that f · V ⊆ U for f ∈ C.

We will show that Ann(M1) ∩ V ⊆ Ann(M2) ∩ V ; the other inclusion is obvious. Let w ∈

Ann(M1) ∩ V and f ∈ C. Then gf · w = 0, so 0 = (hff) · w = hf · (f · w). Since f · w ∈ U , we get

f · w = 0. This shows that w ∈ Ann(C) = Ann(M2).

We now give the proof of the second statement. Assume that K is linear φ-henselian and

Ann(M1) ∩ U = Ann(M2) ∩ U where U is a ball in KJ . By Lemma 4.28, it suffices to show

M2 ⊆ (M1)m. Since M1 is separable, there exist J0 ⊆ J and a row regular matrix M ∈ K[Φ]J0×J

that is in upper triangular form with respect to J0 and ι = idJ0 such that the rows of M generate

M1.

Claim. There exists a ball W in KJ\J0 such that W ⊆ πJ\J0
(Ann(M1) ∩ U) where πJ\J0

:KJ −→

KJ\J0 denotes the canonical projection.
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To find W , first pick balls U0 in KJ0 and U1 in KJ\J0 such that U0 × U1 ⊆ U . Using that

K is linear φ-henselian, by Lemma 7.26, we take a ball V in KJ0 such that V ⊆ (M�J0×J0
) · U0.

Then choose a ball W ⊆ U1 in KJ\J0 such that (M�J0×(J\J0)) ·W ⊆ V . Given w ∈W , we can find

u0 ∈ U0 such that (M�J0×J0
) · u0 = −(M�J0×(J\J0)) · w, so M · (u0

aw) = 0. The claim is proved.

Suppose that f ∈M2. Using that the diagonal elements of M are invertible in K[Φ]m, one can

find an element g ∈ (M1)m such that for f ′ = f − g we have f ′j = 0 for j ∈ J0. Write f ′ = h−1f ′′

with h ∈ K[Φ] \ m and f ′′ ∈ M2. It suffices to show f ′′j = 0 for j ∈ J \ J0. By the claim and

Ann(M1) ∩ U = Ann(M2) ∩ U , we see that f ′′�J\J0
·W = { 0 } and thus f ′′�J\J0

= 0 by Lemma

7.25.

7.31 Assumption. For the rest of the section, K is linear φ-henselian.

7.32 Lemma/Definition. Let A ⊆ KX be a pp-definable subgroup.

1. There exist c ∈ N and a separable submodule M of K[Φ]J with J := X × Bc such that

T c
B(A)

0
= Ann(M) where T c

B is the canonical bijection KX −→ KX×Bc
= KJ determined by

the basis B.

2. Let c and M be as in part 1. Let B′ be a basis of K over φ(K) and c′ ∈ N. Let M ′ be a

separable submodule of K[Φ]J
′
with J ′ := X ×B′c

′

such that T c′

B′(A)
0
= Ann(M ′) where T c′

B′

is the canonical bijection KX −→ KX×B′c
′

= KJ ′
determined by the basis B′. Then

|X| −
dim0M

|B|c
= |X| −

dim0M
′

|B′|c′
.

Define dim0A as this common quantity.

Proof. Part 1 is Proposition 7.27. For part 2, assume without loss of generality that c ≤ c′.

Let col(M) denote the column enlargement of M with respect to B, which is defined in Remark

4.23. By using Lemma 4.24 and Ann(col(M))
0
= TB(Ann(M)), we may assume c = c′. There is

some invertible matrix E ∈ K[Φ]B
c×B′c

such that for all a ∈ KBc
, we have T c

B′(a) = E · T c
B(a).

In the case where c = 1, the matrix E can be chosen as the unique E ∈ φ(K)B×B′
such that

b =
∑

b′∈B′ E(b, b′)b′ for all b ∈ B. Let Ê ∈ K[Φ](X×Bc)×(X×B′c) be given by

Ê((x, b), (x′, b′)) =







E(b, b′) for x = x′

0 for x 6= x′

for x, x′ ∈ X, b ∈ B and b′ ∈ B′. Then Ê is invertible. We have Ê · Ann(M)
0
= Ann(M ′) and

Ê · Ann(M) = Ann(MÊ−1), so dim0MÊ−1 = dim0M
′ by Lemma 7.30. Right multiplication by

Ê−1 induces a module isomorphism from K[Φ]X×Bc
onto K[Φ]X×B′c

. So by Remark 4.20, part 3,

we have dim0MÊ−1 = dim0M .

7.33 Theorem. Suppose S, S1, S2 are pp-definable subsets of KX . Then:
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1. S1

0
⊆ S2 =⇒ dim0 S1 ≤ dim0 S2.

2. (S1

0
⊆ S2 and dim0 S1 = dim0 S2) =⇒ S1

0
= S2.

3. dim0 { 0 } = 0.

4. dim0K
X = |X|.

Proof. For the first two statements, assume S1

0
⊆ S2. By Proposition 7.27 and Remark 7.29, one

can find c ∈ N and submodules N1, N2 of K[Φ]J with J := X ×Bc such that T c(Si)
0
= Ann(Ni) for

i = 1, 2. Let M1 = N1 +N2 and M2 = N2. Then T c(S1)
0
= Ann(M1) because S1

0
⊆ S2. The first

two statements follow now from Lemma 7.30.

For the submodule M = K[Φ]X , we have dim0M = |X| and Ann(M) = { 0 }, so dim0 { 0 } =

|X| − |X| = 0. For the submodule M = { 0 } of K[Φ]X , we have dim0M = 0 and Ann(M) = KX ,

so dim0K
X = |X| − 0 = |X|.

7.34 Definition. Suppose h :KX −→ KY is an additive group homomorphism. We say that h has

the φ-linear Greenberg property (compare [G], p.563, theorem 1), if for every ball V in KX ,

there exists a ball U in KY such that for all a ∈ KX , one has

h(a) ∈ U =⇒ ∃a′ ∈ KX (a− a′ ∈ V ∧ h(a′) = 0) .

7.35 Proposition (φ-linear Greenberg theorem). Suppose M ∈ K[Φ]Y ×X . Then the map

h :KX −→ KY , a 7→M · a has the φ-linear Greenberg property.

Proof. Suppose Y ′ is a finite set and h′ :KY −→ KY ′
is an additive group isomorphism that is also

a homeomorphism. Then it suffices to show that h′ ◦ h has the φ-linear Greenberg property. So by

Lemma 3.14, we may assume that M is in upper triangular form with row regular non-zero part.

Then it suffices to show the φ-linear Greenberg property for the map given by the non-zero part of

M , so we may assume that M is row regular. Let V be a ball in KX . By Lemma 7.26, there exists

a ball U in KY such that M ·V ⊇ U . Let a ∈ KX be such that M · a ∈ U . Then there exists b ∈ V

such that M · b = M · a, so a′ = a− b satisfies a− a′ ∈ V and M · a′ = 0.
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Chapter 8

Reduction to Factor Modules and
Residue Field

In this chapter, let (K, v,Γ) be a valued field (with v(K×) = Γ 6= { 0 }) and φ be a self-embedding

of the valued field K that has a modulus of growth. We assume

1. that K has a weakly valuation independent basis over φ(K) and [K : φ(K)] is finite,

2. that for every finite set X and finitely generated submodule M of K[Φ]X , the set M ·K has

the weak optimal approximation property modulo large balls, and

3. that K is linear φ-henselian.

In addition, we fix a set P of unary predicate symbols such that V∞ ∈ P. Every P ∈ P is

interpreted as an additive subgroup of K. This interpretation is also denoted by P and V∞ is

interpreted as the zero subgroup. We assume that for every P ∈ P, the subset P of K is bounded

and either contains a ball in K or is equal to { 0 }.

Let V = V0 = { λ ∈ K | v(λ) ≥ 0 } be the valuation ring of K, V>0 = { λ ∈ K | v(λ) > 0 } its

maximal ideal, and k = V/V>0 the residue field of K. Note that φ(V ) ⊆ V , so φ induces a self-

embedding of the ring V . The K[Φ]-module K is also a module over the subring V [Φ] of K[Φ].

Let U ⊆ V . Then U is a V [Φ]-submodule of V if and only if U is an ideal of V that is closed under

φ. If γ ∈ Γ satisfies γ ≥ 0 and φ(γ) ≥ γ, then Vγ is a V [Φ]-submodule of K. In particular, V and

Vγ for γ ≥ g(0) where g is a modulus of growth for φ, are V [Φ]-submodules of K. So every small

enough ball in K is a V [Φ]-submodule of K.

To transfer the structure given by the predicates in P to V , we have to allow translates of

those predicates. Consider P̃ = K× ×P as a set of unary predicate symbols. The symbol (µ, P ) is

denoted by µP . We regard V as a σV [Φ],P̃ -structure by interpreting µP as (µP (K)) ∩ V . If U is a

V [Φ]-submodule of V , then let

P̃U :=
{

Q ∈ P̃
∣

∣

∣
Q(V ) = { 0 } or U ⊆ Q(V )

}

.

Note that for V [Φ]-submodules U1 ⊆ U0 of V we have P̃U1 ⊇ P̃U0 and that every finite subset of

P̃ is contained in P̃U for some V [Φ]-submodule U of V . Let U be a V [Φ]-submodule of V . We
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regard V/U as a σV [Φ],P̃U
-structure by interpreting Q ∈ P̃U as Q(V )/U , if U ⊆ Q(V ), and as U/U ,

if Q(V ) = { 0 }. Alternatively, we can regard V/U as (V/U)[Φ] ' V [Φ]/U [Φ]-module (see Remark

2.4) with the same predicates as above. The distinction is not important, since f ∈ V [Φ] acts on

V/U the same as f/U [Φ].

Since φ(V>0) ⊆ V>0, the self-embedding φ induces a self-embedding of the residue field k, which

is also denoted by φ. So k becomes a k[Φ]-module with respect to this self-embedding.

We will show in the next section, how to reduce certain questions about the K[Φ]-module

structure of K to questions about the V [Φ]-module structure of V/U where U is a V [Φ]-submodule

of V . In Section 8.2, this will be specialized to the situation where Γ = Z and the residue field is

embedded in K and mapped into itself by φ. In this situation, one can reduce the questions to the

k[Φ]-module structure of k.

8.1 The general case

We start with two simple lemmas about (additive) abelian groups. The first one will be used to

compute indices of pp-definable sets and the second one in connection with model-completeness.

8.1 Lemma. Let G be an abelian group and E,F,B0, B1 be subgroups of G such that

1. E ⊇ F ,

2. B0 ⊇ B1,

3. E +B0 = F +B0,

4. E ∩B1 = F ∩B1.

Let E′ = (E ∩B0) +B1 and F ′ = (F ∩B0) +B1. Then B1 ⊆ F ′ ⊆ A′ ⊆ B0 and |E/F | = |E′/F ′|.

Proof. The relation f = { (C,C ′) ∈ (E/F ) × (E′/F ′) | C ∩ C ′ 6= ∅ } is an isomorphism of E/F onto

E′/F ′.

In the next lemma, the subscripts c, m and s stand for “complementary”, “middle” and “small”,

respectively.

8.2 Lemma. Let G be an abelian group and A,Ac, Am, As, B0, B1 be subgroups of G such that

1. A+Ac = G,

2. A ∩Ac ⊆ B0,

3. A ∩B1 = As ∩B1,

4. A ∩B0 ⊆ Am ⊆ A+B1.
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Then for all x ∈ G, we have

(*) x ∈ A ⇐⇒ ∀xc ∈ G ((x− xc ∈ A ∧ xc ∈ Ac) →

(xc ∈ Am ∧ ∀xs ∈ G ((xc − xs ∈ A ∧ xs ∈ B1) → xs ∈ As))) .

Proof. =⇒ : Let xc ∈ Ac such that x− xc ∈ A. Then xc ∈ A, so xc ∈ A ∩Ac ⊆ B0, and therefore

xc ∈ A ∩ B0 ⊆ Am. Let xs ∈ B1 such that xc − xs ∈ A. Then xs ∈ A, because xc ∈ A, and so

xs ∈ A ∩B1 ⊆ As.

⇐=: Let x ∈ G such that the right hand side of (*) holds. Since G = A+Ac, there are x1 ∈ A

and xc ∈ Ac such that x = x1 + xc. So x− xc = x1 ∈ A. It follows that xc ∈ Am and

(+) ∀xs ∈ G ((xc − xs ∈ A ∧ xs ∈ B1) → xs ∈ As) .

Since Am ⊆ A+B1, there are x2 ∈ A and xs ∈ B1 with xc = x2 + xs, so xc − xs ∈ A. By (+), we

can conclude xs ∈ As, so xs ∈ As ∩B1 ⊆ A. Thus we get xc ∈ A and then x ∈ A.

8.3 Corollary. In the situation of the previous lemma, suppose that (G,+,−, 0) is the reduct of

some structure Ĝ such that A,Ac, B1 are definable in Ĝ by existential formulas and Am, As by

universal formulas. Then A is definable in Ĝ by a universal formula.

Next, we give a slightly technical statement about preservation of universal definability under

interpretations. For the definition of an interpretation and basic facts, see [Ho], sections 5.3 and

5.4 .

8.4 Lemma. Suppose Li is a language and Mi an Li-structure for i = 0, 1. Let ∆ be a d-

dimensional interpretation of M0 in M1 consisting of

1. an L1-formula ∂∆(y1, . . . , yd),

2. a map that assigns to each unnested atomic formula τ(x1, . . . , xn) of L0 an L1-formula

τ∆(y11, . . , y1d, . . . , yn1, . . , ynd), and

3. a surjective map f∆ :∂∆(M1) −→M0,

such that for each τ(x1, . . . , xn) as in part 2 and all (a1, . . . , an) ∈ ∂∆(M1)
n, one has

M0 |= τ(f∆(a1), . . . , f∆(an)) ⇐⇒ M1 |= τ∆(a11, . . , a1d, . . . , an1, . . , and) ,

where ai = (ai1, . . . , aid) for i = 1, . . . , n.

We assume the following:

(i) For every τ(x1, . . . , xn) as in part 2, the formula τ∆(y11, . . , y1d, . . . , yn1, . . , ynd) is equivalent

in M1 to an existential and to a universal formula.
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(ii) ∂∆(y1, . . . , yd) is equivalent in M1 to an existential formula.

(iii) ∂∆(y1, . . . , yd) is equivalent in M1 to a universal formula.

Then for every subset A0 of Mn
0 definable by a universal formula in M0, the set

A1 := { (a11, . . , a1d, . . . , an1, . . , and) ∈ ∂∆(M1)
n | (f∆((a11, . . , a1d)), . . . , f∆((an1, . . , and))) ∈ A0 }

is definable by a universal formula in M1.

Proof. Let ψ(x1, . . . , xn) be a universal formula of L0 defining A0 ⊆ Mn
0 in M0. By the proof

of [Ho], theorem 5.3.2, using assumptions (i) and (ii) above, we can find a universal L1-formula

ψ′(y11, . . , y1d, . . . , yn1, . . , ynd) such that for all (a1, . . . , an) ∈ ∂∆(M1)
n, with ai = (ai1, . . , aid) for

i = 1, . . . , n, we have

M0 |= ψ(f∆(a1), . . . , f∆(an)) ⇐⇒ M1 |= ψ′(a11, . . , a1d, . . . , an1, . . , and) .

Thus the set A1 is defined in M1 by the L1-formula

ψ′(y11, . . , y1d, . . . , yn1, . . , ynd) ∧
n
∧

i=1

∂∆(yi1, . . , yid) ,

which by assumption (iii) is equivalent to a universal formula in M1.

8.5 Remark. Let U be a V [Φ]-submodule of the valuation ring V . Suppose V ⊆ K is definable by

a formula τV (x) in K. Let µ ∈ K be such that µU = V . We exhibit a 1-dimensional interpretation

∆ of the σV [Φ],P̃U
-structure V/U in K: Define f∆ :V −→ V/U , w 7→ w/U and for all distinct

variables x, y, z, set

∂∆(x) := τV (x) ,

(x = y)∆ := τV (µ · (x− y)) ,

(x+ y = z)∆ := τV (µ · (x+ y − z)) ,

(g · x = y)∆ := τV (µ · (g · x− y)) for g ∈ V [Φ],

Q(x)∆ := Q(x) for Q ∈ P̃U with U ⊆ Q(V ),

Q(x)∆ := τV (µ · x) for Q ∈ P̃U with Q(V ) = { 0 }.

If V is definable in K by an existential and by a universal formula, then the interpretation ∆

satisfies the hypothesis of Lemma 8.4.

8.6 Definition. Let λ ∈ K×. Let I be a finite (index) set and P = (Pi)i∈I ∈ PI .

Let Z be a finite set of variables and M ∈ K[Φ]I×Z . If M is not the zero matrix and µ ∈ K×

is such that −v(µ) is equal to the minimum of the valuations of all coefficients of the polynomials
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M(i, z)λ−1 ∈ K[Φ] where i ∈ I, z ∈ Z, then setting M̃ := µMλ−1 we have M̃ ∈ V [Φ]I×Z and

we call M̃ a λ-translate of M with respect to µ. If M is the zero matrix, the zero matrix in

V [Φ]I×Z is called a λ-translate of M with respect 1.

For any λ-translate M̃ of M with respect to µ ∈ K×, the σV [Φ],P̃ -formula M̃ · Z ∈ P̃ with

P̃ ∈ P̃I defined by P̃i = µPi for i ∈ I is called a λ-translate of the σK[Φ],P-formula M · Z ∈ P .

Let X and Y be finite disjoint sets of variables, Z := X ∪ Y and M ∈ K[Φ]I×Z . Let τ(Z) be

the formula M ·Z ∈ P . For any λ-translate τ̃(Z) of τ(Z), the σV [Φ],P̃ -formula ∃Y τ̃(X,Y ) is called

a λ-translate of ∃Y τ(X,Y ).

8.7 Remark. Let λ ∈ K×. Let I be finite (index) set and P ∈ PI . Let Z be a finite set of variables

and M ∈ K[Φ]I×Z . Let τ(Z) be the formula M · Z ∈ P . The formula τ(Z) has a λ-translate. If

Z = X∪̇Y , then the formula ∃Y (M · Z ∈ P ) has a λ-translate. So every special pp-formula has a

λ-translate.

If τ̃(Z) is any λ-translate of τ(Z), then for all w ∈ KZ such that λw ∈ V Z , we have

K |= τ(w) ⇐⇒ V |= τ̃(λw) .

For special pp-formulas in general, we cannot expect to have such a nice relation of the solution

sets of τ and a λ-translate τ̃ of it, but a weakened version holds:

8.8 Lemma. Let I be a finite (index) set and P = (Pi)i∈I ∈ PI . Let X, Y be disjoint finite sets

of variables and M ∈ K[Φ]I×(X∪Y ).

1. Let B be a ball in KX . Then there exists γ ∈ Γ such that for all λ ∈ K× with v(λ) ≥ γ and

all λ-translates τ̃(X) of τ(X) = ∃Y (M · (X ∪ Y ) ∈ P ), we have

(

w ∈ B and K |= τ(w)
)

=⇒
(

λw ∈ V X and V |= τ̃(λw)
)

.

2. Let U be a ball in KX and λ ∈ K×. Then there exists a ball U ′ ⊆ V such that U ′ is a V [Φ]-

submodule of V , every λ-translate τ̃(X) of τ(X) = ∃Y (M · (X ∪ Y ) ∈ P ) is a P̃U ′-formula

and

w ∈ KX and λw ∈ V X and V/U ′ |= τ̃(λw)

=⇒ there exists w′ ∈ KX such that K |= τ(w′) and w − w′ ∈ U .

Proof. For the first part, we use Lemma 7.7 to find a ball B′ in KY such that for all w ∈ B the

following holds: If there exists u ∈ KY such that K |= M · (wau) ∈ P , then there exists u′ ∈ B′

such that K |= M · (wau′) ∈ P .

Pick λ0 ∈ K× with λ0B ⊆ V X and λ0B
′ ⊆ V Y , and set γ = v(λ0). The statement now follows

from the previous remark, since for all λ ∈ K with v(λ) ≥ γ we have λB ⊆ V X and λB′ ⊆ V Y .
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For the second part, let U be a ball in KX and λ ∈ K×. Let µ ∈ K× be such that M̃

is a λ-translate of M with respect to µ. Note that all such µ have the same valuation. Let

τ(X) = ∃Y (M · (X ∪Y ) ∈ P ) and τ̃(X) = ∃Y (M̃ · (X ∪Y ) ∈ P̃ ) with P̃ ∈ P̃I defined by P̃i = µPi

for i ∈ I.

Pick a ball U0 such that for all i ∈ I, we have Pi ∈ P̃U0 . Let I0 :=
{

i ∈ I | P̃i(V ) = { 0 }
}

and I1 := I \ I0. Pick a ball U1 in KX∪Y such that U1 ⊆ U × KY and M1 · U1 ⊆ U I1
0 where

M1 = M�I1×(X∪Y ). Applying Proposition 7.35 to the matrix M0 = M�I0×(X∪Y ), we obtain a ball

U2 in KI0 such that for all a ∈ KX∪Y one has

M0 · a ∈ U2 =⇒ ∃a′ ∈ KX∪Y (a− a′ ∈ U1 ∧M0 · a
′ = 0) .

Now choose a ball U ′ in K that is a V [Φ]-submodule of V such that U ′′ := µ−1U ′ satisfies U ′′ ⊆ U0

and U ′′I0 ⊆ U2, and note that the choice of U ′ can be made independent of the choice of µ. Also

note that τ̃(X) is a P̃U ′-formula.

Let w ∈ KX such that λw ∈ V X and V/U ′ |= τ̃(λw). Then there exist wY ∈ KY such that

λwY ∈ V Y and M̃ · (λa) ∈
∏

i∈I((µPi ∩ V ) + U ′) for a = wawY , so M · a ∈
∏

i∈I(Pi + U ′′).

For i ∈ I0, we have Pi + U ′′ = U ′′, so M0 · a ∈ U ′′I0 ⊆ U2. Therefore we can pick a′ ∈ KX∪Y

such that a− a′ ∈ U1 and M0 · a
′ = 0. Since a− a′ ∈ U1, we obtain M1 · (a− a′) ∈ U I1

0 ⊆
∏

i∈I1
Pi.

For i ∈ I1, we have Pi + U ′′ = Pi, so M1 · a ∈
∏

i∈I1
Pi, and thus M1 · a

′ ∈
∏

i∈I1
Pi.

We have shown that M · a′ ∈
∏

i∈I Pi, so choosing w′ as the projection of a′ on the components

in X, we have K |= τ(w′) and w − w′ ∈ U , because U1 ⊆ U ×KY .

8.9 Theorem. Suppose that for all sufficiently small balls U , the σV [Φ],P̃U
-structure V/U is model-

complete. Also assume that the subset V of K is definable by a pp-formula and by a universal

formula in the σK[Φ],P-structure K. Then the σK[Φ],P-structure K is model-complete.

Proof. By Theorem 5.13, it suffices to show that every pp-definable set A in the structure K is

defined by a universal formula. So let X be a finite set of variables and A ⊆ KX be pp-definable.

By Proposition 7.19, there exists a pp-definable set Ac ⊆ KX such that A+Ac = KX and A ∩Ac

is bounded. Let B0 be a ball in KX such that A ∩ Ac ⊆ B0. Let B be a basis of K over φ(K).

By Proposition 7.27, there exists c ∈ N and a separable left submodule N of K[Φ]J with J :=

X × Bc such that T c(A)
0
= Ann(N) where T c is the canonical bijection KX −→ KX×Bc

= KJ

determined by the basis B. The set Ann(N) and the graph of the function T c can be defined by

conjunctions of atomic formulas. Thus the set As := (T c)−1(Ann(N)) can be defined by a universal

formula. Because T c(A)
0
= Ann(N), we have A

0
= As, so there exists a ball B1 in KX such that

A ∩ B1 = As ∩ B1. Because V is defined by an existential formula, so is B1. Now let τ(X) be a

special pp-formula that defines A. By part 1 of Lemma 8.8, there exists λ ∈ K× and a λ-translate

τ̃(X) of τ(X) such that

(⊆)
(

w ∈ B0 and K |= τ(w)
)

=⇒
(

λw ∈ V X and V |= τ̃(λw)
)
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for all w. By part 2 of Lemma 8.8, there exists a ball U ′ ⊆ V that is a V [Φ]-submodule such that

τ̃(X) is a P̃U ′-formula and

(⊇) w ∈ KX and λw ∈ V X and V/U ′ |= τ̃(λw)

=⇒ there exists w′ ∈ KX such that K |= τ(w′) and w − w′ ∈ B1

for all w. By shrinking U ′ if necessary (noting that (⊇) is still true), we can assume that the

P̃U ′-structure V/U ′ is model-complete.

Let

A∗ :=
{

w ∈ V X
∣

∣ V/U ′ |= τ̃(w/U ′)
}

,

Am :=
{

w ∈ KX
∣

∣ λw ∈ A∗
}

.

Then (⊆) yields A∩B0 ⊆ Am and (⊇) yields A+B1 ⊇ Am. Since V/U ′ is model-complete, there is

a universal P̃U ′-formula ψ(X) that defines the set τ̃(V/U ′). By Remark 8.5, the set A∗ is definable

by a universal formula in K, and thus the same holds for Am. Now apply Corollary 8.3.

8.10 Corollary. If the residue field k is finite, Γ = Z and P contains a predicate whose interpre-

tation is V , then K is model-complete.

8.11 Result. Let α(X), β0(X) be pp-formulas in the signature σK[Φ],P . Let β(X) := α(X)∧β0(X).

Here we outline a procedure to reduce the computation of the index |α(K)/β(K)| to the computation

of an index |α̃(V/U)/(α̃(V/U) ∩ β̃(V/U))| in the structure V/U for some submodule U of V and

some pp-formulas α̃(X), β̃(X) in the signature σV [Φ],P̃U
.

First, compute dim∞ α(X) and dim∞ β(X). If dim∞ β(X) < dim∞ α(X), then |α(K)/β(K)| =

∞, because α(K) ⊆ β(K) +B0 for no ball B0 in KX , and Γ is non-trivial. Suppose dim∞ β(X) =

dim∞ α(X). Then we can determine a ball B0 in KX such that

α(K) +B0 = β(K) +B0 .

Next, compute dim0 α(X) and dim0 β(X). If dim0 β(X) < dim0 α(X), then |α(K)/β(K)| = ∞,

because α(K) ∩ B1 ⊆ β(K) for no ball B1 in KX , and Γ is non-trivial. Suppose dim0 β(X) =

dim0 α(X). Then we can determine a ball B1 in KX such that

α(K) ∩B1 = β(K) ∩B1 .

Without loss of generality, we may assume that P contains symbols Vγ for γ ∈ Γ that are

interpreted as the ball Vγ in K, since the addition of such symbols does not introduce additional

structure in the σV [Φ],P̃-structure V . So B0 and B1 are definable by a conjunction of atomic

formulas in K and (α(K) ∩ B0) + B1 and (β(K) ∩ B0) + B1 are definable by pp-formulas, say by

special pp-formulas α′(X) and β′(X). By Lemma 8.1, we have |α(K)/β(K)| = |α′(K)/β′(K)|. So
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we can replace α(X) by α′(X) and β(X) by β′(X).

By Lemma 8.8, part 1, there exists λ ∈ K× and λ-translates α̃(X) of α(X) and β̃(X) of β(X)

such that for τ = α, β and the corresponding λ-translate τ̃ = α̃, β̃ we have

(⊆)
(

w ∈ B0 and K |= τ(w)
)

=⇒
(

λw ∈ V X and V |= τ̃(λw)
)

.

By Lemma 8.8, part 2, there exists a ball U ⊆ V that is a V [Φ]-submodule such that UX ⊆ λB1

and for τ = α, β the corresponding λ-translate τ̃ = α̃, β̃ is a P̃U -formula and

(⊇) w ∈ KX and λw ∈ V X and V/U |= τ̃(λw)

=⇒ there exists w′ ∈ KX such that K |= τ(w′) and w − w′ ∈ B1 .

Let h :λ−1V X −→ (V/U)X be the group homomorphism induced by multiplication by λ. Let

τ = α, β and τ̃ = α̃, β̃ be the corresponding λ-translate. Then the statement (⊆) yields τ(K) ∩

B0 ⊆ h−1(τ̃(V/U)). Since τ(K) ⊆ B0, we have τ(K) ⊆ h−1(τ̃(V/U). The statement (⊇) yields

τ(K) + B1 ⊇ h−1(τ̃(V/U)). Since τ(K) ⊇ B1, we have τ(K) ⊇ h−1(τ̃(V/U)). We obtain τ(K) =

h−1(τ̃(V/U)).

Since the image of h is (V/U)X and the kernel of h is contained in B1 ⊆ τ(K), we can conclude

that |α(K)/β(K)| = |α̃(V/U)/β̃(V/U)|.

8.2 The case Γ = Z, residue field embedded

In this section, we assume that Γ = Z. By Remark 7.3, part 6, one does not have to assume in this

case that for every finite set X and finitely generated submodule M of K[Φ]X , the set M ·K has

the weak optimal approximation property modulo large balls, since it is trivially true.

We also assume that V has a subfield k′ such that φ(k′) ⊆ k′ and the factor map V −→

V/V>0 = k restricted to k′ is an isomorphism of fields.

We identify k′ with k via this isomorphism and simply write k for both fields.

In this situation, one can explicitly say what form the (V/U)[Φ]-modules V/U have. This is

established in the lemma after the following definition.

8.12 Remark/Definition. Let L be a field and φ be a self-embedding of L. As before we consider

L as a left L[Φ]-module via Φ · µ = φ(µ) for µ ∈ L.

Let L[x] be the ordinary polynomial ring in one variable over L. Let f ∈ L[x]. We can extend

φ to a ring homomorphism φf of the ring L[x] by setting φf (x) = f . Every extension of φ to a ring

homomorphism of L[x] has this form. We obtain a twisted polynomial ring L[x][Φf ] over L[x], and

L[x] becomes a left L[x][Φf ]-module via (gΦ0
f ) · h := gh and Φf · g := φf (g) for g, h ∈ L[x].

Suppose f ∈ xL[x]. For every n, the ideal I = xnL[x] of satisfies φf (I) ⊆ I, so is a L[x][Φf ]-

submodule of L[x]. Also I[Φf ] is an ideal of L[x][Φf ] and L[x][Φf ]/I[Φf ] is canonically isomorphic to
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(L[x]/xn)[Φf ]. On the other hand, every ring endomorphism of L[x]/xn ⊇ L extending φ :L −→ L

is induced by φf for some f ∈ xL[x] with deg f < n.

8.13 Lemma. Let m := φ(1) where 1 ∈ Γ = Z. Note that m ≥ 2 follows from the assumption that

φ has a modulus of growth. Suppose U ⊆ V is a ball. Then U = Vn for some n, and U is a V [Φ]-

submodule of V . The ring V/U is isomorphic to k[x]/xn over k, and for any such isomorphism, the

map induced by φ on V/U corresponds to the map induced by φf on k[x]/xn for some f ∈ xmk[x]

with deg f < n. In addition, identifying these two rings via such an isomorphism, the modules V/U

and k[x]/xn are isomorphic.

Proof. Recall, that we view k as subring of V . Let t ∈ K with v(t) = 1. The subring k[t] of V

is isomorphic to the polynomial ring k[x] (mapping t to x). It is easy to see that V/U = V/tn is

isomorphic to k[t]/tn. By the previous remark, the ring homomorphism corresponding to the ring

homomorphism induced by φ on k[t]/tn is induced by φf for some f ∈ xk[x] with deg f < n. Since

φ(t) ∈ tmV , we have f ∈ xmk[x].

8.14 Assumption. For the rest of the section, P contains just the two symbols V0 and V∞, where

in K the symbol V0 is interpreted as V and V∞ as { 0 }. Let m := φ(1).

8.15 Corollary.

1. Suppose that for all n ∈ N and f ∈ x2k[x], the (k[x]/xn)[Φf ]-module k[x]/xn is model-

complete in the signature σ(k[x]/xn)[Φf ], then the σK[Φ],P-structure K is model-complete.

2. The computation of pp-indices in the structure K can be reduced to those in the σ(k[x]/xn)[Φf ]-

structures k[x]/xn for n ∈ N, f ∈ x2k[x].

Proof. Note that for any ball U ⊆ V and P ∈ P̃U , the set P (V/U) is definable by an atomic formula

in the σV [Φ]-structure V/U .

So part 1 follows from Theorem 8.9 and part 2 follows from Result 8.11.

In the following, we try to state the previous corollary in terms of the k[Φ]-module k instead

of the (k[x]/xn)[Φf ]-module k[x]/xn where f ∈ x2k[x] and n ∈ N. This is possible, since the two

structures are bi-interpretable for n ≥ 1 in a nice way. As a preparation for the model-completeness

part, we state the following lemma.

8.16 Lemma. Suppose Li is a language and Mi an Li-structure for i = 0, 1. For i = 0, 1, let ∆i

be an di-dimensional interpretation of Mi in M1−i, which consists of

1. an L1−i-formula ∂∆i(y1, . . . , ydi),

2. a map that assigns to each unnested atomic formula τ(x1, . . . , xn) of Li an L1−i-formula

τ∆i(y11, . . , y1di , . . . , yn1, . . , yndi), and

3. a surjective map f∆i :∂∆i(M1−i) −→Mi,
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such that for each τ(x1, . . . , xn) as in part 2 and all (a1, . . . , an) ∈ ∂∆i(M1−i)
n, one has

Mi |= τ(f∆(a1), . . . , f∆i(an)) ⇐⇒ M1−i |= τ∆(a11, . . , a1di , . . . , an1, . . , andi) ,

where aj = (aj1, . . , ajdi) for j = 1, . . . , n.

Also suppose that:

(i) The composite interpretation ∆1 ◦∆0 of M0 in M0 is homotopic to the identity interpretation

on M0 via some existential formula, i.e. there exists an existential L0-formula

χ(x, y11, . . , y1d1 , . . . , yd01, . . , yd0d1)

that induces an isomorphism of M0 onto (∆1 ◦ ∆0)(M0).

(ii) ∂∆1(y1, . . . , yd1) is equivalent in M0 to an existential formula.

(iii) For every τ(x1, . . . , xn) as in part 2 with i = 1, the formula τ∆1(y11, . . , y1d1 , . . . , yn1, . . , ynd1)

is equivalent in M0 to an existential and to a universal formula.

(iv) M1 is model-complete.

Then M0 is model-complete.

Proof. Suppose α(x1, . . . , xn) is an L0-formula. It suffices to show that α(x1, . . . , xn) is equivalent

to an existential formula in M0.

By the homotopy assumption (i), we know that α(x1, . . . , xn) is equivalent to

(8.1) ∃y111, . . , y11d1 , . . . , ynd01, . . , ynd0d1

(
n
∧

j=1

χ(xj , yj11, . . , yj1d1 , . . . , yjd01, . . , yjd0d1) ∧ (α∆0)∆1(y111, . . , y11d1 , . . . , ynd01, . . , ynd0d1)) .

where χ(x, y11, . . , y1d1 , . . . , yd01, . . , yd0d1) is an existential formula. So it suffices it show that

(α∆0)∆1(y111, . . , y11d1 , . . . , ynd01, . . , ynd0d1) is equivalent to an existential formula in M0.

The formula α∆0(y11, . . , y1d0 , . . . , yn1, . . , ynd0) is equivalent to an existential formula

β(y11, . . , y1d0 , . . . , yn1, . . , ynd0)

inM1, sinceM1 is model-complete by assumption. By introducing additional existential quantifiers,

we may assume that the atomic subformulas of β are unnested. The assumptions (ii) and (iii) yield

that β∆1(y111, . . , y11d1 , . . . , ynd01, . . , ynd0d1) is equivalent to an existential formula in M0.

8.17 Lemma. Let n ≥ 1 and g ∈ x2k[x]. There exist an n-dimensional interpretation ∆(k[x]/xn)

of the (k[x]/xn)[Φg]-module k[x]/xn in the k[Φ]-module k and a 1-dimensional interpretation ∆k of
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the k[Φ]-module k in the (k[x]/xn)[Φg]-module k[x]/xn such that the assumptions of the previous

lemma are satisfied for ∆0 = ∆k, ∆1 = ∆(k[x]/xn) and for ∆1 = ∆k, ∆0 = ∆(k[x]/xn).

Proof. We may assume that deg g < n. For i < n, pick gi,j ∈ k for j < n such that gi + k[x]xn =
∑

j<n gi,jx
j + k[x]xn.

For ∆(k[x]/xn), use f∆(k[x]/xn)
defined by

f((λi)i<n) :=
∑

i<n

λix
i + k[x]xn

for (λi)i<n ∈ kn, and

(z = Φ · y)∆(k[x]/xn)
:=

∧

j<n

zj =
∑

i<n

(gi,jΦ) · yi ,

(z = x · y)∆(k[x]/xn)
:= z0 = 0 ∧

∧

i<n−1

zi+1 = yi ,

(z = λ · y)∆(k[x]/xn)
:=

∧

i<n

zi = λyi

for all variables y, z and λ ∈ k.

To construct ∆k, use the following: For t,m ∈ N with f ∈ xmk[x] and mt ≥ n and a basis Bt for

k over φt(k), we have (kx0)/xn =
∑

b∈Bt
(bΦt) · (k[x]/xn). Thus the subset (kx0)/xn is existentially

definable in k[x]/xn.

8.18 Corollary.

1. Suppose that the k[Φ]-module k is model-complete in the signature σk[Φ]. Then the σK[Φ],P

structure K is model-complete.

2. The computation of pp-indices in the σK[Φ],P-structure K can be reduced to the computation

of pp-indices in the σk[Φ]-structure k.
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Appendix A

Additional Conjectures

Here are some other mathematical statements which I believe are true, and hope to prove in the

near future.

A.1 Conjecture. In Theorem 7.17 we also have

A) dim∞ TB(S) = [K : φ(K)]dim∞ S where TB is the canonical bijection KX −→ KX×B.

B) If E ∈ KX′×X , then for S′ := E · S we have dim∞ S′ ≤ dim∞ S.

A.2 Conjecture. In Theorem 7.33 we also have

A) dim0 TB(S) = [K : φ(K)]dim0 S where TB is the canonical bijection KX −→ KX×B.

B) If E ∈ KX×X′
has full row rank, then for S′ :=

{

a ∈ KX′
∣

∣

∣
E · a ∈ S

}

we have dim0 S
′ ≥

dim0 S.

A.3 Conjecture. If S is a pp-definable set, then dim∞ S ≤ dim0 S.

A.4 Conjecture. Let k be a field of characteristic p, K = k((t)) and φ the Frobenius. Then the

module K is not model-complete in the signature σK[Φ]. If one adds a predicate for V , then it

is model-complete if k is finite or satisfies the Kaplansky condition. (To say that k satisfies the

Kaplansky condition means that f · k = k for every non-zero f ∈ k[Φ], cf. [Ka], p.312, hypothesis

A (1).)
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