PLACES, CUTS AND ORDERINGS OF FUNCTION FIELDS

PRZEMYSLAW KOPROWSKI AND KATARZYNA KUHLMANN

ABSTRACT. In this paper we investigate the space of R-places of an algebraic
function field of one variable. We deal with the problem of determining when
two orderings of such a field correspond to a single R-place. To this end we
introduce and study the space of cuts on a real curve and prove that the space
is homeomorphic to the space of orderings. Finally, we prove that two cuts
(consequently, two orderings) correspond to a single R-place if they are induced
by a single ultrametric ball.

1. INTRODUCTION

The connection between orderings, valuations and cuts is a very important aspect
of the theory of ordered fields. The following facts are well known (see for example
[Lam83] and [Pre84]).

For an ordering 8 of a formally real field F, the convex hull (with respect to )
of the rationals in F, convg(Q), is a valuation ring of F'. The associated valuation
vg is called the natural valuation of 5. We shall denote its value group by vgF.
Note that vg is a trivial valuation if and only if 5 is an archimedean ordering of
F. The ring convg(Q) has a unique maximal ideal of infinitesimals and its residue
field Fvg admits an archimedean ordering induced by 3. Therefore, Fvg can be
embedded in R and the corresponding place Ag is an R-place of F'. The map

(1'1) B — )\5

is surjective by the Baer-Krull Theorem. The set of all orderings of F, denoted by
X (F), is a topological space with a topology induced by the subbasis of Harrison
sets: ]
H(a)={B € X(F)|acp} for acF.

By the surjectivity of the map in (1.1), the set of all R-places of F' becomes a
topological space equipped with the quotient topology. This topology is Hausdorff
and compact. Any two R-places can be separated (as functions) by elements of the
real holomorphy ring of F', which is the intersection of all valuation rings of F' with
formally real residue fields. If K is a field extension of F' and [ is an ordering of
K, then BN F is an ordering of F'. The restriction of Ag to F' is then equal to Agnr
and if vg is the natural valuation of 8 then v |g is the natural valuation of SN F.

Throughout this paper, by k we always denote an arbitrary real closed field—
possibly a nonarchimedean one. The interaction between orderings of a rational
function field k(x) and the cuts of k is well known. Orderings of k(x) are in one-to-
one correspondence with cuts of k (see [Gil82]). Even more, the space of orderings
X (k(z)) with the Harrison topology is homeomorphic to the set €'(k) of all cuts
of k equipped with the order topology. In this particular case, the map in (1.1)
depends strongly on the natural valuation v of k (i.e., on the valuation associated
to the unique ordering of k). More precisely, v induces an ultrametric on k which
plays a major role (see [KMO11] and the last section of this paper).
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The goal of the present work is to generalize the above results to any algebraic
function field K of transcendence degree 1 over k. The starting point is the well
known interplay of k-places and curves described nearly 40 years ago by M. Kneb-
usch (see [Kne76a, Kne76b]). Recently, C. Scheiderer (see Appendix of [GBH13])
proved that the space of orderings of K is homeomorphic to the space of orderings
of k(x). In our paper, using completely different techniques, we develop a general
framework, which in particular can be used to reprove Scheiderer’s result (see the
comment on page 9 after Equation (3.11)). Our approach has the additional ad-
vantage of preserving more information about the geometric structure of the curve.

Our paper is organized as follows. First, in Section 2 we gather all the necessary
terminology and facts concerning real algebraic curves which are needed later.

In Section 3, we introduce cuts on a real curve and investigate their connections
to orderings. Here we also formulate our first main result (see Theorem 3.10),
asserting that the space of orderings of K is homeomorphic to the space of cuts of
a curve which is a smooth projective model for K. For any transcendental element
x € K we define the projection 7, of the set of cuts of the curve to the set of cuts of
k, and we show that this projection is compatible with the restriction of orderings
of K to the rational function field k(x).

Next, in Section 4, we recall the notion of an ultrametric on k. This ultrametric
can be extended to an ultrametric of the affine space A™k.

The ultrametric balls in k determine cuts in k that are called ball cuts. If x € K is
transcendental over k and C'is a cut of the curve such that 7, (C) is a ball cut, then
7y (C) is a ball cut for any transcendental y € K. We discuss this fact in Section 5.
The cuts of the curve with this property we call ball cuts as well. Moreover, we
give a sufficient and necessary condition for two orderings of a function field to
correspond to a single R-place.

In the last section we embed our curve in an affine space A"k. The ultrametric
balls in A"k determine ball cuts on the curve. Conversely, we show that every ball
cut is determined by some ultrametric ball in A”k. We also prove that any two cuts
of a curve which are associated to the orderings associated with the same R-place
are determined by the same ball in A"k.

2. REAL CURVES

The aim of this section is to gather tools and terminology concerning real alge-
braic curves which we shall use subsequently. Most of the results presented here
are well known, hence we take the liberty to omit the proofs, pointing the reader
to appropriate bibliography instead. The standard references for the subject are
[BCR, Kne76a, Kne76b].

From now on, let k be a fixed real closed field and K a formally real algebraic
function field (of one variable) over k. Consider the set

{0, ’ O, is a valuation ring with maximal ideal p such that k ¢ O, ¢ K}

of all proper valuation rings of K containing k. Every such valuation ring O, is
uniquely determined by its maximal ideal p. These ideals may be regarded as closed
points of the scheme associated to K. Following [Kne76a], we say that a point p is
real if the residue field ©»/p is formally real, hence equal to k (i.e., O, is residually
real in terms of [Lam83]). The set of all real points is a complete smooth real
algebraic curve that will be denoted ¢ in this paper. We treat elements of K as
functions on c.

The real closed field k has a natural topology induced by its (unique) order-
ing. This topology extends to the affine space A"k and further to the projective
space P"k. Every embedding of ¢ in P"k induces a topology on ¢. Following [BCR],
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we call it the euclidean topology (note that in [Kne76a, Kne76b] this is called the
strong topology). This is the coarsest topology with respect to which all functions
from K are continuous.

Recall (see e.g. [BCR, Theorem 2.4.4]) that ¢ is a disjoint union of finitely many
semi-algebraically connected components ¢y, ..., ¢y. These components can be sep-
arated by functions from K (see [Kne76a, Theorem 2.10]) in the sense that for every
¢; there exists 7; € K such that

The functions n; are called component separating functions and are determined
uniquely up to multiplication by sums of squares. Each component is homeomorphic
to the projective line Pk (or equivalently, to a circle over k), hence it admits two
orientations. Consequently, ¢ admits a total of 2V possible orientations. Any
such orientation is uniquely determined by a definite differential on ¢. In fact,
orientations may be identified with equivalence classes of definite differentials (see
[Kne76a, §5]).

We assume that an orientation of ¢ is arbitrarily chosen and fized.

1 ifpec\c,
-1 ifpeg.

This lets us define intervals on ¢ (see [Kne76a, §6]). Let p, q be two points belonging
to the same component ¢; of ¢c. An open interval (p,q) consists of all the points
t € ¢ that lie properly between p and q with respect to the fixed orientation. We
shall need the following two results:

Theorem 2.1 ([Kne76a, Theorem 3.4]). For every f € K and every component c;
of ¢, the number of points p € ¢; at which f changes sign is finite and even.

Theorem 2.2 ([Kne76a, Theorem 4.5]). Given an even number of points in each
component ¢; of ¢, there exists a function f € K which changes sign precisely at
these points.

In particular, it follows that for every interval (p,q) C ¢;, there is a function
X(p,q) € K satisfying:

1 ifeép.ql,
San(p,q)(t) = O lft € {pa q}7
-1 ifre(p,q).

This function is called an interval function of (p,q) and—like n; above—it is unique
up to multiplication by sums of squares. In particular, it is safe to talk about the
sign of x(p.q) or 7; with respect to an ordering of K.

We will need the following, rather basic, fact. Unfortunately, we are not aware
of any convenient reference, hence we feel obliged to prove it explicitly.

Proposition 2.3. For every nonconstant function f € K and every component
¢; C ¢ there are finitely many points pg, ..., Pm € ¢; such that f is monotonic and
has no poles on every interval between two consecutive points.

Proof. Recall that an orientation of ¢ is fixed. Let wy be a differential of K associ-
ated to this orientation. Then there is a unique element f’ € K such that

df = f' - wo.
Fix a component ¢; C ¢ and let P be the set of all the points p € ¢; where either
f has a pole or f’ has a pole or f’ changes the sign. Every nonzero function has
a finite number of poles; together with Theorem 2.1 this shows that P consists of
a finite number of points, say, P = {po,...,Pm}. Assume that the indexation of
the p;’s is coherent with the orientation of ¢ (i.e., the set ¢; \ {po} is totally ordered
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by the orientation and p; < pa < -+ < p,, holds with respect to this ordering). Tt
follows from [Kne76a, Theorem 6.8] that sgn, f’ is constant and non-zero for every
q € (pj,p;+1) and every j € {0,...,m} (here, for simplicity, we use indexation
modulo m + 1, so that p,,+1 = po). Now, [Kne76b, Corollary 8.4] asserts that f
is strictly increasing on (p;,p;+1) when sgn, f* =1 for q € (p;,p;4+1), and strictly
decreasing otherwise. This concludes the proof.

]

Recall (see e.g. [Lam83, Chapter 2]) that an ordering S of K is said to be
compatible with a valuation ring O,, or shortly with a point p, if 1 +p C 3. Take
p € ¢;. There are precisely two orderings of K associated with p, namely

By = {J € K | JaceYeern /() > 0},
By = {f € K | BgecVectqm (1) > 0.
We call them principal and we denote

Xprinc(K) = {B;aﬂp_ ‘ p e C}.
The following important fact holds:

(2.4)

Theorem 2.5 ([Pre84, Theorem 9.9]). The set Xprinc(K) of principal orderings is
dense in the set X(K) of all orderings.

From this theorem we infer:

Proposition 2.6. Suppose that f1,...,fn € K and H(f1)N...NH(f,) # 0. Then
there is po € ¢ such that fr(po) >0 fork=1,...,n.

Proof. By Theorem 2.5 there is a principal ordering B'f or B, in H(f1)N...0H(f).
Consider the case of ﬁ;r. For 3, the proof will be symmetric. Assume that p € c;.
By (2.4), for every fj there is qx € ¢;, qx # p and such that f is positive on
the interval (p,qx). Among the qi’s there is one, say ¢, such that no other gy lies
between p and q. Then we have that (p,q) # 0 and that each fj is positive on the
interval (p,q). Any point pg € (p, q) has the required property. O

Proposition 2.7. For every ordering B of K there is exactly one component ¢; of
¢ such that n; € —p.

Proof. By the definition of the component separating function, for every p € ¢ we
have 1 - nn(p) < 0. Therefore the function s := —ny ---ny is positive definite
and by [Kne76a, Theorem 4.1] is a (nonzero) sum of squares in K. Consequently
it belongs to 8. Therefore, —n; € [ for at least one 3.

Now assume that —n; € 5 and —n; € 8 for some ¢ # j. Then H(—n;)NH(—n;) #
) and, by Proposition 2.6, there is p € ¢ such that n;(p) > 0 and n;(p) > 0, a
contradiction to the definition of the components separating functions. [l

The component ¢; of the above lemma is said to be associated to the ordering 3
of K.

3. CUTS ON REAL CURVES

Recall that a cut of a totally ordered set (A4, <) is a pair (L, U) consisting of two
subsets of A satisfying: | < u for every [ € L and uw € U. For any subset S of a
totally ordered set A we denote:

1S={acA|Jesa=s}, tS={acA|Jesars}
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Observe that for any S, taking 1S as an upper cut set determines a cut in k (the
lower cut set is its complement). In a similar way, |.S determines a cut as a lower
cut set.

Consider a real curve ¢ and its function field K. In each component ¢; of ¢ we
fix one point and denote it by oo;. The set ¢; \ {oo;} is linearly ordered by the
(fixed) orientation of the curve. Consequently, we may freely talk about cuts on ;.
Explicitly, a cut of a component ¢; is a pair (£,4l) of subsets £,4 C ¢; such that

e ¢; is the disjoint union £ U U {oo;}, and
e for every [ € £ and every u € 4, the point oo, lies in the interval (u,[).

Observe that for £ = ¢; \ {o0;} and $ = @ (or symmetrically for £ = () and
= ¢; \ {00;}) both conditions hold: the first one trivially and the second one
vacuously. Thus (¢; \ {00;},0) and (0,¢; \ {o0;}) are admissible cuts on ;.

The set ¢; \ {o0;} is totally ordered by the relation

p < q < 00; € (q,p).

Therefore, the second condition of the above definition reads as: [ <; u for every
[ € £ and every u € il

Definition 3.1. Let p be a point of ¢;. The cuts
Cy with the lower cut set | {p}, if p # oo;,
C, with the upper cut set 1{p}, if p # ooy,
C%, with the lower cut set 0,

e C_ with the upper cut set 0,

[ o)

are called principal cuts associated to the point p.
Explicitly, if p # ooy,
Cp = ((00i;p),[p,005))  and  CF = ((004,p], (p, 00;))

Proposition 3.2. Fvery ordering 5 of K defines a cut on the associated component
¢; by the formula:

U= {p e\ {0} | X(p.oo) €5}
£={pecci\{o0i} | Xooip) € B}

Proof. Take any point p € ¢; \ {o0;}. An interval function X (oo, is either positive
or negative with respect to the ordering . In the first case clearly p € L. In
the second case X (p,o0;) € —8 and 80 ;X (p,00;) € B- The interval function x(p o0,)
is positive on ¢\ ¢; and on the interval (oco;,p), while 7; is positive on ¢\ ¢; and
negative on ¢;. Therefore, 7;X (p,0,) i negative only on the interval (co;,p). Thus
there exists a sum of squares s such that

(3.3) B(F) = (£, 1) with {

X(oorp) = 81 X(p,oc:) € -
It follows that p € £.
Now we show that every element of £ precedes every element of 4. Take [ € £
and u € t. We have x(y,00,) € 8 and X(o0,,1) € 8. Since —n; € 8 we obtain for some
sums of squares s; and s,

~X(oos,u) = —1i 51" X(u,00;) € Ba
and

~X(t,005) = ~Mi * 52 X(o0;,1) € B-
By Proposition 2.6 we obtain that there is p € ¢ such that x(0,)(p) < 0 and
X(oos,u)(B) < 0. This implies that p € (I,00;) N (004, u) and consequently oco; €
(u,1). O

Conversely, we show that to every cut of ¢ one may associate an ordering on K.
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Proposition 3.4. Every cut (£,4) of ¢; defines an ordering 8 of the field K by
the formula:

(3.5) U((L,U) = {f eK | Jieeu{oos } Fuestufoo} Vpe(tu) f(B) > 0}'

Proof. In order to prove that g is an ordering of K we need to prove four axioms.
Three of them, namely: S+8 C 8 and 3-8 C 8 and SN— = @ are straightforward.
The remaining one is S U (—f) = K. Take a non-zero f € K. It has only finitely
many zeros and poles on ¢. Let Z be the set of all of them and define [ to be the
maximal element of Z N £ if this set is nonempty, and [ = oo; otherwise. Similarly,
define u to be the minimal element of ${ N Z if this set is nonempty, and u = oo,
otherwise. If Z # () then I # u. It is clear that the sign of f is constant on ([, u).
Thus, either f € Bor —f € 8. If Z = (), then the sign of f is constant on the whole
component ¢;. In this case we can pick up any [ € £ and u € 4l to show that f € 3
or —f € p. O

Denote by ¢ = %'(c) the set of cuts on ¢. Our goal now is to prove that the
functions
D X(K)— %(c)
and
U:E(c) > X(K)
are inverses of each other. We first show that this holds for the principal cuts and
orderings.

Lemma 3.6. The function ® induces a bijection between the set Xprinc(K) of

principal orderings of K and the set Cprinc(c) of principal cuts of ¢. Its inverse is
v,

Proof. Take a principal ordering B; associated to some p € ¢;. Compute the
corresponding cut ®(3;) = (£,4). Proposition 3.2 asserts that
U={ue\ {00} | X €87}

= {we e\ {00} [ Taee, Yee(p.a)X(uoon (1) > 0}

= {u€ e\ {ooi} | Fgee (b, q) S (00, 1)}

_ | (p,o0i) if p # 00;,
Consequently £ = (o0o;,p] and so CIJ(Bp+ ) = C’j . Analogously one shows that
(B, ) =Cy .

Conversely, take a principal cut C'p+ = (£,4) and compute the associated order-
ing 8 = ¥(C). We have that £U {o0;} = [00;,p] and UU {o0;} = (p, 00;], hence by
the definition of W,

B= {f €K | H[G[Ooiyp]Hue(wai]qu(l,u) f(q) > 0}'
Observe that the condition Jie(oo,,p] Tue(p,00:] Vae(Lu) f(q) > 0 is satisfied if and only

if the condition Jyec, Vee(p,u) f(tr) > 0 is satisfied. Hence 3 = ﬁ;, as desired. Again,
the case of C), is analogous. O

In order to extend this result to all cuts and orderings we will need some technical
preparation.

Lemma 3.7. Let 8 be an ordering of K with associated component ¢;. Take p # q
in ¢; \ {oo;} and assume that sgng(X (p,00,)) = 5805 (X(00s,q))- Then

sgng(X(p,q) =1 <= 00; € (p,q).



PLACES, CUTS AND ORDERINGS OF FUNCTION FIELDS 7

Proof. We have either co; € (p,q) which is equivalent to q < p, or co; € (¢, p) which
is equivalent to p < q.
Assume that oo; € (p, q). Consider the function

k= X(p,00:) * X(o0i,q) * X(p,q)-

This function takes only non-negative values on ¢, so k is a sum of squares in K.
Since X (p,00:) " X(o0s,q) 18 in B by assumption, also x(p,q) is in 8. Thus sgng(X(p,q)) =
1.

On the other hand, if co; € (q,p), consider the function 7n;x. Also this function
takes non-negative values on ¢, hence again is a sum of squares in K. Therefore,
NiX(p,q) 18 in 3. Since —n; is in B (as ¢; is associated to B by assumption), we obtain
that sgng(x(p,q) = —1. O

Proposition 3.8. For every ordering B of K,
o d(8) = B

Proof. Let ¢; be the associated component for 3, (£,4) = ®(53), and g’ = T((L,L)).

The proposition is proved for principal orderings, therefore we may assume that
B ¢ {B=,,B%,}, hence both £ and { are non-empty.

Since 8 and 3’ are two orderings, it suffices to show that 8 C 8’. Take f € §.
We have that f € 3 iff # € B, and it is well known that the function #
is an element of the holomorphy ring of K (see [Lam83, Lemma 9.5]). Therefore,
without loss of generality, we can assume that f is in the real holomorphy ring of
K, so f has no poles on c.

Let Z;(f) be the set of zeros of f on ¢;. Let p be the maximal element of £N.Z;(f)
if this set is non-empty, and p € £ arbitrary otherwise. Let q be the minimal
element of 44N Z;(f) if this set is non-empty, and q € i arbitrary otherwise. Then
the function f has a constant sign on the interval (p, q). By the definition of the cut
(£,4) = @(B) we have X(q,0,) € B and X(sc,,p) € B. Since oo; € (q,p), Lemma 3.7
asserts that x(qp) € 8. Since —n; € 8 we obtain for some sum of squares s that

~X(pa) = i "5 X(a.p) €5
Therefore 8 € H(f)NH(—X(p,q))- By Proposition 2.6 we obtain that there is po € ¢

such that f(po) > 0 and x(pq)(Po) < 0, hence po € [p,q] and so f is positive on
(p,q) and it follows that f € 8, by the definition of 8’ = T((£,L)). O

Any two cuts C; = (£1,4;) and Cy = (£9,4s) of the same component ¢; can
be compared by inclusion of their lower cut sets: we say that Cy < Cs if £ C £5.
This way the set of cuts on ¢; is totally ordered with the smallest element C’;‘oi =
(0,¢; \ {00;}) and the largest element C5, = (¢; \ {00;},0). This relation induces
an order topology on ¢; and further a union topology on c.

Lemma 3.9. Let (p,q) be an interval on ¢; such that oo; ¢ (p,q). Let B be an
ordering of K with sgng(x(p,q)) = —1. Then

Cy 2 0(B) = Cy.
Proof. Write ®(8) = (£,4). By Proposition 3.8, 8 = U o ®(8) = ¥((L£,4)). We
show that C;” < ®(3). This s true if p = oo;. Assume that p # oo; and ®(8) < C;.
That means that p € 4. Since oo; ¢ (p, q), we have that x(,,q) has positive values on

the interval (oo, p). By the definition of 3 = ¥((£,4)), we obtain that x(,q) € B,
a contradiction. In a symmetrical way it is shown that ®(3) < Cy . O

Recall that for every real closed field k there is a canonical homeomorphism
between the space X (k(w)) of orderings of the rational function field (equipped
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with the Harrison topology) and the space of cuts of k. Our first main result
generalizes this correspondence to algebraic function fields.

Theorem 3.10. The space € (c) of cuts on ¢ is homeomorphic to the space X (K)
of orderings of K. This homeomorphism can be chosen to map principal cuts to
principal orderings.

Proof. Proposition 3.8 asserts that ¥ o ® = idxx). We claim that also ® o ¥ =
idg (). Take any cut C' = (£,4) of a component ¢; C ¢. Let § := ¥(C) and
C' = (&,') := ®(B). By the definitions of ¥ and P,
W= {qgec\ {0} | X(q000) € B}
= {a €\ {00} | Fiecufoo) Iuestufon} Vpe(tLu) X000 () > 0}
= {q € ¢\ {ooi} | HIESU{oci}EluE)JU{ooi} (Lu) C (Ooi7‘1)}~
Take any u € 4l and [ € £. Since (I,u) C (co0;,u), we obtain that u € 81/, so 8L C 81’
On the other hand, [ ¢ Y’ because otherwise there would exist u € U {o0;}
satisfying u < [. But this contradicts the very definition of a cut. Consequently, £
is disjoint from U’ and it follows that C' = C’. This proves our claim.
We shall now prove that ® is continuous. Observe that the set
{(C1,C),[CL,,C2),(C1,C,] | C1,Ca € C(ci)}
is a subbasis of the topological space € (¢;). Fix a subbasic set (C1,Ca) C €(c;),
with C; = (£1,84) and Cy = (£4,45). Take a cut C' = (£,41). Note that if p € £
and q € 4, then the function —x(, ) is positive on (p,q), in particular ®~*(C)

belongs to the Harrison set H(—x(p,q)). If C € (C1,C3), then we can choose
peshNgand qeidn Ly That shows

&1 ((C1,C)) C U H(=X(p,q))-
p,gediNLa,p<q
Conversely, take any two distinct points p,q € Uy N Lo, say p < q. Further let
B € H(—X(p,q)) be an ordering. We have sgng(x(p,q)) = —1, thus Lemma 3.9 and
the choice of p and q yield
CL<Cf 29(3) 2Cy <Ca.
We have, thus, shown that
d71((Cr,Cy)) = U H(=X(p.q))-
(p,q)CtiNgy
In a similar way one shows that
! ([00;,Ca)) = U H(=X(c01,0))5
qeLs
and
> ((Cr,004]) = U H(=X(p,001))>
peL
Inverse images of subbasic sets are open in the Harrison topology of the space X (K).
The space X(K) is compact and €(¢) is Hausdorfl. A continuous bijection of a
compact space onto a Hausdorff space is a homeomorphism.
The last assertion of our theorem follows from Lemma 3.6. (|

Take a component ¢; C ¢ and p,q € ¢;, p # q. Assume that the interval (p,q)
does not contain co;. Then the interval (p,q) is an ordered set with the ordering
inherited from ¢; \ {o0;}. We wish to identify the cuts of this ordered set with cuts
of ¢; which induce them. We set €*((p,q)) =

{(E,il) €C(c;)| LN (p,q) # 0 and LN (p,q) # 0 or L =1(p,q) or £ zi(p,q)}.
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Take the finite sequence of points of ¢;, i.e., p; < pa < -++ < p.,. Then ¢; can be
expressed as a finite union

¢i = {o0i} U (00i,p1) U{p1} U -+ U (pm—1,Pm) U {pm} U (pm,00:)
of disjoint subsets (intervals and their endpoints). Then the set %(c;) of all cuts of
the component ¢; can be expressed as the disjoint union

(3.11) %(Cl) = ‘5*((001,;31)) U---J %*((pm—lvpm)) U %*((pm,ool))

Fix an element x € K \ k. It is transcendental over k and k(z) C K. Proposi-
tion 2.3 asserts that we can choose a sequence p; < ps < -+ < p,, in such a way
that z is monotonic and has no poles on each of the above intervals.

Take an interval (p,q) on which = is monotonic and without poles. By the
Intermediate Value Theorem (see [Kne76b, Theorem 8.2]), the projection v — x(t) is
an order isomorphism of (p, q) onto the interval I := (z(p),z(q)) or I := (z(q), z(p))
in k. This order isomorphism induces an order isomorphism 7, from €*((p, q)) onto
% (I), and hence also onto €*(I) C € (k).

By Equation (3.11) we obtain a map

7y 2 G (¢) = € (k).

Recall that for f € K and p € ¢, f(p) is the image £, (f) of f under the place
&, associated with O,. When we apply the map ¥ on k(x) (we will then denote it
by Wy (), we have to keep in mind that the k-rational places on k(z) are precisely
the (x — a)-adic places £, that send x to a, for all a € k, together with the place
&0 that sends % to 0. If p € ¢ and z(p) = a € k, then the restriction of &, to k(z)

is &, -
Suppose that (p, q) is an interval in ¢; on which the function z is monotonic, and
take (£,40) € €*((p,q)). Then, writing ¥ when we apply the map ¥ on K,

Ur((Lu) = {fekK | e eU{o0s} Tuestu{oo} Vee(ru) f(t) > 0}
{f € K | 3ie(en(r.0)u(p) Fuewn(p.a)ufa) Vet f(¥) > 0}
= {f € K | Sic(en(p.a)uip} Fue@nip.a)ulat Vee(tu) &(f) > 0}

Let us consider the case where the function z is increasing on (p,q); the re-
maining case is symmetrical. Set p = {,(x) € k if  has no pole in p, and
p = —oo otherwise. Analogously, set ¢ = &4(x) € k or ¢ = oo, respectively.
Then 7, ((£,40)) € €*((p,q)), and we denote this cut by (L,U). The restriction of
the above ordering to k(z) is
U ((€,4) Nk(x) =

= {f €k(=@) | Jie(en(p.a)uip} Fuewni.a)uia Vee(tw Eele@) (f) > 0}

= {f €k(@) | Jewn(p.0)uip) Jue@n(p.g)uia) reiu) & (f) > 0}

= {f € ]k(l') | 3lELu{—oo}Elut’:‘l,(u{-‘roo}vr»’c‘(l,u) gr(f) > 0}

= Ui (me((£,£0))).

We have proved:

Proposition 3.12. The following diagram commutes:

%) Tx X(K)
() — X (i())

where res is the restriction 8 — S Nk(z).
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Now we can provide a different proof for the proposition stated by C. Scheiderer
in the appendix to [GBH13]:

Proposition 3.13. The space X (K) is homeomorphic to X (k(z)).

Proof. Take a transcendental element x € K and on every component of ¢ choose
a sequence of points such that z is defined and monotonic on each interval between
two consecutive points. By Equation (3.11), the set %(¢) is a disjoint union of, say,
k-many sets of the form €™*((p,q)), each of which is homeomorphic to a set €*(I),
where [ is an open interval in k. For any two open intervals I; and I5 in k there is
a rational function f which induces an order isomorphism between I; and I, and
hence the homeomorphism between €*(I;) and ¢*(I3). Now choose k — 1 many
elements a1 < ... < agp—1 in k. By what we observed, % (c) is homeomorphic to the
union ¢*((—00,a1))U...U€*((ag—1,+00)) = € (k). O

Note that 7, may not be a homeomorphism from %(c) to € (k) as it may be
neither injective nor surjective.
In the literature (e.g. in [Gil82]) it is common practise to use the function
v:X(k(z)3 B {ack|z—acpl{bek|b—xzecp}) cEk).
We show that our function Wy, is compatible with this practise:

Proposition 3.14. The functions 1 and Wy, on k(z) are the same.

Proof. Tt suffices to show that ®(¢(5)) = B for any g € X(k(z)). If l € {a €
k ’ x —a € f}, then  — [ has positive values on all of (I,400) and therefore,
z—a € ®(y(B)). Symmetrically, u—z € ®(¢(8)) forallu € {b ek |b—xz € 8}. It
is well know that since k is real closed, an ordering on k() is uniquely determined
by the signatures of the linear polynomials z — ¢, ¢ € k. Thus we obtain that

(y(8)) = B. O
4. ULTRAMETRIC BALLS

Assume that k is a real closed field and let v be its natural valuation, with value
group vk. The field k is an ultrametric space with ultrametric distance

d:k xk—vkU{oo}, d(a,b) =v(b—a).

When k is nonarchimedean, this ultrametric distance is non-trivial. The value group
vk is linearly ordered and so we can consider cuts on it, defined in a standard way.
Fix a cut (L,U) of vk. The set

By(a) = {bek|d(a,b) € UU{oo}}
is called an wultrametric ball centered in a with radius U. We may characterize

ultrametric balls in k by the following property: a subset B is an ultrametric ball
in k if and only if
(4.1) d(a,b) > d(a,c)
for every a,b € B and ¢ € k\ B. Recall that every point of an ultrametric ball
is its center and two ultrametric balls which have a non-empty intersection are
comparable by inclusion.

The structure of an ultrametric space extends naturally from k to a finitely

dimensional affine space A"k over k. It is a basic and well known fact that over
the reals all the metrics of the form

p
dp((:vl,...,xn),(yl,...,yn)) = <Z |z ,yl,|p> , forp=1,2,...
i<n

doo((zl,...,xn),(yl,...,yn)) = r&ag{\xz *yz‘}
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are equivalent. Switching from R to an arbitrary, non-archimedean real closed
field k, we may define corresponding ultrametrics d, for p € NU {oco} by setting

1/,
dp((xl,...,xn),(yl,...,yn)) = U<Z|gyl _yi|p) p’ forp=1,2,...

i<n
doo(('rlv ce 73771)7 (yla s ayn)) = rlrgrll{v(xl - yz)}a

where v is the natural valuation of k. We claim that all of these ultrametrics are
not only equivalent but actually equal.

Proposition 4.2. All the ultrametrics d, : A"k x A"k — vk are equal.

Proof. Fix any p € N. We will show that d, = d.. Take two points P =
(x1,..,2n), @ = (Yy1,...,yn) € A”k. Then

1 1.
dp(P, Q) = 51}(2% - yi|p> > ];Iz%?{vm —yil”}
i<n -

= mm{v yz)} = doo(PaQ)'

i<n

This gives us one inequality. To prove the opposite one, recall that the natural
valuation is weakly decreasing on ky U {0}. Now, all |z; — y;| are clearly non-
negative. Since for every j < n we have |z; — y;[P < >, |z; — vi|P, it follows

that ) 1
v(z; —y;) = ;;U(m —y;lP = (;m yil ) =dy(P, Q).
In particular, doo (P, Q) = m<in{v( =) } »(P,Q), as claimed. O
isn

5. BALL cUTS AND R-PLACES

In this section we prove our second main result, namely a criterion for two
orderings of K to be associated with a single R-place of K. To this end we need
first to introduce a notion of ball cuts on a curve. Let v be the natural valuation
of k. Any ultrametric ball B in k determines two cuts of k, namely:

B~ = ({a€k|a< B}, 1B),
Bt =(IB,{a€k|a> B}).

The cuts BT, B~ are called ball-cuts in k. In particular, the cuts (k,®) and (0,k)
are ball-cuts, since they correspond to the ultrametric ball B = k. Notice also
that for every b € k, the principal cuts ({a € k | @ < b},{a € k | a > b}) and
({a € k | a <b},{a € k| a>b}) are ball-cuts, too. They correspond to the
ultrametric ball {b}.

We have the following characterization of ball cuts in k.

Proposition 5.1. Take a cut C in k and the corresponding ordering 8 of k(x).
Let vg be the natural valuation of the rational function field k(zx) associated to 3,
with value group vgk(x). Then

C is a ball cut < [vgk(x) : 2vgk(z)] = 2.

Proof. By the Baer-Krull Theorem (see [Lam83, Corollary 3.11]), the number of
orderings compatible with the valuation vg (i.e., determining the same R-place
of k(z)) is equal to the order of the character group (Uﬁk(w)/Zvﬁ]k(z))*. Since vgk is
divisible, the rational rank of vgk(x) is at most 1, by the Abhyankar Inequality.
Therefore vsk(=) /204k(x) is a finite group, so the order of its character group is equal
to the index [vgk(x) : 2vgk(z)]. By [KMO11, Theorem 2.1], two distinct orderings
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of k(x) determine the same R-place if and only if the corresponding cuts of k are
the cuts at the upper and lower edge of the same ultrametric ball in k. O

Take a finite extension (F,v) C (F,v) of valued fields. It is known (see e.g.

[Kne73, §3]), that
[vF : 20F] = [vE : 20E].

Now let us get back to our algebraic function field K. Take a cut C of the curve ¢ and
the associated ordering 8 € X (K). Further, denote by vg the natural valuation
of K induced by 8 and let Ag be its canonical R-place. Fix an element x € K
transcendental over k.

Suppose that 7, (C) is a ball cut in k. It follows that

2 = [vgom() k(@) : 205m()k(2)] = [v5K : 205K],

with the right hand side being evidently independent of x. This allows us to intro-
duce the notion of ball cuts of a curve.

Definition 5.2. A cut C of the curve ¢ is called a ball cut if for one (or equivalently,
every) ¢ € K transcendental over k, the projection 7, (C') is a ball cut in k.

Observe that in particular all the principal cuts of ¢ (cf. Definition 3.1) are ball
cuts. Indeed, for every p € ¢;, the associated principal cuts map to the ball cuts
generated by singletons z(p) in k or to improper cuts if 2 € K has a pole at p.

Now we are ready to present our second main result, that determines when two
cuts, or equivalently orderings (in view of Theorem 3.10), correspond to the same
R-place of the function field K.

Theorem 5.3. Let C7 and Cy be two ball cuts on ¢. The corresponding orderings
determine the same R-place of K if and only if for every x € K \k the cuts 7,(Cy)
and 75 (C2) are induced by the same ultrametric ball.

Proof. Take two cuts C1,Cy € €(c). Let B1,82 € X(K) be the corresponding
orderings of K and A1, A2 the associated R-places. Suppose that A; # Ag, therefore
there is an element © € K such that Aj(z) # A2(x). Passing to the rational function
field k(x), we have A\; |k(m)7é A2 |k(m). It follows from [KMO11, Theorem 2.2] that

75(C1) and 7;(C2) cannot be induced by the same ultrametric ball.

Conversely, suppose that there is an element x € K \ k such that 7, (C1), 7,,(C2)
do not correspond to a single ultrametric ball. Then, in particular, the associated
R-places A1, Ay of K must differ on x. O

6. BALL CUTS OF AFFINE CURVES

So far, we have been working in a general setup with some abstract real curve.
However, once we embed our curve in an affine space (possibly of a high dimension)
we obtain a clearer picture. In particular it turns out that the ball cuts of ¢ are
determined by ultrametric balls in the affine space A”k. From now on when we
write p for point in A"k it does not mean that it belongs to «.

Proposition 6.1. Fiz a smooth and complete real affine curve ¢ C A"k. Tuake a
point p = (z1,...,2,) € A"k and a cut (L,U) in vk. Assume that there is a com-
ponent ¢; of the curve, which has non-empty intersections with both an ultrametric
ball By (p) € A"k and its complement By (p)¢ = A"k\ By (P). Then By (p) induces
a ball cut on ¢; (possibly more than one).

Proof. If the ultrametric ball By (p) is a singleton {p}, then p must lie on the curve
¢ and the assertion holds trivially—the cuts induced by By (p) are precisely the two
principal cuts associated to p. Hence, for the rest of the proof, we may assume that
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By (p) consists of more than just one point. Define a function p, : A"k — k by the
formula

n
pP(q) = Z(xt - yi)27 where q= (y17 s 7y7l) € Ak
i=1

Then p, induces a function r, € K. Note that

Bu(p) = {a € A"k | 50(rp(a)) € U'U {oo}}.

Note that r, is defined everywhere on the curve. Proposition 2.3 asserts that there
are points p; < ... < Py, € ¢; such that r, is monotonic on every interval (p;, P;+1),
and hence also on [p;, p;+1] (by the Intermediate Value Theorem). This yields that
if p; and p;41 are in By (p), then the whole interval [p;, p;y1] lies in By (p). Since
By (p) cuts through the component c¢;, there is at least one interval [p;, p;+1] that
has nonempty intersections with both By (p) and By (p)©. Set either

£ := [pi, piy1] N Bu(p) and  $:= [p;, pit1] N By (p)°

when , is increasing on (p;, pi41), or

£:= [pi, pir1] N Bu(p)© and U= [pi, piy1] N Bu(p)

when 7, is decreasing. Using the definition of the function 7, we see that all the
elements of £ precede all the elements of 4, due to the fact that r, is monotonic
on [p;, pi+1]. Thus, the pair (£, 1) constitutes a proper cut of [p;, p;4+1]. This cut is
induced by a cut of the whole component ¢; as shown in Section 3. The projection
Ty, Projects our cut to the ball cut Byy(0)", therefore it is indeed a ball cut. O

Theorem 6.2. Let ¢ be a smooth and complete real affine curve. Then every ball
cut on ¢ s induced by some ultrametric ball in A"k.

Proof. First observe that for every component ¢; C ¢, the assertion holds for the
principal cuts C, and C; . Indeed, both cuts are induced by the ultrametric ball
{n}.

Now let C' = (£,4) be a non-principal ball cut of a component ¢, C ¢. For
every coordinate x;, i € {1,...,n}, the projection m;(C) = m,,(C) is a ball cut of
k. Choose an interval [p, q] on ¢, in such a way that for every ¢ € {1,...,n}:

e (' is a proper cut of [p, q],

e x; is monotonic on (p, q),

o the ultrametric ball in k determining 7;(C') is centered in either p; := x;(p)

or ¢; := x;(q).

The choice is possible by means of Proposition 2.3 and the fact that every point of
an ultrametric ball is its center. Taking p or q to be an inverse image of an element
in the ultrametric ball generating m;(C') one achieves that the last condition holds.
Since we are working in a finite-dimensional space, we may narrow the interval so
that the above three conditions are simultaneously met for all coordinates. Denote
by %, (respectively, %) the set of all ultrametric balls generated by 7;(C) and
centered in p; or ¢; for i € {1,...,n}. Possibly one of these two sets can be empty.
The radii of ultrametric balls are (by definition) upper cut sets. Let T}, (respectively,
Ty) be the union of all the radii of the balls in 2, (respectively, %,).

We claim that T, # T;. We assume that both sets %,, %, are non-empty,
because otherwise the claim is clearly true. Assume, in order to derive a contradic-
tion, that T, = Ty. Denote this set just by T. Without loss of generality we can
assume that 71 (C) is a ball cut of a ball Br(p;) and m2(C) is a ball cut of a ball
Br(g2). Consider the function z = x1 + ex2, where ¢ € {£1} is selected in such
a way that both 1 and exy are increasing or both are decreasing on (p,q). This
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implies that z is monotonic on (p, q). The projection 7, (C) is a ball cut of a ball B
centered in z(I) for some [ € [p,q]. Assume that [ lies in the lower cut set £ of the
interval [p,q]. For [ lying in the upper cut set 4 the proof is symmetric. For any
u € 4N [p,q] we have that

d(lz,uz) = d(lz, q2),
because d(l2, ¢2) < d(usz,g2). On the other hand, since Br(p1) and Br(gs) have the
same radii and d(l2,u2) is fixed, we can choose u to be so close to the cut C that

d(ll, Ul) Z d(lg, UQ).

Now take another point I' € £N ([, u) such that d(l2,15) = d(l2, uz). The point I’ can
be, for instance, chosen as a point on ¢, with I, = (2 +u2)/2. Since v(l; —1}) € T
and v(la — 15) < T, we have that

d(z(0),2(I)) = v(2() — 2(1') = v((l1 + el) — (I +¢€lb))
= ’U((ll — lll) + 5([2 — 1/2)) = U(ZQ — 1/2) = d(lg, 1/2) = d(lg,’U,Q).

On the other hand, (I; — u1) and (ly — ug) have the same signs (because of our
choice of ¢), and we obtain that

d(z(1), z(w)) = v(z(l) — 2(w)) = v((l1 + el2) — (u1 + cug))
= U((l1 — Ul) + E(lg — UQ)) = U(l1 — ul) = d(ll,ul).
Consequently,
d(z(1), 2()) < d(z(1), 2(w)),
but this contradicts (4.1). The inequality T}, # Ty is proved.

In order to complete the proof of the theorem, consider two cases: Ty C T}, and
T, C Ty. In the first case take all projections 7; sending the cut C' to a ball cut of
a ball in #;. Every ball in %, has a radius strictly contained in T}, thus for every
such ball we find an element I; in the lower cut set of 7;(C) but strictly greater
than p; and so close to ¢; that v(l; —g;) € Ty. Of all the preimages {z; " (1;)} select
the one which is closest to C' (i.e., the interval (x; '(l;),q) is smallest in the sense
of inclusion), and call it [. Take a ball Br, (I). Note that for every I' € £N (I, q) we
have that

d(,I) =min{v(ly —11),...,v(lm — 1)} € T}
For every u € Un (I,q) we have d([,u) < T}, because v(l; — u;) < T, for the
projection m; which realizes the radius T,. Therefore the ball By, ([) induces the
cut C on c.
For the second case the proof is symmetric. O

Using Theorem 5.3 we obtain now:

Theorem 6.3. Assume that ¢ C A"k is a smooth and complete real affine curve.
Let C7 and Cy be two ball cuts on ¢. If the corresponding orderings determine the
same R-place of K, then there is an ultrametric ball B C A"k inducing Cy and Co
on c.

Proof. Assume that the orderings corresponding to C; and Cs determine the same
place. Assume that C; is a cut on the component ¢; determined by an ultrametric
ball By (P) for some P = (x1,...,,) in A"k (we may assume that P € ¢). Then
the function pp : A"k — k given by

n

pp(Q) == (xi—v:)?,  where Q= (y1,...,yn) € A"k

i=1
is not constant. Let rp be the polynomial function on ¢ induced by pp. The
projection 7., sends C; to the cut By (0)T. Theorem 5.3 asserts that ., (Cs) =
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Boy (0)1, as well (because rp has only non-negative values). Therefore the cut Co
is also determined by By (P). O

Example. Let k be a nonarchimedean real closed field and Iy be the ideal of
infinitesimals in k, which is the maximal ideal of the valuation ring of the natural
valuation v of k. Take a € Iy and consider the function field K of the genus two
plane curve ¢ given by

(6.4) y? + (2% — a®)(2* — 1) = 0.

The curve has two components which can be separated by the function x € K. Let
T be the set of positive elements in the value group vk. Consider the ultrametric
ball centered in the origin o:

BT(O) = I]k X I]k.

The ball Bp(o) determines four cuts on ¢, two on each component. For each of
these cuts we consider the signatures of the coordinates z and y in the orderings
corresponding to these cuts. The four cuts can be distinguished by these signatures,
so let us denote the cuts by C(sgnw,sgny). The images of all four cuts under the
projections m, and m, are the cuts determined by the ball Br(0) in k.

Take z = ¥/= and consider the projection 7,. Equation (6.4) can be rewritten as

222% 4+ (2% — a®)(2® — 1) = 0.

Therefore,
2 an 2
_ 2 (@ 21y .2 2 (AN _ 2
0=z —i—(l ())(w H=z"-1+z +(x) a
Thus,
a2 (2
(6.5) +1)(z—1)=d®—2 (x)

Let v be a real valuation of K such that v(a) > v(x) > 0. Then

2
v((z—1)(z+1)) = v(a2 —2® - (E) ) > 0,
x

S0

z € Br(l) or ze€ Br(-1).
Now assume that v(x) = 0. Then,

v((z=1)(z+1)) = v(z®) = 0.
Note that if v(z4+1) > 0, then v(z — 1) = v(z+1—2) = v(—2) = 0. Symmetrically,
if v(z —1) > 0, then v(z + 1) = 0. Therefore, v(z + 1) = v(z — 1) = 0 which
shows that z ¢ Br(1) and z ¢ Br(—1). Further we see that the right hand side of
equation (6.5), up to an infinitesimal, equals —x? and hence is negative. Therefore,

—1 < z < 1, which means that z lies between the balls By(1) and By(—1). The
sign of z depends on the signs of z and y, and thus,

Tz (C(la 1)) =Tz (0(717 71)) = BT(l)i
and
Tz (C(fla 1)) =Tz (C(]-v *1)) = BT(71)+a

so the orderings corresponding to the cuts C(1,1) and C(—1, —1) give the same R-
place which is different from the place determined by the orderings corresponding
to C(—1,1) and C(1,—1).
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