Local factorization and monomialization of morphisms
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INTRODUCTION

Statement of the main results.

Suppose that we are given a system of equations

<*) ~T1:f1(ZJ1>312>--->yn)

Lp = f’rl(y17y27"'7yn)

Ipartially supported by NSF



which is nondegenerate, in the sense that the Jacobian determinate of the system is not
(identically) zero. This system is well understood in the special case that fi,..., f, are
monomials in the variables y1, . .., y,. For instance, by inverting the matrix A of coefficients
of the monomials, we can express yi,...,Yy, as rational functions of d-th roots of the
variables x1,...,z,, where d is the determinant of A.

When the f; are not monomials, it is not easy to analyze such a system.

Our main result shows that all solutions of a system (*) can be expressed in the
following simple form. There are finitely many charts obtained from a composition of

monoidal tranforms in the variables = and y

a:¢=<1>¢(fl,...,fn), 1§Z§TL

Yi :‘I’i@p---,@n)» 1 SZS?’L
such that the transform of the system (*) becomes a system of monomial equations

— —a —a
T1 =Y, gy

Ty =Y e G
with det(a;;) # 0. A monoidal transform is a composition of
1) a change of variable

2) a transform

r1 = 1'1(1):62(1)

Our solution is constructive, as it consists of a series of algorithms.

This result can be interpreted geometrically as follows. Suppose that ¢ : X — Y is
a generically finite morphism of varieties. Then it is possible to construct a finite number
of charts X; and Y; such that X; — Y; are monomial mappings, the mappings X; — X
and Y; — Y are sequences of blowups of nonsingular subvarieties, and X; and Y; form
complete systems, in the sense that they can be patched to obtain schemes which satisfy
the valuative criteria of properness.

Our main result is stated precisely in Theorem A.



THEOREM A. (Monomialization) Suppose that R C S are excellent regular local rings such
that dim(R) = dim(S), containing a field k of characteristic zero, such that the quotient
field K of S is a finite extension of the quotient field J of R.

Let V' be a valuation ring of K which dominates S. Suppose that if my is the maximal
ideal of V, and p* = my N S, then (S/p*),- is a finitely generated field extension of k.
Then there exist sequences of monoidal transforms (blow ups of regular primes) R — R’
and S — S’ such that V dominates S’, S’ dominates R’ and there are regular parameters
(1,0, xn) in R, (y1,...,ypn) in S, units 61, ...,0, € S’ and a matrix (a;;) of nonnegative
integers such that Det(a;;) # 0 and

%) r1 =yt yytnoy

Tp =Y7" Yo" O,

With the assumptions of Theorem A, An example of Abhyankar (Theorem 12 [Ab6))
shows that it is in general not possible to perform monoidal transforms along V' in R and S
to obtain R — S’ such that R’ — S’ is (a localization of) a finite map. As such, Theorem
A is the strongest possible local result for generically finite maps.

A more geometric statement of Theorem A is given in Theorem B. A complete variety
over a field k is an integral finite type k-scheme which satisfies the existence part of the

valuative criterion for properness. Complete and separated is equivalent to proper.

THEOREM B. Let k be a field of characteristic zero, ® : X — Y a generically finite
morphism of nonsingular proper k-varieties. Then there are birational morphisms of non-
singular complete k-varieties o : X1 — X and 3 :Y; — Y, and a morphism ¥ : X; — Y}

such that the diagram

X, Yy
l l
X * v

commutes, « and (3 are locally products of blowups of nonsingular subvarieties, and W is
locally a monomial mapping. That is, for every z € Xy, there exist affine neighborhoods
Vi of z, V of x = «a(z), such that o : Vi — V is a finite product of monoidal transforms,
there exist affine neighborhoods Wy of ¥(z), W of y = a(¥(2)), such that §: Wy — W is
a finite product of monoidal transforms, and ¥ : Vi — W is a mapping of the form (**)

in some uniformizing parameters of V, and Wj.
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Here a monoidal transform of a nonsingular k-scheme S is the map 7" — S induced
by an open subset T" of Proj(é6Z™), where Z is the ideal sheaf of a nonsingular subvariety
of S. We give a proof of Theorem B in chapter 7.

In the special case of dimension two, we can strengthen the conclusions of Theorem
B.

THEOREM B2. Let k be a field of characteristic zero, ® : S — T a generically finite
morphism of nonsingular proper k-surfaces. Then there are products of blowups of points
(quadratic transforms) « : S1 — S and 3 : Ty — T, and a morphism ¥ : S; — T such

that the diagram

s, Y on
! !
s * T

commutes, and ¥ is locally a monomial mapping. That is, for every z € Sy, there exist
affine neighborhoods Vy of z and Wy of W(z), such that ¥ : V; — W is a mapping of the

form (**) in some uniformizing parameters of V; and W7.

In the case of complex surfaces, a proof of Theorem B2 follows from results of Akbulut
and King (Chapter 7 of [AK]).

We also prove, as a corollary of Theorem A, a local theorem on simultaneous resolution
of singularities, which is valid in all dimensions. This theorem is proven in dimension 2 (and
in all characteristics) by Abhyankar in Theorem 4.8 of his book “Ramification theoretic
methods in algebraic geometry” [Ab3].

THEOREM S. (Theorem 1.1 [C2]) Let k be a field of characteristic zero, L/k an algebraic
function field, K a finite algebraic extension of L, v a valuation of K/k, and (R, M)
a regular local ring with quotient field K, essentially of finite type over k, such that v
dominates R. Then for some sequence of monodial transforms R — R* along v, there
exists a normal local ring S* with quotient field L, essentially of finite type over k, such

that R* is the localization of the integral closure T' of S* in K at a maximal ideal of T.

Stronger results hold for birational morphisms, morphisms which are an isomorphism
on an open set. A birational morphism of nonsingular projective surfaces can be factored
by a product of quadratic transforms. This was proved by Zariski, over an algebraically
closed field of arbitrary characteristic, as a corollary to a local theorem on factorization
(on page 589 of [Z3] and in section II.1 of [Z4]). The most general form of this Theorem
is due to Abhyankar, in Theorem 3 of his 1956 paper [Ab2]. Abhyankar proves that an
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inclusion R C S of regular local rings of dimension 2 with a common quotient field can be
factored by a finite sequence of quadratic transforms (blowups of points).

In higher dimensions, the simplest birational morphisms are the monoidal transforms.
A monoidal transform is a blowup of a nonsingular subvariety. Sally [S] and Shannon
[Sh] have found examples of inclusions R C S of regular local rings of dimension 3 with a
common quotient field which cannot be factored by a finite sequence of monoidal transforms
(blowups of points and nonsingular curves).

In [C], we prove the following Theorem, which gives a positive answer to a conjecture
of Abhyankar (page 237 [Ab5], [Ch]), over fields of characteristic 0. In view of the coun-
terexamples to a direct factorization, Theorem B is the best possible local factorization

result in dimension three.

THEOREM C. (Theorem A [C]) Suppose that R C S are excellent regular local rings such
that dim(R) = dim(S) = 3, containing a field k of characteristic zero and with a common
quotient field K. Let V' be a valuation ring of K which dominates S. Then there exists a
regular local ring T', with quotient field K, such that T' dominates S, V dominates T', and
the inclusions R — T and S — T can be factored by sequences of monoidal transforms

(blowups of regular primes).

It is natural to ask if the generalization of this three dimensional factorization theorem
is possible in all dimensions by constructing a factorization by a sequence of blowups and
blowdowns with nonsingular centers along a valuation. In this paper, we prove the following

theorem which gives a positive answer to this question in all dimensions.

THEOREM D. (Factorization 1) Suppose that R C S are excellent regular local rings of
dimension n > 3, containing a field k of characteristic zero, with a common quotient field
K. Let V be a valuation ring of K which dominates S. Suppose that if my is the maximal
ideal of V, and p* = my N S, then (S/p*),- is a finitely generated field extension of k.

Then there exist sequences of regular local rings contained in K

Rl Rn—2

/ AN S N /! AN
R Sl Sn—3 Sn—QIS



such that each local ring is dominated by V and each arrow is a sequence of monoidal

transforms (blow ups of regular primes). Furthermore, we have inclusions R C S; for all i.

In the special case n = 3 of Theorem D, we get the triangle of Theorem C.

The proofs of the above theorems are essentially self contained in this paper. We only
assume some basic results on valuation theory (as can be found in [Ab3] and [ZS]) and the
basic resolution theorems of Hironaka [H|. The Hironaka results are essentially only used
in the case of a composite valuation, to establish the existence of a nonsingular center of
a composite valuation.

A long standing conjecture in algebraic geometry is that one can factor a birational
morphism X — Y between nonsingular projective varieties by a series of alternating
blowups and blowdowns with nonsingular centers (c.f. [P]). We will refer to this as the
global factorization conjecture. In [P] an example is given of Hironaka, showing that it
is not possible in dimension > 3 to always factor birational morphisms of nonsingular
varieties by blowups with nonsingular centers.

Our Theorem D shows that there is no local obstruction to the global factorization

conjecture in any dimension. We prove a local form of this conjecture.

THEOREM E. Suppose that X — Y is a birational morphism of nonsingular projective n-
dimensional varieties, over a field of characteristic zero, and v is a valuation of the function
field of X. Then there is a sequence of projective birational morphisms of nonsingular
varieties

X1 Xn—l
e N SN / N\
X Yl Yn—l Yn—2 =Y
such that each morphism is a product of blowups of nonsingular subvarities in a Zariski

neighbourhood of the center of v.

THEOREM F. Let k be a field of characteristic zero, ¢ : X — Y a birational morphism
of nonsingular proper k-varieties of dimension n. Then there is a sequence of birational

morphisms of nonsingular complete k-varieties o; @ X;41 — X; and 3; : X;41 — Yip1

X1 anl

e N\ SN / N\
X Yl Yn—l Yn_QZY

such that each morphism is locally a product of blowups of nonsingular subvarieties. That

is, for every z € X;i1, there exist affine neighborhoods W of z, U of x = «;(z), V of
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y = Pi(z) such that a; : W — U and B; : W — V are finite products of monoidal

transforms.

Theorem F is proved in dimension 3 by the author in [C]. The proof of Theorem
F is exactly the same, with the use of Theorem D from this paper, which is valid in
all dimensions. By Theorem D, for each valuation of the function field K of X, there
exist local rings for which the conclusions of Theorem D hold. These local rings can be
extended to affine varieties which are related by products of monoidal transforms. By
the quasi-compactness of the Zariski manifold (Theorem VI.17.40 [ZS]) all valuations of
K are centered at finitely many of these affine constructions. We can then patch these
affine varieties along the open sets where they are isomorphic to get complete k-varieties
as desired. The proof is similar to that of Theorem B given in Chapter 7.

The Monomialization Theorem is a ”resolution of singularities” type problem. Some
of the difficulties which arise in it are related to those which appear in the problems of
resolution of (char. 0) vector fields (c.f [Cal, [Se]), and in resolution of singularities in
characteristic p > 0 (c.f. [Ab4], [Co], [G], [L2]). Resolution of vector fields is an open
problem (locally )in dimension > 4 and is open (globally) in dimension > 3. Resolution of
singularities in characteristic p > 0 is an open problem in dimension > 4.

Some of the many important papers which are directly concerned with the global
factorization problem are Hironaka [H1], Danilov [D], Crauder [Cr], Pinkham [P].

An important special case where the global factorization problem has been solved is
toric geometry. The solution is in the series of papers Danilov [D2], Ewald [E], (dim 3)
and Wlodarczyk [W], Morelli [M], Abramovich, Matsuki, Rashid [AMR] (dim n).

A birational morphism of nonsingular toric varieties can be thought of as a union of
monomial mappings on affine spaces. In toric geometry, the global factorization problem
becomes more tractable than in the general case of arbitrary polynomial mappings, since
the problem can be translated into combinatorics.

Morelli’s main result [M] is that a birational morphism of proper nonsingular toric
varieties can be factored by one sequence of blowups (with nonsingular centers) followed
by one sequence of blowdowns (with nonsingular centers).

Our main result, Theorem A - Monomialization, allows us to reduce the factorization
problem (locally) to monomial mappings. If we then make use of Morelli’s result, which says
(locally) that a birational monomial mapping can be factored by one sequence of blowups,
followed by one sequence of blowdowns, we obtain an even stronger local factorization

theorem than Theorem D.



Abhyankar has conjectured (page 237 [Ab5], [Ch]) that in all dimensions it is possible
to factor a birational mapping along a valuation by a sequence of blowups followed by a
sequence of blowdowns with nonsingular centers. This is the most optimistic possible local
statement.

We prove the following Theorem, which proves Abhyankar’s conjecture in all dimen-

sions (over fields of characteristic 0).

THEOREM G. (Factorization 2) Suppose that R C S are excellent regular local rings of
dimension n, containing a field k of characteristic zero and with a common quotient field
K. Let V be a valuation ring of K which dominates S. Suppose that if my is the maximal
ideal of V, and p* = my N S, then (S/p*),~ is a finitely generated field extension of k.
Then there exists a regular local ring T, with quotient field K, such that T" dominates S,
V' dominates T', and the inclusions R — T and S — T' can be factored by sequences of

monoidal transforms (blowups of regular primes).

The solution to Abhyankar’s conjecture (as stated in [Ch]) is given in Theorem H.

THEOREM H. Suppose that K is a field of algebraic functions over a field k of characteristic
zero, with trdegy K = n, R and S are regular local rings, essentially of finite type over k,
with quotient field K. Let V' be a valuation ring of K which dominates R and S. Then
there exists a regular local ring T, essentially of finite type over k, with quotient field K,
dominated by V', containing R and S, such that R — T and S — T can be factored by

products of monoidal transforms.

In dimension 3, Theorems G and H have been proven by the author in [C]. Theorem
A, which shows that it is possible to monomialize a generically finite morphism along a
valuation, is essential in this proof.

Hironaka and Abhyankar (section 6 of chapter 0 [H] and page 254 [Ab5]) have conjec-
tured that a birational morphism of nonsingular projective varieties can be factored by a
series of blowups followed by a series of blowdowns with nonsingular centers.

Our Theorem G shows that there is no local obstruction to this global factorization

conjecture in any dimension.



We prove the following global analogue of Theorem G.

THEOREM 1. Let k be a field of characteristic zero, ¢ : X — Y a birational morphism of
nonsingular proper k-varieties. Then there exists a nonsingular complete k-variety Z and

birational complete morphisms o : Z — X and (3 : Z — Y making the diagram

A

/ N
X — Y

commute, such that a and [ are locally products of monoidal transforms. That is, for
every z € Z, there exist affine neighborhoods W of z, U of x = «a(z), V of y = 3(z) such

that o : W — U and 8 : W — V are finite products of monoidal transforms.

Here a monoidal transform of a nonsingular k-scheme S is the map T" — S induced
by an open subset T" of Proj(Z™), where Z is the ideal sheaf of a nonsingular subvariety
of S.

Theorem I is proved in dimension 3 by the author in [C]. The proof is exactly the
same, with the use of Theorem G from this paper, which is valid in all dimensions. The
method of proof is similar to Theorem B, which is proved in Chapter 7.

The author would like to thank the referee for a very careful reading of the manuscript

and for helpful comments.

Geometry and valuations.

A valuation ring of a field of algebraic functions K will dominate some local ring of
a projective model V' of K. This leads to the ”valuative criterion for properness” (c.f.
Theorem I1.4.7 [Hal).

The Zariski manifold M of K is a locally ringed space whose local rings are the
valuations rings of K, containing the ground field &k (c.f chapter VI, section 17 [ZS], [L1],
section 6 of chaper 0 [H]). M satisfies the universal property that for any morphism of
proper k-schemes ¥ : X — Y such that X and Y have function fields (isomorphic to) K,

there are projections 71 : M — X and my : M — Y making a commutative diagram

M

/ N\
X — Y.

When K is a 1-dimensional function field, the only nontrivial valuation rings are the local

rings of the points on the nonsingular model of K. As such, a projective nonsingular curve
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can be identified with its Zariski manifold (c.f. 1.6 [Hal]). If K has dimension > 1, K has
many non-noetherian valuations, and M is far from being a k-scheme.

The main result of Zariski in [Z2] is his Theorem U;, which states that for a valuation
B of a field of algebraic functions K over a ground field of characteristic 0, there is a
projective model V' of K on which the center of B is at a nonsingular point of V.

Our Theorems A, D, G and H are direct analogues of Theorem U; for generically finite
and birational morphisms of varieties.

Zariski obtained a solution to ”the classical problem of local uniformization” from his
Theorem U;. In the language of schemes (c.f. section 6 of chapter 0 [H]) Zariski’s result
shows that for any integral proper k-scheme X (where k is a field of characteristic 0) there
exists a complete nonsingular integral k-scheme Y and a birational morphism ¥ — X.
A complete variety over a field k£ is an integral finite type k-scheme which satisfies the
existence part of the valuative criterion for properness.

Our Theorems B, B2, F and I are analogous to Zariski’s solution of "the classical

problem of local uniformization”.

Overview of the proof.

The main thrust of the paper is to acheive monomialization. Theorem A proves
monomialization for generically finite extensions. The corollaries, Theorems B through I
are then easily obtained.

Theorem A is an immediate corollary of Theorem 4.3. Theorem 4.4 is a stronger
version, valid for birational extensions.

In fact, Theorems 4.3 and 4.4 prove more than monomialization. They produce a
matrix of exponents A = (a;;) which has a very special form, depending on the rational
rank of the rank 1 valuations composite with V.

Theorem 4.4 reduces the proof of Theorem D (Local factorization) to the special case
where dim R = dim S = n and V has rank 1 and rational rank n. Factorization in the
special case n = 3 and V has rational rank n = 3 was solved by Christensen in [Ch].
We generalize Christensen’s algorithm in Theorem 5.4 to prove factorization when V' has
rational rank n. The proof of Theorem 5.4 uses only elementary methods of linear algebra.
Theorem D then follows from Theorem 4.4.

Now we will discuss the proof of Theorem 4.3. The most difficult part of Theorem 4.3
is the case where v has rank 1, which is proved in Theorem 4.1. Almost the entirety of the
paper (chapter 3) is devoted to the proof of Theorem 4.1.

Suppose that v has rank 1 and rational rank s. Then it is not difficult to construct
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sequences of monoidal transforms R — R(1) and S — S(1) such that v dominates S(1),
S(1) dominates R(1), R(1) has regular parameters (z1(1),...,2,(1)), S(1) has regular
parameters (y1(1),...,yn(1)) such that

./L’l(l) — yl(l)cll(l) . y5(1)615(1)61

z4(1) = y1<1>c51(1) . ‘ys(l)c”(l)ds

where det(c;;(1)) # 0 and ¢; are units in S(1). This step is accomplished in the proof of
Theorem 4.1.

The inductive step in the proof is Theorem 3.12, which starts with monoidal trans-
form sequences (MTSs) R — R(0) and S — S(0) such that v dominates S(0), S(0) dom-
inates R(0), R(0) has regular parameters (z1(0),...,z,(0)), S(0) has regular parameters
(y1(0),...,yn(0)) such that

(1) 5131(0) = yl (0)611(0) e ys(o)cls(0)51

zs(0) = 1(0)c31(0) ey (0)638(0)58

where det(c;;(0)) # 0 and d; are units in S(0), and construct MTSs R(0) — R(t),
S(0) — S(t) such that v dominates S(t), S(t) dominates R(t), R(t) has regular parameters
(x1(t),...,zn(t)), S(t) has regular parameters (y1(t),...,yn(t)) such that

(2) 21(t) = g1 () -y (1) O,

2s(t) = y1 (£)1 D -y (1) D5,

Ts1(t) = Ys41(t)

T141(t) =Yg (¢)
where det(c;;(t)) # 0 and d; are units in S(t).
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To prove Theorem 3.12, we make use of special sequences of monoidal transforms which
are derived from the Cremona tranformations constructed by Zariski in chapter B of [Z2],
using an algorithm of Perron. We will call such transformations Perron transforms. Our
proof makes use of these transforms in local rings of etale extensions, giving the transforms

the special form

(3) 5171(@) =1 (Z + 1)a11(i+1) . '-Ts(i + 1)a13(i+1)c?_|1_,f+1(i+1)

x1(i + 1)as1(i+1) ez (i 1)ass(i+1)6?i1s+1(i+1)

z1(i + 1)a5+1,1(i+1) ez (i 1)as+1,s(i+1)(xr(i +1) + 1)C?j{1,s+l(i+1)

xs()
x, (1)

n (Z) =1 (Z + l)bll(i—i—l) . -ys(i + 1)bls(i+l)d?_1’_’i+l(i+1)

N - 1 ’L . ss Z bs,s 74+1
ys(i) = g1 (i + 1) 0D Ly (i 1)beeHD) g (FD
yr(i) =y i+ )P Dy (64 1P D (g, (54 1) 4 ] O

where det(a;;(i + 1)) = £1 and det(b;;(i + 1)) = %1, ¢i41, di11 are algebraic over k.

Zariski observes on page 343 of [Z1] that his Cremona transformations have ”the same
effect as the classical Puiseux substitution z = z¥,y = z/'(c1+y1) used in the determination
of the branches of the curve ¢(z,y) = 0.” ?The only difference - and advantage - is that
our transformation does not lead to elements x1,y; outside the field k(x,y).”

Our transforms (3) do induce a field extension. They are the direct generalization of
the classical Puiseux substitution to higher dimensions. We must pay for the advantage of
the simple form of the equations by introducing many difficulties arising from the need to
make finite etale extensions after each transform. We call a sequence of such transforms a
uniformizing transform sequence (UTS).

Theorem 3.12 is proved by first constructing UTSs such that (2) holds, and then using
this partial solution to construct sequences of monoidal transforms such that (2) holds.
The UTSs are constructed in Theorems 3.8 and 3.12, and this is used to construct MTSs
such that (2) holds in Theorems 3.9, 3.10, 3.11 and 3.12.

Underlying the whole proof is Zariski’s algorithm for the reduction of the multiplicity
of a polynomial along a rank 1 valuation, via Perron transforms. This algorithm is itself a

a generalization of Newton’s algorithm to determine the branches of a curve singularity.
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We will now give an outline of the proof of Theorem 3.12 (the inductive step). We
will give a formal construction, so that we need only consider UTSs, where the basic ideas

are transparent. We will construct UTSs along v (here the U(7), T'(i) are complete local

rings)
vo) — v — - — U
(4) T 1 1
o) — 1) — - = TQ)
such that 7'(i) has regular parameters (z1(7),...,x,(i)), U(i) has regular parameters

(y1(2),...,yn(i)) such that

(5) 21(1) = y1 (1)@ gy (3)r= @)

xs(i) = 1 (i)csl(i) .. .ys(i)css(i)

Ts41(1) = Ys41(2)

21(i) = yi(i)

where det(c;;(7)) # 0 for 0 < i <.
We will presume that £ is algebraically closed, and isomorphic to the residue fields of
R, S and V. We will also assume that various technical difficulties, such as the rank of v
increasing when v is extended to the complete local ring U (i), do not occur.
In Theorem 3.8 it is shown that
(6) Given f € U(0), there exists (4) such that f = y;(t)% - - y,(t)%~ where v is a unit in
U(t).
(7) Given f € U(0) — k[[y1, - .., ui]], there exists (4) such that

f=Py(t),...om®) +y @) - ys () pipa (t).

where P is a power series.

Theorem 3.12 then shows that it is possible to construct a UTS (4) such that z;41(t) =
Y141 (), which allows us to conclude the truth of the inductive step.
We will now give a more detailed analysis of these important steps. For simplicity, we

will assume that s = rat rank(rv) = 1. This is the essential case.
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Suppose that R has regular parameters (x1,...,2,), and 2 < i < n. Zariski con-
structed (in [Z1], and in a generalized form in [Z2]) a MTS R — R(1) where R(1) has
regular parameters (z1(1),z2(1),...,z,(1)) by the following method. Since v has rational

rank 1, we can identify the value group of v with a subgroup of R.

(I‘i ) a;1 (1)

1% —_— =

I au(l)

where a;1(1),a11(1) are relatively prime positive integers. We can then choose positive
integers a;1(1),a;;(1) such that aq1(1)a;;(1) — ag;(1)a;1 (1) = 1. Then

V(a:cf“'(l)a:-*a”(l)) >0

(2

(e Vi) =0

There exits then a uniquely determined, nonzero ¢; € k such that

V(xl_a“(l)xq“(l) —c1) > 0.

?

We can define z;(1) for 1 < j <n by

(8) 21 = 21(1) W (2;(1) + ¢q)2: D
T; = xl(l)a“(l)(:ci(l) + cl)aii(l)
Zj ::cj(l) lfj 75 1 or 2.

Set R(1) = R[z1(1), 2i(1)] (2, (1),....en (1))

Using such transformations, Zariski proves

THEOREM 11. (Zariski [Z1], [Z2]) Given f € R, there exists a MTS along v
R— R(1) — --- — R(t)

such that f = x1(t)%y where gamma is a unit in R(t).

In our analysis, we will consider the transformation (8) in formal coordinates. R(1)

has regular parameters (Z1(1),Z2(1),...,T,(1)) defined by

ali(l)

71(1) = 21 (1) (@i (1) + €1) 0@
Zi(1) = (z;(1) + cl)ﬁ _ cf“%
T;(1) = 2;(1) if j # 1 or i.
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In these coordinates, (8) becomes

I :fl(l)au(l)

1
z; =71 (1) W (7 (1) + ;D)
Zj ij(l) lfj 75 1 or s.

We have inclusions

—_

T'(1) = R(1) — T"(1) — T(1) = R(1)

where

is a localization of a finite etale extension of R(1). We can extend v to a valuation of
the quotient field of ]?(T) which dominates R/(T) For simplicity, we will assume that this
extension still has rank 1.

We will construct sequences of UTSs

—

1 - 1T'1) - T()=T(1)

!

T'@2) — T2 - T(2)=T2)
l
T'(3)

where each downward arrow is of the form (8).
To prove the inductive step, we must construct UTSs (4) starting with R — S. By
induction, we may assume that R has regular parameters (x1,...,x,) and S has regular

parameters (y1, ..., %Y,) such that

¢
r1 =y;"01
T2 = Y2
Ty =Y

1
where §; is a unit in S. (Recall that we are assuming that s = 1.) By Hensel’s lemma, §,°
1

is a unit in S. We then can start our sequence of UTSs by setting U”(0) = S[éf_o]@lw@n)
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and 7”(0) = R, with regular parameters (Z1,...,7,) and (7, ...
T =7y
Ty =Yy
T =Y
We will construct 2 types of UTSs
U//(O) N U//(l)
7 7
T'(0) — T"(1)

.U, ), such that

A transformation of Type I is defined when 2 < 7 < [. The equations defining the horizontal

maps are then

T =T (1)

z; =7 (1) D (@(1) + 1)

fj :fj(l) lfj 7A 1or i,

7, =7, (1)

Ui =5 (D" (@;(1) + d)

9, =7,(1)if j #1ori.
an(l) _v(@)  v(m) _ ba(l)
air(l)  v(@1)  tov(¥)  tobii(1)

(an(l),ail(l)) = 1 implies an(l) ‘ tobll(l).
We thus have

tob11 (1)

51(1) = @1(1) a1 (1) — yl(l)h

A transformation of Type II is defined when [ < i. The equations defining the horizontal

maps are then

Z;=7;(1)for 1 <j<n

16



(1)
(WP (g,(1) + dy)
¥; =7;(1)if j # 1 or 4.

s s
I
< g

In this case T"(0) = T"(1).

In this way, we can construct sequences of UTSs

S — U0 —- vl — --- — U
) 1 T i
R — T — T1A) — -+ — T(t)

such that T'(k) has regular parameters (Z1(k), ..., Z,(k)) and U (k) has regular parameters
(1(k),...,7,(k)) related by

(B) 71 (k) =7, (k)™

for 0 < k <t. The transformations T'(k) — T (k+1) and U(k) — U(k+1) are of type I or
IT, and we also allow changes of variables, replacing Z; (k) with Z;(k)— P(Z1(k), ..., ZT;—1(k))
and replacing 7, (k) with 7,(k) — P(Z1(k),...,T;—1(k)) if 2 < ¢ <[, for some power series
P, and we may replace g, (k) with 7,(k) — P(y,(k),...,7;_1(k)) if I <.

To prove the induction step, we must prove Theorems 12 and I3 below.

THEOREM 12. (Theorem 3.8 with s = rat rank v =1))
(1) Given f € U(0), there exists a sequence (A) such that

I =7 (t)d

with v a unit in U(t). (If f € k[[yy,...,7,]], the transformations of type I and II in
the sequence involve only the first T variables.)

(2) Suppose that f € k[[Uq,---,Uml] — k[[U1,---,7;]]. Then there exists a sequence (A)
such that

f=P@®), .5 {t) + T ()77, ).
THEOREM I3. (Theorem 3.12) there exists a sequence (A) such that T;1(t) =7, (1).

17



Outline of proof of (1) of Theorem I2. The proof is by induction on 7. Suppose that

(1) is true for 7 — 1. We will assume that 7 <[, which is the essential case. Recall that

— —t
1 =Yy
To =Yy
T =7

Let w be a primitive t{* root of unity. Set

to—1
g(fla' . '7ET) = H f(uﬂgl?yZ?' . 7@7’)'
1=0

f | gin U(0). We will perform a UTS (A) to get g = Z1(¢)?A where A is a unit in T(¢).
Then f =7, ()1 A’ where A’ is a unit in U(¢).

To transform g into the form g = Z1(t)?A, where A is a unit, we will make use of
an algorithm of Zariski ([Z1], [Z2]) to reduce the multiplicity of g. Initially set g = Z4gq

where 71 does not divide gg. Set
r = mult(go(0,...,0,Z,)).

0<r<oo. If r=0, gpis a unit, and we are done. Suppose that 0 < r. We can write

ai(flv s afT—l)fi

- 11

A, T+ Y ag TV + TN Q
1 j

(2

where the terms a, T3¢ have minimum value p, Nv(Z;) > p, and the ag, T2 terms are the
finitely many remaining terms. We must have a; < r for all «;, and «; = r implies «; is a
unit.

By induction, we can perform UTSs in the first 7 — 1 variables to reduce to the case

Ao, = T1 U, (T1y oo, Trq)
_5; _ _
ag, =Ty ug, (T1,...,Tr_1)
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where u,, and ug, are units in 7'(0). Now we make a UTS
T =T (1)

r =T ()7 (T (1) + ).

sl
I

d

go = DTN g (7 (1) + ) -
=1

d
= 51(1)6(2 Ua, (T7 (1) + 1) +T19).

Set
d
g1 =Y ta, (@ (1) + )™ + T,
=1

r1 = mult(g1(0,...,0,7,(1)).

r1 < oo and r1 < 7 since all a; < r. Set

If we do not have a reduction in r, so that r; = r,

(@ (1) + 1) = e (1)
for some nonzero e € k. Thus ((t) = e(t — ¢1)" has a nonzero t"~! term. We conclude that
Qg =T, Ay, 1S a unit, ag_; =r — 1 and

p= V(aadfr> = V(aad—15:—_1>‘

Thus
V(ET) = I/(aad71 (fl, ce ,ET_l)).
Since 7. is a minimum value term of f,
v(zTr) <v(zp) <v(f).

Now make a change of variables in T'(0), replacing T, with . = Z, — Aan,_, where A € k
is chosen to make v(Z,) < v(Z.). Repeat the above procedure with these new variables.
We eventually get a reduction in r. In fact if we didn’t, we would have an infinite bounded
sequence in T'(0)

v(T,) <v(@) < - <v(f)

which is impossible (by Lemma 1.3).

19



Outline of proof of (2) of Theorem I2.
= Za’i(gla s 7gm71)y’7in'
i=0

Set
Q= Zai@la e U1
i>0
After possibly permuting the variables ¥, ,...,%,,, we can assume that Q) # 0. Q =
1t Qo. where 7, does not divide Q. Set r = mult (Qo(0,...,0,7,,)). 1 <7 < occ.
Suppose that r > 1. Write

d
QO = Zaai(yla"'aym—l)y?ni +
=1

where the 0,70 are the minimum value terms. By construction, all a; > 0. By (1) of
Theorem I1, we can perform UTSs in the first m-1 variables to get o; = u,, 7]’ where u,,

are units. Then we can perform a UTSs in y; and %, to get

Qo =T () ( 0 G (1) + )™ + T (1)),

Set
Q1 = Zaal U (1) + )™ + 712 =D g,

Set 1 = mult (Q1(0,...,0,7,,(1)). 0 < 7 < oo and 1 < 7. Suppose that we do
not have a reduction in r, so that r1 = r. Then as in the proof of (1) of Theorem 12,
V(Un) = V(0ay_s @1, Um—1))- Now make a change of variables in U(0), replacing 7,,
with

y;n = ym - Agadfl (yb R ym—l)’

where A € k is chosen to make v(7,,) < v(7,,). We have

2o <0 (82) <0 (20).
of _ Of

Repeat the above algorithm with 7, replaced with 7/, in U(0). Since - = 7 We get
a reduction in r after finitely many iterations, by an argument similar to that at the end
of the proof of (1) of Theorem 12.
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We can then repeat this procedure to eventually get an expression

f = L(ylv s 7§m—1) +g7110@
where mult Q(0,...,0,7,,) = 1.
By induction, we can perform UTSs in the first m — 1 variables only to get
L=L'Gy,.-.5) +71" @
where mult (Q(0,...,0,%,,_1) = 1. Then f is in the desired form.

Outline of proof of Theorem 13.
By (2) of Theorem 12 we may assume that

to
1

8
o

I
<

=]
o

I
Q|

2

xp

I
<

I
_ _ _ —dy—
Ti41 =P, ) + Y1 Vg1
Let w be a primitive t{* root of unity. Set

to—1

9(T1,..., Tyy1) = H (Ti41 — P(W' Y1, Ty -5 7))
i=0

Y41 divides g in U(0). Set r = mult (g(0,...,0,741)). 1 <7 < oo.
Suppose that » = 1. Then in 7'(0),

g = unit(z;11 + (71, ...,71))
= unit(P + 777,11 + D).
since ¥, divides g, we must have P = —®. We can then replace 7,1 with
_ —dy—
Ty + @ = y1lyl+1=

which can be factored to achieve the conclusions of Theorem 13.
Now suppose that » > 1. By (1) of Theorem 12, there exists a UTS in the first [

variables so that P = @iflﬁ@l, ...,7;), where P is a unit, and

d
_ — ()=
9= E Ao T " Xyfq + -
i=1
where the Eaiflaj_l are the minimum value terms and the @, (71, ...,7;) are units.
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Case 1. Assume that v(P) > v(g™). Then T;1, = 7 G where G = 3"~ 4P + Yig1-
Since mult (G(0,...,0,7;,;) = 1, we can factor this to get in the form of the conclusions
of Theorem I3.

Case 2. Suppose that v(P) < v(7%). Then Ty, = 7' P; where P; = ﬁ—i—@fl_hl@lﬂ is
a unit. Perform a UTS T'(0) — T'(1) defined by

T =7 (1) W

Tig1 = 21 (1) (@0 (1) + ).

We will show that this map factors through U(0).

V(@) _ ap1a (1) hv@) _h
V(fl) all(l) toV(?l) to '

Thus hy = tya;41.1(1) and ¢ = t1a11(1) for some positive integer ¢;.

z1(1) = 7!
—hy

_ _ Y1 5 _ P
Tip1(1) + ¢ = _x—l(l)aHlal(l)Pl =P

so that
Tiv1 = Pi(Yy, - 0) + U4

Set g =71(1)¢g1. m1 = mult (g1(0,...,0,%;41(1)) < r. If r;y = r, we can replace T;;1 with
Ti41 — o(T1,...,7;) and repeat to eventually get r < 7.
We have 7, 1(1) = 7,1 and §i4q | g, so that g,.4(1) | g. Z1(1) = 71(1)" implies

r1 > 0. Now we can repeat the above argument to eventually either reach » = 1 or case 1.
PRELIMINARIES

Valuations.

LEMMA 1.1. Suppose that R is a regular local ring, with quotient field K. Then R = KNR
in the quotient field of R.

PROOF: Suppose that f € KN R. Then there exist g,h € R such that f = ¥, with
(g,h) =11in R. If f € R, there exists an irreducible s € R such that s | h but s does not
divide g. Let s’ € R be an irreducible such that (') "R = (s). hf = g in R. s' | h implies

s’ | g in R. hence s | g in R, a contradiction.
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LEMMA 1.2. Let R be a regular local ring with quotient field K, maximal ideal m. Let
v be a rank 1 valuation of K dominating R, with value group I', valuation ring O,,. Let
K be the completion of K with respect to a metric | - | associated to v. There exists a
valuation v of K extending v, with valuation ring Oy such that Oy /my = O, /m,, and the
value group of v is I' (c.f. Theorems 1 and 2, Chapter 2 [Sch]).

Then there exists a prime p € R and an inclusion R/ p — K which extends R — K.

PROOF: Let {a,} be a cauchy sequence in the m-adic topology of R. Let v(m) = p > 0.
Then v(m”~) = Np implies {a,} is a fundamental sequence with respect to | - |. Hence
there is a natural map ¢ : R—K making

¢ K
/

N —

commute. Let P = kernel ¢.

Lemma 1.3 extracts an argument from page 345 of [Z1].

LEMMA 1.3. Let R be a regular local ring containing a field of characteristic zero and v
a rank 1 valuation of the quotient field of R which has nonnegative value on R. Suppose

that z1,..., zn,... IS an infinite sequence of elements of R such that
v(z1) <v(ze) < - <v(zy) <---

is strictly increasing. Then v(z,) has infinity for a limit.

PROOF: Let m be the maximal ideal of R, K the quotient field of R. Let {t;} be a
transcendence basis of R/m over k. Lift t; to t; € R. Let L be the field obtained by
adjoining the ¢; to k. Then L C R. Let L’ be the algebraic closure of L in K. Then
L' C R since R is normal. Let L be an algebraic closure of L'. K = K ®, L is a field (c.f.
Corollary 2, Section 15, Chapter III [ZS]). Let 7 be an extension of v to K. ¥ has rank 1
since K is algebraic over K. Let R be the localization of R ®;. L at the center of 7. Then
R is a regular local ring dominating R. We can extend 7 to a valuation 7 dominating
R L{[z1,...,7,]], a powerseries ring.

Let p be a positive real number. Let 0 = min(7(x;)). Let n, be the smallest integer
such that n,oc > p. Let g(x1,,2,) € L[[x1,...,7,]] be such that v(g) < p. Write
g = ¢ + ¢" where ¢’ is a polynomial of degree < n,, and ¢” is a powerseries with terms

of degree > n,. Every form in z1,...,, of degree m has value > mo. Hence v(g”) >
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n,o > p. Since v(g) < p, v(g') = v(g). Thus if a powerseries has a value < p, its value is
the value of a polynomial of degree < n,. Hence, among the values assumed by elements
of R, there is only a finite number of values which are less than or equal to a given fixed

real number p.

Birational Transforms.

Suppose that R is a regular local ring, with maximal ideal m, and that z{,...,x, € R
are such that xy,...,x, can be extended to a system of regular parameters (z1,...,z4) in
R. Let I be the ideal I = (x1,...,zy,).

The blow up

T Proj(@ I™) — spec(R)

n>0

is called a monoidal transform of spec(R). Proj(D,,>, ") is a regular scheme. let

pent(m)cC Proj(@ m).

n>0
p € spec(R[Z, -+, 72]) for some i. Then
I In
R— (R[—, -, —
- ( [33@'7 ) 7 ])p

is called a monoidal transform of R. If n = d, so that I = m,

is called a quadratic transform.

In this section we state results of Abhyankar and Hironaka in a form which we will
use. The conclusions of Theorems 1.4 through 1.7 and Theorem 1.9 have been proved by
Hironaka [H] in equicharacteristic zero, and have been proved by Abhyankar [Abl], [Ab4]

in positive characteristic, for varieties of dimension < 3.

DEFINITION 1.4. Let R be a regular local ring. f € R is said to have simple normal
crossings (SNCs), and be a SNC divisor, if there exist regular parameters (x1,...,%,) in

— . aq a . .
R such that f = unit x7" --- 2% for some non-negative integers ay, ..., a,.

THEOREM 1.5. Let R be an excellent regular local ring, containing a field of characteristic
zero. Let X be a nonsingular R-scheme, f : X — spec(R) a projective morphism, h € R.
Then there exists a sequence of monoidal transforms g : Y — X, such that h has SNCs at

every point of Y.

PrOOF: Immediate from Main Theorem II(N) [HJ.
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THEOREM 1.6. Suppose that R, S are excellent regular local rings containing a field k of
characteristic zero such that S dominates R. Let v be a valuation of the quotient field K
of S that dominates S, R — R; a monoidal transform such that v dominates R,. R, is a

local ring on X = Proj(€, > p") for some prime p C R. Let
U ={Q € spec(S) : pSq is invertible }

an open subset of spec(S). Then there exists a projective morphism f : Y — spec(S)
which is a product of monoidal transforms such that if Sy is the local ring of Y dominated

by v, then S; dominates Ry, and (f)~Y(U) — U is an isomorphism.

PRrROOF: Since S is a UFD, we can write pS = ¢gI, where ¢ € S, I C S has height
> 2. Then U = spec(S) — V(I). By Main Theorem II(N) [H], there exists a sequence of
monoidal transforms 7 : Y — spec(S) such that IOy is invertible, and 7=1(U) — U is an
isomorphism. Let S7 be the local ring of the center of v on Y. We have pS; = hS; for
some h € p. Hence R[¥] C S;, and since v dominates S1, R; is the localization of R[7]

which is dominated by S;.

THEOREM 1.7. Suppose that R is an excellent local domain containing a field of charac-
teristic zero, with quotient field K. Let v be a valuation of K dominating R. Suppose
that f € K is such that v(f) > 0. Then there exists a MTS along v

R—R —---—R,

such that f € R,,.

Proor: Write f = ¢ with a,b € R. By Main Theorem II(N) [H] applied to the ideal
I = (a,b) in R, there exists a MTS along v, R — R,, such that IR,, = aR,, is a principal
ideal. There exist constants c,d,u1,us in R, such that a = ca,b = da, o = uia + usb.
Then ujc + usd = 1, so that ¢cR,, + dR,, = R,,, and one of ¢ or d is a unit in R,,. If cis a
unit, then 0 < v(f) = v(§) = v(c) — v(d) implies v(d) = 0, and since v dominates R,, d
is a unit and f € R,,.

THEOREM 1.8. (Abhyankar) Let R, S be two dimensional regular local rings such that R
and S have the same quotient field, and S dominates R. Then there exists a unique finite

sequence
Ro— Ry — -+ — R,

of quadratic transforms such that R,, = S.

PrOOF: This is Theorem 3 of [Ab2].
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Suppose that Y is an algebraic scheme, X, D are subschemes of Y. Suppose that
g:Y =Y, f: X — X are the monoidal transforms of Y and X with center D and
D N X respectively. Then there exists a unique isomorphism of X’ to a subscheme X" of
Y’ such that g induces f (c.f. chapter 0, section 2 [H]). X" is called the strict transform

of X be the monoidal transform g.

THEOREM 1.9. Let R be an excellent regular local ring, containing a field of characteristic
zero. Let W C spec(R) be an integral subscheme, V' C spec(R) be the singular locus of
W. Then there exists a sequence of monoidal transforms f : X — spec(R) such that the

strict transform of W is nonsingular in X, and f is an isomorphism over spec(R) — V.
PRrOOF: This is immediate from Theorem I [H].

THEOREM 1.10. Suppose that R C S are r dimensional local rings with a common quotient
field K, and respective maximal ideals m and n such that S dominates R, S/mS is a finite

R/m module, and R is normal and analytically irreducible. Then R = S.
PRrooOF: This is the version of Zariski’s Main Theorem proved in Theorem 37.4 [N].

THEOREM 1.11. (Theorem 1 [HHS]) Suppose that R is an excellent regular local ring with
quotient field J, K is a finite extension field of J and S is a regular local ring with quotient
field K such that R C S and dim(R) = dim(S). Then S is essentially of finite type over
R.

ProoF: Let (y1,...,yn) be a system of regular parameters in S and suppose that K is
generated by hq,...,h, over J. Let h; = % for 1 < i < r where f;,9;, € S. Let T be the
normalization of Rly1,...,Yn, f1,---, frs01,---,9r], ¢ =m(S)NT, U =T,. By Theorem
110 T, = U.

THEOREM 1.12. Suppose that R is an excellent regular local ring, with maximal ideal m,
S is a regular local ring with maximal ideal n, such that R C S, dim(R) = dim(S) and
the quotient field of S is a finite extension of the quotient field of R. Then there is an
inclusion

RcCS
where R is the m-adic completion of R, S is the n-adic completion of S.

PrOOF: By Theorem 1.11 S is essentially of finite type over R. Since S is universally

catenary, the dimension formula (Theorem 15.6 [M]) holds.
dimR + trdegrS = dimS + restrdegrS
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Since R is analytically irreducible, R is a subspace of S by Theorem 10.13 [Ab4] (A

version of Zariski’s Subspace Theorem”).

We will use the notation m(R) to denote the maximal ideal of a local ring R, k(R) to
denote the residue field R/m(R). R or R” will denote the m(R)-adic completion of R.

Let k be a field, 0 # f(z1,...,2n) € k[[z1,...,2n]]. Let m = (z1,...,2,). Define
mult(f) =rif f em”, f ¢ m"1L.

2 UNIFORMIZING TRANSFORMS

DEFINITION 2.1. Suppose that R is a regular local ring. A monoidal transform sequence

(MTS) is a sequence of ring homomorphisms
R=Ry— R, —Ry—---— R,

such that each map R; — R;11 is a finite product of monoidal transforms.

DEFINITION 2.2. Suppose that R is an excellent regular local ring containing a field k of
characteristic zero, with quotient field K. A uniformizing transform sequence (UTS) is a

sequence of ring homomorphisms

—

—l/ —11 \ —
—l/ —/ \ —
(2,1) Ty — Ty — T
! N\
—l/ —/ \ —
Tn - n Tn

such that Ty = R, the completion of R with respect to its maximal ideal, and for all 7,
T; is the completion with respect to its maximal ideal of a finite product of monoidal
transforms TE of Tél_l. For all i, T;/ is a a regular local ring essentially of finite type over
T; with quotient field K;, such that T; C T;/ C T, and K is a finite extension of K, K

is a finite extension of K; for all i > 0.

To simplify notation, we will often denote the UTS (2.1) by (R,TZ,TH) or by

R—Ty—T,— - —T,.
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We will denote the UTS consisting of the maps

—/ —! —

Tn -1 Tn— 1 T’n -1
—l/ —7 \ —
T, — T, — T,

by Trn_1 — Th.
A UTS (2.1) is called a rational uniformizing sequence (RUTS) if there exists an
associated MTS
R=Ry— Ry — - — Ry,

maps R; — T; such that B; T, for 1 <i < n, and all squares in the resulting diagram

Ty - T1 — - — T,
(2.2) 1 1 1
RO - Rl - - Rn

commute.

Suppose that v is a valuation of K which dominates R and

(2.3) R—Ty—T,—--—T,

is a UTS.

Suppose that vy is an extension of v to the quotient field of Ty such that vy dominates
Ty. The existence of vg is shown in [HS]. If vg dominates Tll we can extend v to a valuation
v1 of the quotient field of T'; which dominates T'.

Then if v; dominates T;, in the same manner we can extend v; to a valuation vy of
the quotient field of T's which dominates T. If we can inductively construct a sequence
v1,...,v, of extensions of v to the quotient fields of T; in this manner, (2.3) is called a
UTS along v. If there is no danger of confusion, we will denote the extensions v; by v.

Suppose that (2.3) is a UTS along a rank 1 valuation v of K. Let I', be the value
group of v. Suppose that 7 is such that 0 < i < n. Let O,, be the valuation ring of v; and
I'), be the value group of v;. I', is a subgroup of I',,. Set

r={perl,,| —a<p<aforsomeacl,}.

T is an isolated subgroup of I',,, since I',, is a subgroup, so there is a prime a in O,,, (which
could be 0) such that T is the isolated subgroup I', of a, (by Proposition 2.29 [Ab3] or
Theorem 15, chapter VI, section 10 [ZS]). Set

p;=anT,={feT;|v(f)>aforallacl,}.
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We will say that v(f) = oo if f € p,.

For the rest of this chapter we will assume that R C S are excellent regular local
rings such that dim(R) = dim(S), containing a field k of characteristic zero, such that
the quotient field K of S is a finite extension of the quotient field J of R. We will fix a
valuation v of K with valuation ring V' such that v dominates S.

Note that the restriction of v to J has the same rank and rational rank that v does
(Lemmas 1 and 2 of section 11, chapter VI [ZS]). Observe that S is essentially of finite
type over R (Theorem 1.11) and R — S is an inclusion (Theorem 1.12).

Suppose that (R,TZ,Tn) and (S,UZ,UTL) are UTSs. We will say that (R,T,Z,Tn)
and (S, UZ,U»,L) are compatible UTSs (or a CUTS) if there are commutative diagrams of

inclusions

—/ —/ J—
(2.4)
—/ —//

. —_— . —
) 7 1

H
Sl S

for 0 < i < n. In particular, the quotient field of Ug is finite over the quotient field of T;/
for all 7, and Ug is essentially of finite type over T;/ for all <.

We will say that UTSs along v (R,TZ,Tn) and (.5, U’;,Un) are CUTS along v if the
extensions of v are compatible in (2.4).

If (R, TZ, T,) and (S, U::, U,,) are RUTSs and CUTSs, then we will say that (R, T:; Tn)l
and (S, U:L,Un) are compatible RUTSs (or a CRUTS).

LEMMA 2.3. Suppose that the CRUTS (R,TZ,Tn) and (S, UZ,UR) have respective asso-
ciated MTSs
R=Ry— Ry — - -— R,

and
S=5S—=5—-—=5,.

Then there is a commutative diagram

R - R — -+ — R,
(2.5) ! ! L.
S - S - - = S,

PRroOOF: This follows from (2.4), (2.2) and Lemma 1.1, since then
RiCRZ’QJ:TZ'QJCUZ'QK:SZ'HK:SZ'
for all 4.
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3. RANK 1

Perron Transforms.

Throughout this chapter we will assume that R C S are excellent regular local rings
such that dim(R) = dim(S), containing a field k of characteristic zero, such that the
quotient field K of S is a finite extension of the quotient field J of R. We will fix a
valuation v of K with valuation ring V' such that v dominates S. Suppose that if my
is the maximal ideal of V, and p* = my NS, then (S/p*),- is a finitely generated field
extension of k. We will further assume that

1) v has rank 1 and arbitrary rational rank s (< dim(\5)).
2) dimg(v) =0 and O, /m,, is algebraic over k.
Let n = dim(R) = dim(S). We will define 2 types of UTSs. Suppose that (R,TH,T)

is a UTS along v and T has regular parameters (Zy,..., ) such that

v() =11,...,v(TL) =T

are rationally independent. Let vy be an extension of v to the quotient field of T" which
dominates T .

We first define a UTS T — T(1) of type I along v. The MTS T - T/(l) is defined
as follows. T/(l) = T}, where h is a positive integer and T}, is constructed as follows.

Set 7;(0) = 7; for 1 < i < s. For each positive integer h define s positive, rationally
independent real numbers 71(h), ..., 7s(h) by the ” Algorithm of Perron” (B.I of [Z2])

)
—
=

|
[S—y
~—

I

71(h) + az(h — 1)75(h)

Ts(h—1) =715_1(h — 1) + as(h — 1)75(h)

where
Tj(h — 1)

o1 = |2

}aQSjSS

the ”greatest integer” in 222; There are then nonnegative integers A;(h) such that

7 = Ay(h)1i(h) + As(h + D) 1o(h) + -+ Ay(h 4+ 5 — 1)74(h)

for 1 <4 <s.
Al(h) Al(h+8—1)
det [ : = (—1)t=D
Ag(h) ... Ag(h+s—1)
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(See formula (47), page 385 [Z2].) These numbers have the important property that

. Ai(h)  m
(3~1) leh—»oor(h) = 7_—1

(See formula (5), page 385 [Z2].) Set z;(0) = &} for 1 < i < n. Define T}, by the sequence
of MTSs along v

—/ ~ ~ —

T =T0) —=T1)— - —>T(h) =T, =T (1)

Where T(i + 1) = T(i)[#1(i + 1), .., (i + 1)](a, (ir1)... z,(i41)) for 0 < i < h — 1.

.....

Fo(i) = Boo1 (i + 1)Fo (i + 1)

v(z;(i)) = 7;(i) for 1 < j <'s. If we set T;(1) = Z;(h), we then have regular parameters

(@1(1),...,Tn(1)) in T'(1) satisfying

(3.2) 5{;’1 = jl(l)Al(h) .. .55(1)A1(h+s—1)

T = fl(l)As(h) .. .Es(l)As(h+sfl)

j/n - En(l)

/!

Then T/(l) =T [z1(1),...,Zs(1)] (7, (1).... 7. (1)) Let T(1) be the completion of T/(l) at its
maximal ideal. Set T”(l) = T/(l). Then for any extension 14 of 1y to the quotient field
of T'(1) which dominates T'(1), T — T(1) is a UTS and (R,Tﬂ(l),T(l)) is a UTS along v.
Note that v(Z1(1)),...,v(Zs(1)) are rationally independent.

Now we define a UTS T' — T(1) of type II,. along v (with the restriction that s 41 <
r < n). The MTS T - T/(l) is constructed as follows. Set v(Z.) = 7,. 7, must be
rationally dependent on 7,...,7s since v has rational rank s. There are thus integers

Ay AL,y Ag such that A > 0, (A, Aq,...,As) =1 and

ATp = AN TL + o+ AgTs.
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First perform aMTST — T (1) which is UTS along v where T(1) has regular parameters
(#1(1),...,2,(1)) defined by & = & (1)A1 ) ...z (1)AP+s=D) for 1 < 4 < 5. Then
v(Z;(1)) = Tz(h) for 1 <i<s, v(#.(1)) =7,. Set

Ni(h) =X MA1(h+i—1)+XAs(h+i—1)+ -+ X As(h+i—1)

for 1 <4 <s. Then
AT = A (h)T(h) + -+ - + As(h)Ts(h).

Take h sufficiently large that all A;(h) > 0. This is possible by (3.1), since A; 71+ - -+ As7s >
0. We still have (A, A1 (h),...,As(h)) = 1 since det(A;(h+j—1)) = £1. After redindexing
the Z;(1), we may suppose that A1(h) is not divisable by A. Let A\j(h) = Au + )\, with
0 < X < A. Now perform a MTS T(1) — T(2) along v where T(2) has regular parameters
(Z1(2),...,2,(2)) defined by

Set 7/ = v(%;(2)) for all 4. 7{,...,7., 7] are positive and
Nrl=Nm+- -+ N7h

where A} = A\, X, = —\;(h) for 2 < i < s. We have thus acheived a reduction in A. By
repeating this procedure, we get a MTS T - T(«) along v where T'(c) has regular param-
eters (Z1(a),...,Zn(a)) such that if 7, = v(#;(«)), 71,...,Ts are rationally independent
and

Tr :X1?1+"'+Xs?s

for some integers \;. Now perform a MTS T'(a) — T(a + 1) which is a UTS of type I
along v where T'(a + 1) has regular parameters (Z1(a + 1),...,Z,(a + 1)) such that if
7 = vl@(a+ 1),

TE =M1+ AT
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for some positive integers );. Finally perform a MTS T'(a+1) — T(a+2) where T(a+2) =
T(a+1)[N],-

Zr(a+1)
a4+ DM (a4 1)

N, =

and ¢ is the center of v on T'(a + 1)[N,]. Set T/(l) = T(a + 2). Since v(N,) = 0, N, has
residue ¢ # 0 in k(T/(l)). Set N; = Z;(a) for 1 < i <'s. Then there exists a matrix (a;;)
such that

7= N@1 | NO1,s+1
II_NI NT’ ’

7= N%s1... N%ss+1
Ty =N, Nyt=s

7 = NIt N%s+1s+1
z, =N Netts

and det(a;;) = £1. T/(l) is a localization of T//[Nl, .oy Ngy Ny
Let T(1) be the completion of T/(l) at its maximal ideal. 1 extends to a valuation
of the quotient field of T'(1) which dominates 7'(1). Let v; be such an extension. T'(1) has

a regular system of parameters (z}(1),...,2% (1)) defined by

(33) B = (1)l (1) (@ (1) + e

S

= @i el () (1) + 0

S T

7 = (1) () (1) o),

Det(a;;) = £1 and v4(23(1),...,v1(x%(1)) are rationally independent. Set

S

ail -+ Qs aii s ai,s+1
¢=Det | : .| Det : : #0
sl Qgs As+1,1 - Qs41,5+1
since v(&}),...,v(Z.) are rationally independent. Define rational numbers 71, ...,7s by
M air o a1\ [ —01s41
Vs as1 - Qss —0gs, 541
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v = =+ for some m; € N. By Cramer’s rule,

ai,1 ai1,s+1 84! 0
as71 o as7s+1 ’75 9
As+1,1 °° Qs41,541 1 kel

Y1as+1,1 + -+ VsQsq,s + As41,54+1 = 1/E
Let (bZ]) = (aij)_l. Then

Ny = xf(l) = (jll)bl,l - (:i;)bl,S(:i-;)bl,erl

Ny =2z:(1) = (jll)bsg ...(j{s)bs,s(jlr)bs,sﬂ

N, SC::(l) +c= (53/1)b5+171 R (j};)strl,s (j‘:;)bs+1,s+1

v}

<3

(33?(1), cee 7$:71(1)7N7/ﬂ’x::+1(1)7 e 7$;(1>)

are regular parameters in T/(l) where N/ = [[(N, — o(c)) and the product is over all
conjugates o(c) of ¢ over k in an algebraic closure k of k.

—/ —//

o~
oll=

€ T(1) where (‘r:(l) + 1) is uniquely determined by the condition

(D)

T”(l) has regular parameters (Z1(1),...,Z,(1)) defined by

We have (x’”T(l) + 1)
that it has residue 1 in k(T(1)). Set

ol

] (21 (1), (1))

(5 41) T osiss
oy ) 1

(3.4) zi(1) = (cvr_m+1)c_1 i=r

z*(1) s <i,iFT

We have

:i‘ll = jl(l)al,l .. .Es(l)al,scal,s+1

ZZ'; = fl(l)as,l .. .fs(l)as,scas,erl

T, =T (L)%t T (1) %t (T (1) + 1)etet et
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Note that
(@.(1) + D)iz(1) 1<i<s
(3.5) (1) =9 @ 1) +1)°=1] i=r
Z;(1) s<i,iFT
Thus T — T(1) is a UTS and by our extension of v to the quotient field of T(1),
(R,Tﬂ(l),T(l)) is a UTS along v. We will call T — T(1) a UTS of type II,..

REMARK 3.1. In our constructions of UTSs of types I and II,, T - T’(l) is a product

of monoidal transforms
—// —/
T =Tyh—-T —- - —>T1—-T,=T()

where each T; — T;yq is a monoidal transform centered at a height 2 prime a; and

aiTH(l) = (1 ()% -+ Z,(1)%) for some nonnegative integers d’ for all i.

LEMMA 3.2. Suppose that (R,TH,T) isa UTS along v, (x1,...,x,) are regular parameters
! , ,
inT , and v(zxy),...,v(xs) are rationally independent.
1 1 2 2 —
1) Suppose that M, = xclll . 'JC?S,M2 = xclil o e T and v(My) < v(Ms). Then
there exists a UTS of type I along v, T — T(1), such that My | My in T/(l).
2) Suppose that M = z% ...2% is such that the d; are integers and 0 < v(M). Then

S

there exists a UTS of type I along v T — T(1) such that M € T/(l).

PRrROOF: The proof of 1) is from Theorem 2 [Z2]. Consider the UTS with equations (3.2).
In T'(1),
M; = 7 (1) A (WttrdiAah) g (1) diAr (s 1) As (s —1)
fori=1,2. For h >> 0
BA(h+7—1) 4+ d2As(h+j—1)>diA1(h+j— 1)+ +diAs(h+j — 1)

for 1 <j <sby (3.1).
To prove 2) just write M = % where M; are monomials in x1, ..., 2. Since v(Msy) >
v(My), 2) follows from 1).

LEMMA 3.3. Suppose that (R,TH,T) and (.S, U//,U) is a CUTS along v, T has regular

parameters (T1, ..., T,) and U" has regular parameters (Yy,---,7,), related by
fl = yill .. .yglsal
fs — yisl .. .ggssas
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such that ay,...,as € k(U), v(Z1),...,v(Ts) are rationally independent and det(c;;) # 0.
Suppose that T — T(1) is a UTS of type I along v, such that T/(l) = Tﬂ(l) has regular

parameters (T1(1),...,Z,(1)) with

fl(l)all .. _Es(l)als

g

1

s = T1(1)%t - Tg(1)% e,

|
I

Then there exists a UTS of type I along v U — U(1) such that (R,T”(l),T(l)) and
(S, U//(l),U(l)) isa CUTS along v andU/(l) = U//(l) has regular parameters (g, (1), ... ,yn(l))l
with

(3.6) 7 =7 (1) g (1)
ys = yl(l)bSl o 'ys(l)bss7
and
(37) #1(1) = 7 ()0 -, (1) Vo (1)

Ts(1) =7, (1) g, (1) Wag(1)
where a1(1),...,a5(1) € k(U(1)), v(Z1(1)),...,v(T,(1)) are rationally independent and
det(ci; (1) # 0.

PROOF: Let (e;;) = (ai;) ", (dij) = (esj)(cjk), an integral matrix. Let a;(1) = af™ -+ - %=

S
for 1 <4 <s. Then

T =71 e (1)

To(1) =70 e as(1)

By 2) of Lemma 3.2, we can construct a UTS (3.6) of type I U — U(1) such that we have
an inclusion T' (1) € U (1) and (3.7) holds. Then an extension of v from the quotient
field of U which dominates U to a valuation of the quotient field of U (1) which dominates
U(1) restricts to an extension of v to the quotient field of T/(1) which dominates T(1) so
that (R, T (1), T(1)) and (S, U (1),U(1)) is a CUTS along v.
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LEMMA 3.4. Suppose that (R,TH,T), (S, U//,U) is a CUTS along v, T has regular pa-

rameters (T, ...,Ty) and U" has regular parameters (Y1, ---+7,) such that
(3-8) T =7 Yo
ES = yi'Sl .o .ygssas

Tst1 = ys—l—l

T =17,

with o, ...,as € k(U), v(Z1),...,v(Ts) rationally independent, det(c;;) # 0.
Suppose that T — T(1) is a UTS of type II, along v, with s +1 < r <[ such that
T(1)" has regular parameters (Z1(1),...,%,(1)) with

(3.9) Ty =2 (1) - T (1) ettt
fs — El(l)a81 .. .f8<1)asscas,s+l
fr — El(l)as-‘rl,l .. .fs(l)as-kl,s(fr(l) + 1)Cas+1,s+1‘

Then there exists a UTS of type II,., (followed by a UTS of type I) U — U(1) along v such
that U//(l) has regular parameters (y,(1),...,7,(1)) satisfying

(3.10) U1

T 7 (1)

o = (1) g (1)0eedoees
Gr = o (L)%t g (1) (g, (1) + Ddoerret
T'(1) cU'(1), and

(3.11) T1(1) =g, ()W g (1) Way (1)
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where ai(1),...,as(1) € k(U(1)), (El(l)) ...,v(Ts(1)) are rationally independent,
det(c;;(1)) # 0 and (R, T ( ), T(1)), (S, U ( ) U(l)) is a CUTS along v.

PRrROOF: Identify v with our extension of v to the quotient field of U which dominates U.
Set (gi7) = (ai) ™",

7911 | | 57915 73:91,s+1
A =77 xdtegdte

— —gsl .. .79ss79s,5+1
Ay Tl

A, = _gs+1 1. LYt Le ettt

Then Tl(l) is a localization of T//[Al, oo Ay Ayl v(A;) >0 for 1 <i<sandrv(A4,)=0.
We have

Ay _ydu_” d1s o 1s+1ﬁ1

_dS _dss_ds s
A - 1“'ys yr’+168

—dsi1,1 —d —d
A’I" — yl .« e y83+113yrs+173+1/8r

where 3; = o' ---adis for 1 <i < s, B, =af"t"" - ad"™ and
0 1
Define B; by

B, = yilfll . ‘y];lsyg}l,s—}-l

B —hsl .. ‘ggssyﬁs,s-&-l

B _hs+1 1 ‘yhs+1,syhs+1,s+1
s T

where the matrix (h;;) defines a UTS of type II,. U — W along v where W' is a localization
of U,/[Bl, ..., Bs, By] with v(B;) > 0 for 1 <i < s and v(B,) = 0. We have

Al — B1611 .. B§1SB$1,5+1/61

— €s1 €s €s,5+1
Ay = Bit ... BSs Beosti

_ €s+1,1 €s+1, €s+1,s+1
A, = B&tH1 .. Beatis ettt g
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where (e;;) = (di;)(hij)~! is a matrix with integral coefficients. Since v(A4,) = v(B,) =0
and v(By),---,v(Bs) are rationally independent, we have es411 = -+ = €541,s = 0.
Then det(e;;) # 0 implies es41,541 # 0. Since v(4;),...,v(As) > 0, by Lemma 3.2,
we can perform a UTS of type I W — U(1) along v so that ﬁ/(l) is a localization of
W [Cy,...,Cs] with v(Ch),...,v(Cs) rationally independent, and

b// b//
B1 — 0111 . Csls

B, = V...l
to get
(3.13) A = C{u . CglsBZLsHﬁl

Ay =Cfr ... Cf Bl g
A,’, e les+l’l e Csf3+1,SB”.fs+1,s+1/8T

with f;; > 0 for all 7, j and

(fiz) = (ei) ((bé;-) (1)) -

(big) = (hij) ™" ((bgj) (1)) -

(3.13) implies A44,..., A, € U/(l). Thus U — U/(l) is a MTS along v and T/(l) C U/(l).
Further, we have fo111 == fe11,5s =0.
Extend v from the quotient field of U to a valuation of the quotient field of U(1)

which dominates U(1). Let d be the residue of B, in k(W). U(1) has regular parameters
(yi(1),...,4%(1)) such that

(3.14) T = g ()" g ()P (g (1) 4 d)e

Set

7o = Uiy (0" (1) 4 P
Ty = GE(P Ty (0P (1) 4 e

o (B0 1)
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We have a natural inclusion T'(1) C U(1).
Let c € /{:(T/(l)) be the residue of A,. Then c is the residue of A, in the residue field

of our extension of v to the quotient field of U(1), since v dominates U”(l). Set

x (i) = T s<i,iFT

A —c i=r7r

Then (23(1),...,2%(1)) are regular parameters in T(1) such that

r'n

(3.15) Z(1) =y g (D0 (00 + ) By

x:(l) = yT(l)fsl .. y:(l)fss (y:(l) + d)fs’s""lﬁs
TE(1) + e = yr )Ty (1) (1) + d) e B,

They are related to the regular parameters #;(1) in 7(1) satisfying (3.9) by

P (1) T (1)(T (1) + 1) 1<i<s
T} = _
‘ cl@.()+1)—-1] i=r
where
a1 - Qls air a1,s+1
¢ = Det Det
as1 PPN Qss aSl e as+1’s+1
Y1 0
= (ai;) " |
Vs (1)
1 z

<
STy
—~
—_
SN~—
|
—N
U
— o~
<
3
~~
—
SN~—
+
—
S~—
&l
|
=
-~
I
3

where
bi1 -+ bis bir - bisyr

bey -+ by ba - ber1st
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T1 0

bi'il

Fleont

1

1 a
1 0 0 Y1
Y RS N A (=7 B VA Y I ISR B IC
(fw) - (aw) (( 0 1) 0 (aw) 0 7 -
1 5 5 1

d d

Substitute this in (3.15) to get
71 (1)(Z-(1) + 1)671 = 51(1)f11 .. .ys(l)fls (7, (1) + 1)571df1,s+161

T (1)@ (1) + 1P = 3, (D1 g, (1) (5, (1) + 1P P,
(T, (1) +1)° = (7, (1) + Dedls+rem1 3,
v(Z,(1)) > 0 and v(y,(1)) > 0 imply
(3.16) c=dlsrrsrig,
Our inclusion T(1) € U(1) induces
(1) =g, (1) +w 1
in U(1) for some é-th root of unity w. Since Z,.(1) € m(T(1)) and 7,.(1) € m(U(1)), we
must have w = 1. We thus get (3.11).

1/ -/

— — _ —// _
T (1) =T,z aq,.z7.0) CU [d7Olgaq..g.0) =U 1)
An extension of 1 to the quotient field of U (1) which dominates U(1) then makes (R, T”(l), T(1)) ,I

(S, U"(1),TU(1)) a CUTS along v.
LEMMA 3.5. Suppose that (R,T//7T), (S, U//7U) is a CUTS along v, T" has regular pa-

rameters (T1,...,ZTp) and U" has regular parameters (Y1,---,Y,) such that
(3]_7) El — y‘ill . _gglsal
ES = yiSI .. .ggssas

_ —d —d.—
Tl =Y U Y



where ay, ..., a5 € k(U), v(Z1),...,v(Ts) are rationally independent, det(c;;) # 0.
Suppose that T — T(1) is a UTS of type II;;, along v, such that T”(l) has regular
Tn

parameters (T1(1),...,Z,(1)) with

(318) fl El(l)all .. ,fs(l)a1sca1,s+1

S|
I
sl

s 1(1)031 .. .fs(l)asscas,sﬁ-l

fl+1 = fl(l)aS-Fl,l .. .fs(l)as+1,s(fl+1(1) + 1)Cas+1,s+1.

Then there exists a UTS of type I, 1, (followed by a UTS of type I) U — U(1) along v
such that U//(l) has regular parameters (y,(1),...,7,(1)) satisfying

(3.19) U = yl(l)bu .. 'ys(l)blsdbl’sﬂ

go = ()" g (1)eedie
Grr = Jo (10400 g ()P (g4 (1) + 1)dPerest,

(3.20) 7i(1) =g ()W g () Wan (1)

ZTi41(1) =7;,4(1)

where ay(1),...,as(1) € k(U(1)), (fl(l)) .,v(Zs(1)) are rationally independent,
det(c;;(1)) # 0 and (R, T (1),T(1)), (S, U (1), U(l)) is a CUTS along v.

ProOF: Change r to [ + 1 in the proof of Lemma 3.4, and change (d;x) to

ci1 - cs 0
(dir) = (as;) "

Cs1 o Css 0

d - ds 1

42



LEMMA 3.6. Suppose that (R,TH,T) and (S, U//,U) is a CUTS along v, T has regular

parameters (T1, ..., T,) and U" has regular parameters (Yy---,7,) such that

— —C —C
:L‘l o ylll . .yslsal

— —c

— 1 77Cs
Ts =Y1o Y O

fs—l—l = strl

T =Y

— —Cs41,1 —c
xl+1 :yl ...y83+1735

where a1, ...,as € k(U), § € T isa unit, v(Ty),...,v(Ts) are rationally independent and
det(cij)i<ij<s 7 0

Suppose that T — T(1) is a UTS of type Iy, along v, so that T”(l) has regular
parameters (T1(1),...,Z,(1)) satisfying

fl — El(l)au .. _fs(l)alscal,s-i—l

ES — jl(l)asl .. .Es(l)asscas,s—}-l

fl+1 — Tl(l)as+1’1 .o .fs(l)a5+1ys(fl+1(1) + l)cas+1,s+1.

Then there exists a UTS of type I alongv U — U(1) such that U/(l) has regular parameters
(91(1), ..., 9n(1)) with

and U//(l) has regular parameters (y,(1),...,7,,(1)) such that y,(1) = €;y;(1) for1 <i <'s
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1/ =

for some units €; € Uﬂ(l), T (1)cU (1),

where ai(1),...,as(1) € k(U(1)), v(T1(1)),...,v(Ts(1)) are rationally independent,
det(cij(1)) #0, and (R, T (1),T(1)) and (S,U (1),U(1)) is a CUTS along v.

PRrROOF: Identify v with our extension of v to the quotient field of U which dominates U.
Set (g9i5) = (ai;) ™,

_ 7911 || #91s75:91s+1
A =79 TT

—gsl ... 9ss79s,s+1
A = T T
_ =9s+1,1 — —0s4+1,s+1
Al+1 xl ... x.gs"rl’sxl_’_l 3

—/

T (1) is a localization of TH[Al, o Agy A v(A4;) > 0for 1 <i<sandv(A41)=0.

Alzyiill. d1561€1

A — —d.sl . ysss5 €s

dst1,1

Ay =7 et gy

where ¢; € k(U), (di) = (aij) "' (c;x) and J; are units in U” such that §; has residue 1 in

k(U) for 1 <i<s. v(Aj11) =0 and v(y,),...,v(y,) rationally independent implies
ds—l—l,l == ds+1,s = 0.

Since v(A;) > 0 for 1 < i < s, by Lemma 3.2 we can perform a UTS of type I along v

U — U(1) where U/(l) has regular parameters (g1(1),...,9,(1)) satisfying

7= (10 g ()

7, = g1 (1)1 g (1)bes (D)
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to get

A = gjl(l)cll(l) e

Ay = (1)1

Js (1)W1

' :,38(1)%5(1)5868

Appr =011
where all ¢;;(1) > 0. Thus

—y — — R
T [Ar,. . Ag, Al U (1) = U [30(1), -, 8s(D)] (911, 9m (1)

and since v dominates U/(l) and T/(l), U/(l) dominates T,(l).
Now extend v from the quotient field of U to a valuation of the quotient field of U(1)
which dominates U(1). (1)) with

Tﬂ(l) has regular parameters (z3(1),...,z"

7= 2 () () (] (1) +
7o = () (1) (@ (1) + 0
Ti41 = f{(l)awl,l .. .m:(l)as+1,s (937+1(1) + C)as+1,s+1_
1
T'1) =T" |e, (93”71(1) + 1) ]
(27 (1), (1))

(Z1(1),...,@x(1)) are regular parameters in T”(l) which satisfy
x] 1 n 5 -7
w0 = a0 (28 1) T gy (22
* 1 —Vs 5 —Ys
e e S I MO L
c c
@) b1\ ¢
€T ¢ c
T (1) = (”Tlﬂ) 1= (%) i

Set (ei;) = (ci;(1)) 71,

di41
C

) —Y1€i1— "~ Vs€is

€; = 5?‘1 “,5?5 (
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for 1 <7 <s. Define
_(1)_{61@1(1) 1<i<s
ST g1 s+1<d

Then the conclusions of Lemma 3.6 hold with

oll=

C

—1 — 5[ 1
U (1) = U (1)[6, (L> s €1, ... ,63](51(1)7“.,@71(1)).

Monomialization in rank 1.

THEOREM 3.8. Suppose that (R,TH,T) and (S, UH,U) is a CUTS along v such that

T" contains the subfield k(co) for some ¢y € T" and U contains a subfield isomorphic to

—// —// _ — == S J—
k(U ), T has regular parameters (Z1,...,z,) and U has regular parameters (w1, . . ., Wy,)
such that

21 — mill . ,wglsqbl
= — 717Cs1 777Css
7, =W W,

Es—l—l - m.s—|—1

Z] = wj.

where ¢1,...,¢s € k(UH), v(Z1),...,Vv(Zs) are rationally independent, det(c;;) # 0.
Suppose that one of the following three conditions hold.

1) f € k(U)[[wy,...,Wm]] for some m such that s < m < n with v(f) < cc.
2) f € k(U)[[wy, ..., W] for some m such that s < m < n with v(f) = oo and A > 0 is
given.

3)
fe (kO)[[@r, ..., Tl - KO)[@1,..., w]) NT"
for some m such that | < m < n. Then there exists a CUTS along v (R,T//(t),T(t))
and (S,U" (t),U(t))

U= U0 — U1) — - — Ul
(3.21) 1 1 1
T= T0O) — T(1) — - — T(t)



such that T//(i) has regular parameters (z1(i), . .., Zn (7)), U/’(i) has regular parameters

(w1 (i), ..., w,(i)) satisfying

T//(i) contains a subfield k(co,...,c;) and U//(i) contains a subfield isomorphic to
k(U®%)). ¢1(i),...,0s(0) € k(U(i)), v(Z1(7)),...,v(Zs(i)) are rationally independent,
det(c;;j(i)) # 0 for 0 < i <t. In case 1) we have

f=w ()" - W () u(@ (1), ..., W (t))

where u € k(U (t))[[w1(t),...,Wn(t)]] is a unit power series.

In case 2) we have

f=w ()" W ()X (W (L), .., Win (1))
where £ € k(TN [@1(t), . ..., Tm ()], v(@ ()4 - @y (t)%) > A.
In case 3) we have
f=P@@,(t),..., ) +w ()" - w,(t)=H
for some powerseries P € k(T (t))[[@1 (), . .., ()],
H = u(Wy, (t) + w1 ()" - - ws(t)% %)

where u € k(U(t)[[wi(t),...,Wn(t)]] is a unit, ¥ € k(U@)[[wi(t),...,Wmn_1(t)]] and
v(Wm(t)) < v(@(8)7 - ws(t)%).
(3.21) will be such that T//(a) has regular parameters

~/

(Z1(a), ..., Zn(q)) and (Z,(),..., 7, (a)),

U/l(a) has regular parameters

(W1 (), ..., Wp(a)) and (W (), ..., W, (a))
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where Z;(0) = Z; and w;(0) = w; for 1 <i <mn. (3.21) will consist of three types of CUTS.
M1) T(a) — T( 1) and U(a) — U(a + 1) are of type .
M2) T(a) — T(a+1) is of type II,., s+1 < r < I, and U(a) — U(a+1) is a transformation
of type II,., followed by a transformation of type L.
M3) T(a) =T(a+1) and U(a) — U(a+ 1) is of type I, (1+1 <1 <m).
We will find polynomials P; ., so that the variables will be related by:

~/ {Ei(a)—Pi7a(21(a),...,2¢_1(a)) ifs+1<i<]
zi(a) =19 _ ;
Zi(a) otherwise
Z(a) ifs+1<i<lI
Wy (@) = { Wi(a) — Pro(@i(a),..., Wi 1(e)) ifl+1<i<m
w; () otherwise

The coefficients of P; ,, will be in k(cy, ..., cy) if i <1, and will be in k(U(«)) ifi > 1. For
all « we will have

(3.22) Z1 (@) = w1 () .., () (¥ (a)

Zs(a) = wy (a)c“(o‘) . -ws(a)c”(o‘)¢s(a)

and

(3.23) Z1(@) = @y (a) (@ (@)= (D (a)

Zo (@) = Wy ()@ (@) V()

where ¢1(a),...,¢s(a) € k(U(a)). Tll(a) contains a subfield k(co,...,c,) and U/l(a)
contains a subfield isomorphic to k(U(a)).
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In a transformation T (o) — T(a+1) of type I, TN(OH— 1) will have regular parameters
(Zi(a+1),...,Z,(a+ 1))

(324) %/1 (a) =7 (O{ + 1)a11(a+1) .. .Es(a + 1)a1s(a+1)

Zo(a) = zi(a + 1)@ @D Lz (o 4 1)see(0tD)

and ¢, 1 is defined to be 1. In a transformation T'(a) — T(a+1) of type II,. (s+1 <17 <1)

—//

T (o + 1) will have regular parameters (zZi(a+1),...,Z,(a+ 1))

(3.25)

%/1 (Oé) — 21 (O{ + 1)a11(0¢+1) . ES(O{ + 1)als(a+1)cil_i_sl+l(a+1)

1(a + 1)asl(a+1) . -Zs(oz + 1)ass(a+1)czs_’,_sl+1(a+1)

Z(@) = Fa(a+ 1) Oz ()t 0D (Z (a4 1)+ ey T

NI
Vo)
~—~

o)
N—

I
|

In a transformation U(a) — U(a + 1) of type I, U//(a + 1) will have regular parameters
(Wi(e+1), ..., Wp(a+ 1))

/

(3.26) (a) =Wy (C\{ + 1)511(064-1) .. .ws(a 4 1)b15(a+1)

2

@;(0&) = W1 (a + 1)b51(a+1) TR (a, + 1)b55(a—|—1)

and d1 is defined to be 1. In a transformation U (o)) — U(a+1) of type II,. (s+1 <7 < m)
U”(a + 1) will have regular parameters (wi(a + 1),...,w,(a + 1))

(3.27)

/ (a) = wl(a + 1)b11(a+1) .. .ws(a + 1)b1s(a+1)dg1_i_s1.~.1(a+1)

L

W) = Wi(a+ 1) (a4 1)t (et gy (@)
@;(0&) =T (o + 1)b5+1,1(a+1) W (o + 1)b5+1‘5(a+1)(@r(04 +1)+ 1)dl;:fi,s+1(a+1)

In a transformation of type M2) c.41 is related to do+1 by (3.16) of the proof of Lemma
3.4.
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We will call a UTS (CUTS) as in (3.21) a UTS (CUTS) in the first m variables.

Proor: We will first show that it is possible to construct a UTS along v

(3.28) T — T(l) — o= T(t)

so that the conditions 1)’; 2)’ and 4) below hold.

)

Suppose that s < m <. Then there exists a UTS (3.28) in the first m variables such
that

p(i) = {f € k(T (D)[[Z1(0), - .., Zm ()] | v(f) = o0}

has the form
(P(m))
pm<t) = (ET(l) (t) - Qr(l)(zl (t)7 e er(l)—l)a <. 737“(771) (t) - Qr(rh) (El(t)v T 727"(7%)—1))

for some 0 < m <m —sand s < r(l) <r(2) <--- <r(m) < m, where Q, ;) are
power series with coefficients in k(co, ..., ct).

Suppose that h € k(T)[[Z1, .. ., Zm]] for some m with s < m < n and v(h) < co. Then
there exists a UTS (3.28), in the first m variables such that P(m) holds in T'(¢) and

h=z()% - Z, ()% w(ZL (D), ..., Zm (1))

where v is a unit power series with coefficients in k(T'(¢)). If h € k(co)[[Z1,-- -, Zm]]
then u has coefficients in k(co, ..., ct).
Suppose that h € k(T)[[Z1,...,Zm]] for some m with s < m < n, and v(h) = oo and

A > 0is given. Then there exists a UTS 3.28, in the first m variables such that P(m)
holds in T'(t) and
h = 2l(t)dl o 'zs(wdsz(zl(t)a oo ,Em@))

where v(Z1(t)% ---Z4(t)%) > A, ¥ is a power series with coefficients in k(T'(t)). If
h € k(co)[[Z1,- - -, Zm]], then ¥ has coefficients in k(co, ..., ct).

4) is trivial for m = s, since ps = (0).

Proof of 1°) for m = s. Set 7, = v(z;) for 1 <i < s. h has an expansion



where the a; € k(1) (or a; € k(co)) and the terms have increasing value. Set

3 Ty Ty
= (b (1) + ba(1)= 4+ by (1)2).
c min{:—;‘}(l(H o( )T1+ + ()T1

We can perform a UTS of type I where T — T'(1) is such that

Ts _ aij(l)
T alj(l)

Ti

| <

27’1

for 1 <4 <s.

E?l(l) .. 226(1) — 31(l)bl(i)all(1)+”'+b6(i)asl(1) .. .ES(1)b1(i)als(1)+"'+b3(i)a33(1)_

Suppose that ¢ is such that by (i) 4+ - -+ + bs(i) > ¢. Then for all 1 < j < s we have

bl (i)alj(l) +--+ bs(i)asj(l) = alj(l) (bl (Z) + bQ(Z) a2j(1) 4+ bs(Z) asj(l))

> 1) <b1(1) +ha(1) 2+ ---+bs(1)—)

2 T1 T1

> o) (1) + O+ b )

= bi(Day;(1) +-- -+ bs(1)as; (1).
By Lemma 3.2 we may choose the a;;(1) so that the inequality
b1(i)ay;(1) + -+ bs(i)as; (1) > br(1)ar; (1) + - - + bs(1)as; (1)

also holds for 1 < j < s for the finitely many ¢ such that by(i) + -+ + bs(i) < ¢. Then h
has the desired form in 7'(1).

We will now establish 1°), 2) and 4) by proving the following inductive statements.
A(m): 17), 2°) and 4) for m < m imply 4) for m = m.
B(m): 17), 2’) for m < m and 4) for m = m imply 1’) and 2’) for m = m.
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Proof of A(m) (s <m). By assumption there exists a UTS T — T(t) satisfying 4) for
m — 1. After replacing T”(O) with T”(t) and replacing ¢y with a primitive element of

k(co,...,ct) over k, we may assume that

Pm—1 = (Er(l) - Qr(l)(zb T azr(l)—l)a s 72r(m;1) - Qr(mll)(gl’ T 7zr(m:1)71)>‘

where Q,(;) are power series with coefficients in k(cp). If pm_1k(T)[[Z1,. .., Zm]] = pm we
are done. So suppose that there exists f € pm — pm_1k(T)[[Z1, ..., Zm]]. Let L be a Galois
closure of k(T) over k(cy), G be the Galois group of L over k(cp). Set

f= HO’ GkCO [Zl,...,§m]].

oelG
f € pmNk(co)|[Z1,-..,Zm]] and v(f) = oo since f|f in k(T)[[Z1,...,Zm]]. Suppose
f € pm—lk(T)[[El7 s 7Zm]]

Then f € pm_1L[[Z1,...,Zm]] which is a prime ideal, and o(f) € pm_1L[[Z1,. .., Zm]] for
some o € G. But
a (pm—lL[[gh < 7zm]]) = pm—lL[[zla s 72m]]

for all o € GG. Thus
f € pm—1L([z1, - Zml])) Nk(T)[[Z1, - - -, Zm]] = pm—1k(T)[[Z1, - - ., Zmi]]
a contradiction. Thus f & pm_1k(T)[[Z1, ..., Zm]].

o)
f Zal zl,...,Em_l)sz.
1=0

where the a; have coefficients in k(cy). By assumption v(a;) < oo for some i. Set r =
mult(f(0,...,0,Z)).

d
fzzaz +Za3 fﬂ+2akz + Zo- (2
i=1

where the first sum consists of the terms of minimal value p = 1/((1Z <), 1 < i < d,
av(Zm) > p, the second sum is a ﬁnlte sum of terms of finite value v(a;z fj) > p and the

third sum is a finite sum of terms akz * of infinite value.
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Set

R = k(Co)Hzl, SN ,Em_l]]/ (pm_l N I{J(Co)[[zl, SN ,Em_l]]) .

v induces a rank 1 valuation on the quotient field of R.

Given d in the value group I', C R of v, let
Iy =A{f € Rlv(f) = d}.
By Lemma 1.3, there is a set of real numbers
(3.29) dy <dy<---<d; <

with Lim;_,ood; = oo such that d; are the possible finite values of elements of R and
N2 ,14, = 0. Thus by Theorem 13, Section 5, Chapter VIII [ZS], there is a function ~(7)
such that I;, C m(R)"® and (i) — oo as i — oo.

By assumption, we can construct a UTS in the first m — 1 variables along v so that

for all 4, 5, k

ai =71 (1)@ -z, (8 Vg,
a; = zl(tl)fl(j) .. .zs(tl)fs(j)aj
ap =71 (t1)9* ") oz (4)9- B ny,
in k(co,...,ct,)[[Z1(t1), ..., Zm—1(t1)]] where @;, G@; are units and

v(zi(t) "W -2 (1) %) > p.
Now perform a UTS of type Il and a UTS of type I along v to get

f=21(t2)™" - Zs(t2)™ fu

where f1 c k‘(Co, e ,CtQ)[[fl (tz), e ,Em(tz)“. Set

N — Ca1,s+1(t2)€1(i)+~--+as,s+1(t2)€s(i)+as+1,s+1(t2)fi
i = Cy,

for 1 <7 <d. Then

d
fr=) Nt (Zm(ta) + 1) + 21 (L) - Za(t2) A,

=1
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for some series A € T(ty) by Lemma 3.2. Set r; = mult(f;(0,...,0,Zm(t2)) < co. 71 <

fa<r.
The residue of @; in

T(t2)/(Z1(t2), .-, Zm—1(t2), Zms1(ta), - -, Zn(t2)) = k(T (t2))[[Zm(t2)]]

is a nonzero constant a; € k(T (t2)) for 1 < i <d. Set
d
Ct) = f1(0,...,0,t = 1) =Y Nagt/".
i=1
Suppose that r; = r. Then f; = r and
d
(3.30) (Fmlta) +1) =D Nai(@m(ta) + DT = AgdaZm(ta)
i=1

Thus ((t) = A\gaq(t — 1)" has a nonzero ¢"~! term, so that fy_1 = r — 1 and ag_; # 0.
Therefore aq = @4 and v(Zm) = v(aqg—1). Define 7(0) by v(Zm) = v(aq—1) = d;() in
(3.29). Then ag—1 = h+ ¢ with h € pm_1 Nk(co)[[Z1,- - -, Zm—1]] and

¢ € m(k(co)[[Z1,- - ., Zm_1]])" 7O,

Let o = aq € k(cp) be the constant term of the power series aq € k(co)[[Z1, .- -, Zm-1]]-
Expanding out the LHS of (3.30), we have

Agrag + Ag_1aq-1 = 0.

(Zm(te) +1)" Mg

hcas+1,s+1(t2)(f—1)

()‘d—lad—l - El(tz)as+t12,1(t2)...ES(tQ)as+1,s(t2)) (Zm(t2) + 1)1

(7m(t2) + 1))\d
hcas+1,s+1(t2>(7"*1)
t2
Z1(tg)%s+1,1 (t2) ..z, (t2)a‘s+1,s(t2)

Ad—1Gg—1 —

EE(tQ)Ad + Ad

. Ad—1G4—1 Ad—1G4—1
- holstls+1(t2)(r—1)
1 ‘2

Ad—1Gq_171(tz)%s+1.1 (t2) .7, (t2)as+1,s(tz)
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has residue —= in O, /m,. (Recall that v(h) = c0). Thus v(Zm + =¢) > v(Zm). Since
L€ k(co), 20 € m(k(co)[[Z1, ..., Zm-1]])""(®) and there exists

’ ra

Al S m(k(CO)[Eb s 7Eﬁ71])7(7—(0))

such that v(Zm — A1) > v(Zm). Set z(ml) =Z=— A.
Repeat the above algorithm, with Z replaced by E(ml). If we do not achieve a reduction

r1 < r, we can make an infinite sequence of change of variables

—(2) S(-1) Az

“m T A
such that A; € k(co)[Z1, .-, Zma), Y(A) = v(EE ), v(A) = driiyy,
Ai < m(l{?(CO)[El, - ,7m_1])7(‘r(i71))

and

Then
z(mi) . E(j)

m

e m(k(co)[z1, - .., Zm_q])mn G (G=1)}F

Thus {E(mz) } is a Cauchy sequence, and there exists a series

AZ1,. . Zm-1) € k(co)[[Z15 -+, Zm—1]]

such that
22 = Limy a2 = 2 — A
and v(Z2X) = co. Thus 22 € prm.
Set A(a) = y(7(a)). For all o there are series a;,a;, a; and exponents f;, f;, fi such

that we can write
f=[a G+ 4+ a0, (ZN) 4 Ba,; (29 4 Sag (9 + (22
where the terms in the first sum satisfy
v(a;(Z2)) = () = rdy (),

a, is a unit, the terms in the second sum satisfy v(a; (E(ma))fﬂ') > 7d;(q), and the terms in
the third sum satisfy v(ay) = co. Set m = m(k(co)|[[Z1, ..., Zm—1]]). Since for terms in the
first sum, v(a;) > d;(q) implies a; € pm_1 + mM) | we have

f= (zr(E(ma))r mod (mMOT + pm T + (E(Q))TH)

m
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where @, is a unit in T, so that
fe GO +mMIT 4 pr (T = @) 4 mMOT 4 pr | T

Thus
f €Ny (@) +mNOT 4 pr 1 T) = (22°) + pa T

m
Since the a, are units, we have

(3.31) f=uEm—AZ1,. ., Zm1)) +h
where u is a unit power series, h € prm_17.

Suppose that we reach a reduction r; < r after a finite number of iterations. We can
repeat the whole algorithm with f replaced with f;, r replaced with r1, ¢y with a primitive
element of k(co,...,ct,) over k, T" with T,/(tg). (Recall that k(co,...,ct,) C T”(tg)) We
have v(f1) = oo, so that the algorithm cannot terminate with » = 0, and we must produce
Z20(t) such that

o (t) = Zm(t) — A(Z1(t), - -, Zm-1 (1)),
with A € k(co,...,c)[[Z1(t), .., Zm_1(t)]] and v(222(¢)) = co. In particular, the algorithm
produces Zm(t) — Qm(Z1(t), - .., Zm—1(t)) of infinite value.

By 4) for m = m — 1, we can now construct a further UTS in the first m — 1 variables

along v, so that

pm—1(t)
= Zr)(t) = Qr)(Z1(t), - Zr)=1()s - - Zpm=1) (1) = Qun=1)(Z1 (1), -+ Zp 1y —1) ()
Now suppose g € pm(t) and v(g) = oo. Then there exists go € k(T)[[Z1(t), ..., Zm_1(t)]]

and g; € T such that g = go+ (Zm(t) — Q)91 and v(go) = oo. Thus gy € pm—_1(t), showing
that

pm = Zr@)(t) = Qr1)(Z1(t), -, Zr()=1)s -+, Zm — Qm(Z1, -+, Zm—1))-
Proof of B(m) (s <m).
Case 1) v(h) < co. There exists a UTS T — T(t) satisfying 4) for m = m. After replacing
T”(O) with T//(t) and replacing ¢y with a primitive element of k(co, ..., ;) over k, we may
assume that

pm = Zr) — Qr()(Z1, , Zr(1)=1)s - -+ s Zr() — Qr() (Z1y -+ 5 Zr(m)—1))-
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where the Q,(;) are power series with coefficients in k(cg). Let L be a Galois closure of
k(T) over k(co) and G be the Galois group of L over k(cg). Set

g—Ha ) € k(co)[[Z1s- -5 Zm]]-
ocG
g € k(co)[[Z1,---,Zm]]. Suppose v(g) = co. Then g € pmL[[Z1, ..., Zm]] which is a prime

ideal, invariant under G. Thus

h e (pmLl[z1, ..., Zm))) NE(D)[[Z1, - .. . Zm]] = pm

which implies v(h) = oo, a contradiction. Thus v(g) # co. We will construct a UTS so
that

where u is a unit power series in k(¢ c)[Z1(t), ..., Zm(®)]] and h € k(T)[[Z1(1), ..., Zm ()]}
Since h | g in k( )[[21( )y ooy Zmm(t )]] we Wlll then have h in the desired form in T(t).
Set g = zl 724 gg Where ; does not divide g for 1 <17 <'s. Set

r = mult(go(0,...,0,Zm).

0 <r < oo. We will also have an induction on r. If » = 0 we are done, so suppose that

r > 0.

where the coefficients of o;, 0, o and ¥ are in k(cp), ¥ is a power series in Zy, - - -, Zr,
the first sum is over terms of minimum value p, a satisfies av(Zm) > p, and the (finitely
many) remaining terms of finite value are in the second sum, the (finitely many) remaining
terms of infinite value are in the third sum.

By 1'), 2) for m < m there is a UTS T — T(a) in the first m — 1 variables along v
such that

o, =21 (Oé)cl @) .. “Zs (Oé)cs(i)ﬂi

for all 7,

oj =7 (a)cl(j) .. .gs(a)cs(j)ﬂj
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for all 7 and

or = Z1(a) ™ .7, (a)= P,

for all k where u;,w;,uy € k(co, ..., cq)[[Z1(), ..., Zm-1(®)]], W, u; are units and
v(zi (@)W -z (@)= W) > p.

Now perform a UTS of type Il T(a) — T(a + 1) along v to get

go =z1(a+ 1) - Zg(a + 1)65(2 At (Zm(a +1) +1)%)

7

+3 Zi(a+ )% - Zy(a + DN (Zm(a + 1) + 1)
J

+ Zzl(o‘ F 1)z (a4 1) AT (B o+ 1) + 1)
k
+ Z1(a+ )%+ (o4 1) %o,

where
N — Ca1,5+1(a+1)61(i)+---+as,s+1(oz+1)cs(i)+as+1,s+1(a+1)ai
i — Cat1 .

Then perform a UTS of type I T(a + 1) — T(a + 2) along v to get

go = Z1 (o + 2)1 (@2 Lz (o 4 2)de (a2 g

where .
g1 =Y NTi(Fm(o+2) + D)™ + 21 (0 +2) - Zs (o + 2) Ty
i=1
is a power series with coefficients in k(cg,...,Car1), W1 a power series in

Zi(a+2),...,.Zm(a+2). Set 71 = mult(g1(0,...,0,Zm(a+2)). 11 < oo and r; < 7.
Suppose that 1 = r. Then as in (3.30) in the proof of A(T), Z-- is a minimal value
term in gg, so that aq =71, ag_1 =7 —1, 04-1 # 0, and v(o4_1) = v(Zm).
As in the proof of A(m), there exists Ay € k(co)[Z1, - - ., Zm—1] such that we can make
a change of variable, replacing Zm with Z_- = Zm — A to get v(Zm — 41) > v(Zm). We
have

v(zm) < v(Zm) < v(9)

since Z_— is a minimal value term in go. Now repeat this procedure. If we do not achieve

r1 < r after a finite number of iterations, we get an infinite sequence
V(Zm) < v(zh) < - <v(E) < ...
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such that I/(E(%)) < v(gp) for all . By Lemma 1.3, this is impossible.

Thus after replacing z7 with

=~/ _ _ —_
Zﬁ = Zm — Pmp(zl, e ,Zm_l)

for some appropriate polynomial Pr; o € k(co)[Z1, .- ., Zm—1], we achieve a reduction ry < r
in T”(a +2). By induction on r, we can construct a UTS T — T(t) along v such that
g=zO" - ZO" Uz (), ... Zm(t)
where 7 is a unit power series with coefficients in k(co, ..., ct).
By 4) for m = m we can perform a further UTS to get
pm(t) = (ET(l)(t) - Qw(l)(zl (t)7 T 727“(1)—1)7 SR 727"(771) (t) - QT(T?L) (El(t)7 T 727"(771)—1))

while preserving

where % is a unit.
Case 2) v(h) = oc.
By 4) for m = m, we can assume that
P = (zr(l)(t) - Qr(l)(zl (t)7 T 757"(1)71)7 s 727"(7%) - Qr(fn) (217 ce 727’(7%)71))'

where the Q,(;) are series with coefficients in k(cg). Then

h = Z 0i(Zri) — Qr(i))

i=1
for some o; € k(T)[[Z1,...,%Zm]]. Choose b so that bv(m(T)) > A. There are polynomials
Priy(Z1s- -5 Zr(iy—1) in k(co)[Z1, - . -, Zr(s)—1] such that Q. — P € m(T)® and
v(Zri) — Pray) > A
Make a change of variables replacing z,.(;) with Z,.(;) — P.;) for 1 <4 < m. Then construct
the UTS T — T(t;) which is a sequence of UTSs of type II,. for s + 1 < r < m, followed
by a MTS of type I to get
h=2%(t)" - Z,(t) "2

with v(Zy (t1)% - Z4(ts)%) > A. By 4) for m = m, we can perform a UTS along v in the

first m variables to get

pm(t) = Zr)(t) = Qr)(Z1(t), -+, Zr)=1 (1), - - s Zr(m) (1) — Qi) (Z1 (1), -, Zr(m) -1 (1))

while preserving

with v(Z1(t)% -+ Z4(t)%) > A.
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Proof when 1) or 2) holds.

Case 1. Suppose that s < m < [. After performing a CUTS in the first m variables, we

may assume that

Pm = (Zr) — Qr(y(Z1, - Zr(1)=1)5 - -+ Zr(m) — Qrem) (Z1s -+, Zr(m)—1))-

where the coefficients of Q,.(;) are in k(cp). f € k(U)[[wr,..., W)

First suppose that v(f) < oco. Let T; = k(co)[[Z1,- - -,Zi]], Ui = k(U)[[wy, - . . ,w;]] for
s <i <m. Let d = det(c;;), (di;) be the adjoint matrix of (¢;;). Then

o _dun E
wy =2z, - Zst N
o _dsl _dss
Ws =214 - Zs As

where

di1 dis

)\Z-:(ﬁl_%---(bs_ T for1<i<s
Given a CUTS (3.21), set o(i) to be the largest possible o such that after possibly per-
muting the parameters Zs11(4),...,Zmn (i), v induces a rank 1 valuation on the quotient
field of k(T (i))[[Z1(4), .. .,Za(i)]]. (Since v(Z1(4),...,v(Zs(i))) are rationally independent,
o(i) > s.)
If o(7) drops during the course of the proof, we can start the corresponding algorithm
again with this smaller value of o(i). Eventually o(i) must stabilize, so we may assume

that (i) is constant throughout the proof.
v(zdn .. z%) > 0 for 1 <i < s. By Lemma 3.6, there exists a CUTS of type M1)
T — T(1), U — U(1) such that z{* ... 2% € T,,(1) = k(T)[[Z1(1), ..., Zn(1)]] for all 4.

Since p,, T, (1) is a prime and we may assume that o(1) = 0(0), we have p,, T, (1) = pp(1).

Let w be a primitive dth root of unity. Let L be a Galois closure of k(U )(w, A1,..., As)

over k(co) with Galois group G. Set W = L[[z1(1)4,...,2,(1)7,Zs11(1), ..., Zm(1)]].
1) =

Given iy,...,is € N, Define a k-automorphism o;,..;. : W — W by 0,..;. (z;(1)
wijEj(l)% for 1 <j <s.
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Our extension of v to the quotient field F' of U(1) extends to a valuation of the finite
field extension generated by L and F(z1(1)4,...,%Z,(1)4), which induces valuations on the
quotient fields of T',,,, U,, and W which are compatible with the inclusions T',,, C U,, C W.
Ty (1) — W is finite, p,,, W is prime implies

pmW = {h € Wi | v(h) = oo}

Thus
P U —{hGUm|V() oo}

Set § = [10iy-4, (19 = [l 7(@) € Meo)[F1 (1), Zm(D)]] © Ton(1). Suppose
v(g) = co. Then g € p,,, Ty, (1) implies g € p,, W which 1mphes 70y i, (f) € pm W for some
T,04,...i, since p,, W is prime. But 70,...;, (pmW) = pmW implies f € pp,WNU,, = prnUnm
so that v(f) = co. This is a contradiction. Thus v(g) < co.
By ’) (and Lemmas 3.3 and 3.4) we can construct a CUTS (R,T”(t),T(t)) and
(S, U ( ),U(t)) in the first m variables to transform g into the form

(3.32) g=z()" -z, %7

in T(t) where u(z1(t),...,Zmn(t)) is a unit power series with coefficients in k(co,...,ct).
Then f | g in U(t) implies

where u is a unit in U(t). But f is a series in w1 (), . . ., W,, () with coefficients in k(U (t)).
Thus
f = W (t)dl o 'ws(t)dsu(wl (t)7 s ,Em(t))-

where the coefficients of u are in k(U(t)).

Now suppose that v(f) = co. pnUn, is the set of elements of U,, of infinite value.
Otherwise, as argued above, we can perform a UTS T — T(1) to get o(1) < ¢(0). Thus
it suffices by 4) to prove the theorem when f = Z,;) — Q,(;) is a generator of p,,. This

follows from 27).

Case 2. Suppose that m > [. The proof is by induction on m — [, assuming that it is true
for smaller differences m — I.

First suppose that v(f) < co. Set

f—wclil...@gsfo
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where w; does not divide fy for 1 <i < s. Set r = mult(fy(0,...,0,W,,). 0 <7 < oco. We

will also have an induction on r. If r = 0 we are done, so suppose that r > 0.

fO = Zai<w17 e ;wm—l)w% + Zo-j(wla T 7wm—1)wg{
i J

+ Z%(wla e W1 )Wy + W5, W
k

where 0;, 0, 0}, are power series with coefficients in k(U), ¥ is a power series in Wy, - - -, Wy,

with coefficients in k(U), the first sum is over terms of minimum value p, a satisfies
av(W,,) > p, the (finitely many) terms in the second sum have finite value and the (finitely
many) terms in the second sum have infinite value.

By induction there is a CUTS (R, T//(a),T(a)) and (.S, U”(aLU(a)) in the first m—1
variables such that

0-1: — ml (a)cl (Z) e ES(Q)CS(Z)EZ

for all 1,

0 = (@), () O,

for all 7 and

O = ml (a)cl (k) e ms(a)cs(k)ﬂk

for all k where ;,u;,ux, € k(U())[[w1(a),. .., Wn—_1(a)]], i, u; are units for all i, j and
(@) ) () ) >
for all k. Now perform a CUTS of type M3) where U(a) — U(a + 1) is of type II,, to get
fo=w1(a+ 1) - We(a+ 1) () AT (W (a0 + 1) + 1))
+ 3 @i (a)d - Wela+ 1N (@@ + 1) + 1)
J
+3 @i(a+ DS (a4 1) AT (T (@ + 1) + 1)
k

+ <w1 (a —+ 1)bs+1,1(a—|—1) .. .@s(a + 1)bs+1,s(a—|—1)> o/

A — dcl(i)bl,s+1(O<+1)+“‘+Cs(i)bs,s+1(a+1)+bs+1,s+1(a+1)ai
1 Ya+1 .

Now perform a CUTS of type M1) T(a + 1) — T(a +2), U(a+ 1) — U(a + 2) to get
fo= El(a + 2)d1(a+2) .. -@s(a + 2)ds(oc—|—2)fl
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where

= AT (Wi (0 +2) + 1) + W1 (0 +2) - Ws(a + 2) Ty,
=1

U, a power series in wy(a + 2),..., Wy (a + 2) with coefficients in k(U(a + 2)). Set
r1 = mult(f1(0,...,0, Wy, (a+2)). 11 <ooand r; <r.
As in the proof of Case 1) of B(mn), there is a polynomial P, o € k(U)[w1, ..., W_1]

such that if we replace w,, with
=Wy — m,0

we get a reduction 71 < r in U(a +2). By induction, we can construct a CUTS as desired.

Suppose that v(f) = co. Given a CUTS (3.21) and ¢ such that s <i < n, set

ai(t) = {h € KU @)[[@1(1), ..., wi(1)])[v(h) = oo}

f= Zazwl,.. Wi —1 )Wy,

If v(o;) = oo for all i, we can put f in the desired form by induction on m applied to a
finite set of generators of the ideal generated by the o;.
Suppose some v(0;) < oo for some i. As in the proof of A(m), we can perform a UTS

in the first m variables to get

f=w(t)™ - ws(t)™ fr

such that as in (3.31), there is a series A(wy (t1), ..., W _1(t1)) with coefficients in k(U (¢1))
such that v(w,,(t;) — A) = co and

fr = u(@m(t1) — A)" +h

where u € k(U(ty))[[W1(t1),...,Wm(t1)]] is a unit power series, h € a,,_1(t1) and r > 0.

By induction on m, we are reduced to the case

f - @m - A(wl, ce ,wm_l).

We can then put f in the desired form using the argument of Case 2) of the proof of B(m).
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Proof when 3) holds. Suppose that f is as in 3) of the statement of the theorem.

f = Zbi(wl, . ,@m_l)win.
1=0

Set Q = > 2, bjwl, w' . After reindexing the w;, | + 1 < i < m, we may assume that

Q#0. Q= _nl(o) --EZS(O)QO where w; does not divide Qg for 1 < i < s. Set r =
mult(Qo(0 ,...,O,U)m). 1 < r < oo. The proof will be by induction on r. Suppose that
r > 1.

V(g Of ) < oo since a_f € U and v restricts to a rank 1 valuation of the quotient

field of U . Thus there must be some i > 0 such that v(b;) < oo.

where the first sum is over terms of minimum value p, a satisfies av(w,,) > p, the (finitely
many) terms in the second sum have finite value and the (finitely many) terms in the third

sum have infinite value.
By 1) of the Theorem there is a CUTS (R,Tﬂ(a),T(a)) and (.5, U//(a),ﬁ(a)) in the

first m — 1 variables such that
o = W1 ()@ .., ()% g

for all 7,

for all 7 and

for all k

where u;,u;, Uy € k(U(a))[[wi(a), ..., Wn-1(a)]], U;,u; are units and

V(@1 (@)@ ()% (@) >
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Perform a UTS U(a) — U(a + 1) of type 11, to get
Qo =w1(a+1)3CF o (o + )% (S Ny (W (0 +1) + 1))

+ 3 @i+ DA (@ + DN (@ (o + 1) + 1)%
J

+ 3w (a+ 1) g (o + 1) O N (@ (o + 1) + 1)
k

+ <@1 (a + 1)bs+1,1(a+1) .. .@S(a + 1)bs+1,s(a+1)) U’

_ei(@br s (et l) 4 tel(@)bs, sp1 (1) +bst s (et 1)a;
/\i - da—|—1 .

Now perform a CUTS of type MI) T(a+ 1) — T(a+2), U(a+1) — U(a + 2) to get

d
Qo =Wy (o +2)4 ) o (o + 2) T2 (3 AT (W (00 + 2) + 1)
1=1
+wi(a+2) - ws(a + 2)Q).

Set
d

d
Q1 =Y AW (o +2) + D)™ +701 (a0 + 2) - Wy (0 + 2)Q = > AT
i=1 i=1
Set r1 = mult(Q1(0,...,0,W,(a+2)). 0<r; <ooand ry <r.
Suppose r1 = r. Then as in (3.30) in the proof of A(m), ay = r, 0,—1 # 0 and
v(or—1) = v(Wn).

As in the argument of the proof of A(7), there is a polynomial

==

Al € k(U)[wl, R ,wm_l] cU

such that we can make a change of variables, replacing w,, with w,, = w,, — A1, to get

v(w,,) > v(Wy,). We have

Qo

V(W) < v(wy, ') < v P

)

1

. —r—1 - .. -/
since w;, " is a minimum value term of 88%20 . 88% €U and
8f _ —n1(0) —n(0) 8Q0
T = W, - Wy P e——
Ow,, Ow,,
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implies v/( 889 ) < oo. Now repeat the above procedure. Since

0Qo  0Qo

ow., — Own,

we will achieve a reduction in r after a finite number of iterations by Lemma 1.3.

Thus after replacing w,, with
m — Wy — m,0

for some Py, 0 € k(U)[w1, ..., Wm—_1], we achieve a reduction r; < r in U(a + 2).
Thus we can construct a CUTS (R, T//(ﬁ),T(ﬂ)) and (S, U/,(ﬂ),U(ﬁ)) such that

f=L@i(B),--, Wm-1(B)) + Wi (B)™ -+, Ws(8)** Q

where mult(Q(0, . ..,0,w,,(3)) = 1. Set

T=v(@(B)*" -, ws (6)).

Suppose that L is not in k(U (3))[[w1(B), ..., w;(B)]]. Set

A= KT B), ., Bm1 (D]

We can write L = f; + H, with

£ € kUEN@(B), . Tm-1(B)] T (B),

H € m(A)® where v(m (A)O‘) > 7. After permuting the variables {wlﬂ(ﬁ) @m 1(8)}
we may assume that a_—) # 0. Thus V(L(ﬁ)) < 00 since 8_—1(5) el (ﬂ) By

induction on m, we can perform a CUTS in the first m — 1 variables to get

fi=L@(),....,m() + w1 ()" - ws(7)" Q,

so that

Q= W(Wp—1(7) + W1 (7)7" - Ws(7)9°%)

where T € kK(UY)[[@1(7), ..., Wm_1(7)]] is a unit, ¥ € k(UW)[@1(), ..., Wm_2(7)]],
and

V(Wn-1(7)) < v(@i(7)% - --ws(7)%).
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Now perform a CUTS consisting of CUTSs of type M2), s +1 < r < m — 1 (with
P.,=0fory+1<t<6—1)anda CUTS of type M1) to get

H =w,(6)4®) ...15,(8)% O w

with
v(@ ()1 ..., (6)%)) > 7.

Q, = w1 (6)® . w (8) T (Wyy—1(8) + &)

for some ¢’ € k(U(9))[[w1(0), ..., Wm—2(0)]], and unit @’ € k(U (0))[[w1(9),. .., Wm-1(9)]].
After possibly interchanging w,,—1(0) and w,,(d) and performing a CUTS of type M1), we

have f in the form
[ =L@ (6),...,w(0)) +w1(6)* - ws(6)*Q
where mult Q(0,...,0,w,,(5)) = 1. Thus Q = u(W,,(d) + ) where

u € k(U (0)[[@1(6),- .., W (3)]]

is a unit and Q € k(U (5))[[w1(5),...,Wm_1()]]. After replacing w,, () with w,,(§) + ¥,
J— —//

where U € k(U (0))[w1(d), ..., Wm-1(5)] C U (J), we can assume that
Q€ @1(9),...,Wn_1(6))"

where B is arbitrarilly large.
If v(Q) < oo, we can choose B so large that v(Q) = v(W,,(6)) < v(2). Then by
the conclusions of 1) and 2) of the Theorem, we can perform a CUTS in the first m — 1
variables to get
Q=w(e) - Ws(€)9° X

with v(wy(€)9t - - - wWs(€)9%) > V(Wi (€)).
If v(Q) = oo, we must have v(2) = v(w,,(d)) < co. Then by 1) of the Theorem, we
can perform a CUTS in the first m — 1 variables to get
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THEOREM 3.9. Suppose that T"(0) C R is a regular local ring essentially of finite type
over R such that the quotient field of T"(0) is finite over J, U"(0) C S is a regular
local ring essentially of finite type over S such that the quotient field of U"(0) is finite
over K, T"(0) ¢ U"”(0), T"(0) contains a subfield isomorphic to k(cg) for some ¢y €
k(T"(0)) and U”(0) contains a subfield isomorphic to k(U"(0)). Suppose that R has
regular parameters (z1,...,x,), S has regular parameters (yi,...,y,), T”(0) has regular

parameters (Ty,...,%,) and U”(0) has regular parameters (7, .. .,, ) such that

~  zcn ~Cls
T1=Y; " Ys P1

~Cs1 ~Css

%s:yl s ®s

where ¢1,...,¢s € k(U"(0)), v(Z1),...,v(Ts) are rationally independent, det(c;;) # O.
Suppose that there exists a regular local ring R C R such that (z1,...,x;) are regular
parameters in R and k(R) = k(cg). For1 < i <, there exists ~; € k(co)[[z1,...,z]]NT"(0)
such that v; = 1 mod (x1,...,z;) and

In particular k(co)[[z1,...,71]] = k(co)[[T1,-..,7]]. There exists v/ € U”(0) such that
Yi =Y, v) =1 mod m(U"(0)) for 1 <i < n.

Suppose that one of the following three conditions holds.

1) f € k(U"(O)[Hys-- -] for some m with I < m < n and v(f) < co.

2) f € k(U"(O)[[Wy,---,Yy,]] for some m withl < m < n, v(f) = oo, and A € N is
given.

3) f€U"(0) = kU"(O)[[H1, - wll-

Then there exists a positive integer Ny such that for N > Ny, we can construct a
CRUTS along v (R,T"(t),T(t)) and (S,U"(t),U(t)) with associated MTSs

S — St
T T
R — R(t)



such that the following holds. T"(t) contains a subfield k(cy,...,c:), U"(t) contains a
subfield isomorphic to k(U(t)), R(t) has regular parameters (z1(t),...,x,(t)), T"(t) has
);

regular parameters (T1(t), ..., ZTn(t)), S(t) has regular parameters (y1 (1), ...,y (t)), U"(t)

has regular parameters (yl(t), ..., T, (t)) such that

where v;(t) € k(co, - .., co)l[x1 (), ..., x:(t)]] units such that
vi(t) = 1 mod (z1(1),. .., x(t)).
In particular,
k(co,. - e)lfzn(®),. .., mi@®)]] = ko, .- ., e)[F1(b), . ... T (B)]]-
For 1 < i < n there exists v} (t) € U"(t) such that y;(t) =~/ (t)y;(t),

v/ (t) =1 mod m(U" (t)).

(3.33) T1(t) =7, () DG () Dy (t)
Ts(t) = Gy (1) -G (1) D (¢)
%S-f—l (t) = ?s—i—l (t)

1), ..., 0s(t) € k(U()), v(F1(t)), ..., v(Ts(t)) are rationally independent, det(c;;(t)) # 0
and there exists a regular local ring R(t) C R(t) such that (zy(t),...,x;(t)) are regular
parameters in R(t) and k(R(t)) = k(co, ..., c;). Furthermore, z;(t) = z; for | +1 <i < n,
yi(t) = y; for m +1 < i < n, so that the CRUTS is in the first m variables where m =n
in case 3). Set ny; =m (k(U®)[71(t),--.. 5, 1)])-

In case 1) we have

(3.34) F=m®® g0 u@ @), ..., g (t) mod m(U(t)"



where u is a unit power series. Further if f € k(U)[[yy,-..,7;]l,

f

Il
<

(OGO u@ (b), .., 7,(t) mod ng).
In case 2) we have

(3.35) f

T (1)) mod m(U ()
with v(§, ()% -+ F,(t)%) > A. Further if f € k(@) [[Fy, - ... 7],

F=n®" g% u@ (1),
In case 3) we have

Il
<
~—~

L)y () E( (1),

Il
<

.., 7,(t)) mod nivl
(3.36) f=P),..

ST() + 5O - G () H mod m(U(t))™
where P is a series with coefficients in k(U (t)) and

H = u(f1(t) + 5, ()7 - 7, (1) %)
where u € U(t) is a unit, ¥ € k(U (®))[[Y1(t),- -, T, (t), Y142(1), -

,@n(t)]] and
V@Hl(t)) < V@l ()7 -

PROOF: Set T = R,
In case 3) set m =

(5.T"(t),U(t))

s (%)
U=8,T =T1"0),U =U"(0). Set z; = z;, w; =3, for 1 <i < n.
n. By Theorem 3.8 there is a CUTS along v (R,T//(t),T(t)) and

Uy — U@

1 a

T0O) — T()

so that in the notation of Theorem 3.8 and its proof, for 0 < o < ¢, T,/(a) has regular
parameters

(Z1(@),...,Zp(a)) and (Z;(a)

~/

) "’zn(a))a

U (a) has parameters

(@1 (), ..., Wy(a)) and (W) (cv), .

such that in case 1) we have

L, (@)

f=w ()" - W () u(@ (1), ..., W (t))
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where u is a unit power series. In case 2) we have
f=wm)" W, () S(@i (1), .. W ()
where v(w, ()% - - w,(t)%) > A. In case 3) we have
f=P@(t),....mt) +w ()" - ws(t)" H.

for some powerseries P € k(U (t))[[@1(¢), ..., @ (t)]],

H = u(@, () + 01(0)" -, (1))
where u € T(t) is a unit, ¥ € k(T(£))[[@1(t), ..., Wn_1(t)]] and

v(wn(t)) < v(wi(t)? - ws(t)).

Step 1. Fix N > 0. To begin with, we will construct commutative diagrams of inclusions

of regular local rings

Ula) — U"(@) — Ula)

(3.37) 1 T T
() — T"(e) — T(a)

for 1 < a < t such that T(o) = T'(«v) ", U(e) = U'(a) " for all o, T"”(cv) has regular
parameters

(T1(a),...,Tp(@)), (T1(a), ..., Tn(®)), (T1(a),..., T, (@)).
U"(«) has regular parameters

~ ~ ~/

@1(@); -, ¥n (@), Wi (a), -, Y (a), (G (@), - Yy (@)
where 7;(0) = 7; and 7,;(0) =y, for 1 <i < n. We will have isomorphisms

(3.38) n% : k(T(a)) — k(T(a)) and
g k(U(a)) = k(U())

—

such that the diagrams

(3.39) ) T



and

EU(a) — kU(a+1))
T 7
k(U(e)) — kU(a+1))
commute for 0 < o« <t — 1. For all o we will have

(3.40) Zi(a) = 71 () g (@)1 (a)

7i(a) =7 (a)
with ¢1(a),...,¢s(a) € kE(U(a)) the coefficients of (3.22) of Theorem 3.8, (¢;j(«)) the
exponents of (3.22) of Theorem 3.8.

We will construct (3.37) inductively. Suppose that (3.37) has been constructed out to
T(a) — U(«a) and regular parameters (Z1(a),...,Ty()) in 7"(«) and (g (@), ...,7, (@)
in U” () have been defined so that (3.38) and (3.40) hold.

If we identity k(T («)) with k(T () and k(U () with k(U (a)) we have isomorphisms
T(o) = k(T(a))[[T1(e), - .., Tn(a)]] and U(er) = k(U (a))[[71(), - - Fn(@)]]-

We can choose A, and (; , arbitrarily subject to the following conditions, to define
regular parameters in 7" («) by
(3.41) B B

~ Tr(a) + Ao (T1 (@), ..., T ()) U T(a—1) — T(«a) is of type II,. and i = r
zi(a) = {Ei(a) otherwise

with Ay € k(co, ..., co)[[T1(a), ..., T ()] N T" () and mult(A,) > N. We will take
Ao =0.

Recall that the P; , constructed in Theorem 3.8 are polynomials with coefficients in
k(co,...,cq) if i <. Define

(3.42) B ~ ~ ~ ~
%l(a) - {Ez(a) — P@a(fl(a), e ,Ei,l(a)) + Qi7a(f1(&), e ,fl(CY)), 1f S + 1 S 7 S l
O A ) otherwise

with Q; o € k(co, ..., ca)[[T1(@),...,T(a)]] NT" () and mult(€2; o) > N. (If P, o, =0, or
if 1 <i< s we will have T}, (o) = Z;().) We then have
k(Co, ey ca)[[fl(a), .

/

= ki(Co, ce 7604)[[%1(

LT()]] = E(co, - ., ca)l[T1(), ..., Ti(a)]]
T

()]
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and

for | < i <n. Define

zi(a) ifs+1<i<]

Ui(a) + Aa(T1 (@), .., Ty (@), if S(a —1) — S(a) is of type I,
andi=r>1[1+1

7;(a) otherwise

(343)  Fy(a) =

with A, € U”(«) and mult(A,) > N. We will take Ag = 0.

Recall that the P; , constructed in Theorem 3.8 are polynomials with coefficents in

k(U(a)) for I + 1 <. Define

(3.44)
T () ifs+1<i<l
=~/ ~ ~ ~ ~ ~ . .
Yi(a) = Ui(@) = Pa@ (@), ..., 1(a) + Qia(i(a),.... ¥, () ifl4+1<i<m
U () otherwise

with ; o € U"(a) and mult(£2; o) > N.

These variables are such that for all «,

KU ()7 (a), . ... 7()]] = k(U ()G (@), .., Ti(a)] = kU (@) 7 (@), ... 7i(@)]

and 7,(er) = F,(e0) = ;(a) = y; for m < i <.

If T(a) — T(a+1) is of type I, defined by (3.24) of Theorem 3.8, T(a) — T'(a+1) will
be the UTS of type I such that 7" (a+ 1) has regular parameters (Z1(a+1),...,T,(a+1))
defined by

/

(3.45) %l (a) =7 (Oz i 1)a11(a+1) .. .§S<a + 1)a1s(a+1)

%ls(oz) =T (a+ 1)“51(O‘+1) T+ 1)““((”1).

Suppose that T(a) — T'(a + 1) is of type II,., defined by (3.25) of Theorem 3.8. Set
(ei) = (aij(a+1))7H,

(3.46) M, = %/1 (04)611 .. .%s(a)elsii(a)fh,sjq



Let k1 be the integral closure of k in T'(«). Set
A= (T"(a)[My, ..., Mg, M,] @, k(T(a+1))),

where

~/ ~/ =~/ =/
a=Mp,...., Mg, Ty (a),...,Tp_q(), My — Cag1,Tppi(),..., T, (a)).

Set ¢ = T"(«)[Ma, ..., Mg, M,] N a where the intersection is in A. Define
T (a+1)=T"(a)[My,...,Ms, M,],,.

Define T'(a + 1) = T"(a + 1)". Our inclusion 7"(ov + 1) C A induces an isomorphism
et k(T(a + 1)) — k(T(a + 1)). We can thus identify c,iq with (n37) " (carr).
T(a + 1) has regular parameters (Z;(a +1),...,Z,(a + 1)) defined by

M, 1<i<s
(3.47) Ti(a+1)={ My —cqy1 Q=7
%;(a) §< i, 0FT
Set
~ 1
(3.48) T"(a+1) = T"(a) [caH, (M + 1) -
Cot (F1(a+1),eBn (@t 1))

. 1
where <%+tl) + 1) “**1 has residue 1 in k(T(a +1)). T"(a + 1) has regular parameters
(T1(a+1),...,Tp(a+ 1)) defined by

R 2 —vi(a+1)
fi(a—kl)(M—Fl) 1<i<s

Ca+1
_ _ = L
(3.49) Ti(a+1) = (fﬂrc(;:tl) + 1> fatl _ 1 1=
Ti(a+1) s<hifr

Then T(a) — T(a+ 1) is a UTS of type II, with

(3.505/1(04) — Tl(a + 1)a11(a+1) . -TS(Oé + 1)a1s(a+1)ciisl+1(a+1)

%;(a) — fl (Of + 1)asl(a+1) .. .fs (O{ + 1)ass(a+l)C31sl+l(a+1)

Fo(a) = T (o + 1)1 @) g (a4 1) D (3 (0 4 1) 4 1)t e o)
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If U(a) — U(a+1) is of type I, defined by (3.26) of Theorem 3.8, U(a) — U(a+1) will
be the UTS of type I such that U”(«a+ 1) has regular parameters (7, (a+1),...,7,(a+1))
defined by

(3.51) @ll (Oé) =7 (a + 1)b11(a—|—1) .. .ys(a + 1)b1s(0¢+1)

~/

ys(a) =7 (a+ 1)b51(a+1) g (a+ l)bss(a-i-l).

Suppose that U(a) — U(a + 1) is of type II,., defined by (3.27) of Theorem 3.8. Set
(fi) = (bij(e+1))7H,

~/ ~/ ~/
(3.52) N1 =gy ()t - g () g, (a) e
=~/ ~/ =/
Ns - yl(a)f81 U ys(a)eSéyr(a)fs’s+l
Ny = Gi(@)f ot g(e) g () e,

Let ko be the integral closure of k in U(«). Set
(353) B = (U//<a>[N17 s ,Nsa Nr] ®k2 k(U(a + 1)))b

where

~/

=~/ ~/ ~/
b= (Nla s 7Nsays+1(a)7 T =yr—1(a)7 N, — da—i—la yr+1<a)7 s 7ys—|—1(a))'
Set go = U"(a)[N1, ..., N, N.] N b where the intersection is in B. Define
(3.54) U'(a+1) = U"()[Ni, ..., Ny, Ny,

Define U(aw+ 1) = U'(a+ 1)". Our inclusion U'(« 4+ 1) C B induces an isomorphism
nett s k(U(a + 1)) — k(U(a + 1)). We can thus identify d,i1 with (&)™ (day1).
U(a + 1) has regular parameters (7, (a +1),...,7, (o + 1)) defined by

N; 1<i<s
(3.55) Uila+1) =< Ny —dap1 i=r
@;(a) s<i,iFr
Set
S 1
(3.56) U'(a+1)=U"(a) [dw, (% + 1) d““]
ot (1 (1) ooy (1))



. 1
where (%ﬁ + 1) et has residue 1 in k(U(a+1)). U”(a + 1) has regular parameters
(F1(a+1),...,7,(a+ 1)) defined by

R ~ _Ti(a+1)
o (2 e) ™ asiss
(3.57) yi(a+1)= (de(aH) n 1) dat1 _ i=r
a+1
@z(OH‘D s<GLiFET

Then U(a) — U(a+ 1) is a UTS of type II,. with

(3.58)

/

o~ _ o — « b ) a+1
71(0) =Ty (0 1) g (o el g (T

a+ 1)b51(a+1) . _ys(a + 1)bss(o¢+1)dl;sj:1.|.1(a+1)

v}
—
Q
~—
I
<

—
—~

U(0) =Ty 1) g (o )P D g o 1) 4 DT,

We will now prove that (3.37), (3.39) and (3.40) hold for « 4+ 1. The essential case is
when T'(a) — T(a+ 1) is of type II, with s +1 < r <.
By (3.13) of Lemma 3.4 in the construction of T(a) — T(a+1) and U(a) — U(a+1),

(3.59) M, = ngll co o N9t NILs+13)

— gs1
M, = N{= ... Ngss Ngos+1 3,
M, = Ng==+14,

Bi = ¢1(a)t -+ ps(a)s € k(U(a)) CU" () for 1 < i < s,
By = ¢1 (a)eS“’l .. .¢S(a)es+1,s'
(@) = (oot D) (1940 gt 1)

gs41,1 = -+ = gs+1,s = 0 and g;; > 0 for all ¢,5. Thus T"(a)[M;,...,Ms, M,] C
U"(a)[Ny, ..., Ns, N.]. Our inclusion k(T(a+1)) — k(U(a+ 1)) induces an identification

Cat1 = dpi1° ™ B,. Then by (3.16) of Lemma 3.4,

_ gs+1,s+1 _ _ gs+1,s+1 _ J9s+1,s+1
Mr — Ca+1 = Nr Fhst ﬁr Cat1 = (Nr et da+1 )BT

9s+1,s+1

= H (Nr—wida-i—l)ﬁr

=1
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where w is a primitive gs41 s+1-th root of unity (in an algebraic closure of k(U (a + 1))).
Thus N, — doy1 divides M, — c441 in U”(«)[Ny, ..., Ns, N,|] and we have an inclusion
A C B which induces T'(a+ 1) CU'(a+ 1) and T(aw+ 1) C U(aw+ 1). Thus (3.39) holds
for a + 1.

By the argument of Lemma 3.4 in the construction of T(a + 1) — U(a + 1) and
(3.47)-(3.49), (3.55)-(3.57), we have that T"(a+1) C U”(a+1) and (3.40) holds for a+1.

Step 2.

Suppose that T'(t) — U(t) is constructed as in Step 1, and f satisfies 1), 2) or 3) in
the statement of Theorem 3.9. We will show that f satisfies the respective equation (3.34),
(3.35) or (3.36) in U(t). It suffices to prove the following statement.

Suppose that 0 < 7 <t and fj is defined by f(wy,---,w,) = 7j(w1(j), < Wy (7)) in
U(j). Then

The statement (3.60) will be proved by induction on j. By induction, suppose that

We have f;(@1(5), -, Wn(j)) = fy1 (@1 + 1), Wn(j + 1)) in UG +1).
There are series P; ; with coefficients in k(U (j)) such that

P i(Z1(4), -, Zi—1(j)) s+1<i<I

ﬁi,j(@lu)? T »ﬁi—l(ﬂ) - {P¢7j(@1(j),""wi—1(j)) l+1<1

We have

Vor1(7) + Posr s G ()s - 70 (G))s -
)+ P (@10)s 3 T () mod m(U(j + 1))V
57j+1(y1(j + 1)7 T 7yn(j + 1)) mod m(U(] + 1))N

Set nay = m (k(U(a)[[71(q),...,7,(a)]]) for 1 < a < t. In the case of f(¥y,...,¥;) €
kE(U)[[Yy,-- -, )], the above argument is valid with n replaced by [ and m/(U(j+1)) replaced
by 141, since U(0) — U(t) is then a UTS in the first [ variables.
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Step 3. Now we will construct, with suitable choice of the series A, and €; o, in (3.41)-
(3.44) of Step 1, and our fixed N, a CRUTS (R,T"(t),T(t)) and (S,U"(t),U(t)) with
associated MTS (3.61)

S= S0 — S1) — -+ — S
(3.61) ) 1 f
R= RO — R(1) — -+ — R()

such that R(«) has regular parameters

(z1(), ..., zp(@)), (Z1(), ..., Tn(a)), (T} (a),..., 20 (a)).

S(«) has regular parameters

(1(a), - s yn(a), (G1 (), - -, (@), (Fi(a), - ., G ().

(3.61) will consist of three types of MTSs.
M1) R(a) = R(a+ 1) and S(a) — S(a + 1) are of type L.
M2) R(a) — R(a+1)isof type Il,, s+ 1 <r <[, and S(a) — S(a+1) is a MTS of type
I1,., followed by a MTS of type I.
M3) R(a) = R(a+1) and S(a) — S(a+1) is of type II,, (I +1 <r <m).
There exists for all o a regular local ring R(c) C R(«) such that R(c) has regular
parameters (z1(a), ..., z;(a)) and R(a)” = k(co, ..., co)[[z1(a),. .., z1(a)]].

The series A, in (3.41) is chosen so that

zi(e) = 7i(a)zi()
for 1 < i <[ where v;(a) € k(co,...,cq)[[z1(a),...z1(a)]] N T" () are units such that
vi(a) = 1 mod (z1(@),...,z;(«)). In fact, in conjunction with an appropriate choice of

Aa—1 in (3.63) below, we will have z,(«) = v, ()T, () + 1o Where

Vo € k(co, ... c)[[T1(a),..., T (a)]],

and mult(¢) > N if R(a — 1) — R(«) is of type IL,.
The series €; , in (3.42) is chosen so that we can define regular parameters Z;(«) in

R(«) by

(3.62) Fi(a) = {%‘(Oé)ﬁ(a) 1<i<l

~/

7, () <1
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(If P, =0, orif 1 <i <s we will have #;(a) = z;(«).) Define regular parameters ()
in R(a) by
AaZr(a), if R(a) — R(a+1) is of type I, and i = r

Zi(a) otherwise

(3.63) fmm:{

We will have Ay € R(a) C k(co, ..., co)[[z1(a), ..., z1(a)]], Aa = 1 mod m(R(c)).

These variables are such that for all «,

k(co, s ca)[[1(a), .. m(@)]] = k(co, ..., ca)[[F1(a), . .., E1(a)]]
= k(co, .-, ca) [F(a), - .. E{(a)]
= k(co, . ca)[[T1 (), .., T(Q)]] = k(co, .. ca)[[T1(a), ..., To(a)]
= k(co, . ca)[[T1 (), .., Ty (a)]
and
zi(a) = #i(a) = #j(a) = Ti(a) = Ti(a) = T;(a)
forl <i<n.

k(co,...,cq) C k(R(a)) and k(R()) = k(cq, . .., cq) for all i.
The series A,, in (3.43) is chosen so that

yi(a) = (@)y;(a)
where v/ («) € U”(a) is a unit such that v/(a) = 1 mod m(U"(«)) for 1 < i < m. In
fact, we will have y, (o) = 7Y(a)y,(a) + Yo where ¢, € S()”, and mult(¢p,) > N if
S(a—1) — S(a) is of type IL., with I +1 < 7.

The series ); o, in (3.44) is chosen so that we can define regular parameters g;(a) in
S(a) by

(3.64) Gi(e) = 7 () ().
which satisfy
) ifl<i<sorm<i<mn
Ji(a) = { Ti(a) ifs+1<i<l
i), ifl+1<i<m.
1 <

[. Define regular parameters g.(a) in S(«) by

() fs+1<i<]
(3.65)  gi(a) =14 Aa¥r(a) if S(a) — S(a+1) is of type I, withr > 1+ 1,i=r
7i(a) otherwise
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We will have A\, € S(a), Ao =1 mod m(S(«)).

These variables are such that for all «, y;(a) = 7;(«) = y; for m < i < n.

Suppose that we have constructed the CRUTS out to (R,7"(«a),T(«)) and
(S, U"(a),U(cx)), the MTS out to

S — Sa)

T T,

R — R(a)
we have constructed R(a) C R(c) and have defined regular parameters (x1(a), ..., x,(a))
in R(a), (ZT1(a), ..., Tn(a)), @1(a), ..., Tn(a)) n T"(a), (y1(e),. ... yn(e)) in S(a), (7 (a),. ..
and (7,(a),...,7,(a)) in U"(a).

Case 1. Suppose that both T(a) — T(a + 1) and U(a) — U(a + 1) are of type I. By
assumption z;(a) = v;(a)T;(a) for 1 <4 <.

—i(@) Py o(T1(a), ..., Ti1(a)) € k(co, - . -, ca)[[T1(a), ..., Tu(@)]] = R(@) ",
the completion of R(a) for s +1 < i g I. Thus there exists A € R(a) C R(a),
Qi €m (E(co, .., ca)[Fr(a), ..., F1(a)]])" such that A — o = —7,(Q) Pro. Set Qi =
Yi () 71 4.
7i(@)[Fi(a) = Pra + Qi
= 7i()Ti(@) = 7i(Q) Pra + Disa
() + A € R(cv).

Thus by suitable choice of the €; ., we have regular parameters Z;(«) in R(a) and regular
parameters %;(oz) in 7" (o) satisfying (3.62) and (3.63). We can also define Q; ,, for [ +1 <
i < m to get regular parameters g;(«) in S(«), and regular parameters ?;(a) in U ()
satisfying (3.64) and (3.65). Define R(a) — R(av+ 1) and S(a) — S(a+ 1) by

jll (a) = xl(a + 1)a11(a+1) .. .ms(a + 1)a1s(a+1)

i () = z1(ax + 1)asl(a—|—l) cxg(a+ l)ass(a+1)

S

and

7.(a) = g1 (o + 1)@+ Ly (g 4 1)bre(atD)

g;<a) =Y (Oz + l)b“(o“"l) ... ys(Oé + 1)bss(a+1)'
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Then T(a +1) = Rla +1)" and U(a + 1) = S(a+1)". Set Z;(a + 1) = Ty(a + 1),
¥i(a+1) =7, (a + 1) for all 4.
Set (e5) = (a;j(a+1))71, set
aeil...saeis 1§Z§S
oty = { PO '
yi(a) s<i<]

vila+1) € k(coy ..y carr)[[zi(a+1),...;z(a+ D) NT"(a+1) for 1 <i <.

vila+ )T (a+1) 1<i<l
Ti(a+1) l+1<i<n

s+ )=

Set (fzj) = (bij(Oé + 1))_1, set

v (a) s<i<n

Wty ={

Then y;(a+1) =7/ (a+ 1)y;(a+1) for 1 <i < n. Set

R(O[ + 1) = R(a)[wl(a + 1)7 s ,ZL‘S(OZ + 1)](x1(a+1),...,xl(a+1))-

Case 2. Suppose that both T(a) — T(a + 1) and U(a) — U(a + 1) are of type II, with
s+ 1 < r < [. By suitable choice of the {; , as in Case 1, we have regular parameters
Z;(a) in R(a) and regular parameters g;(«) in S(«) satisfying (3.62) and (3.64). Set
(eij) = (aij(a+1))~1. Choose A, € R(a) C R(a) in (3.63) so that

(3.66) A1 (@)t oy (@)t ey, () Gttt \Cet et
=1mod (z1(a),...,z1(a))VE(co, ..., ca)|[r1(c), ..., z1(a)]].

Set

(3.67) Ay = F () - FL () E (o)

where (e;;) = (a;;(a+ 1))
Let ks be the integral closure of k in R(«). We have

ks — k(R(a)) = k(T(a)) — k(T (a +1)).
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Set
C=(R(a)[A1,...,As, A} @y E(T(a+ 1)),
where ¢ = (Av..., Agy @1 (Q),oe o @y (@), Ar = Casrs B (@), -, Fy(@)). Set g5

R(a)[Aq, ..., As, Ayl N e where the intersection is in C. Define

R(a+1) = R(a)[A1, ..., As, Arlg,.

Our construction gives an isomorphism k(R(a+1)) = k(T (a+1)). Define regular param-

eters (zj(a+1),...,25 (e +1)) in R(aw+1)" by

(3.68) zi(a+1l)=<¢ A —coy1 =T
(o) s<i,iF#T

7 (Oz) — xT(O‘ + 1)@11(a+1) . (a + 1)a15(a+1)( (a + 1) +e +1)a1 s+1(at1)

e+ 1) 0D @l (@ 1) + cqup )t @FY

o+ 1)a51(a+1 e
fi’;,,(a) = xi(a + 1)as+1,1(0t+1) e :I;;k (O[ + 1)as+1,s(0t+1) (Qf:(a + 1) + Ca+1>as+1,s+1(oz+1)

R(Q)[Ay, ..., Ay, Ay, where ¢ = R(Q)[A1, ..., A, A Ne.

Set R(a+1) =
k(R(a +1)) k(fi(a))(caﬂ) > k(coy. vy Cat1)
and
R(a +1)" ZEk(coy..,Car1)|zi(a+1),..., 2] (a+ 1)]].
Set
(3.69 By = ()" - (@) -3 () o

BS = gi(a)fSI .. .ys( )fssy ( )fs+1,s+1

B, = Fi(a) gl @) g () et

where (f;;) = (bij(a+1))~!. Let k4 be the integral closure of k in S(c). We have

ks — k(S(a)) = k(U(a)) = k(U(a +1)).
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Set
D = (S(a)[Bu,...,Bs, By ®y, k(U(a + 1)),

where d = (By,...,Bs, ¥ 1(a), ..., 7._1(a), By — day1,§ppi(a), ..., 7, (a)). Set g4 =

S(a)[By,. .., Bs, By] Nd where the intersection is in D. Define
S(a+1) = S(a)[B1,...,Bs, Bylg,-

Our construction gives an isomorphism k(S(a+1)) = k(U(a+1)). Define regular param-
eters (yi(a+1),...,ys(a+1))in S(a+1)" by
B; 1<:1<s

(3.70) yi(a+1)=< B, —das1 i=r
Ui (o) s<i,iFEr

oy = '71 (a)€s+1,1 .. "Vs(a)es+1’s’7r(0é)es+l’s+l )\35-1-1,5-5-1.

By (3.62), (3.63), (3.46) and (3.67)

(371) A1 = O'1M1
As = UsMs
A, =o,.M,.

Thus R(«a)[A1,...,As, A] C T"(«)[My,. .., Mg, M,]. We then have an inclusion C — A
which induces an inclusion R(a+ 1) — T"(a+ 1). By (3.68), (3.71), (3.47) and (3.49),

2f(a+1) = 0;(Fp (o + 1) + 1)CerileT g, (o 4 1)
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for 1 <4 <sand

(a4 1)+ cap1 = 0p(Tr(a+1) + catr)
= 0, (Cat1(Tr(a+1) + 1)%1)
= Ur(6a+1ca+1U§r(Oé + 1) + Coz—l—l)

where u € Q[Z,(« + 1)] is a polynomial with constant term 1.

o, — 1

* 1
Ca+1Ca+1 Ca+1

By (3.66), T(a+1) = R(a+1) “since k(R(a+1)) =2 k(T (a+1)), (z5(a+1),..., 2} (a+1))
are regular parameters in T'(a + 1).

Thus there exists
Qe (El(a + 1)7 s 7@[(06 + 1))Nk(007 s 7Ca+1)[[f1(a + 1)7 <. 7fl(a + 1)”

such that
o uT (a+1)+Q € Rla+1) C R(a+1).
Set .
i (o + 14T
xi(a+1):{ @(_ ) '7&
oruZ(a+1)+Q i=r
0i(Tp(a + 1) + Dearrileth) 1 <4 <5
vila+1) =< oru i=r
vi(a) s<i<lji#r

Set Apt1 = ar_lu_lﬂ. By definition

Tra+1)+Agy1 i=T7

%i(a+1):{fi(a+1) LFET

Then (z1(a+1),...,z,(a + 1)) are regular parameters in R(«a + 1) and
zila+1) =y(a+ Dz (a+1)

for 1 <4 <. Since g; € T"(a) for all i, coy1 € T"(a+ 1), Car17vi(a+ 1) are integers and
(Z1(a+1),...,Ty(a+ 1)) are regular parameters in 7" (o + 1), v;(a+1) € T"(a+ 1) for

all i and (T1(a + 1),...,Z,(a + 1)) are regular parameters in 7" (a + 1).
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By (3.64), (3.65), (3.52) and (3.69)

(3.72) By =0{N;
B, = 0YN;,
B, =0d’N,

Thus S(a)[By,...,Bs,B;] C U"(a)[Ny,...,Ns, N;]. We then have an inclusion D C B
which induces an inclusion S(a+ 1) — U'(a + 1). By (3.70), (3.72), (3.55) and (3.57)

A

yi(a+1) = oiyi(a+1)
= o!(@ (o + 1) + )7 g, (0 4 1)

for 1 <4 < sso that y/(a+ 1) = unit g;(a+ 1) in U(a+1) for 1 <i<'s, and

yi(a4+1) +dayr = o? (T, (a+1) +dair)
= 0¥doi1 (7, (o + 1) + 1)%=t

= of|da+1dat1uy, (o + 1) + da1]
where u € Q[y,.(a+1)] is a polynomial with constant term 1. ¢% = 1 mod m(U(«)). Thus

0-7?{ = 1 mod (yl(a + 1)7 s 7yr—1(a + 1)7?7’—1—1(04 + 1)7 s 7yn(a + 1))

. 1 y—1
M =oluy,(a+1)+ i
da+1da+1 da—|—1

= uyr(a + 1) HlOd (yl(a + 1)7 s 7yr—1(a + 1>7yr+1(a + 1)7 s 7yn(04 + 1))

Thus U(aw + 1) = S(a+ 1) " since (yj(a +1),...,y}(a+ 1)) are regular parameters in
U(a+1) and k(S(a+1)) 2 k(U(a+1)). By Lemma 2.3, T(a + 1) — U(a + 1) induces a
map R(a+1) — S(a+1). Set

yila+1) = {

r(a+1) i=r



ol (G (a+ 1) + DdormlotD) 1 < <
v (a+1) =4 vi(a+1) i=r
() s<i<n,iF#r

By definition
Yla+1) i#r

ji((%—kl):{i-(a—l—l) i=r

Then (y1(a+1),...,yn(a + 1)) are regular parameters in S(a + 1) and
yila+1) =/ (a+1y;(a+1)

for 1 <i<n,v/(a+1) € U"(a+1) and (y;(a+1),...,7,(a+1)) are regular parameters
in U"(a+1).

Case 3. Suppose that T(a) = T(a+ 1) and U(a) — U(a + 1) is of type I, with [ +1 <
r < m. By suitable choice of the €); , as in Case 1, we have regular parameters y;(a) in
S(c) satisfying (3.64). Set (fi;) = (bij(a+1))~1. Choose A, in (3.65) so that

,y%/(a)fs+1,1 . _,yg(a)fs+1,s,y7y(a)fs+1,s+1 )\£3+1,s+1 =1 mod m(U(a))N
As in the argument of Case 2, we can define, by (3.69),
S(a+1) = S(a)[B1,...,Bs,Bylq,

so that S(a + 1)~ has regular parameters (y;(a+1),...,y:(a+ 1)) defined by (3.70). Set
o =~} (a)fn oY (a)Fis ¥ (@) T AL for 1< i < s and set

o, = ,Yil(a)fs+1,1 . _72(a>fs+1,377y(a)fs+l,s+l >\£s+1,s+l‘

Then equations (3.72) hold, and we have an inclusion S(a+ 1) — U'(a+ 1) as in the
argument of Case 2.
By (3.70), (3.72), (3.55) and (3.57),

yi(a+1) = og;(a+1)
— 0:(F, (@ + 1) + D%y, (0 + 1)

for 1 <4 <sand

yi(a4+1) +day1 = o (G (a+1) +doir)
0Ydg1 (T, (@ + 1) + 1)dets

= o}[dat1da+1uy, (o + 1) + daa]
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where u € Q[7,.(a+ 1)] is a polynomial with constant term 1.

. 1 y—1
gr(a——f—) =oluy, (o + 1)+ i
da+1da+1 a+1
Recall that oY = 1mod m(U(a))¥. Thus U(ae + 1) = S(a + 1)° since

(yi(a+1),...,yk(a+1)) are regular parameters in U(a+1) and k(S(a+1)) = k(U (a+1)).

Thus there exists
Qe @(at1),... .y (a+)NU(a+1) = @G(a+1),....7,(a+1)¥S(a+1)"

such that
oruy,.(a+1)+Q e Sla+1).
Set ,
vi(a+1) i#n

ila+1) =
yila+1) {mu@(oﬁ—l)%—ﬂ i=r

oi(@,(a+1) +1)denTi 1<i<s
Vi (a+1) = q omu i=r
v () s<i<myi#r

Set Agy1 = J{lu_lﬂ. By definition

y,(a+1) iFET
Urla+1)+Aapr i=r

a+ 1=
Then (y1(a+1),...,yn(a + 1)) are regular parameters in S(a + 1) and
yila+1) =7 (a+1y;(a+1)

for 1 <i<n. v/ (a+1)€U"(a+1)for all i and (7;(a+ 1),...,7,(a + 1)) are regular

parameters in U” (a + 1).

Step 4. It remains to show that the CRUTS (3.37), (3.61); (R,T"(t),T(t)) and (S,U"(¢),U(t)),}
constructed in step 3 is a CRUTS along v if N is sufficiently large.
We have an extension of v to the quotient field of U () which dominates U(t). Define
U(t) = U(t)/B(t) where B(t) is the prime ideal of elements of U(t) of infinite value. Let
G(t) be the quotient field of U(t). Let K be the completion of K with respect to a metric

associated to v (c.f Lemma 1.2), G(t) be the completion of G(t) with respect to a metric
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associated to v. We have a natural inclusion of complete fields K — G(t). Suppose that

for some 0 < 3 <t

uio) — u@) — - — UPp
7 7 7
T00) — T7(1) — -+ — TP

is a CRUTS along v. Then by Lemma 1.2, we have natural maps:
U(i)=S50G) — K for 0<i < f.

Let O,, be the valuation ring of the natural extension w of v to G(t), m,, be the maximal
ideal of O,, and T, be the value group of w. We have an inclusion k(U(t)) — Oy, /M.
We will prove the following inductive statement on a with 0 < a <t. Given a positive

element X/, € T, such that
(3.73) A, > max{w(w; (), ..., w(w,(a))},

there exists a positive element N, such that if N > N,, and

uo — Ul — -+ — Ul
(3.74) T I T
TO) — T(1) — - — T(a

is a CRUTS (3.37) as constructed in Step 3, then

Al) U(«a) — O, and there is a commutative diagram

) = Ow/my

A2) w(y;(a)) >0 for 1 <i<n.
A3)

y;,(a) =w;(a) for 1 <i<s
w@w;(a) —g,(a)) > A, fors+1<i<n

1/

Since 7;(0) = w;(0), for 1 < i < n, and U”(0) = U (0), the statement is true for
m = 0.
Suppose the inductive statement is true for CRUTS of length «, and for any given
AL, € T, satisfying (3.73). We will prove it for sequences of length o + 1, and any given
Al,4+1 such that
N1 > max{w(@i (o + 1)),..., w(@,(a +1))}.
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Choose N = X, if U(a) — U(a+ 1) is of type I,
N>+ bspi(a+ Dw@i (a+1) +.. .4 bsp1 s(+ Dw(@s (e + 1))

if U(a) — U(a + 1) is of type II,.. By induction, there exists N such that N > N”
implies w(w;(a) — Y;(«)) > X for all ¢, and we can further choose N” so large that
Nw(m(U(c))) > N. Then v(y,;(a)) = v(w;(a)) for all i and Nw(m(U(a))) > N.
v(Ay) > N implies w(w;(a) — 7;(a)) > X for s +1 < i < n. v(Q4) > N implies
w(ﬁ;(a) — @;(a)) > X for s +1 < i <n. Thus there exists o; € O, with w(o;) > X\ such
that 7, (o) = Wy() + o for s+ 1 < i < n and J,(e) = Wy(e) for 1 < i < s.

Suppose that U(a) — U(a + 1) is of type L

o) = [T (o + 1o
j=1
and
W, (« :HE (o + 1) etd)

j=1
for 1 <i<s. Thus g;(a+1) =w;11(a+1) for 1 <j<sand Al), A2) and A3) hold for
o+ 1.

Suppose that U(a) — U(a + 1) is of type II.. Set b;; = by;(a +1). Set (fi;) =
(bij(a+1))~% U(a+ 1) has regular parameters (wy(a + 1)....,w,(a + 1)) such that

(3.75) Wy (o + 1) =Wy (@) - (), (o) oo
s+ 1) = Wy (@) (@) ()T
wr(Oz + 1) + da—|—1 — @/1 (a)fs+1 ! @; (Oé)fs-i_l’s@; ((J!)fs+1’s+1

Recall equation (3.52).

(3.76) N, = jll (a)fll .. .?;(a)flsj’lr(a)fl,sﬁ-l

There is a natural map



From (3.75) and (3.76) we have

(3.77) = N (

for 1 <4 <sand

~/ fs«‘rl,s«‘rl
N, 7
(3.78) - _ (2 €0,
Wy (o + 1) + dat1 w

All of these ratios have residue 1 in O, /m,,. Thus U”(«)[N1,...,Ng, N;] — Oy. Then

since k(U(a+ 1)) C Oy, and we have an inclusion

k(U () — k(U(a)) = k(U(a+1)) — Oy /M.
There is a natural map

U"(a)[N1,...,Ns, Ny @iy k(U + 1)) — Oy

where ks is the integral closure of k in U(«).

by (3.77) and (3.78), v(N;) = v(wi(a + 1)) > 0 for 1 < i < s and N, +— u(w,(a +
1) + dot1) where u € O, is a unit, v = 1 mod m,,. Thus the residue of N, in O, /my,, is
do+1. Thus w(N, — dyy1) > 0 and we have a map U'(a+ 1) — O, by (3.53) and (3.54),
which induces a map U(a + 1) — O,, such that

k(U(a+1)) — k(Ow)
T 775+1 /
k(U(a+1))
commutes, verifying Al) for o + 1.
The regular parameters (3, (a+1),...,7, (a+1)) in U(a+1) defined by (3.55) satisfy

(3.79) Uila+1) =< Ny —dop1 i=r
Ui(a) s<iji#r

U(a + 1) has regular parameters (wi(a+1),...,w,(a+ 1)) defined by

. ~ —Ti((l—ﬁ-].)
e (2 41) ™ 1,
(3.80) wi(a+1) = ﬁz(a+1) + 1) dat1 _ i=r
a+1
@i(a—i—l) s<i,iF#ET
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The regular parameters (7;(a+1),...,7,(a+ 1)) of U(a + 1) are defined by (3.57),

—7i(a+1)

(3.81) yila+1) = (yr(a+1) _|_1) o —1 i=r
a+1
@( +1) s<i,iFET

ﬁll (Oé) =1 (Oé + 1)b11(a+1) ERLTR (Oé + 1>bls(a+1)db1 ,s+1(a+1)

a+ 1)b31(a+1) . .ys(a + 1)bss(a+1)dl;sffrl(a+l)
a+ 1)b5+1,1(a+1) . .ys(a + 1)bs+1,s(a+1)( (a + 1) + 1)das-?:i ,s+1(a+1)

<
= [}
~—~ oS
e 09
N— N—
(I
<
— —
—~ —~

Wy (a) = Wy + 1P (o 4 1) D@l (D

w, (@)
()
Comparing (3.82) and (3.83), we see that for 1 < i < s y;(a+ 1) = \;w;(a + 1) for some
do1-th ToOtS of1 unity \;. By our construction of UTSs (at the beginning of Chapter 2)
<M + )m and <wr(a+1) + 1) "‘l“ have residue 1 in O,,/m,,. By (3.77), (3.79),

da+1 dat1

@1(04 + 1)b81(05+1) . 'ES(O[ _|_ 1)bss(a+1)disffl(a+l)
dbs+1,s+1(a+1)

1(a + 1)bs+1,1(a+1) . ~m8(04 + 1)bs+1,s(a+1)(wr(a + 1) + 1) bet

gl
|
gl

(3.80) and (3.81) we see that y((aaj_ll)) has residue 1 in O,,/m,, for 1 <i < s. Thus we have

y;(a+1) =w;(a+ 1) for 1 <i < s, proving the first half of A3) for o + 1.

~/

w 7 w, ()
wr(a + 1) B yr(a + 1) - bs+1 s+1— - T b
do 1 (o4 1)bs+1a g (o 4 1)bs+1s
_ V(@)
dl;l‘i s+1y1( + 1)b5+1,1 .. .gs(a + 1)bs+1,s

=~/

W, () — ()

Aoy (o 1)t - (o 1)
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Thus

w(@,(a + 1) = Fp(a + 1)) = w(@, (@) = Fn(@)) = bor1,1w (@1 (@ + 1)) — -+ — bysy sw(@s(a + 1))
> )\/ - bs+1,1w(@1(o¢ + 1)) — bs+17sw(ws(a + 1))
> Aot

verifying the second half of A3), and A2) for « + 1.

THEOREM 3.10. Suppose that T"(0) C Ris a regular local ring essentially of finite type
over R such that the quotient field of T"(0) is finite over J, U"(0) C S is a regular local
ring essentially of finite type over S such that the quotient field of U”(0) is finite over
K, T"(0) c U"(0), T"(0) contains a subfield isomorphic to k(cq) for some cy € k(T"(0)
and U"(0) contains a subfield isomorphic to k(U"(0)). Suppose that R has regular pa-
rameters (x1,...,%,), S has regular parameters (y1,...,yn), T"(0) has regular parameters

(Z1,...,%,) and U"(0) has regular parameters (Y, ...,Y,,) such that

8|

— 77¢11 77€1
1_y1 ys S¢1

—- __ —Cs1 —C
Ts =Y Y b

Tsy1 = ys+1

T =7

where ¢1,...,¢s € E(U"(0)), v(Z1),...,v(Ts) are rationally independent, det(c;;) # 0.
Suppose that there exists a regular local ring R C R such that (r1,...,x;) are regular
parameters in R, k(R) = k(cy) and

vir; 1<4i<1
T; = .
T; l<1<n

with v; € k(co)[[x1,...,2]]NT"(0) for 1 <i <1l and~; =1 mod (x1,...,x;), there exist
v¢ € U"(0) such that y; = v/y;, 7¢ = 1 mod m(U"(0)) for 1 < i < n. Further suppose
that

i1 = PGy, 7)) + 71 70 H + Q
where P is a power series with coefficients in k(U"(0)),
H =G +7 - 7LY)
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wherew € U"(0) " is a unit, X € K(U"(O)[F1, -+, T0> Uiz - Falls v@ir) < v(@T -+ 75°)
and Q € m(U(0))N with Nv(m(U(0))) > v(g{* ---5%7,,1). Then there exists a CRUTS
along v (R, T"(t"), T(t")) and (S,U"(t"),U(t")) with associated MTS

S — S)
T T
R — R(t)

such that T" (t') contains a subfield isomorphic to k(co,...,cy), U”(t") contains a subfield
isomorphic to k(U(t")), R(t") has regular parameters (z1(t'),...,x,(t")), T"(t") has regular
(t")), S(t') has regular parameters (y1(t'),...,yn(t")), U"(t') has

parameters (T1(t'),... %y
regular parameters (i, (t'),...,7,(t)) where

FE) =T (t) O G, () ()

’

zia(t) = T () = PG, 5 () + 5u () g (1) H
where P, H are power series with coefficients in k(U(t")), with
mult(H(0,...,0,y,,,(t),0,...,0) =1,
o (t),....,0s(t") € kUEX)), v@(t)),...,v(xs(t')) are rationally independent,

det(ci;(t')) # 0. There exists a regular local ring R(t') C R(t') such that (z1(t'), ...,z (t"))
are regular parameters in R(t') and k(R(t")) = k(co, ..., cy).

with v;(t') € k(co,...,ce)[[x1(t), ...,z (&")]]NT" (t') units for 1 < i <1, such that ~;(t') =
1 mod (z1(t'),...,2;(t')) and for 1 < i < n there exists v} (t') € U"(t') such that y;(t’)
% (#)g:(t), 7 (¢') = 1 mod m(U"(t')).
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PROOF: Perform the following sequence of CUTSs of type M2) for 0 <r <l—s—1

T (r) = T (r + D)) g (g 1) D g D

ESO“) _— (7“ + 1)a31(r+1) . -ES(T + 1)ass(r+1)ciii+1(r+1)
Toprpr(r) = Ty (r + 1)% 10 0HD g (g 1)0srtsTED (0 (g 1) 4 1)o7
Ui(r) =7, (r + 1)U g (4 1)b13(r+1)diiﬁsl+l(r+1)

To(r) =Ty (r + )P0+ g (4 1) D @ (FD
— — r — r s+1,s+1(r+1
ys—i—r—l—l('r) = (T + 1)bs+1’1( . ys(r + 1) w+1s +1)(ys—|—r—|—1(r + 1) + 1)dr—:1 +1(rd )7

the sequence of CUTSs of type M3) for | —s<r<n-—s—1

_ _ 11 (7 _ 1s(r b1, s r+1
T (r) = 7y (r 4+ DI g (g 1o g (7D

7, (7,) 7 (T’ + 1)b31(r+1) . (T + 1)b55(r+1)dbs,s+1(7”+1)
— — T T s+1,5s4+1 r+1
ys+r+1(r) = yl(r + ]‘)bs+l’l( 1) . y (T + 1) w41, +1)(ys+r+1(r + 1) + 1)dr—|j_1 i )7

followed by a CUTS of type M1), with ¢’ =n —s+1

f1(t/ - 1) ) (t/)au(t’) o -Es(t/)als(tl)

To(t — 1) = Ty (¢)% ) gy (¢) e ()

y]_ (t/ _ 1) — yl(t/)bll(t') . ‘ys(t/)bls(t/)

so that

2141 = PG ('), ..., G (t")
g ()P g () ag, () + DA+ )
( )dl(t )+1 . '@S(t/)ds(t )—H\I/
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where

S e kUENBE)s - T () Gig2 ), 7, ()],
P@y(t), () = P70, T(#) -+ G, (¢') | (@ = (0, 0)), and

Q=7 (t/)dl(t’)—H .. .ys(t/)ds(t’)—i—l\y

with A\ = d?:ﬂff’l(l_sﬂ) e k(U(t)), ¥ € U(t"). Then after replacing P with

P+ 2u(0,...,0)y, ()1 g (1))
we can put T;y1(t') = x;41 in the desired form with
H=ag )\ + @—a(0,...,0)A+a% +7,(t') - 7,(t') P,
The proof that
T00) — T()

is a CRUTS is a simplification of the argument of step 3 in the proof of Theorem 3.9. We
will give an outline of the proof.

We can define MTSs R — R(t') and S — S(t’) such that R(r)", S(r)" have respective

regular parameters (z3(r),...,z}(r)) and (yi(r),...,y5(r)) for 0 <r < n. For 0 < r <
[—s—1

Q’,‘T(’]") = xT (T + 1)(111(T+1) e .T: (r + 1)CL13(T+1)($:+T+1(T + 1) + CT+1)a1’S+1(T+1)

zi(r) = ai(r+ 1) 0D (e 1)““(”1)@*”“(7“ + 1) + cppg) e 7 HD

S

x;—r—f—l(T) =5 (r + 1)as+1,1(r+1) e (r 4 l)as+1,s(r+1)(x:+r+1(r +1)+ CT+1)aS+1’S+1(T+1)
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Forl—s<r<n-s-1
yi(r) = yi(r+ )P0y 1>b“(r“)(y;‘+r+1(r F 1)+ dpyg )P 0FD
4 1P g 1D g (4 1) 4 dg e )
o 1P g g 1P (1) o dyg e O,
followed by a MTS of type M1), with ¢/ =n — s+ 1

x] (t/ —1)=a3 (t’)all(t/) ez (t’)als(t’)

Xt —1) = (t/)asl(t/) gt (t/)ass(tl)

S

yr(t — 1) = yi(t) @) ()b ()

S

y:(t/ _ 1) fry yik(t/)bsl(t/) ... y;k (t/)bss(t/).

For 1 <r <[ — s we have

Ai(r)Ti(r) 1<i<s
x;k (T) = >\S+T(T)fs—|—r (T) + ¢S+T’ Z = 8 —|— r
zi(r—1) s<iits—+r

where \;(r), @54 € k(co, ..., c)[[T1(r),...,Zi(r)]], the A\;(r) are units and

D€ (T1(r), ., Torr—1(r), Topra1(r), ..., Ty (r)).

For 1 <r <n — s we have

A (1), (r) 1<i<s
y;k (Ir) - )\ZS/-I-T(T)ys—&-r(T) + (Dzsl—i—r t=s+r
yi(r—1) s<iits+r

where A (r),®Y, . € KUE)T1)s - Tsrr1(1), Tosrit (7); -, Tn ()], the XY (r) are
units.
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R(t') has regular parameters (x1(t'),...,x,(t")) where

(t/) {l';k(t/) 1<i<s,l—|—1<i<n
T; = — 7 =
H(.’E*(t/) Ci—s 0 (Ci—s)) s+1<:< l

(2

where the product is over the distinct conjugates o(c;—s) of ¢;—s in an algebraic closure k

of k over k. For 0 <r <[ — s —1 define

R(r+1) = R(r)[zi(r+1),...,25(r +1),7(r + 1)]q, .

where
(14 1) = [[@hrir(r 4+ 1) + cres — 0(cr1)

is the product over the distinct conjugates o(c,41) of ¢,11 over k,

Gr+1 =m(R(r+ 1) NR(r)[zj(r+1),...,25(r+1),7(r+1)].

For | —s <r<n-—s+1 define R(r +1) = R(r). Define

R(t') = R(n — s)[z1(t'), ..., 25(t")]q,

where

g = m(R(t")) N R(n — s)[z1(t'),. .., 25(t")].
S(t’) has regular parameters (y1(t'),...,yn(t")) where

y; (1) 1<i<s
yi(t') = ¢ xi(t) s+1<i<l
[y (') +dies —o(di—s)) 1+1<i<n

where the product is over the distinct conjugates o(d;_,) of d;_, in an algebraic closure k
of k over k.

Now set

otherwise

(2

8|

= Jri) fors+1<i<lI
)= { 7
_ @)

-~ z; (t fors+1<:<1
v () =9 _ ’ .
y;(t")  otherwise.

|2

We are then in the form of the conclusions of the Theorem.

The proof of Theorem 3.10 also proves the following Theorem.
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THEOREM 3.11. Let ng; = m (k(U"”(0))[[";,.-.,y;]]) in the assumptions of Theorem 3.10.

1)

2)

3)

4)

IfQ e né\{ ; in the assumptions of Theorem 3.10, then a sequence of MTSs of type M2)
and a MTS of type M1) (so that the CRUTS along v is in the first | variables) are
sufficient to transform x;,1 into the form of the conclusions of Theorem 3.10.

Suppose that

g=71" - geu@y,. . 7) +Q
where w is a unit power series with coefficients in k(U"”(0)) and Q € né\fl with
Nv(ng;) > v(@l---g%). Then a sequence of MTSs of type M2) and a MTS of
type M1) (so that the CRUTS along v is in the first | variables) are sufficient to

transform g into the form

g=7,(t"Y" ) g )= Oug ), 7))

where w is a unit power series.

Suppose that
_d Y S _
9=91" IS T T) +Q

where v(G{* ---7%) > Aand Q € né\fl with Nv(ng ;) > v(g$ - --5%). Then a sequence
of MTSs of type M2) and a MTS of type M1) (so that the CRUTS along v is in the

first | variables) are sufficient to transform g into the form

g =) g () OZG ), T()

where v(y, (/)" ) .. g (') %)) > A.
Suppose that
g=T{TEu@y, .. h) + Q

where u is a unit power series with coefficients in k(U”(0)) and Q € m(U"(0))N
with Nv(m(U"(0))) > v(gé* ---5%). Then there exists A CRUTS along v as in the

conclusions of Theorem 3.10 such that

g =) g () Oay (), .. 7))

where U is a unit power series.

THEOREM 3.12. Suppose that T"(0) C R is a regular local ring essentially of finite type
over R such that the quotient field of T"(0) is finite over J, U”(0) C S is a regular
local ring essentially of finite type over S such that the quotient field of U"(0) is finite
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over K, T"(0) < U"”(0), T"(0) contains a subfield isomorphic to k(cg) for some ¢y €
k(T"(0)) and U”(0) contains a subfield isomorphic to k(U"(0)). Suppose that R has
regular parameters (1, ...,%,), S has regular parameters (yi,...,y,), T”(0) has regular

parameters (T, ..., Ty) and U”(0) has regular parameters (g, ...,%,) such that

— —c —Ci1s
T1 = ylll .. .ysl (bl

77Cs1

Ty = U1 ...ygss¢s

fs—i—l = ys+l

T =7
where ¢1,...,¢s € E(U"(0)), v(Z1),...,v(Ts) are rationally independent, det(c;;) # 0.
Suppose that there exists a regular local ring R C R such that (z1,...,x;) are regular
parameters in R, k(R) = k(cy) and
vir; 1<i<1
T {El l<i1<n
with v; € k(co)[[x1,...,2]]NT"(0) for 1 <i <!l and~; =1 mod (x1,...,x;), there exist
v¢ € U”(0) such that y; = v/y;, v/ =1 mod m(U"(0)) for 1 <i < n.
Then there exists a CRUTS along v (R,T"(t),T(t)) and (S,U"(t),U(t)) with associ-
ated MTSs

S — St
T T
R — R(t)
such that T"(t) contains a subfield isomorphic to k(cg,...,c:), U"”(t) contains a subfield

isomorphic to k(U(t)), R(t') has regular parameters (x1(t),...,xn(t)), S(t') has regular
parameters (y,(t'),...,yn(t")), T"(t) has regular parameters (Z(t),...Z,(t)), U"(t) has

regular parameters (3, (t),...,v, (t)) where

%1 (t) _ ?1 (t)cu(t) .. ?s (t)cls(t)¢1 (t)

To(t) = Gy (8)1 - () Dy (8)



such that ¢1(t),...,¢s(t) € k(U(t)), v(T1(t)),...,v(Ts(t)) are rationally independent,
det(ci5(£)) # 0.
z;(t) = Z;(t) for 1 < i < n.

For 1 < i < n there exist v/ (t) € U"(t) such that y;(t) = v/ (t)y;(t),

v/ (t) =1 mod m(U" (t)).

Proor: We will construct a CRUTS (R, T"(t),T(t)) and (S,U"(t),U(t)) along v with
associated MTS

R= R(0) — R(t).
We will say that CN(3) holds (with 0 < 8 < ¢) if T”(3) contains a subfield isomorphic
to k(co,...,cg), U"(B) contains a subfield isomorphic to k(U(5)), R(5) has regular pa-
rameters (x1(83),...,2,(8)), T”(8) has regular parameters (Z1(3),...,Z.(8)), U"(3) has
regular parameters (7,(53),...,7,(3)), such that

C(nuB)z(B) 1<i<lI
nil) = {iz‘(ﬁ) l<i<n
with
%(B) € k(co, ..., ca)[z1(B), ..., m(B)]] N T"(B),

7i(8) =1 mod (z1(8),...,21(8)) for 1 <4 <land for 1 <1i < n there exist v/ (8) € U"(5)
such that y;(3) = 7Y (8)7;(3), 7/ (8) = 1 mod m(U"(B)). We must further have

g

1(B) = 71(B) ™ D)5, (B) =Py (B)

with ¢;(3) € k(S(8)), v(z1(8)),...,v(Ts(3)) are rationally independent, det(c;;(3)) # 0,
and there exists a regular local ring R(3) C R(8) such that (z1(8),...,x;(3)) are regular
parameters in R(3) and k(R(8)) = k(co, . . ., cg).
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By Theorem 1.12 and Theorems 3.9 (with f = x;41) and 3.10 we may assume that

41 = Ti41 = P@y,..., 7)) +y61i1 SRNT/EDY

where ¥ is a series with mult(3¢(0,...,0,%;,,,0,...,0) = 1. Suppose that v(P) = oo
(this includes the case P = 0). Then by Theorems 3.9 and 3.11, we have a CRUTS along

v in the first [ variables such that

(3.84) i1 = (0" G (OFOT G (1), T (0)
mult (34(0,...,0,%,,1(t),0...,0) = 1, and CN(¢) holds. We can thus make changes of
variables, replacing 7;(t) with z;(t) (for 1 <4 < n) and 7,(t) with Z;(t) (for s +1 < i <)
so that (3.84) holds and CN(t) holds with ~;(¢) = 1 for 1 < ¢ <[, and y;(t) = z;(¢t) for
s+1<i<I.

Suppose that v(P) < co. Set d = Det(c;;). Let (f;;) be the adjoint matrix of (¢;;), so
that (f;;/d) is the inverse of (¢;;). Let w be a primitive d** root of unity in and algebraic
closure k of k. Set

d
g/ = H (xl-l-l _P(wilglw"7wisys7ys+1""’gl)) ’

i1,eeyig=1

g/ S k(UH(O))chlia tee 7gg7§5+17 tet 7?[]][3714—1]'

Let G be the Galois group of a Galois closure of k(U”(0)) over k(cg). Since xy4q is
analytically independent of ¢, ... ,yfj,gsﬂ, ..., 7; (by Theorem 1.12) we can define g =

[I.cc 7(g") where 7 acts on the coefficients of ¢'.

g c k(Co)[[y(il, cee 7@?7?3—&—17 cee 7?l]][‘rl+1]‘

Since ¢ = T/ .. glieg I g fis for 1 < i < s, by Lemma 3.2 we can perform a
MTS of type M1) to get g € k(co)[[Z1(1),..., T (1)]][x1+1]. Xo is irreducible in U(1) (since
mult(3o(0,...,0,%;,1,0,...,0)) =1) and ¥ | g in U(1).

d
(3.85) 9=> aZn() +> @)+ @ (1) + 31T
i=1 j k
where a;,a;, ay, are series in T1(1),...,7;(1) with coefficients in k(cp), m > 0 and the first

sum consists of the terms of (finite) minimum value p.

p < oo since mult(g(0,...,Z;11(1))) < oo.
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Tv(Z141(1)) > p, the second sum consists of (finitely many) remaining terms of finite value,

the third sum consists of (finitely many) terms of infinite value. Let
r=mult(g(0,---,0,7141(1)), 1 <r < 0.

Suppose that » > 1. By Theorems 3.9 and 3.11, we can construct a CRUTS in the
first [ variables, with associated MTS

S(1) — S(a)
T T
R(1) — R(«a)

such that CN(«) holds, to get

P = il(a)gl(a) e @S(a)gs(a)p@l(a), (@)
where P is a unit, and

(3.86) ac = T1(a)% - Ts(a)%ac (T1(a), . .., T ())

for ( =i, j, k where @;,@; are units and v(Z1 ()% - - Tg(a)h) > p for all i, j, k. We have

an expression

zir1(a) = 241 = P+ 7, (@)™ - 7, () Va7 (a), . (@),

where mult(X4(0,...,0,7,,1(a),0...,0) = 1. If v(P) > v(y; ()4 (@ ... 7, (a)4(®), then
after possibly performing a CRUTS of type M1), so that

il(a)dl(a) .. .?S(a)ds(a) | él(a)gl(a) .. .@S(a)gs(a)
in U(a + 1), we can set
204—1—1 =Y+ ?1 (Oé)gl (a)=di(e) |, .js(a)gs(a)—ds(a)ﬁ

to get
Li+1 = ?1(05 + 1)d1(a—|—1) o '?s(a + 1)d8(a+1)2a+1-

Now suppose that v(P) < v(7;(a)®(®) ...5 (a)%(®). After possibly performing a
CRUTS of type M1), so that

il(a)gl(a) .. .js(a)gl(a) | jl(a)dl(a) .. .js(a)ds(a)
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in U(a + 1), we have

o+ DB g (o D (P
Ui(a+ D)9y (@ + 1)< OIS L (G (a+ 1), .. T, (a+ 1))).

e

rip(a+1) =24 =

_|_

where
mult(Xa+1(0,...,0,7, 1, (e +1),0,...,0)) =1,

P+ (a+ 1)@t g (o +1)<@FD3 1 is a unit and CN(a + 1) holds.

Set (ei;) = (cij(a+ 1)L, d = det(cij(a + 1)). We can replace y;(a + 1) with
Ui+ 1)y (a+1)%1 -y (a+1)% for 1 < i < s, replace ; (a+ 1) with 7;(a+1)y;(a+1)
for s+1 < i <l and replace U" (a4 1) with U” (a+ 1)[y1(a+1)7, ..., vs(o+ 1)5](1 where
g=m(U(a+1)n (U”(a FD(a+ 1A, ys(a+ 1)5]) to get

zi(a+1) =Fy(a+ 1)@ g (o + 1)@y (a + 1)

(a1 g (a4 1)o@ g (a4 1)

?s—‘rl(a + 1)

I
<

zs(a+1)

Tsp1(o+1)

r(a+1) =7y,(a+1)
and have an expression in U(a 4+ 1) 2 k(U (a4 1)[[y; (e +1),...,7,, (a + 1)]]

2ip1 =Ty (a+ D)D) g (a4 1) T [(Pogq (Fy(a+ 1), ..., G (a + 1))
Lo+ g (a+ D)=ETS (G (@ + 1), ., T, (e + 1))

<2

_|_

where mult(Xa41(0,...,0,7, 1 (e +1),0...,0) = 1, Patq is a power series with constant
term 1 and 7 € k(U(a+1)). We have Tj4q (a+1) = 2141 and 5, (a+1) = 7, ;. By Lemma
3.6 we can construct MTSs R(a+ 1) — R(a + 2) of type II;4; and S(av + 1) — S(a + 2)
of type I such that R(a + 2)" has regular parameters (x5 (a + 2),...,z} (a + 2))

(3.87)
zi(a+ 1) = (0 + 9O (0 9D (@ (a4 2) 4 ) e 0

zs(a+1) = zi(a+2)%1 @D gt (a4 2)%= D (2 (o + 2) + capg)teetr (@)

mrpa(at 1) = o (4 20 O (a4 2)0 0 O (G (a4 2) + e ga) e (D
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S(a+2)" has regular parameters (7, (o +2),...,7,(a+2))

?1 (oz + 1) = yl(a + 2)b11(a+2) .. .ys(a + 2)b13(a+2)

such that R(a +2) C S(a + 2).
Set

(3.88) v =Pas1 + Ui (a+ DTy (a+ 1)ts,

so that
w1 =Py o+ DT g (a4 1) %0 ey
This shows that v € U”(a + 1). Set (e;;) = (aij(a + 2))~!. By construction there are

positive integers f;; such that

IT(CM —+ 2) = 131(0( + 1)611 - -Ts(Oé + 1)6181’l+1(04 + 1)61,5_’_1
(3.89) = gl (a _|_ 2)f11 .. .ys(a _|_ 2)fls,y€17s+17_61,s+1¢1 (O[ + 1)611 . ¢5(a + 1)613

I:(Oz + 2) = l’l 6% + 1 €s1 , .. S(a + 1)€ssxl+1(a + 1)6573_’_1
a+2)7 g (a4 2) et tirteastig (a 4+ 1)1 - g (a4 1)%

€s+1,1 , .. IS(Oé + 1)€S+1’S$l+1(06 + 1)€s+1,s+1

fs+1,1 .. 'ys (a + 2)fs+1,sfyes+1,s+1Tes+1,s+1

dr(a+1)% 0 g (o + 1)e+1e
in S(a+2)". v(zi (@ +2)+ cat2) = 0 implies fo111 =+ = for1,s = 0. Set
B =¢1(a+ 1)+ g+ D)oot € k(U + 1))
Substituting (3.88), we have

2f (a4 2) + capa = 0(Pop1 + 01 (a+ 1)@ g (a4 1)@y, | )esrran
= Qo (a+2),...,7(a+2))
+ 71 (a+2)20F2 g (a4 2)< DN (G (a+2),..., T, (a+2))
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where @ is a unit and multAg(0,...,0,7;, (a4 2),0...,0) = 1. Define o; € Q by

-1

a1 f11 fls —€1,5+1

g fo1 oo fes S
and set - @t+?) 1<i<

Yy (a i<s
@i(a—l—Q):{j v i<
(o +2) s <1

to get
(3.90) ri(a+2) = g1 (a+ 2)011(a+2) s 2)cls(o¢+2)w1

zi(a+2) = fufa+ 21O+ g (o 4 2)en@ Dy
(1 (a+2),...,9n(a+ 2)) are regular parameters in S(a+2) ", ¢¥1,...,9¥s € k(S(a+ 2)).
There are unit power series (); and power series A; such that
’yai = Q’L(gl(a + 2)> S 7?[(04 + 2))
+ 71 (@ +2) g (0 + 2) NG (a0 + 2), LT (0 + 2)

in S(a+2)" for 1 <14 < s, where mult(A;(0,...,0,7,.1 (v +2),0,...,0)) =1,

Qi(0,...,0) = 1.

Yila+2)=Qi(y (a+2),....7(a+2))gi(a + 2)
mod (§1(a +2)1@+2 g (a4 2) (T (o + 2))

for 1 <1 < s. We will show that there exist unit power series {2; such that

Y= Q(Gi(a+2),..., 0+ 2))
+ 71 (a+2) 0 g (a4 2)< TN (7 (a4 2), .., T, (0 + 2))
mod §1 (o + 2) 2 g (a4 2)< 2 (G (a+ 2), ... Gi(a+2)).

This follows from induction, since for any series A(y;(a + 2),...,7;(a + 2)), there exist

series A;,...;, such that mult(A;, . ;.) > 0 and

A@i(a+2),.... (e +2)) = AGi(a +2),.... §i(a +2))

+ Y A @@+ 2), T+ 2)g(a+ 2) - g+ 2)"
11+--+2;>0

mod g1 (o + 2)T2) g (a+2)< D (g (a+2),. .., Gi(a+2)).

105



Thus

Y= Q(Gi(a+2),..., 0+ 2))
+91(a+2) @ g (o +2)% 0D (g (o + 2), . G+ 2))
mod g1 (o + 2)@F2) g (a+ 2)<CHFD (g (a+2), ..., Gi(a+2))

with
mult (®;(i41(a+2),0,...,0))) = 1.

R(a + 2) has regular parameters (z1(a + 2),...,2,(a+ 2)) defined by

z(a+2) 1£1+1

(3.91) zi(a+2) = { [I(x7 (@ +2) + caga —0(caye)) i=1+1

where the product is over the distinct congugates o(cqq2) € k of co 2 over k.
Set Z;(a +2) = zi(a +2), Y;(a+2) = gi(a+2) for 1 < i <n. Set U'(a+2) =
Ula+2)[y*,...,v*], where

g=mU(a+2)NU (a+2)[y*,...,v*].

Then CN(a +2) holds. We have x}_; (a4 2) 4 cqyo = y+1=+1 X for some A € k(S(a+2))
by (3.89). €541 s+1 # 0 by theorem 1.12.

2ii(a+2) = Popo(Uy(a+2),...,5(a+2))
+ Gy (a+2)1 @D G (a4 2)= @S (7 (a+2),. LT (@ + 2))

where mult(X,42(0, . ..,0,7,. (@ +2),0...,0)) = L.

zis1(a+2) = [T (Para@ula+2),.. . Gile +2)) + (carz — o(cara)) )

o

a2 o e

> (Para(@i(@+2), ., Gi(@+2)) + (carz = 0(Car2) ) Tara

o

(0 + 270 (a4 2) @)

in S(a+2)" = k(S(a+2)[[y,(a+2),...,7,(a+2)]] and the product and sum are over

the distinct conjugates o(cq42) of cqto in k over k. If coyo € k, we have

Z(COH-Z —0(ca+2)) # 0

o
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since if this sum were 0, we would have c,o invariant under the automorphism group of

a Galois closure of k(cq42) over k which is impossible. We have an expression

(3.9 41 (a0 +2) = Pago (U1 (@ +2),..., 7 (a + 2))
+ 7y (a+2)2 g (a4 2)= S, L7 (a+2),.. ., T (@ +2))

where P,2, Y442 are power series with coefficients in k(S(a + 2)) and
mult(Xa42(0,...,0,7,,1,0,...,0)) = 1.

If cayo € ky z141(a +2) = 27 (o + 2) and this expression is immediate. By (3.85) and
(3.86),
d

g= Zaﬁl(a + 1S L F (a4 D) EDF L (o + 1)
i=1

S dla+ DI F o ) o+ 1)
J

+ 3 ap@i(a+ D)OFD L F (o + 1)FHODT (o + 1)
k
+ Ty (a+1)T
with af, a’;, a), € k(co, ... Car))|[[@1(a+1),...,7(a+ 1)]]. Since
i (@ +1) =z (e + 1) = 2140
and CN(« + 1) holds, so that
k(coy. .. cart)|[ri(a+1),...,z(a+1)]] = k(co,. .., car)[[F1(a+1),...,7(a+ 1)]],

we have an expansion

g = i a;zq (o + 1)63(0‘“) g+ 1)@y (a4 1)
=1
+ Z djry(a+ 1S g (a4 )% @D (a4 1) %
J
+ Z arry (o + l)e’lc(o‘ﬂ) czg(a+ D) g (a4 1)
+ :L'I;_l(oz +1)'T
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with a;,a;,ar € k(co, ..., car1)[[z1(a+1),...,2;(a+1)]], @i, a; units for all 4, j and
el (a+1) er (a+1) fr
v(zi(a+1)% s (a+ )T g (a+ 1)7%) > p

for all k. In R(a+2) ", by (3.87)

S

d
_ Z a; H I a + 2)a1a(a+2)el(a+1)+ Fasa(a+2)e; (a+1)+ast1,qa(0+2) f;

(ml+1(0z+2) + ¢y +2)a1,s+1(a+2)e§(a+1)+---+as,s+1(a+2)e§(a+1)+as+1,s+1(oc+2)fi

+2.4 H % (a + 2)@e(@F2ej (et Dt Fase (@t 2)ef (at ) +astia(@+2)f;
J a=1
(x?_,_l(og + 2) + ca+2)a173+1(a+2)e}(a+1)+---+as,s+1(0“"2)8;(a+1)+as+1,s+1(a+2)fj

5 1 s
+ Z g H xz(a + 2)a1a(a+2)ek(a+1)+~~-+asa(a+2)ek(a+1)+as+1,a(a+2)fk
k a=1
(xzk_H(a + 2) + Ca+2)a1,s+1(a+2)ei(a+1)+~~+as,s+1(a+2)ei(a+1)+as+1,s+1(a+2)fk

T

<H :L':;(Oé + 2>as+1,a(a+2)> (x;‘+1(a _|_ 2) + Ca+2)as+17s+1(a+2) F

a=1

with a;,aj;,ar € k(co, - .., Cat2)[[r] (@ +2),..., 27 (a+ 2)]], @;, a; units and

S

V(H 2 (o + 2)ma(@tDer (@t tasa(@+2)ef (D tassra(@+2) fi)
a
a=1

> p.

We have that

S

D (ara(e+2)ef (@ + 1) + - + asala +2)e (a + 1) + agyrale + 2) fi)v(ah (o + 2))

are equal for 1 <17 < d since the corresponding terms in g have equal value p. Set
ac = (arc(a+2)er(a+1) + - +ag(a+2)ei(a+1) +asic(a+2)fi
for 1 < ¢ <s. Since v(zj(a+2)),...,v(x}(a + 2)) are rationally independent, we have
ac = aic(a+2)ej(a+1) + - +agc(a+2)ef(a+1) + asp1c(a+2)fi
for1<i<dand 1 <({ <s. Set

myf, = a1,s41(a + 2)e; Jat+ 1)+ Fassn(a+2)ef(a+ 1) +ag (e +2)f;
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for 1 <3 <d. Set

ajr(a+2) - as(a+2)
det
o as1(a+2) - ass(a+2)
air(a+2) - apspi(a+2)
det : :
as11(a+2) -0 Geq141(+2)

€ is a nonzero integer. By Cramer’s rule,

fi— fi=e(my, —my,)

for 1 <i <d. Assume that e > 0. We can perform a CRUTS of type M1) with associated
MTSs R(a+2) — R(a+3) and S(a+2) — S(a+3) where R(a+3) has regular parameters
(x1(a+3),...,xn(a+3)) and T”(a+ 3) has regular parameters (Z1(a+3),...,T,(a+3))
such that

3.93 (e +2) =2 (a+2) = z(a+ 3)1@F3) 0 (o + 3)rs(at3)
1

zo(a+2) =i (a+2) =z (a+3)% @) g (o 4 3)aes(aFD)

and
x.
Zi(a+3) = { .
zi(a+2) =z;(a+3) for s <i to get

g=T1(a+3) Ty (a+3)% ((Tr41(a + 3) + Caga) ™ ® + Ty (o + 3) - Ty (o + 3)G)

in k(co, ..., Cars)[[T1(a+3),...,Tr1(a+ 3)]], with

fo—F1 - fa—f
O =a1+ ax(Tip1(a+3) +car2) = + -+ ag(@Tr1(a+3) + cat2) o

In the case € < 0, we must consider an expression
g=T1(a+3)" - Fe(a +3)" (Trgr (@ + 3) + Cata) ™ @ + Ty (e +3) - Tu(a+ 3)G)

with
f1—Ffq

' = a1 (Tir1(@+3) +cata) © +oo+aa
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Again assume that ¢ > 0. The proof when € < 0 is similar. Let
r’ = mult(®(0,...,0,T11(a+ 3))).

p=v(a;)+ fiv(Ti+1(1)) < rv(Z;41(1)) implies fg < r. Set n; = % The residue of a;

in
T(a+3)/(T1(a+3),....,7T(a+3),Tra(a+3),...,Tn(a+3)) 2 k(T(a+3))[[Fir1(a+3)]]
is a nonzero constant a; € k(cg,...,cqat2) for 1 <i < d. Set

C(t) = ay + agt™ + - - + agt",

= mult(¢(ZTi41(a+3) +cata)). 7 <ng = @ < r. Suppose that ' = r. Then f; =0,
fa=r,e=1and ((t) = aq(t —car2)". Thus there exist nonzero (T;+1(a+3)+cqar2)” and
(Ti1(a+3) + care)" ! terms in ®(0,...,0, T4 1(a+3)) and f4_1 = f4—1 =r—1. Thus
aq is a unit so that aq = g and v(ag—17;+1(1)" 1) = v(aqZ;+1(1)") implies v(7;11(1)) =
v(ag—1).

P fizf P
ai(acl+1(a+3)+ca+2) o :adle(oz—l-S)”.

1

d
(3.94)

(3

Expanding out the LHS of (3.94), we have
radqCat2 + aqg—1 =0

which implies

asz 1
ag—1  Taq
Let o = agq € k(cp) be the constant term of the power series aq € k(co)[[z1(1), ..., x;(1)]].
Ti(1) _ amn ()" (@ (a+3) 4 caqo)™
ad—1 agaa—1T141(1)""1  @g@a—1(Trr1(a+3) + cara) ™ i1
- fa—t
@@ (@ +3) F caga)
- fa—1—F1

dddd_l(TH_l(Oz + 3) + Ca_|_2) e
Ga(Zig1 (o + 3) + cav2)
aqadq—1

which has residue —-= in k(R(a + 3)) C O,/m,. (Here O, is the valuation ring of our
extension of v to the quotient field of S(a + 3)".) There exists @ € R(1) such that
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(@ is equivalent to —%ad,l modulo a sufficiently high power of the maximal ideal of
k(co)[[x1(1),...,z;(1)]] (recall that ¢; = 1) so that v(z;41(1) — Q) > v(z;+1(1)) (Recall
that T;41(1) = 2141(1)).

Since a4Z;4+1(1)" is a minimum value term of g, we have v(Z;+1(1)) < v(g). Make a

change of variables in R(1) and 7" (1), replacing z;41(1) and Z;41(1) with
T (1) = i (1) =@ (1) - Q
CN(1) holds for these new variables. Further, in S(1)", we have
(1) = POG). . 3(0) + 7 (1) D7, ()5,

where mult(2(0,...,0,7;,,(1),0,...,0)) = 1. Then repeat the above procedure with this

change of variable and our previous g. If v(PW) > v(7, ()% (@) ... 5 _(a)%(®)) the above

algorithm produces an expression
e (1) = Tala + D g (a4 1) hED)
where mult(E(al)(O, ;0,741 (@ +1),0,...,0)) = 1. So suppose that
v(PW) < v(gy(a)™ -7 () ®1).
If we do not get a reduction r; < r, we have
v(T (1) < v(EL (1) < v(g).

We can repeat this process. By Lemma 1.3, We eventually get a reduction r < r, or

v(g) = oo and we can construct (as in (3.31) in the proof of A(7) in Theorem 1)

¢ = lez—n)on(El(l); ... ,f[(l)) S ]{J(Co)[[fl(l), ce ,fl(l)]]

such that
(3.95) 9 =u@ia(1) — )" +h.
where h € a;k(co)[[Z1(1),...,T1+1]] with

ap = {f € k(co)[[z:(1), ..., m(V]] [v(f) > oo}
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and u(Z1(1),...,T;41) is a unit power series.

Suppose that r’ < r. In our construction, 7, (a + 3) =71, so that if
So = TG @+ 3), - Tl +3)),
mult(257%(0,...,0,7,,, (o +3),0,...,0)) = 1. Set
g1 = (Tir1(a+3) + caq2)" @+ T (a+ 3) - Ts(a + 3)G.
w1 (a+2) = naf (o +2) where n € k(cay2)[r),(a + 2)] is a unit which implies
zi41(a+3) = nZis1 (@ + 3).
Thus

g1 € k(Co,... ,Ca+3)[[fl(Ck+3), c.. ,fH_l(Oé—FS)”
=k(co,. - cat3)[x1(a+3),...,z11(a+3)]] C R(a+3)"

Yo | g1 so that
1 <mult(g1(0,...,0, 2111 (a4 3)) = mult(g1(0,...,0,Tj11(a+3)) =ry <7
By (3.92), there is an expression in S(a +3)"

Tiv1(a+3) =z (o + 2)
= Oé+3(§1(05 + 3)7 o 7?[(05 + 3))
+ 71 (a+3)1t g (0 +3) T8 5@ (a+3),. .., T (e +3))

where mult(Za43(0,...,0,9,41(a+3),0,...,0)) = 1. Now set Z;(a + 3) = x;(a + 3) for

1 <i<n. By (3.90), (3.91) and (3.93) CN(a + 3) holds (with v;(a+3) =1 for 1 <i <1).
By induction on r we can now repeat the procedure following (3.85), with R(1), R(1), S(1)f}

replaced with R(a + 3), R(cav + 3), S(cr + 3) respectively, ¢y with a primitive element of

k(co, ..., Cats) over k, g with g1, to eventually get ¢ such that CN(¢) holds with Ti(t) = z4(t)

for 1 <7 <n and

I'H_l(t) = @1 (t)dl .. 'js (t)ds (t)zt (?1 (t)7 st 7yn(t))
where mult(Z;(0,...,0,%,,,(t),0,...,0) = 1 or we have

21 (t) = P (1), 5 (0)) + 7 (OO - G () TG (8), - Ta(D))
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where mult(3:(0,...,0,y,,1(¢),0...,0) = 1, P, 3, are series with coefficients in k(S(t))

and

(3.96) g=u(z1(t),... ,xl+1(t))x1(t)d1 e ,ms(t)ds (X111 (t) + P(x1(2), ..., 21(t))]"

for some a > 0 where u, ® are series with coefficients in k(co, ..., ), v is a unit and g | g.

Suppose that (3.96) holds. Define

So@1(t), -, ¥a(t) = o

mult(34(0,...,0,9,41(¢),0,...,0) = 1. We have regular parameters (§1(t),...,9,(t)) in

S(t)" defined by

gi(t):{ji(t) iAl+1

o 1=1+1
There is an expression

211 (t) = Po(in(t), .., () + g1 ()0 - gd=O5, (5 (2), . ..

with mult(3,(0,...,0,7141(t),0,...,0) = 1. Thus

Gra1(t) | i (t) + ©(21(2), - .-, (1))
in S(t)". Since Py + & € k(SE)[§:, (1), ..., 5, ()],
P+ ® = QF, (B0 .. F ()%
with Q € k(S(t)[[7, (1), ..., 7(1)]] and
S| Q4 .

Set my; = m (k(co,...,ct)[[z1(t),...,z1(t)]]). Choose N so that

Nv(my ) > V@1 (t)dl(t) .. .?S(t)ds(t))_

There exists ® € k(co,...,ct)[x1(t),...,z(t)] such that & = & mod m

l
change of variables, replacing ;.1 (t) with z;41(t) + ®' to get

zir1 () =5 (O G (0P Q+ ) + (9 - @)
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By Theorem 3.11, we can perform a CRUTS along v in the first [ variables, with associated
MTSs R(t) — R(t'), S(t) — S(t') to get

s(t,)ds (t/)zt’a

<

1 (t) = 2 () = 5y ()2 -

Ik

where mult(X4 (0, .. ., OjH_l(t’), 0,...,0)) =1 and such that CN(#’) holds.
We thus have regular parameters (x1(t'),...,x,(t")) in R(t") and (y1(t'),...,yn(t"))
in S(t'), units 71 (t'),...,7s(t") € S(t') such that

l‘l(t,) = yl(t’)cll(t/) .. ys(t’)cls(t/),rl (t/)

2 () =y () By (1) (1),

Let ¢;(t') be the residue of () in k(S(')), 7 = 22 Let (es;) = (ci;(#))~L. Define

#:(t)
??1 . _?giSyi(t/) 1< <s
7, (t) = ¢ vil(t) s<ii#l+1
?felldl(t/)_m_eSldS(t/) X ~Ts_e“dl(t/)_'”_esst(t/)ylH(t/) 1=1+1
We have
n(t) =g () g, () o)
N = (\es1(t) — i\ css(t) ’
zs(t') =y, (t) (1) ¢s(t')
Toi1(t) =7, 1 (1)
i (t') =7,(t")
2 (V) =gy ()P g () )§l+1(t/)
n

U'(t') =S, 7 @, (), (#)) -
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By Lemma 3.5, we can perform a MTS of type II;1; R(t') — R(t' + 1)

Tl(t ) =7 (t + 1)a11(t +1) s(tl + 1>als(t/+1)0?ll_|,—sl+l(t/+1)

To(t) =T (¢ 4+ 1% D g (¢ 4 1)%es D) as+s+1(t +1)
mﬁuv:fuﬂ+n%wﬂ*”~@4£+U%ﬂw+nwwmﬂ+m+nq:ﬁ“““>

and a MTS of type II;11 (possibly followed by a transformation of type I) S(t') — S(t'+1))

Y1 (t ) =7 (t + 1)b11(t +1). (t 4 1)bls(t +1)db1 s+1(t +1)

a7 7 1 ! 7 ss 5,8 t+1
To(t') =Gy (¢ + 1P HD g (¢ 4 1)bee (D) ghre i (D

a7 7 1 ! a7 s+1,s rm bS S t/+1
i1 () = T (¢ 4+ 1)borra D g @ 4 yberte D (¢ 4 1) 4 1)l D

such that R(t' 4+ 1) C S(t' + 1), and Tj41(t' + 1) =7, (' + 1). By adding an appropriate
series € to Tj41 (' + 1), we will have regular parameters in R(t'+1) — S(t' 4+ 1) as desired.

4. MONOMIALIZATION

THEOREM 4.1. Suppose that R C S are excellent regular local rings such that dim(R) =
dim(S), containing a field k of characteristic 0 such that the quotient field K of S is a
finite extension of the quotient field J of R. Suppose that v is a valuation of K with
valuation ring V' such that V dominates S. Suppose that v has rank 1 and rational rank s.
Suppose that if my is the maximal ideal of V', and p* = my NS, then (S/p*),~ is a finitely
generated field extension of k. Then there exist sequences of monodial transforms R — R’
and S — S’ along v such that dim(R') = dim(S"), S’ dominates R', v dominates S’ and
there are regular parameters (x',...,z.) in R, (y},...,y,) in S’, units 61, ..., € S" and

a matrix (c;;) of nonnegative integers such that det(c;;) # 0 and

zh = (Y))M - (ye) o0

o= () ()",

115



PRrROOF: By Theorem 1.7, applied to the lift to V' of a transcendence basis of V/m, over
R/m (which is finite by Theorem 1 [Ab2] or Appendix 2 [ZS]), there exists a MTS along v,
R — Ry, such that dimpg, (v) = 0. Let m; be the maximal ideal of R;. trdegpg /., (R1/m1) =
dimpg(v) and dim(R;) = dim(R) —dimp(v) by the dimension formula (Theorem 15.6 [M]).
By Theorem 1.6, there exists a MTS S — S along v such that S; dominates R;. Let n,
be the maximal ideal of S;. S is essentially of finite type (a spot) over R by Theorem 1.11,

since dim(R) = dim(S). Hence S; is a spot over R;. By the dimension formula,
dlm(Rl) = dlm(Sl) + trdegRl/ml (Sl/nl) = dlm(Sl),

since trdegpg, /m, (S1/n1) < dimpg, (v) = 0. We may thus assume that dimpg(v) = 0.

Let {¢;} be a transcendence basis of R/m over k. Let t; be lifts of ¢; to R. Then the
field L obtained by adjoining all of the ¢; to k is contained in R, and v is trivial on L —{0}.
hence we can replace k by L. We may thus assume that assumptions 1) and 2) of Chapter
3 hold.

There exist f1,..., fs € J such that v(f1),...,v(fs) are positive and rationally inde-
pendent. By Theorem 1.7, there exists a MTS R — R’ along v, such that f1,..., fs € R'.
By Theorem 1.5, there exists a MTS R’ — R” along v such that f;--- fs is a SNC di-
visor in R”. Then R” has regular parameters (xf,...,z/) such that v(z),...,v(z)) are
rationally independent. By Theorem 1.6, there exists a MTS S — S’ along v, such that
R" C S’. We may thus assume that there exist regular parameters (z1,...,x,) in R such
that v(x1),...,v(x,) are rationally independent.

By Theorem 1.5, after replacing S with a MTS along v we may assume that x; - - - x,,

has SNCs in S. Thus there are regular parameters (y1, ..., ¥y,) in S and units ¢; such that

(673 Cin
Ti =Yty

for 1 < i <s. Thus v(y1),...,v(yn) span a rational vector space of dimension s. After
possibly reindexing the y;, we may assume that v(y;),...,v(ys) are rationally independent.
By 1) of Theorem 3.9 with R =S, f = z1...2s and Theorem 3.11, we can replace S with
a MTS along v to get

— ,,Cil Cis
Ti =y Y

for 1 <i <'s, where ; are units and det(c;;) # 0.
Let ¢; be the residue of ¥; in S/n. For 1 < j < s set

T ﬁ)
N E(%
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where (e;;) = (¢;;) ™!, a matrix with rational coefficients. €; € Sforl<j<s.
Set T"(0) = R, T; = x; for 1 <i < n. Set U”(0) = S[do,€1,...,€s]q where dy € S is

N

such that k(dy) = k(S), g = m(S) N S[do, €1, .. .,€s]. U”(0) has regular parameters
_ _{Gjyj 1<j<s
I Yy,  s<j.
T =y Yt b
for 1 <4 <s. Set R(0) = k[z1,...,24q, ¢ = m(R) NE[z1,...,24], co = 1. Thus the
assumptions of Theorem 3.12 are satisfied with [ = s and by the conclusions of Theorem
3.12 applied n — s times consecutively, we can construct MTSs R — R’, S — S’ such
that V' dominates S’, S’ dominates R’ and R’ has regular parameters (z/,...,z,), S’ has

regular parameters (y, ...,y ) satisfying the conclusions of the Theorem.

COROLLARY 4.2. Suppose that R C S are excellent regular local rings such that dim(R) =
dim(S), containing a field k of characteristic 0 and with a common quotient field K.
Suppose that v is a valuation of K with valuation ring V such that V dominates S.
Suppose that v has rank 1 and rational rank s. Suppose that if my is the maximal ideal
of V, and p* = my NS, then (S/p*),~ is a finitely generated field extension of k. Then
there exist sequences of monodial transforms R — R’ and S — S’ along v such that
dim(R') = dim(S"), S’ dominates R’, v dominates S’ and there are regular parameters

(xf,...,2)) in R', (J1,...,9n) in S’ such that

!/ __ ~Ci1 ~C1
xl_yl ...yss

where det(c;;) = £1 and k(R') = k(S").

PrOOF: We can construct MTSs along v R — R/, S — S’ such that the conclusions of
Theorem 4.1 hold. To finish the proof, we must show that det(c;;) = £1 and k(R') = k(S5").
We will analyze (c;;) by constructing MTSs which may not be dominated by v. Since
interchanging the variables 2 will only change the sign of det(c;;), we may assume that
c11 # 0.
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Case 1. Suppose that ¢17 < ¢21. Then we can perform a MTS " — S(1) where S(1) has
regular parameters (y1(1),...,y,(1)) such that

) = {yl(l)y2(1)m-~-ys(1)m i=1
' yi(1) i# 1

Then for m >> 0 the monoidal transform R’ — R(1) factors through S(1), where R(1)
has regular parameters (z1(1),...,2,(1)) defined by

z;(1) iA2

Then

Y
2a(1) = gy (1)
pr(1)

Case 2. Suppose that co; < ¢11. As in Case 1, we can perform MTSs to get

21(1) = g ()
22(1) = 3 (1)
5(1) = (1)

Case 3. Suppose that ¢;; = c21 and ¢1; < cg; for some j. Perform a MTS S" — S(1)
where S(1) has regular parameters (y1(1),...,yn(1)) such that

y{ _ { yj(l)yg(l)m .. 'yj—l(l)myj+1<1>m .. .ys(l)m i=j
' yi(1) oy

Then for m >> 0 the monoidal tranform R’ — R(1) factors through S(1), where R(1) has
regular parameters (z1(1),...,x,(1)) defined by



Then

1 yl(l)cll .
1o(1) = y2(1)022—612+m(02j—01j) .
3 Y1

(1)%1 ...

Case 4. In the remaining case ci1 = c21 and c¢1; > co; for all j. Then the monoidal tran-
form R" — R(1) factors through S’, where R(1) has regular paramaters (z1(1),...,2,(1))
defined by
’ 1‘1(1)1‘2(1) 1=1
x;(1) i#1
Then

By continuing to apply these four cases, we can construct R" — R(«) and S — S(«)
such that S(«) dominates R(«),

(4.1) z1(a) = yl(a)cll(o‘) .. .ygls(a)¢1

za(@) =y (@) )y g,

with ¢; units in S(«) and co1(a) = 0. By repeating the above procedure on successive

rows we can construct a MTS (4.1) with

co1(a) = =cs1(a) =0.
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Then the algorithm can be applied to the matrix obtained by removing the first row and
column from (¢;;) to construct (4.1) such that (¢;;(«)) is a upper triangular matrix.

Set ¢ = (y1(a)), p = R() N (y1(ew)). Our assumption that (c;;) is upper triangular
implies

gS(a) "N R(a)” = z1(a)R() 7,

so that p = (21(«)) and dim R(a), = dim S(a),. By the dimension formula, A =
(S(a)/q)q is finite over (R(a)/p)p. S(a)q/pS(a)q = Alyi(e)]/(y1()1()) is then finite
over (R(a)/p)p, so that R(a), = S(a), and ¢11(a) =1 by Theorem 1.10.

Now perform the MTS S(a) — S(a + 1) where S(a + 1) has regular parameters
(y1(a+1),...,yn(a+ 1)) such that

Syt Dya(a+ 1) ys(a+ )™ ys(a+ )™ 0=
ymw—{

yi(a+1) i>1

where m; is chosen so that

my + c12(a) = rega(a)

for some r > 0 and my is sufficiently large that
ma + c1j(a) > regj(o)
for 3 < j <'s. Then the MTS R(a)) — R(c + 1) factors through S(« + 1), where

[m(atDaa(a+1)" i=1
zi(a) = {xi(a—i- 1) i>1

and

ri(a+ 1) = (D) O
1‘2(05 + 1) = y2<1)022(a+1) A
x3(a + 1) = y3(1)033(0‘+1) ..

Now perform a series of similar MT'Ss to get (4.1) with (¢;;(«)) an upper triangular matrix

with
1 j=1

C”(O‘):{o i> 1
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Set ¢ = (y1(@), y2(@)), p = R(a) N g = (z1(e), 22(c)).
S(@)q/pS(a)g = (S(@)/a)qly2(@)]/ (y2(a) (V)

is finite over (R(«)/p)p. By Theorem 1.10, R(«a), = S(«)4 and ca2(a) = 1. We can repeat
the above procedure to get (4.1) where (c;;(c)) is the identity matrix and R(a) = S(a).
Thus det(c;;) = £1. Furthermore,

I

k(R') 2 k(R(a)) 2 k(S(a)) = k(5).

Set (e;;) = (i)', a matrix with integral coefficients. Set

P —

~ o7t 0%yl 1<i<s
Y s <1

then (91, ...,7y) are regular parameters in S’ satisfying the conclusions of the Theorem.

Suppose that R C S are excellent regular local rings such that dim(R) = dim(S) = n,
containing a field k of characteristic 0, such that the quotient field K of S is a finite
extension of the quotient field J of R. Suppose that v is a valuation of K with valuation

ring V such that V' dominates S and v has rank r. The primes of V' are a chain
O=poC---Cp.CV.

We will begin by reviewing basic facts on specialization and composition of valuations (c.f.
sections 8,9,10 of [Ab3] and chapter VI, section 10 of [ZS]). Suppose that I, is the value

group of v. The isolated subgroups of I', are a chain
0=I,c---cly=T,.
Set
Ui =A{v(a) | a € p;}

Then the isolated subgroup I'; of p; is defined to be the complement of U; and —U; in T',.
For i < j v induces a valuation on the field (V/p;),, with valuation ring (V/p;),, and
value group I'; /T';. If j =i+ 1, I';/T'; has rank 1.

For all 4, V},, is a valuation ring of K dominating R,,nr. Thus

trdeg(R/PiﬂR)piﬁR(V/pi)pi <0
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by Theorem 1 [Ab2] or Appendix 2 [ZS]. We can lift transcendence bases of (V/p;),, over
(R/pi N R)p,nr for 1 <i <rtoty,...,t, € V. After possibly replacing the ¢; with %, we
have v(t;) > 0 for all ¢;. By Theorem 1.7, there exists a MTS R — R’ along v such that
t; € R for all i. Let p; = R’ Np,;. Then
trdeg(r jp),, (V/pi)p, =0
for 1 < i < r. By Theorem 1.6, there exists a MTS S — S’ along v such that S’ dominates
R'. Replacing R by R’ and S by S’, we may thus assume that
trdeg(R/pimR)piﬁR(V/pi)pi =0
for 1 <4 <. Then
trdeg(R/pimR)piﬁR(S/pi N S)Piﬂs =0
for all . By the dimension formula (c.f. Theorem 15.6 [M])
dim R/p; "R = dim S/p; NS
for0<qi<r.
THEOREM 4.3. Suppose that R C S are excellent regular local rings such that dim(R) =
dim(S) = n, containing a field k of characteristic 0 such that the quotient field K of S is
a finite extension of the quotient field J of R. Suppose that v is a valuation of K with
valuation ring V such that V dominates S and v has rank r. Suppose that if my is the
maximal ideal of V, and p* = my NS, then (S/p*),- is a finitely generated field extension
of k. Suppose that the segments of I',, are
0=I,c---cly=T,
with associated primes
O=poC---Cp-CV.

Suppose that I';_1 /T'; has rational rank s; for 1 < i <r and

trdeg(R/pimR)piﬂR (V/pl)pz =0

for 1 <i<r. Sett; =dim(R/pi—1 N R)p,nr for 1 <i <r, sothatn=1t;+---+1t,. Then
there exist MTSs R — R’ and S — S’ along v such that S’ dominates R', R’ has regular

parameters (21, ...,2,), S’ has regular parameters (wy, ..., w,) such that
;i N R = (2,'1, e 7Zt1—|—---—|—ti)
i N S, = (wl, ce ,wt1+...+ti)

for 1 <4 <7 and
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where

21

Zsl +1

2ty

Zt1+1

Zt1+s2

Rt1+s2+1

Rt1+to

Rty4Ftr_1+1

Ztitettr_1+8y

Rty Atp_1+sp+1

Rty 4o+t

:wl

g11(1) 915, (1) hiey41(1) hin(1)
C Wy, wtl+1 Ceew, 511

s 1 s1sq (1 hs, 1 hsnl
’UJg 11()” w91 1 ( ),w 1.t1+1(1) W el ()6151

= w; “Ws, 1 c s Wh

hs 1 hsi+1,n(1
1+t +1(l) et ( )5131—1-1

= Wsy+1Wt, 1 n

h 1 hi;n(1
tl,t1+1( )"‘wntl ( )51t1

= W, Wy, 19

_ ,,911(2) 9155(2)  Pitq4ia+1(2) hin(2)

= W41 Wy sy Wiy 4gy41 T Wy 021

_ 9521(2) [YEDYEDY (2) h52,t1+t2+1(2) h52n(2)

T Wht1 T Whis, Wiitp4d v Wn 0255
h (2) h (2)

_ so+1,t1+to+1 so+1,n

= Wty 4so+1Wy, Y4017 ©rWn 025541

h 1(2 hion (2
to,t1+to+ ( ) . _wntz ( )62152

= Wiyt Wyy Jyy41

_ g911(r) 91s,. ()
= Wiy g, 41 W Yty s, Ol

gsrl(r) gsrsr(r)

= Wi g 41 W s, Ors,

= wt1+...+t1ﬂ_1+s,,+1(5rs,q+1

= Wiy 441, 0rt,.

g11(i) - g1s,(4)
det : # 0,

Gor()) - o, (i)

di; are units in S” for 1 < i <, and h;;(i) are nonnegative integers.

PrOOF: The proof is by induction on r. » = 1 is immediate from Theorem 4.1. Suppose
that the Theorem is true for rank r — 1. Set p;(0) = p; N R, ¢;(0) = p; NS. Then there

exist MTSs R, oy — 11 and S, _ (o) — Uy such that V), _, dominates Uy, U; dominates

123



Ty and the conclusions of the Theorem hold for 77 C U;. By Theorems 1.9 and 1.6 there
exist MTSs along v R — R(1) and S — S(1) such that V' dominates S(1), S(1) dominates
R(1) and if pi(1) = p; N R(1), ¢;(1) = p; N S(1), R(1)p, (1) = T, S(1)g,_,(1) = U and
R(1)/pi(1), S(1)/qi(1) are regular local rings for 1 <i < r.

By assumption, R(1), ,(1) has regular parameters (&1,...,Z¢4...4¢,_,) and
S(1)g,_,(1) has regular parameters (91, ..., Js,+...44,_,) satisfying the conclusions of the
Theorem. Set A\ = ¢ + -+ + t,—1. R(1) has regular parameters (z1(1),...,2,(1))
such that p,_1(1) = (z1(1),...,2x(1)). Let m(1) : R(1) — R(1)/pr—1(1). There exist
ai € R(1),, ), 1 <i <A, 1<j<A\such that

T; = Eixl(l) 4. +6f\x>\(1)

and det(a}) € pr—1(1),,_,(1)- There exists u(1) € R(1) — pr—1(1) such that u(1)Z; € R(1)
for 1 <7 < X and if we define 7;(1) = u(1)z;

7i(1) = alzr (1) + -+ + alza(1)

for 1 < i < X\ where a} € R(1) for all 4,j and det(a’) ¢ p,—1(1). After reindexing the
7;(1), we may assume that al & p,_1(1). Let b1 = m(1)(al).

V/pr—1 is a rank 1, rational rank s, valuation ring. The quotient field of V/p,_;
is algebraic over the quotient field of R(1)/p,—1(1) so that if L is the quotient field of
R(1)/pr—1(1), then L NV /p,_; is a rank 1, rational rank s, valuation ring. Let 7 denote
the valuation induced by v on L.

By Theorems 4.1, 3.9 and 3.11 (with R =S = R(1)/p,—-1(1)) there exists a MTS

R(1) = R(1)/py-1(1) — R(2) — -~ — R(m)
where each R(i) — R(i 4+ 1) is a monoidal transform and R(m) has regular parameters
(Uay1(m),...,7,(m)) such that U(yy,,(m)),...,V(Yrys, (m)) are rationally independent
and b} = 71 (m) 1 -Gy, (m)* =T where U € R(m) is a unit. There exist regular

parameters (Fy1(1),...,7,(1)) in R(1) and a < n such that

-z Urs2(1) Yall)
R(2) = R(1 {%H(l)’ ’?A+1(1J§(2)

where Q(2) is a maximal ideal. Let y;(1) be lifts of 7;(1) to R(1) for A+ 1 < i < n. Then
(1(1),...,2A (1), yr+1(1),...,yn(1)) are regular parameters in R(1). We have a surjection

_ @) @) |4 D2l Fa(1)
P A [ymm’ ’?JA+1(1)] B lmm’ ’mu)}
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Let Q2 = ®71(Q(2)). Set

) va(1)
(D) Ty ] g,

Ro = R(1)

R(1) — Rs is a monoidal transform along v and p,_1 N Ry = (z1(1),...,2(1)),

(R2)p, 1nry = R(1)p,_, (1) and Ra/pr—1 N Ry = R(2).
We can inductively construct a MTS along v
(4.2) R(1) - Ry — -+ — R, = R(2)

such that R(2),. ,2) = R(1),, ), R(2)/pr—1(2) = R(m) with p,_1(2) = pr_1 N R(2)
and R(2) has regular parameters (x1(2),...,2,(2)) such that

zi(2) =
yi(2) A+1<A<n

where y;(2) are lifts of 7,(m) to R(2). Thus
ay = 2xq1(2) - mag, (2) A bz (2) + - 4 baza(2)

where u,by,...,by € R(2) and u is a unit. Thus

A
F1(1) = 2xq1(2) g, (2) oy (2) + axq (2)2 + Z a;x;(2)
i=2

with a;,a € R(2). Now perform a MTS R(2) — R(3) along v

TA+1(3) Ly (B) e Tl (3) i =
2i(2) =  Ta1(3)2 T2y (3) e F2(3) 2 <0 <A
z;(3) A+1<i<n

Thus x;(3) € R(2)p,_,(2) for 1 <i <n. Set p,_1(3) = pr—1 N R(3). Then R(2),, 2 =
R<3)pr—1(3)'

71(1) = a1 (3?1 g, (32 T (@1 (B)u 4 2a g1 (3) - - 2ags, (3)0)

for some ¢ € p,_1(3). Set
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Then (£1(3),...,2,(3)) are regular parameters in R(3) with p,_1(3) = (
Pr—1(3)R(3)p, _(3) = (T1,.-.,Zx)R(3),,_,(3) implies there exists a’(3) € R(3),, _,(3) such
that

_ [ai(3)#:(3 i=1
e {ai<3>ae1<3> Fo T (3)Ea(3) 2<i<A
and
a3(3) az(3)
det : Z Pr—1(3)p, 1 (3)
a3 (3) @y (3)

We can repeat the above argument to construct a MTS R(1) — R’ along v such that if

Py =pr—1NR", R(1),, 1) = R, and there exists a regular system of parameters
r—1

1
n

(xf,...,2")in R” and uy,...,uy € R;';,_l — (py_1)py_, such that Z; = w;z} for 1 <i <A\

By Theorem 1.6 and the above argument, there exists a MTS S(1) — S” along v such

that if ¢y = pr—1NS", S(1)g,_, 1y = Sy , S” dominates R” and there are regular
r—1

parameters (y{,...,y.) in S” and vy,...,v)\ € S;’;,_l —(¢/_1)q_, such that §; = v;y;" for

1 <4 < A. Thus we have

(4.3) 2y = (y) (gl )0 Dy g ) W ()

1

" _ 1"
Ty = Yy,

with 11,...,9\ € S;’;,_l — (ql—1)qi~’

1

Y; = L with f;,9: € 8" —q"_4, f;, gi relatively prime
gi r—1
in S”. There are nonnegative integers d; such that
gir! = ity - (yf\’)di for 1 <7 < Asothat g; | f; in S” and ¥; € §” —¢/_, for
1< <A
Let ' : R" — R"/pl_y and n"" : S" — S"/q/_,. Let T = «'(z}) and /] = 7" (y}). v

induces a rank 1 rational rank s, valuation on K = (S"/ @r—1)q_,- By Theorem 4.1, there
exist MTSs

R')p)_ =R—R(l)— - —>Rm)=T

and

S")¢/_y =8 = 5(1) == 8(m)=U

such that the valuation ring (V/p,_1) N K dominates U, U dominates T, T has regular pa-

rameters (Ta41,...,%n), U has regular parameters (¥, i,...,%,) such that
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U(Yxs1),--->7(YUxys,) are rationally independent, where ¥ is the valuation induced by
v on the quotient field of U and

(4.4) Tap1 = y§1+1§7"> . .gf;:;fﬂgw
Tats, = yi:q(”) O yiz;:(ﬂg}\_{_sr

Tats,+1 = Ynts,+10A+s,+1

where §; are units in U.
Each R(i) — R(i 4 1) is a monoidal transform centered at a prime @;. By Theorems
3.9 and 3.11 and Lemma 3.2, there exist MTSs along v

T=R(m)—-— Rm')=T

and

U=8m)— - — Sim')=U"

such that U’ dominates 7", T" has regular parameters (Tx41,...,Z,), U’ has regular pa-

rameters (Yy,1,--.,¥,) such that (4.4) holds, and

e di _d,
a;U" = (y>\+1”‘y>\+57~)
for some nonnegative integers d¢, . .. ,diT for 1 <1i <m, and
" _ —Ai 41 —a; A+ Sr—
™ (¢z) =YUnt1 " YUngs, Wi

where u; are units, a;; are positive integers for 1 <¢ < A.
For m <1 < m’ — 1 each R(@) — R(z + 1) is a monoidal transform centered at a
. . i d: .
height 2 prime @; (c.f Remark 3.1) such that @;U’ = (@f\lle ~+ YY) for some nonnegative
integers df, ..., d. . Consider the MTSs along v

R’ — R(1) — -+ — R(m/

~—

and
§"—S(1)—---—Sm)=S
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constructed as in (4.2), so that for 1 <i < m/, R(i),, ) = R;’,T,_l, R(i)/pr_1(i) = R(i),

S(1)gr 1) = S”,, E S(i)/qr—1(i) = S(i) where py_1(i) = pr—1 N R(), gr—1 = pr—1 N S(7)
and S has regular parameters (U1, - - Tn) such that g; has residue g, in U’ for A+1 <i <n
and g; =y for 1 <i< A For0<i<m'—1, R()—>R(z—l—1) is the blowup of a; C R(7)

such that a;R(i) = @;. Thus a;S/q, , = @ia—r y/\+S ) where G,_; = pr—1 NS. Set

~dt _d!
Qi =9\t UyYs, - Then

a; S = (i + Gaby (i) + -+ GabA (D), -+, D + Gubi (3) + - + GabA(D))

for some t, bk()ES 1<i<m' —1.
Perform a MTS along v

S =15(0)— 8(1) —---S(m)

where S(j) has regular parameters (%, (j),...,%,(j)) defined by ,(0) = 7; for 1 <i < n,

. Qi y;(J+1) 1<i<A
'(j):{mwl) i<A<n
for 0 < j < m’ — 1. Then we have a;S(m’) = (®;) for 1 <i <m/ — 1. R(m') c S(m') (by
Theorem 1.6) and S(m/)/g(m/),_1 = U’.
Let z; be lifts of Z; to R(m’) for A+1 < i < n. Define regular parameters (x1(m’),...,z,(m’))}}
in R(m') by

x;(m') =

{:r;’ 1<i< A
zi A+1<i<n

There exists a matrix of nonnegative integers (e;;) such that

(4.5) r1(m') =7, (m’)grr(l) .. .ysl(m/>grsl(1)yt1+1(m/)h1,t1+1(1) .. .g)\(m/)hu(l)
Yagr (M) A+, (m) ey

zA(m') =Gy (m" )Gy (M)A g (m] )X mahy,
wxsa (') = yHl(m')g““) Dot (Mo D

+ T g m) 4 T ()

T (m) =7, (m)op + [1Y1 () + - + [ (M)
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where 8; are lifts of §; to S(m/), f/ € S(m’). For 1 <i < A,

Yi = WGy yq (M)A yil—:\;ST +hig, (m') + -+ Wiz, (m)
where v/ are lifts of u; to S(m/), the u} and §; are units in S(m’). Choose
t > max{a;j,9:;(1)}.
Now perform a MTS S(m') — S(m’ + 1) along v where S(m’ + 1) has regular param-
eters (g, (m’ +1),...,7,,(m’' + 1)) defined by

T (m/ + )P, (m' + 1)g;(m/ +1) 1<i< A\
yi(m+1) A+1<i<n

() = {
to get
i = g (M + 1) g (m] 1)
for some units u; € S(m’ +1), 1 <i < X. S(m/ +1)/g(m' +1),_1 = U’ and there is a
matrix of nonnegative integers (b;;), units uxi1,...,u, € S(m + 1) such that
(46)(m’) =7, (m' 4 1)91 D) .. G, (m' + 1)9181(1)yt/+1(m/ + D)na g () 4 1))
Dapa (m/+ 1Pt gy, (m 4 1)

Ua(m' + gy q (m + )P g (m) 4 1)y

Tap1(m') = Yo a (m/ + 1) gy (1) Dy gy

8
>
A
—

|

Theorem A is immediate from Theorem 4.3

THEOREM 4.4. Suppose that R C S are excellent regular local rings such that dim(R) =
dim(S) = n, containing a field k of characteristic 0 and with a common quotient field K.
Suppose that v is a valuation of K with valuation ring V' such that V dominates S and v
has rank r. Suppose that if my is the maximal ideal of V, and p* = my NS, then (S/p*)

is a finitely generated field extension of k. Suppose that the segments of ', are
0=I,C---CcTIy=T,
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with associated primes

O=poC---Cp.CWV.
Suppose that T';_1 /T'; has rational rank s; for 1 < i <r and
trdeg(R/pimR)piﬁR(V/pi)pi =0

for 1 <i<r. Sett; =dim(R/pi—1 N R)p,nr for 1 <i <r,sothatn=1t;+---+1t,. Then
there exist MTSs R — R’ and S — S’ along v such that S’ dominates R', R’ has regular

parameters (21, ...,2,), S’ has regular parameters (wy, ..., w,) such that
i N R/ = (Zl, ce ,Zt1_|_l.._|_ti)

Pi N S/ = (wl, e ,wt1+...+ti)

for 1 <4 <7 and
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Z1

1

Z81+1

2ty

Zt1+1

Zt1+s2

Zt1+s2+1

Rt1+to

Rty+Ftr_1+1

Rty ttp_1+8,

b1+t tr_1+sp+1

= wy

1 g 1
g11(1) . 'wsisl( )

g 1 g 1
wlsll( ) .. wsflsl( )
w81+1
Wi,

911(2) . 91so (2)

t1+1 t1+s2

9821(2) . 9sg sy (2)
wt1+1 t1+s2
Wty 4s5+1
Wty +ty

gll(r) 91sp (’I”)

ti+4-+t, 141" wt1+"'+tr71+s'r

gs,1(r) e (™)
wt1+"'+tr—1+1 wt1+“'+tr—1+sr

Wty 4 Atr_1+sr+1

Rttty = Wiyttt
where
g11(7) 91s; (7)
Det : : =41
gsil(i) Gs;s; (7’)

and (R'/pi "R )p,nrr = (8" /piNS")p,ns for 1 < i <r.

ProOOF: The proof is a refinement of that of Theorem 4.3. The stronger Corollary 4.2 is
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used instead of Theorem 4.1. Formula (4.3) then becomes

(4.7 = a1

Ty = Yayx
(4.5) becomes

(@8)  wa(m) =y ()0 g () O () g ()

<

x,\(m') = @A(m/)g)\+1(m/)e>\v>\+l .. .yn(m/)ex,n¢A
o1 (m') = Pogr (M) () D6y 4

+ TG ) 4+ T g (m)

Tn(m') =7, (m)on + f17 (M) + -+ fY75(m)

(4.6) becomes

(4.9)
zy(m') =gy (m' + 1) W g (4 D)Wy 1) (m] 1)y
za(m') =gy (m' + D)y (m/ + 1) g (m + 1)y

war1(m') = Yo (m' + 1) gy (m! 4 1) Dy

The MTS R(m') — R(m/ 4 1), where R(m’ + 1) has regular parameters
(1 (m' +1),...,2,(m" + 1))

defined by
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factors through S(m’ + 1), and

(4.10)
i(m’ 1) =g (' + )P g ()P Oy (1) ()P

ax(m +1) =, (m' 4+ DYy (m + 1P gy () 4 1) el

x}\+1(m/ _|_ 1) — g)\+1(m/ + 1)911(7') .. _y}\+sr (m/ + 1)glsr(T)U>\+1

Tn (m/) Yn (m/)un

for some units u} € S(m’ +1). Since det(g;;(1)) = £1 for 1 <1 < r, we can make a change
of variables in S(m’ + 1), replacing 7;(m’ + 1) with a unit times ,(m’ + 1) for all i to get
that the u; and v’ in (4.10) are 1 for all 4, 5. Let

gu(r) - gen(r)\

(hij) = : ; ,
9s,1(r) - Gsps, (7)

an integral matrix.

Tapr(m' +1) = zxpa(m’ + DM (m) 4 1) e

Ungs, (M +1) = 2ppa (' + 1)t g, (m! 4 1) e,

v(g;(m’+1)) >0for A\+1 <1i < X+ s,, so by Lemmas 3.2 and 3.3 there exist MTSs
R(m' +1) — R(m' +2) and S(m/ + 1) — S(m’ + 2) along v such that R(m’ + 2) has
regular parameters (z1(m’+2),...,z,(m’'+2)), S(m’+2) has regular parameters (g, (m’+
2),...,7,(m' +2)) defined by

(2;(m' + 2) 1<i <A,
zi(m' +1) = Ats-<i<n
[ @agr(m/ +2)5 D gy (! 4 2) % (TR XL T << A+,

(7:(m +2) 1<i<A,
7;(m' +1) = Ats,. <i<n
( Ung1(m/ + 2)bir (m'+2) .. Taps, (M +2)Pirrar(MFD X 41 <i < A5,
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such that R(m’+ 2) C S(m’ + 2) and
Ungi (M +1) = 2xp1(m' +2)° g, (m +2)%r
for 1 <i <s,., where e;; > 0 for all 4, 5. Set

dij = e1jbins1 4+ s, 5binss,

for 1 <i <\ 1<j<s,. Then the MTS R(m’' 4+ 2) — R(m’ + 3) where R(m’' + 3) has
regular parameters (z1(m’ 4+ 3),...,z,(m' 4+ 3)) defined by

xp1(m' +3)4 oy (M + 3) e (m' +3) 1<i< A

i(m' +2 Z{
zi(m ) x;(m' + 3) A<i<n

factors through S(m’ + 2) and the conclusions of the Theorem hold for the variables
x;(m' + 3) and g;(m’ + 2).

FACTORIZATION 1

In this chapter we prove Theorem D, which shows that it is possible to factor a bira-
tional map along a valuation by alternating sequences of blowing ups and blowing downs.
Theorem 4.4 reduces this to a question of monomial morphisms and valuations of maxi-
mal rational rank. This reduces the problem to a question in combinatorics. Christensen,
in [Ch], using elementary linear algebra, gives a proof, that in dimension 3, factorization
holds along a rational rank 3 valuation. His algorithm produces a factorization with one
series of blowups and one series of blowdowns. We generalize his methods to give a proof
of factorization of monomial mappings in the special case of valuations of maximal rational

rank. Then Theorem D follows from Theorem 4.4.

LEMMA 5.1. Suppose that M = (a;j) is an n x n matrix such that the a;; > 0 for all
i,j and Det(a;;) = 1. Suppose that R is a regular local ring with regular parameters
(x1,...,2y). Then there exists a regular local ring S in the quotient field of R such that
S has regular parameters (y1,...,yy) satisfying (5.1).

(5.1) T1 =yt yett oyt
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PROOF: Set (b;;) = M~'. There exists monomials f; in zy,...,x, for 0 < i < n such

that o3 - .- zbin = % for 1 <i<n. In R[%,---,f—o] we have x; = (%)al(f;—o)“
for 1 < i < n so that the maximal ideal m = (z1,...,z,, %,,J}—g) is generated by
%""’%' Set S:R[%,---,J}—g]m and y; = % for 1 < i <n. Then S is a regular local

ring and (5.1) holds.

Suppose R — S is as in (5.1). An inverse monoidal transform (IMT) R — S(1) — S
consists of a regular local ring S(1) such that R C S(1) C S which has regular parameters
(y1(1),...,yn(1)) such that y,(1) = y,ys for some r # s and y;(1) = y; for i # r.

LEMMA 5.2. Suppose that (5.1) holds for R — S and the coefficients of the st* column of
M minus the rt* column of M are nonnegative (a;s — a;. > 0 for all ). Then there exists
an IMT R — S(1) — S such that

(52) x1 = yl(l)aaa(l) ce yn(l)aln(l)

Tn = y1 (1)1 gy (1),

M(1) = (a;;(1)) is M with the r'" column subtracted from the s** column. The adjoint
matrix A(1) of M (1) is obtained from the adjoint matrix A of M by adding the s'" row
of A to the r'" row of A.

Proor: This follows from Lemma 5.1.

Let A = (A;;) be the adjoint matrix of M in (5.1). Consider a monoidal transform
along v S — S’, where S’ has regular parameters (yi,...,y,,) defined by

y:{y;yé i=r
oLy i

Of course, this means that v(y.) > v(ys). Then the matrix M" = (aj;) where x; =
(y})%1 - -« (y.)%n for 1 < i < n is obtained from M by adding the r*" column to the si*
column. The adjoint matrix of M’, A" = (A;;) is obtained from A by subtracting the sth

row from the r** row.

THEOREM 5.3. Suppose that R C S are excellent regular local rings of dimension n,
containing a field k of chracteristic 0, with a common quotient field K. Suppose that v is
a valuation of K which dominates S, with valuation ring V. Suppose that

1) V has rational rank n
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2) R has regular parameters (z1, ..., Ty), S has regular parameters (y1, .. ., yy) such that

a11,,a12 A1n

1 =Y Yo~ " Yp

_ anil, an2 a
xn_yln y2n ___ynnn

where Det(a;;) = £1.
Then there exists a MTS along v

(5.3) S—S1)—---— Sk)
where S(i) has regular parameters (y1(i),...,yn(7)) for 0 < i < k with

(5.4) T = yl(i)““(i)yg(z’)a”(i) . yn(i)aln(i)

Tn = 11 (i)anl(i)y2 (Z')anz(i) . yn(i)a""(i).
such that if M (k) = (a;;(k)) is the coefficient matrix of R — S(k), with adjoint matrix
A(k), then all but at most two of Ay1(k), A12(k), ..., A1n(k) are zero.

PROOF: Set M = (a;;). Let A be the adjoint matrix of M. In a sequence such as (5.3),
define M (i) = (a;x (7)) and A(7) = (A;x(i)) to be the adjoint matrix of M (7).

We will call a monoidal transform S(I) — S(I + 1) along v allowable if it is centered
at P(l) = P;; = (vi(1),y;(1)) where Ay;(1), A1;(1) are nonzero and have the same sign. If
T C {1,2,...,n} is a subset containing i and j, and P(l) is allowable, then

max{|A1x(l +1)| : k € T} <max{|A1x(l)| : k € T}.
Suppose that there exists an infinite sequence of allowable monoidal transforms
(5.5) S—8S1)—---—5(1) —

where S(I) — S(l + 1) is centered at P(l). We will derive a contradiction. The Theorem
will then follow since at least three A;;(l) nonzero imply two of them must have the same

sign, which implies that there exists an allowable monoidal transform.
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Set

U(l) = {i: Aw(l) # 0}

a(l) = [U(D)]

T(l) = {i: i occurs as an index in a P(k) for some k > [}
V(1) =T ()]

B(l) = max{[Ay(1)] : - € T()}
W(l)={j eT{):[A;(D] = BG)}

6(1) = [W(1)]

We have a(l + 1) < a(l), B(1+1) < (1), v(I +1) < ~(I) and if 5l + 1) = 5(I) then
d(1+1) < §(1). Hence in the lexicographic ordering,

(a(l+1), 81+ 1),7(+1),0(1+1)) < (a(l), B(1), (1), (1))

for all {.

It suffices to show that this invariant decreases after a finite number of steps, so we

may assume that
(a(l), 6(1),~(1),6(1)) = (a, 8,7,9)

n (5.5) for all [, and derive a contradiction. Set U = U (1), T =T(1), W = W(l).
If there is some [ such that P(l) = P.s with r,s € W and v(y, (1)) > v(ys(l)), then

A (l+1) = A, (1) — Arg(l) =0,

and a(l 4+ 1) < «(l). This kind of monoidal transform can thus not occur in (5.5).

If some P(l) = P, withi e T'— W, r e W and v(y, (1)) > v(y:(1)), then Ay, (I+1) =
A1 (1) — A1i(1). Hence (1 +1) < (1) or (1 4+ 1) = B(I) and 6(I + 1) < 6(I). Thus such a
monoidal transform cannot occur in (5.5).

Since y(l) cannot decrease, we must have infinitely many [ such that P(l) = P;, with
reW,ieT —W and P(l) = P;s with i,s € T — W for all other .

We must thus have y;(I) = y; for j € W and for all I. Furthermore, v(y;(1)) < v(y;)
for all ¢ and [.

At each step where P(l) = P;, with r € W and i € T — W we have

| _vil) _will)
N
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and v(y;(1+1)) = v(y;(1)) —v(y.). After a finite number of steps we must have v(y;(1)) < 0

for some i € T'— W, a contradiction.

When n = 3, Theorem 5.4 is proved by Christensen [Ch].

THEOREM 5.4. Suppose that R C S are excellent regular local rings of dimension n > 3,
containing a field k of chracteristic 0, with a common quotient field K. Suppose that v is
a valuation of K which dominates S, with valuation ring V. Suppose that

1) V has rational rank n

2) R has regular parameters (z1, ..., Ty), S has regular parameters (y1, . . .,y ) such that

a1, a12 A1n

1 =Y Y~ Yy

_ Gnp1l,,0n2 a,
xn_yln an .._ynnn

where Det(a;;) = £1.

Then there is a sequence of regular local rings contained in K

Rl Rn—Q

/ AN N / AN
R Sl Sn_g Sn_QZS

such that each local ring is dominated by V and each arrow is a sequence of monoidal

transforms (blow ups of regular primes). Furthermore, we have inclusions R C S; for all i.

ProoF: The proof is by induction on n. For n = 2 there is a direct factorization by a
MTS. Suppose that n > 3 and the theorem is true for smaller values of n. We will show
that there is a MTS S — S’ along v and a sequence of IMTs R — S” — S’ such that
a column of the matrix M” of R — 5" consists of a single 1 and zeros in the remaining
entries. Without loss of generality, the first column of M” has this form. By Lemma 5.2,
there is then a sequence of IMTs R — S,_5 — S” such that the matrix M of R — S,_3

has the form

1 0 0
_ 0 o a2n
M = .

0 anQ T ann

By induction on n, there will then exist a factorization of the desired form.
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By Theorem 5.3, there exists a MTS S — S’ along v such that, after possibly inter-
changing variables, A;; = 0 for j > 2 and

(5.6) a11411 + a2l =1

Case 1. Suppose that A;; < 0 and Ay > 0. (The case A1 < 0 and Ay > 0 is similar.)
Then 1 = —all(—An) + a12A12. Set m = [%1;1], n = [%1112]

Suppose that m > 0. Note that m = 0 implies n > 0.

At At N 4 1 ifi=1

a’L az PR a’Z’I’L TL:

1411 2A12 1 0 ifitl

—A

A2 — A; 1M = A2 — Gz‘l(A—H)
12

1
= A (ai1 A1 + aipAi + - + ainAin).
12

Hence a12 — ajym > 1 and aj2 — a;ym > 0 for 2 < i < n. Let M’ be the matrix obtained
from M by performing the column operation of subtracting m times the first column from
the second column. All of the coefficients of M’ are positive, so by Lemma 5.2 there is an
IMT R — S" — S such that M is the matrix of R — 5’. We have A}; = A;; if j # 1 and
Al = A1 + mAjg so that Aj; < Al <0. If A}y # 0, then

—A’ —A{; —mA —A
m = [ = [ S (2R ) =0
Al Aro Az
so that n’ > 0.
Now suppose that n > 0.
Aqo
i1 — QN > ai1 — Gp(———
1 2 1 2(_A11)
1
= —(ainAn + aigAi2+ -+ ainAin).

All

Thus we have a;; —a;on > 0 for 2 < ¢ < n. Suppose that A;; # —1. Then a1; —ajon > —1,
and since this is an integer, a1 — a;an > 0. We can then construct an IMT R — S' — S
such that the matrix M’ of R — S’ is obtained from M by subtracting n times the second
column from the first column. We have A’lj = Ay; if j # 2 and A}, = A12 +nAq; so that
Ajg > Aly > 0. If Al5 #0, then n’ =0 and m’ > 0 so that we can repeat Case 1.
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Suppose that A1; = —1. 1 = —a11 + a12A12 implies a2 > 0.
a1 — (A12 — Daje = —(ai1 411 + aigAiz + - - + ainAin) + aio

so that a;; — (A12 — Daje = a;0 > 0if i > 1, a1 — (A12 — 1)ae = =1 4+ a2 > 0. We
can then construct an IMT R — S’ — S such that the matrix M’ of R — S’ is obtained
from M by subtracting (A2 — 1) times the second column from the first column. Now
construct the IMT R — S — S’ where the matrix M" of R — S” is obtained from M’ by
subtracting the first column from the second column. The second column of M” consists
of a 1 in the first row, and the remaining rows are 0.

After a finite number of iterations of Case 1 we either prove the induction step, or

reach the case Aj5 =0 or A;1 = 0.

Case 2. Suppose that A;; =0 or Aj3 =0 (and A3 = -+ = Ay, = 0). Without loss of
generality we may assume that A1 = 0. 1 = a1 A1 implies a11 = A1; = 1. for i > 1 we
have a;1 = aj1A11 + aipA12 + - + ajn A1, = 0 so that the first column of M consists of a

1 in the first row, and the remaining rows are 0.

Case 3. Suppose that A;; > 0 and A5 > 0. Then a;; = A;1 =1and a2 =0,0ra;; =0
and a1 = A1o = 1. Without loss of generality we have the first case. For i > 0 we have
0<ajp <ai1Ai1 +aipAis+ - -ainAi, = 0 Hence the first column of M consists of a 1 in
the first row, and the remaining rows are 0.

This completes the induction step for the proof of the Theorem, since the case A1 <

0, A12 < 0 is not possible.

Proof of Theorem D. We can perform MTSs R — R’ and S — S’ so that the conclusions
of Theorem 4.4 hold. We can further replace R’ by a MTS R’ — R” such that S’ dominates

R’ the conclusions of Theorem 4.4 hold, and if s; = 2 for some 7, then

“tytettioi+l = Wit +1

Rtytettio1+2 = Wittt 142

since factorization is possible if n = 2. Let Aq,..., A, be the A\; such that 1 < \; < r and
Sx; > 2. Set

L1 = Zty -4ty —1+1

‘TSAi = Zt1+"'+t>\i71+5>\i
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Y1 = Wiy optn 1 +1

ysxi = wt1+~-+txi—1+8>\i‘

Set }_{,\i = k[$17-~~7xs>\i](:c1 77777 ZCs/\_)7 g/\i = k[ylv"'7y5>\i](y1 ____ ys/\_). Let F,\i be the quo-
tient field of Sy,. Then Ry, C Sy, and V), = VN K, is a rank 1, rational rank sy,
valuation ring dominating Sy,. By Theorem 5.4, for all \;, there exist MTSs of regular

local rings contained in Ky,

(R)\z)l (R)\i)S)\i—z
_ NS s N -
R, (Sxi (Sxi)sy,—2 = S
such that each local ring is dominated by V', and Ry, C (Sy,); for all j.
We can perform the corresponding sequences of MTSs along ¥ on R to construct a
sequence of MTSs
(R)\l)l (R)\l)SAl—Q

/ AN S S AN
R (S>\1)1 (S>\1)8)\1—2 = S>\1 = R)\Q

(Bx. )1 (Bx.)sx, —2
/ AN S S AN
RAG, (S>\a)1 (SAa)SAa_2 = S
(sx; —2)+(sx, —2)+ -+ (sx, —2) <n—2since sy, +---+5x, < n. Thus the conclusions
of the Theorem hold.

FACTORIZATION 2

In the special case of a monomial mapping, local factorization by one sequence of
blowups followed by one sequence of blowdowns follows from Morelli’s Theorem on fac-
torization of birational morphisms of toric varieties [Mo], [AMR]. Theorem 6.1 states this

result precisely.

THEOREM 6.1. Suppose that R, S are excellent regular local rings of dimension n, con-
taining a field k of characteristic zero, with a common quotient field K, such that S dom-

inates R. Suppose that R has regular parameters (x1,...,x,), S has regular parameters
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(y1,-..,Yyn) and there exists a matrix (a;;) of natural numbers such that Det(a;;) = £1

and

(6.1) T =yt eyt

— 2,911 aj
xn_yln ...yn".

Let V' be a valuation ring of K which dominates S. Then there exists a regular local ring
T, with quotient field K, such that T dominates S, V dominates T', and the inclusions
R — T and S — T can be factored by sequences of monoidal transforms (blowups of

regular primes).

v
1
T
/ AN
R — S
Proor: With the given assumptions
(6.2) Spec(k[y1, - .-, yn]) — Spec(k[z1, ..., zn])

is a toric birational morphism of toric varieties. There exist projective toric varieties X
and Y and a birational projective toric morphism f : X — Y extending (6.2). By the main
result of [Mo], [AMR] (Strong factorization of birational toric morphisms) there exists a

factorization

A

/ N
X — Y

where Z is a projective toric variety, Z — X and Z — Y are composities of blowups of
orbit closures. Z — X and Z — Y induce MTSs along v R — T and S — T.

Proof of Theorem G.
By Theorem A, we can perform sequences of monoidal transforms R — R; and S —
S1 so that V dominates Sp, S; dominates Ry, and R; and S; have regular parameters

satisfying (6.1). The proof of Theorem G now follows from Theorem 6.1.

Proof of Theorem H. If K is a field containing a ground field k, and v is a valuation of
K, trivial on k, then the transcendence degree of O, /m, over k is called the dimension of
v (dim(v)). We have

rank(v) < rrank(v) < trdegi K
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(C.f. the Corollary and note at the end of Chapter VI, Section 10 [ZS].)

Suppose that v is a valuation associated to V. By Theorem 1.7, applied to the lift
to V of a transcendence basis of V/m,,, there exists a MTS along v, R — Ry, such that
dimpg, (v) = 0. By assumption, R; is a localization of k[f1,..., f,,] for some fi,..., fi, €
K, such that v(f;) > 0 for all i. By Theorem 1.7, there exists a MTS S — S; along v such
that f1,..., f, are in S;. Hence S; dominates R;.

dim(R;) = trdegy (K) — trdegx(R1/m1) = n — dim(v)
and dim(S;) = n — dim(v). Now the Theorem follows from Theorem G.

7. THE ZARISKI MANIFOLD

Let k be a field, X be an integral proper k-scheme. Define M(X) to be the set of
pairs (X1, f1) of proper birational morphisms f; : X3 — X.

THEOREM 7.1. (Zariski) There exists a locally ringed space Z(X) with morphisms
X', f): Z(X) — X'

for (X', f) € M(X) such that
1) If (X5, fi) € M(X) for i = 1,2 such that f{ ' o fy is a morphism, then h(Xy, f1) =
(fi ' o f2) o h(X2, f2) and
2) If Z'(X) with maps h' (X', f) : Z/(X) — X' for X’ € M(X) has the property 1), then
there exists a unique morphism g : Z'(X) — Z(X) such that M'(X', f) =h(X',f)og
for all (X', f) € M(X).

Z(X) is called the Zariski manifold of X (c.f. section 17 [ZS], [L1], section 6 of chapter
0 [H]). The formulation of Theorem 7.1 follows [H].

Z(X) can be constructed explicitly as follows (c.f. [ZS], [L1]). Let ¢ be the generic
point of X, K = Ox . Define Z(X) to be the set of valuation rings V' of K such that
Ox,p C V for some p € X. The basic open sets U of a topology on X can be defined as
follows. Suppose that f; : X7 — X is a birational morphism of finite type. Let (; be the
generic point of X;. f{ induces an identification of Ox, ¢, with K. Set U to be the set of
valuation rings V of Z(X) such that Ox, , C V for some ¢ € X;. Z(X) has the structure
of a locally ringed space, by defining

LU, Ozx)) =NverV
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for open sets U of Z(X).

Given a proper birational morphism f : X’ — X, we can define h(X', f) : Z(X) — X’
by h(X', f)(V) = p if V dominates p. p exists by the valuative criteria for properness (c.f.
Theorem I1.4.7 [Ha]).

THEOREM 7.2. (Zariski) Z(X) is quasi-compact.
This is proved in chapter VI, section 17, theorem 40 [ZS].

DEFINITION 7.3. (Hironaka, chapter 0, section 6 [H]) Let f : X’ — X be a finite type
morphism of integral k-schemes. f is complete (or X' is complete over X ) if

1) The morphism f is surjective.

2) For every point ' € X', there exists a 4-tuple (U, Y/,T, j) consisting of an open dense
subset U of the underlying topological space of X' which contains x’, an integral finite
type k-scheme 7/, a proper morphism f : X — X and a morphism j : X' | U — X
which induces an isomorphism of the same to the restriction of X' to an open dense
subset of its underlying topological space and such that foj = f| U and

3) Every point x € X admits an open neighbourhood V' in the underlying topological
space of X such that X |V is a finite type k-scheme, and if we identify in a canonical
way the Zariski spaces Z(Yl,fil(‘/)) for all 4-tuples (U, Yl,f,j) of 2) and call it
Z(X'" | V), then the underlying topological space of Z(X' | V') is equal to the union
of (X' | T (V) GW)NT (V) for all (U.X . F.J).

LEMMA 7.4. A complete separated morphism f : X — Y of integral finite type k-schemes

with X nonsingular is proper.
Proor: This is Corollary 9.5 [C].

Proof of Theorem B.

Let Z(X) be the Zariski manifold of X with projection 7y : Z(X) — X. Suppose that
V € Z(X). Let a be the center of V on X, ( the center of VonY, R = 0Oyg, S = Ox 4.
By Theorem A, there exist sequences of monoidal transforms R — R’, S — S’ along V
such that R’, S” have regular parameters satisfying («x) of Theorem A. There exist affine
neighborhoods Uy of o € X, Wy of 8 in Y such that ®(Uy ) C Wy, projective morphisms
ay : Uy — Uy and by : Wy — Wy, which are products of monoidal transforms, and affine
neighborhoods U{, of the center o/ of V on Uy, WY, of the center 3’ of V on Wy such that

¢ induces a morphism ®v : Uy, — W{,, R’ = Owy 6 S = Ouvy o (r1,T9,...,T,) are
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uniformizing parameters in Wi,, (y1,¥2,...,¥yn) are uniformizing parameters in U{,, and
d1,...,0, are units on UJ,.

Uy, is an open subset of a proper k-scheme U;/ with a birational morphism onto X.
Hence there exists a canonical map TG Z(X) — U,V. Let Zy = 7%,‘1/ (U{,). Zy is an
open neighborhood of V' in Z(X). The {Zy } indexed over V € Z(X) are an open cover of
Z(X). There exists a finite subcover, which can be indexed as {Z1,..., Z,}, since Z(X)
is quasi-compact (Theorem 7.2). Let {Uj,...,U},} be the corresponding Uy,.

Let A; be the largest open subset of U; such that a; : afl(Ai) — A, is an isomorphism.

(2

For all 7, 7, we have isomorphisms

aj_l oa;:a; (AN A — aj_l(Ai NA;).
Let X; be the scheme obtained by glueing the U/ along the open sets a; ' (4; N A;).
Let B; be the largest open subset of W; such that b; : b;l (B;) — B is an isomorphism.

For all 7, 7, we have isomorphisms
bj_l o bZ : bz_l(BZ N BJ) - bj_l(BZ N B])
Let Y} be the scheme obtained by glueing the W/ along the open sets b; *(B; N B;).
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