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EINLEITUNG 2

Einleitung

Sei (X, <) eine total geordnete Menge. Ein (Dedekind-)Schnitt p von X ist ein Paar
(p%, p®) von Teilmengen p%, p von X mit p* U p® = X und pl < p%, das heifit
a < b fiir alle a € p*, b € pf. Dedekindschnitte wurden von Richard Dedekind
(1831-1916) zu dem Zweck eingefiihrt, die reellen Zahlen axiomatisch zu beschrei-
ben. Sie tauchen jedoch heutzutage in vielen anderen Zusammenhéngen auf. Da-
bei werden auch im allgemeineren Kontext meist nur Dedekindschnitte bestimmter
Strukturen betrachtet. Zum Beispiel ist es eine aus der reellen Algebra wohlbekannte
Tatsache, dafl eine natiirliche Bijektion zwischen den Dedekindschnitten eines reell
abgeschlossenen Korpers R und den Anordnungen des rationalen Funktionenkérpers
R(t) besteht. Somit bietet das reelle Spektrum eine Moglichkeit, Dedekindschnitte
reell abgeschlossener Korper zu verstehen.

In dieser Arbeit betrachten wir Dedekindschnitte in einer allgemeineren Situa-
tion. So beschéftigen wir uns hauptséchlich mit grundlegenden Eigenschaften von
Schnitten angeordneter Korper, die bei uns nicht notwendig reell abgeschlossen sind.
Hier kénnen wir nicht analog unser Wissen iiber das reelle Spektrum eines Korpers
ausnutzen, sondern miissen auf andere Weise an das Problem herangehen. Gibt
es auch einige Arbeiten iiber Schnitte angeordneter Korper, erscheint es dennoch
dringend notwendig, die grundlegenden algebraischen Eigenschaften zu untersuchen.
Auch wenn sich die Vielzahl unserer Ergebnisse und Anwendungen im Fall eines an-
geordneten Korpers abspielt, ist es doch sinnvoll, noch allgemeiner Schnitte angeord-
neter (abelscher) Gruppen zu betrachten. Vieles ist bereits auf dieser Ebene moglich
und steht uns dann automatisch sowohl fiir die additive Gruppe (K, +) als auch die
multiplikative Gruppe (K>, ) eines angeordneten Kérpers K zur Verfiigung.

Wir beginnen in Kapitel 1 mit einer Einfithrung der grundlegenden Begriffe so-
wie der Bereitstellung der wichtigsten Hilfsmittel. In Abschnitt 1.1 betrachten wir
Schnitte einer angeordneten abelschen Gruppe G. Wir ordnen die Menge Cuts(G)
der Schnitte von G an, indem wir fiir zwei Schnitte p und ¢ von G definieren:
p < q & p* C ¢, Weiter definieren wir das Negative eines Schnittes sowie eine
Operation + von G auf der Menge der Schnitte von G. Die Standgruppe eines Schnit-
tes p von G unter dieser Operation, also die Menge G(p) :=={g € G | g+ p = p} ist
eine konvexe Untergruppe von G und heifit die Invarianzgruppe von p. Sie stellt die
erste wichtige Invariante eines Schnittes dar. Die Oberkante von G(p), das ist der
Schnitt p = G(p)" = ({9 € G | g < hfiirein h € G(p)}, {g € G| g > G(p)}) von
G, liefert uns eine im folgenden wichtige Fallunterscheidung. So gilt immer p < |p|
(Proposition 1.15), wobei der Fall p < |p| fiir uns der interessantere ist. Ein weiteres
wichtiges Instrument zur Einteilung von Dedekindschnitten finden wir in der soge-
nannten Signatur eines Schnittes (Definition 1.24). Diese teilt uns im wesentlichen
mit, ob der Schnitt p von G als Translat der Ober- oder Unterkante seiner Invari-
anzgruppe darstellbar ist oder nicht.

In Abschnitt 1.2 betrachten wir dann einen angeordneten Kérper K mit der Mul-
tiplikation als zweiter Operation neben der Addition. Wir definieren entsprechend
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eine Multiplikation von Korperelementen mit den Schnitten von K. Die multiplika-
tive Invarianzgruppe G*(p) eines Schnittes p von K fiithren wir ein als die Invari-
anzgruppe von |p| beziiglich der angeordneten abelschen Gruppe (K>, -) im Sinne
unserer ersten Definition der (additiven) Invarianzgruppe. Der sogenannte Invari-
anzbewertungsring V' (p) von p, gegeben durch V(p) = {a € K | a-G(p) C G(p)},
ist ein konvexer Bewertungsring von K und stellt aufgrund der wichtigen Bezie-
hung V(p)**° = G*(G(p)™) (Proposition 1.44) eine weitere elementare Invariante
des Schnittes p von K dar.

In Kapitel 2 betrachten wir einen Schnitt p eines angeordneten Korpers K. Wir
haben bereits G(p) und G*(p) als additive und multiplikative konvexe Untergruppen
von (K, +) beziehungsweise (K>, -) kennengelernt und untersuchen den Zusammen-
hang zwischen beiden. Zur Beschreibung dieses Zusammenhangs definieren wir die
Menge J(p) := {¢ € K> | G*(p) = c¢- G(p) + 1}, welche sich genau dann als
nichtleer herausstellt, wenn |p| > p gilt (Proposition 2.6). In diesem Fall finden wir
fiir die Menge I(p) := ﬁ der Inversen der Elemente von J(p) drei niitzliche Be-
schreibungen. Lemma 2.10 sagt aus, dafl sowohl die Ober- als auch die Unterkante
von I(p) Oberkanten von konvexen Untergruppen von (K, +) sind. Mit Proposition
2.12 koénnen wir I(p) als Umgebung von p verstehen, und Korollar 2.14 liefert eine
Darstellung von I(p) mittels einer Bedingung an die multiplikative Invarianzgruppe
G*(p) von p. Diese letzte Darstellung wird erméglicht durch das Schliissellemma 2.1,
das fiir Schnitte von Signatur 1 oder —1 die multiplikative Invarianzgruppe berech-
net. Im kurzen Abschnitt 2.2 beweisen wir mit unseren Mitteln ein Theorem aus [K]
von F.-V. Kuhlmann.

Kapitel 3 ist dem bereits in Definition 1.24 eingefiihrten Begriff der Signatur eines
Schnittes gewidmet. Zu einem Schnitt p eines angeordneten Koérpers K geben uns die
additive Signatur sign(p) und die multiplikative Signatur sign*(p) im wesentlichen
an, ob p durch Addition beziehungsweise Multiplikation mit einem Korperelement
aus der Ober- oder Unterkante seiner additiven beziehungsweise multiplikativen In-
varianzgruppe entstehen kann. Hier stoflen wir wieder auf die bereits in Kapitel 2
wichtige Fallunterscheidung zwischen |p| > p und [p| = p. Im Fall |[p| > p erhal-
ten wir mit Theorem 3.5 eine direkte Verbindung zwischen sign(p) und sign*(p).
Fiir positive Schnitte p > 0 stimmen beide n&dmlich iiberein, fiir negative Schnitte
p < 0 unterscheiden sie sich genau durch das Vorzeichen. Den Beweis dieser Aussage
ermoglicht uns zum einen die Entdeckung, daf§ unter der Bedingung |p| > p nicht
nur sign(p), sondern auch sign®(p) ungleich oo sein miissen. Zum anderen kommt
auch hier eine entscheidende Bedeutung dem Schliissellemma 2.1 zu, das bereits in
Abschnitt 2.1 die dritte Beschreibung der Menge I(p) ermoglicht hat.

Im Fall |[p| = p in Teil 3.2 stellen wir fest, dal wir keine Beziehung zwischen
sign(p) und sign*(p) wie die von Theorem 3.5 finden koénnen. Vielmehr konstruie-
ren wir mit Hilfe des verallgemeinerten Potenzreihenkorpers Beispiele dafiir, dafl
alle denkbaren Kombinationen aus additiven und multiplikativen Signaturen auch
tatsdchlich auftreten.
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Nach den ersten drei Kapiteln mit hauptséchlich allgemeinen Aussagen fiihren
wir in Abschnitt 3.3 eine Vielzahl von Beispielen an und rechnen die bis dahin ein-
gefithrten Invarianten von Schnitten explizit aus. Wir betrachten dazu den verallge-
meinerten Potenzreihenkérper R((¢")) mit einer divisiblen angeordneten abelschen
Gruppe I' und einem reell abgeschlossenen Koérper R. Wir wéhlen einen reell abge-
schlossenen Zwischenkérper R(t) € M C P, wobei P = R((t=%)) den Korper der
Puiseuxreihen bezeichnet. Jedes Element b € N \ M induziert dann auf natiirliche
Weise einen Schnitt p := b [ M von M. Bereits Tressl fithrt diese Schnitte als Beispie-
le an ([T1], Beispiele 3.11, C). Allerdings beschriankt er sich auf den Fall I' = Q und
erhélt nur Schnitte mit additiver Signatur 0. Wir lassen auch divisible angeordnete
abelsche Obergruppen I' von Q zu und geben in Theorem 3.27 genaue Bedingungen
fiir das Auftreten aller méglichen Kombinationen von sign(p) und sign®(p) an. Des-
weiteren sehen wir dort explizit die jeweiligen Invarianten G(p), V(p) und G*(p).
Da uns aber die Signaturen an dieser Stelle am meisten interessieren, finden wir die
betreffenden Aussagen noch einmal zusammengefaflt in einer Tabelle am Ende des
Abschnitts.

Nachdem wir zu einem Schnitt eines angeordneten Korpers seine elementaren
Invarianten wie Invarianzgruppen und Signaturen kennengelernt haben, befassen
wir uns in Kapitel 4 mit einer weiteren fundamentalen Frage iiber Schnitte: Wie
kann man eine Addition von Schnitten definieren? Um dieser Frage nachzugehen,
betrachten wir wieder Schnitte angeordneter abelscher Gruppen und untersuchen
zundchst in Abschnitt 4.1 folgenden intuitiven Ansatz. Zu zwei echten Schnitten p
und ¢ einer angeordneten abelschen Gruppe G bilden wir das Paar (p”+q~, p't+¢%)
von Teilmengen von G. Es stellt sich allerdings schnell heraus, dafl es sich dabei im
allgemeinen nicht um einen Schnitt von G handelt. So betrachten wir die beiden
Schnitte (p + @)inks = (P* + ¢&)" und (p + @)reents == (P + ¢®)~ (Definition 4.1)
und fragen, unter welchen Bedingungen beide iibereinstimmen. Die wichtige Pro-
position 4.7 zeigt, daf§ sich immer Schnitte finden, fiir die dies nicht der Fall ist.
Zwar konnen wir mit Theorem 4.44 zumindest im Fall einer divisiblen angeordneten
abelschen Gruppe genaue Kriterien fiir das Zusammenfallen des linken und rechten
Schnittes geben. Der Beweis benutzt jedoch ein Werkzeug, das wir erst im nachfol-
genden Abschnitt bereitstellen, und steht deshalb am Ende von Kapitel 4.

Da der intuitive Versuch Schnitte zu addieren im allgemeinen ein Paar von
Schnitten liefert, kann Definition 4.1 nicht zufriedenstellen. Wollen wir die Addi-
tion mehrmals hintereinander ausfithren oder fragen wir nach der Assoziativitat der
Addition, so stolen wir sofort auf eine Vielzahl von Fallunterscheidungen und auf
Probleme mit dieser Definition. Zudem 148t sich Definition 4.1 nur mit betréchtli-
chem formalen Aufwand auf unechte Schnitte ausdehnen. In Abschnitt 4.2 zeigen
wir einen Weg auf, der die Addition von Schnitten von angeordneten abelschen
Gruppen ohne Einschrankungen erméglicht. Anstatt die linken oder rechten Hélften
der Schnitte zu addieren, addieren wir zu den Schnitten assoziierte konvexe Men-
gen. Der Ausganspunkt bei dieser Uberlegung ist die Tatsache, da$ fiir zwei kon-
vexe Teilmengen C' und D einer angeordneten abelschen Gruppe G deren Summe
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C+D ={c+d|ce C,de D} wieder eine konvexe Teilmenge ist. Auch F.-V. Kuhl-
mann macht sich diese Beobachtung in [K] zunutze. Er definiert zu einem Schnitt
p einer angeordneten abelschen Gruppe die von p erzeugte konvexe symmetrische
Menge CS(p) := {g € G | |g| < |p|} und erhélt hiermit eine Moglichkeit Schnitte
zu addieren. Unsere Methode unterscheidet sich in der Wahl der zu einem Schnitt
assoziierten konvexen Menge. Wir gehen dazu bei einer gegebenen angeordneten
abelschen Gruppe G zu einer (divisiblen) angeordneten abelschen Obergruppe 2
iiber, in der alle Schnitte von G realisiert sind. Das heifit, dal fiir jeden Schnitt p
von G ein Element w €  existiert, so daB p* < w < p® gilt. In dieser Obergruppe
2 ist die Menge Realg(p) aller Realisierungen eines Schnittes p offensichtlich eine
konvexe Teilmenge. Zur Addition zweier Schnitte p und ¢ von G gehen wir zunéchst
zur Menge CT(2) aller konvexen Teilmengen von (2 iiber und addieren dort die zu p
und ¢ assoziierten konvexen Teilmengen (Definition 4.36). Die wichtige Proposition
4.40 zeigt, daBl sich beim Zuriickziehen der Situation auf die urspriingliche Gruppe
G im wesentlichen wieder das Paar des linken und rechten Schnittes aus der intui-
tiven Definition ergibt. Somit ist die Addition mittels realisierender Obergruppen
vertriaglich mit der anfangs untersuchten Addition mittels Paaren von Schnitten.

Bevor wir in Abschnitt 4.2.2 die Sinnhaftigkeit einer Definition der Addition von
Schnitten mittels realisierender Obergruppen beziehungsweise bei Schnitten ange-
ordneter Korper mittels realisierender Oberkorper aufzeigen, versichern wir uns in
Abschnitt 4.2.1 davon, dafl diese realisierenden Oberstrukturen auch mit den Be-
griffen aus Kapitel 1 und 2 harmonieren. So definieren wir zu den Invarianten G(p),
G*(p), V(p), J(p) und I(p) eines Schnittes p eines angeordneten Korpers K mit
realisierendem Oberkorper €2 in naheliegender Weise jeweils eine Entsprechung in €2
mit dem Index . Es stellt sich heraus, dafl diese Mengen iiber ihren Entsprechungen
in K liegen, also beim Zuriickgehen auf K wieder die urspriinglichen Mengen liefern.
Diese Beobachtung liefert ein weiteres Argument fiir die Qualitédt der Addition von
Schnitten mittels realisierender Oberstrukturen.

Bereits in Kapitel 1 haben wir Operationen von Gruppen auf Mengen von Schnit-
ten eingefithrt. Man kann diese als die Anwendung elementarer semialgebraischer
Abbildungen auf Schnitte betrachten. So stellt sich die Frage, wie man beliebige se-
mialgebraische Abbildungen auf Schnitte angeordneter Korper anwenden kann. Im
Fall eines reell abgeschlossenen Korpers gibt uns der aus der reellen algebraischen
Geometrie wohlbekannte Monotoniesatz 5.1 die Méglichkeit, die strenge Monotonie
oder Konstanz einer semialgebraischen Abbildung in der Umgebung eines Schnittes
auszunutzen und die recht naheliegende Definition 5.2 zu machen. Im allgemeinen
Fall eines angeordneten Korpers ist dies nicht durchfithrbar. Denn Beispiel 5.12 zeigt,
daB selbst Polynome nicht im allgemeinen konstant oder streng monoton in jedem
Schnitt eines angeordneten Korpers sind. Theorem 5.18 liefert uns eine Bedingung,
unter der dies jedoch schon gilt. Vielmehr zeigen wir hier, daf rationale Funktionen
f/g € K(t) mit einem angeordneten Korper K konstant oder streng monoton in ei-
nem Schnitt £ von K sind, falls f und g gewisse Gradbedingungen in Abhéngigkeit
von ¢ erfiillen.
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Wir gehen noch kurz auf zwei Arbeiten iiber Schnitte angeordneter Korper ein,
némlich [P] von G.G. Pestov und [K] von F.-V. Kuhlmann.

G.G. Pestov bedient sich in [P] hauptséchlich zweier Kriterien zur Klassifizierung
von Schnitten angeordneter Koérper, ndmlich ob der Schnitt Symmetrie aufweist, und
wie sich Polynome in einer Umgebung des Schnittes verhalten. Das Hauptergebnis
beziiglich des zweiten Kriteriums finden wir in [P], Theorem 3.2. Wihrend Pestov
hier Vorzeichenbedingungen an das Polynom und séamtliche seiner Ableitungen stellt,
benotigen wir fiir unser Theorem 5.18 lediglich eine Gradbedingung. Zumal befinden
wir uns in Kapitel 5 in einer etwas allgemeineren Situation, da wir nicht nur Poly-
nome, sondern auch rationale Funktionen behandeln. Pestovs Begriff der Symmetrie
148t sich leicht in unseren Zusammenhang iibertragen. So zeigen wir in Abschnitt
1.1, daf} ein Schnitt eines angeordneten Korpers genau dann symmetrisch im Sinne
von [P] ist, wenn seine (additive) Signatur gleich 0 ist.

Bereits angesprochen haben wir die Arbeit [K]. F.-V. Kuhlmann behandelt dort
recht dhnliche Fragen wie wir. So betrachtet er zu einem Schnitt p eines angeordne-
ten Korpers K ebenfalls die additive und muliplikative Invarianzgruppe sowie den
Invarianzbewertungsring von p. Viele unserer Aussagen aus Kapitel 1 finden sich
auch bei Kuhlmann. Daneben beschiftigt sich Kuhlmann wie wir mit der Frage
nach der Addition und Multiplikation von Schnitten, wahlt aber wie beschrieben
einen etwas anderen Weg. Da im zweiten Teil seiner Arbeit bewertungstheoretische
Aspekte im Vordergrund stehen, beschrénken sich die Gemeinsamkeiten von [K] mit
der vorliegenden Arbeit eher auf die genannten Invarianten eines Schnittes.

Hervorzuheben sind noch die Arbeiten [T1] und [T2] von Tressl. In [T1] werden
die grundlegenden Invarianten eines Schnittes eingefiihrt, wie sie auch wir verwen-
den. Wihrend bei Tressl im wesentlichen nur reell abgeschlossene Korper auftreten
konnen, legen wir unseren Schwerpunkt auf die allgemeine Betrachtung von Schnit-
ten angeordneter Korper. Ideen aus [T2] gehen bei uns vor allem beziiglich des
Signaturbegriffs sowie im Kapitel iiber die Bewegung von Schnitten ein.

Abschlieffend mochte ich mich herzlich bei Herrn Prof. Dr. Manfred Knebusch fiir
die Moglichkeit bedanken, unter seiner Anleitung an einem Thema zu arbeiten, das
fiir mich sehr interessant und motivierend war. Mein besonderer Dank gilt Herrn Dr.
Marcus Tressl, bei dem ich jederzeit ein offenes Ohr fand. Seine zahlreichen, nicht
nur inhaltlichen Ratschlige waren mir eine grofle Hilfe.
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1. Allgemeines iiber Schnitte

In diesem ersten Kapitel definieren wir die wichtigsten Begriffe beziiglich Schnit-
ten angeordneter Strukturen und fithren grundlegende Eigenschaften auf. Wir be-
schrinken uns zunéchst in Abschnitt 1.1 auf den allgemeinen Fall angeordneter
abelscher Gruppen mit der Addition als einziger Operation. Danach nehmen wir
in Abschnitt 1.2 mit der Multiplikation eine zweite Operation dazu und betrachten
Schnitte angeordneter Korper. Hier wissen wir aufgrund unserer Betrachtungen des
Gruppenfalles schon alles iiber die Operationen fiir sich, machen aber auch schon
erste Aussagen iiber das Verhéltnis von Addition und Multiplikation.

Zu Beginn machen wir einige elementare Definitionen, fiir die wir noch keinerlei
Struktur auf der betrachteten angeordneten Menge bendtigen.

Vorbemerkung 1.1. Sei (X, <) eine total geordnete Menge. Fiir ein Element a € X
und Teilmengen M, N C X schreiben wir a < M, falls a < m fiir alle m € M, und
M < N, falls m < n fiir alle m € M, n € N. Fiir ein Element a € X bezeichnet
la| := max{—a, a} den Betrag von a.

Definition 1.2. Sei (X, <) eine total geordnete Menge. Ein (verallgemeinerter)
(Dedekind-)Schnitt p von X ist ein Paar (p%, p®) von Teilmengen p* und p” von
X, so daB p* U p¥ = X und p" < pf gilt, das heiit a < b fiir alle a € p*, b € p'.
Dabei nennen wir p” die linke und p die rechte Hilfte von p. Die Bezeichnungen
pY und p’ finden wir erstmals bei J.H. Conway, [C]. Ein Schnitt p von X heifit echt,
wenn p* und p® beide nicht leer sind. Ein Schnitt p von M heiit frei, wenn er echt
ist und weder p* ein gréftes noch p’t ein kleinstes Element enthélt.

Wir schreiben Cuts(X) fiir die Menge der Schnitte von X. Wir ordnen Cuts(X) an,
indem wir fiir zwei Schnitte p, ¢ € Cuts(X) definieren:

p<q:eph Cqh

Wir schreiben DC(X) := X UCuts(X) und setzen die Anordnung von Cuts(X) fort,
indem wir fiir ein € X und ein p € Cuts(X) definieren:

T <pexeph

DC(X) heifit die Dedekind-Komplettierung von X. (Untersucht wurde die Ver-
vollstéandigung teilweise geordneter Mengen mittels Dedekindschnitten bereits von
MacNeille in [M]. Baer betrachtet in [Ba] den Dedekindschen Abschlufl eines ange-
ordneten Korpers.) Fiir eine nichtleere Teilmenge Z C X schreiben wir Z~ fiir den
Schnitt p von X mit p¥ = {x € X | 2 < Z} und Z* fiir den Schnitt ¢ von X mit
¢ ={x € X |z > Z}. Wir nennen Z~ die Unterkante von Z und Z* die Ober-
kante von Z. Im Falle eines einpunktigen Z = {a} schreiben wir kurz a™ := {a}*
und a” = {a}~. Fiir Z = X setzen wir Z~ =: —oox und Z* =: +00x. Den Index
werden wir auch weglassen, wenn es der Zusammenhang erlaubt. Ein Schnitt p von
X heifit prinzipal, wenn p nicht frei ist, das heifft, wenn p gleich —oo oder 400
oder gleich a~ oder a™ fiir ein a € X ist.
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Definition/Bemerkung 1.3 (Erweiterung, Realisierung). Sei p ein Schnitt einer
total geordneten Menge X und sei Y O X eine weitere total geordnete Menge.

a) Falls ¢ ein Schnitt von Y ist, so heifit ¢ eine Erweiterung von p auf Y, falls
g’ N X = p* gilt. In diesem Fall schreiben wir p = ¢ | X. p hat stets eine kleinste
und eine grofte Erweiterung auf Y, némlich die Schnitte (p%)" und (p®)~ von Y.
b) Ein Element y € Y heifit Realisierung von p, falls p* < y < p® gilt. Wir sagen,
p wird in Y realisiert und schreiben y |= p. In diesem Fall ist y ¢ X. Wird p nicht
in Y realisiert, so sagen wir: p ist in Y ausgelassen.

c¢) Eine Teilmenge N C Y liegt iiber einer Teilmenge M C X, wenn N N X = M.
d) Ist y € Y\ X, so bezeichnen wir den Schnitt ({z € X |z <y}, {z € X |z > y})
von X mit y [ X. Fiir ein x € X setzen wir z [ X := x.

Lemma 1.4. Sei X eine total geordnete Menge und seien C, D C X konvexe Teil-
mengen von X. Gilt C~ = D~ und Ct = D", so ist C = D.

Beweis. Seic € C. Dannist ¢ > C~ = D~ und ¢ < Ct = D", also gibt es Elemente
di, dy € D mit d; < ¢ < dy. Weil D konvex ist, gilt ¢ € D. Das zeigt C' C D. Die
andere Inklusion gilt aus Symmetriegriinden. 0

1.1. Schnitte angeordneter abelscher Gruppen

Definition 1.5. Sei G eine angeordnete abelsche Gruppe. Fiir einen Schnitt p von
G definieren wir den Schnitt —p von G' durch

—p = (=p", —p").
Wir definieren den Betrag von p als

ip| = p ,fallsp>0
PI'=Y —p falls p < 0.

Weiter definieren wir die Operation + der Gruppe G auf Cuts(G) durch
+ : G x Cuts(G) — Cuts(G)
g+p=(g+p"g+p") (g€, pe Cuts(Q)).
Wir werden dabei gleichwertig sowohl die Schreibweise g+p als auch p+g verwenden.

Lemma 1.6. Se: G eine angeordnete abelsche Gruppe und Z C G eine nichtleere
Teilmenge von G. Dann gilt

2" = ~((~2)7) und 2~ = ~((-2)").

Beweis. Wir zeigen den ersten Teil der Aussage, indem wir die Gleichheit der beiden
rechten Hélften nachrechnen:

(—(=2)) ==((~2))"'={9eG|lg< -2} =
=—{9eCG|-g>2Zy={geGlg>Z}=(Z")"

Der zweite Teil der Behauptung folgt jetzt durch Anwenden des eben Gezeigten
auf —7. O
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Meistens brauchen wir diese allgemeine Tatsache nur fiir konvexe Untergruppen, in
welchem Falle wir die Aussage etwas einfacher formulieren kénnen.

Korollar 1.7. Sei G eine angeordnete abelsche Gruppe und H C G eine Unter-
gruppe. Dann qilt
—(H")=H".

Beweis. Die Behauptung folgt sofort nach Lemma 1.6, weil H = —H. O

Lemma 1.8. Sei G eine angeordnete abelsche Gruppe und seien Hy, Hy C G kon-
vexe Untergruppen von G. Ist Hf = Hy oder H{ = H,, so gilt Hy = Hy.

Beweis. Mit H" = HJ folgt auch H; = —H{ = —H, = H, und mit H; = H,
folgt auch H;” = —H; = —H, = H, . Die Behauptung folgt mit Lemma 1.4. O

Wir kommen zur ersten fundamentalen Invariante eines Schnittes einer angeordneten
abelschen Gruppe.

Definition 1.9 (Invarianzgruppe eines Schnittes). Sei G eine angeordnete abelsche
Gruppe und p ein Schnitt von G. Dann definieren wir die (additive) Invarianz-
gruppe von p als die Standgruppe von p beziiglich der Operation +

G(p) ={9€G|g+p=p}

Bemerkung 1.10. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von G.
Da zwei Schnitte bereits gleich sind, wenn ihre linken oder rechten Hélften {iberein-
stimmen, haben wir fiir die Invarianzgruppe G(p) auch die Darstellungen

Glp)={9eGlg+p"=p"t={geCG|g+p"=p"}
Fiir die Berechnung von Invarianzgruppen ist folgendes Lemma niitzlich.

Lemma 1.11. Seien G eine angeordnete abelsche Gruppe, p ein Schnitt von G und
g € G. Ist g >0, dann gilt g € G(p) genau dann, wenn g + p* C pl gilt. Ist g < 0,
dann gilt g € G(p) genau dann, wenn g + p® C pft gilt.

Beweis. Wir beweisen nur die Aussage fiir ¢ > 0, fiir ¢ < 0 geht der Beweis vollig
analog. Sei also ¢ > 0 mit g + p* C p*. Wegen ¢g > 0 gilt auch g + p® C p¥. Aus
(g+pH)U(g+pf) = G und g+ p* < g+ p’ folgt g + p* = p! und damit g € G(p).
Die andere Richtung ist trivial. O

Proposition 1.12. Sei G eine angeordnete Gruppe und p ein Schnitt von G. Dann
ist die Invarianzgruppe G(p) eine konvere Untergruppe von G.

Beweis. Dal G(p) eine Untergruppe von G ist, folgt aus der Tatsache, dal G(p) die
Standgruppe einer Operation von G auf Cuts(G) ist. Seien nun Elemente g € G(p)
und h € G gegeben mit 0 < h < g. Fiir alle € p* gilt dann h + 2 < g+ z €
(9+p)" = p* und damit h + z € p~. Damit ist i + p* C p’ und nach Lemma 1.11
gilt h € G(p). O
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Proposition 1.13. Seit G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Dann gilt

und fir alle g € G gilt
G(g+p) =G(p)

Beweis. Die Behauptungen folgen sofort aus den Definitionen. Denn weil G(p) eine
Gruppe ist, gilt g € G(p) genau dann, wenn —g € G(p) gilt. Das ist aber dquivalent
zu —g + pt = pl, also auch zu g + (—p*) = —p*. Dies wiederum ist gleichwertig zu
g+ (=p)" = (—p)" oder g € G(—p).

Fiir alle g, h € G gilt h+ g + p* = g + p* genau dann, wenn h + p’ = p’ gilt. Dies
zeigt die zweite Behauptung. O

Definition 1.14 (Oberkante der Invarianzgruppe). Sei G eine angeordnete abel-
sche Gruppe und p ein Schnitt von G. Dann setzen wir

p=G(p)".

Proposition 1.15. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Dann gilt

p < Ipl.
Beweis. Da nach Proposition 1.13 G(p) = G(—p) gilt, kénnen wir ohne Einschrin-
kung p > 0 annehmen. Sei also z € pf*, mit anderen Worten 2 > p. Dann ist 0 < p,

aber 0 + x > p, das heifit x ¢ G(p). Wegen = > 0 folgt = > p. Wir erhalten also
(p)" D pP. Dies ist dquivalent zu (p)” C p” oder p < p. O

Lemma 1.16. Sei G eine angeordnete abelsche Gruppe und Z C G eine nichtleere
Teilmenge von G. Sei g € G mit g > 0. Dann ist g € G(Z") genau dann, wenn
g+2z<Z% firalle z € Z gilt.

Beweis. Ist g € G(ZT), so gilt fiir alle z € Z natiirlich g+ 2z < g+ ZT = Z*. Sei
umgekehrt g + 2z < Z7 fiir alle z € Z. Fiir ein beliebiges © < Z7 existiert nach
Definition von Z7 ein z(z) € Z mit z < z(z) und damit ist g+ 2 < g+ z(z) < Z™.
Deshalb ist g + (Z7)" C (Z+)" und mit Lemma 1.11 folgt g € G(Z7). O

Lemma 1.17. Sei G eine angeordnete abelsche Gruppe und Z C G eine nichtleere
Teilmenge von G. Dann gilt fir alle g € G

(9+2) =g+2".
Beweis. Fiir ein g € G zeigen wir die Gleichheit der rechten Hélften:
(g+ 20N ={heG|h>gtZ}=gH{he G |h> 2} =g+(Z") = (g+ 2D

0
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Proposition 1.18. Seit G eine angeordnete abelsche Gruppe und set H C G eine
konvexe Untergruppe von G. Dann gilt

G(H')=H.

Beweis. ,, C “: Sei ohne Einschrinkung g € G(H™) mit g > 0. Dann gilt g+ H =
H7* und somit ist 0 < g+ 0< g+ Ht = H'. Da H konvex ist, folgt g € H.

, 2 “: Sei ohne Einschrdkung h € H mit h > 0. Fiir alle #’ € H ist natiirlich
h+h' < H* und damit ist h € G(H") nach Lemma 1.16. O

Das folgende Lemma verallgemeinert Lemma 1.8.

Lemma 1.19. Sei G eine angeordnete abelsche Gruppe, seien Hy, Hy C G konvezxe
Untergruppen von G und sei g € G. Ist g+ H{” = H, so gilt H, = H,.

Beweis. Sei ohne Einschrinkung H; C Hy. Ist g < 0, so gilt Hy = g+ H{ < H{ <
H3. Damit gilt Gleichheit {iberall und mit Lemma 1.8 folgt H; = H,. Ist g > 0, so
gilt die Abschiitzung 0 < g +0 < g + H" = H, . Da H, eine konvexe Untergruppe
von @ ist, folgt g € Hy. Nach Proposition 1.18 gilt dann g € G(H5 ) und somit
Hf = H+ — g = H, . Wieder mit Lemma 1.8 folgt H, = Ho. O

Wir fithren nun zu einem Schnitt p einer angeordneten abelschen Gruppe eine weitere
Invariante ein, ndmlich die Signatur von p. Dafiir benétigen wir den Begriff der
divisiblen Hiille einer angeordneten abelschen Gruppe.

Definition/Bemerkung 1.20 (Divisible Hiille). Sei G eine angeordnete abelsche
Gruppe. Dann definieren wir

dh(G) =G x N/ ~
mit N = {1,2,...} der Menge der natiirlichen Zahlen und der Aquivalenzrelation
(g,n) ~ (hk)=k-g=n-h ((g,n), (h,k) € G xN).
Wir schreiben £ fiir die Aquivalenzklassen (g,n) beziiglich ~. Mit der Addition

g h _kg+nh g h

n k  kn (n k

€ dh(G))
ist dh(G) eine abelsche Gruppe. Die Gruppe G ist via
G = dh(@), g~ (9€G)

eingebettet in dh(G). dh(G) ist divisibel (das heifit n-dh(G) = dh(G) fiir alle n € N),
da fiir alle # € dh(G) und fiir alle n € N die Gleichung # = n- - gilt. Wir definieren
auf dh(G) eine Anordnung durch

h
—=k-g<gn-h (%,

k € dh(Q)).

3|QQ
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Wir rechnen leicht nach, da§ dh(G) damit zu einer angeordneten abelschen Grup-

pe wird. Seien nédmlich £, %, % € dh(G) und sei £ < % Dann ist nach Definition
kg < nh und damit auch ki?g = ni?h. Daraus folgt ki%’g + nkli < nl*h + nkli oder

ki(lg + ni) < nl(lh + ki). Das bedeutet aber £ 4 ¢ = lg:lm < btk ko

dh(G) ist also eine divisble angeordnete abelsche Obergruppe von G, deren Anord-
nung die Anordnung von G fortsetzt. Da fiir jede divisible angeordnete abelsche
Obergruppe H von G, deren Ordnung die von G fortsetzt, genau ein Homomorphis-

mus ¢ von angeordneten Gruppen dh(G) % H iber G existiert, so dafl folgendes
Diagramm kommutiert,

dh(G) > H
G
heifit dh(G) die divisible Hiille von G.

Bemerkung 1.21. Sei G eine angeordnete abelsche Gruppe. Dann ist die Abbildung

G ®z Q = dh(G)
ge5i—2 (o5eGeQ)

S

mit der Menge der ganzen Zahlen Z und der Menge der rationalen Zahlen QQ ein
kanonischer Isomorphismus. Fiir Details verweisen wir auf [B], 7.2, Satz 8 (ii), S. 304.
Wir identifizieren von nun an dh(G) mit G ®z Q.

Bemerkung 1.22. Sei G eine angeordnete abelsche Gruppe und sei H C G eine
konvexe Untergruppe von GG. Dann wird durch

gmod H > 0 :< es existiert ein h € H mit g > h
eine Anordnung auf der Restklassengruppe G/H definiert. Fiir ein g € G gilt
g mod H > 0 genau dann, wenn g > H.

Denn es gilt g mod H > 0 genau dann, wenn g mod H > 0 und g mod H # 0, genau
dann, wenn ein h € H existiert mit ¢ > h und g ¢ H, genau dann, wenn g > H,
Letzteres, weil H konvex ist.

Wir zitieren ein wichtiges Lemma aus [T2], das uns die Definition der Signatur eines
Schnittes einer angeordneten abelschen Gruppe im Anschlufl ermoglicht.

Lemma 1.23 (Tressl). Sei G eine angeordnete abelsche Gruppe und H C G eine
konvexe Untergruppe von G. Dann sind die folgenden Aussagen dquivalent:

(i) HT besitzt eine Realisierung in G @z Q.

(i1) G/H besitzt ein kleinstes positives Element.
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(iii) Es existiert ein g € G mit HT = g+ H™.

(iv) Es existiert ein g € G mit g > H, so daf$ fir alle go € G mit H < 2gqy gilt,
dafs 2g9 > g ist.

(v) Es existiert eine angeordnete abelsche Gruppe L O G, so daf die grifite Er-
weiterung von H™ auf L nicht die Oberkante einer konvexen Untergruppe von
L ist.

Fiir ein g € G gilt in diesem Fall H" = g+ H~ genau dann, wenn g/2 = H* gilt,
genau dann, wenn g mod H das kleinste positive Element von G/H ist.

Beweis. Den (etwas knapperen) Beweis finden wir in der vorliegenden Form in [T2].
Wegen der grundlegenden Bedeutung des Lemmas fithren wir ihn dennoch an.
(i) = (ii): Sei g €eG®zQ eme Reallslerung von H*. Dann gilt auch & ): HT.

Wir setzen [ := mm{n € N | & = H} Ist 585 € G, s0 setzen wir g := zlg r und
erhalten g/2 = HY. Ist 55 gé G, 80 ex1st1ert wegen 5t [~ H' ein z € G mit

H<x< 21 r. Dann gilt H <3< Ql, also ist ¥ € G mit § E H'. In jedem Fall
erhalten wir ein g € G mit g/2 = H™.

Angenommen, es gilt 0 < a mod H < g mod H fiir ein a € G. Dann ist « > H und
g—a> H, alsoa>g/2und g —a > g/2. Aber aus g — a > g/2 folgt 29 — 2a > ¢,
also g > 2a, ein Widerspruch zu a > g/2.

(ii) = (iii): Sei ¢ mod H das kleinste positive Element von G/H. Ist a € G
mit a > g+ H~, dann ist a > g + h fir ein h € H. Da g > H ist, gilt auch
a > H. Dies zeigt H" < g + H~. Ist umgekehrt ¢ € G mit ¢ > H, dann ist
amod H > g mod H, also (a—g) mod H > 0, also existiert ein h € H mit a—g > h.
Dies zeigt HT > g+ H™.

(ili) = (iv): Sei g € G mit H* = g+ H~ und sei gy € G mit H < 2gy. Dann ist
go > Hund g—h < go fiir ein h € H. Daraus folgt 2g9 > go+9—h = g+(g0—h) > g.

(iv) = (i): Sei g € G mit g > H mit der Eigenschaft, dafl 2gy > g fiir alle go € G
mit 2go > H. Dann ist auch ¢g/2 > H und g/2 < gy fiir alle go € G mit gy > H, also
gilt g/2 = H™.

(i) = (v): L := G ®z Q liefert das Gewiinschte.

(v) = (i): Wir wéhlen ein [ € L mit [ = H™, so daf 21 die Oberkante H™ nicht
realisiert. Dann existiert ein ¢ € G mit H < ¢ <2l und g/2 = H™.

Unser Beweis zeigt gleichzeitig den Zusatz. O

Definition 1.24 (Signatur). Sei G eine angeordnete abelsche Gruppe und p ein
Schnitt von G. Dann definieren wir die Signatur von p als

1 falls p= g+ p fiir ein g € G und p nicht realisiert ist in G ®z Q
—1 falls p =g — p fiir ein g € G und p nicht realisiert ist in G ®z Q
falls kein g € G existiert mit p =g+ p oder p =g —p

oo sonst.
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Beuspiel 1.25. Sei G eine angeordnete abelsche Gruppe. Wir erinnern an die Defi-
nitionen —oo := G~ und +oo := G*. Da G(G~) = G(G') = G gilt und G nicht
realisiert ist in G ®7 Q, gilt fiir diese beiden Schnitte

sign(—o0) = —1 und sign(+o00) = +1.

Korollar 1.26 (Tressl). Sei G eine angeordnete abelsche Gruppe und p ein Schnitt
von G. Ist sign(p) = 0, so ist p nicht realisiert in G ®z Q.

Beweis. Auch diesen Beweis zitieren wir aus [T2]. Angenommen, p ist realisiert in
G ®7 Q. Dann existiert nach Lemma 1.23, angewandt auf H = G(p), ein g € G,
so daB8 ¢ mod G(p) das kleinste positive Element in G/G(p) ist. Wegen g > G(p)
existiert ein h € G mit h < p < h + g. Wir zeigen p = h + p. Die Abschétzung
h + p < p ist klar. Sei umgekehrt g, € G mit h + p < ¢g;. Dann ist g — h > p, also
(91 —h) mod G(p) > 0in G/G(p). Deshalb ist (g; —h) mod G(p) > g mod G(p) und
es existiert ein a € G(p) mit gy —h > g+a. Esfolgt 4 > h+g+a>p+a=p. O

Bemerkung 1.27. Fiir einen Schnitt p einer angeordneten abelschen Gruppe G sagt
die Signatur sign(p) im wesentlichen aus, ob sich p als Translat der Ober- oder
Unterkante seiner Invarianzgruppe darstellen 148t. Schreibt sich p als Translat der
Ober- oder Unterkante einer beliebigen konvexen Untergruppe H von G, so folgt
bereits H = G(p). Denn ist zum Beispiel p = g+ H' mit einem g € G, so liefern uns
die Propositionen 1.13 und 1.18 die Gleichheit G(p) = G(¢9+ H") = G(H") = H.

Die folgende Aussage ist nicht schwer zu zeigen, dennoch aber recht wichtig. Zum
einen verdeutlicht sie den engen Zusammenhang zwischen den Signaturen +1 und
—1 und erlaubt uns oftmals, uns auf positive Schnitte von angeordneten abelschen
Gruppen zu beschranken.

Proposition 1.28. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Ist sign(p) # oo, so gilt

sign(—p) = —sign(p).

Ist sign(p) = oo, so gilt sign(p) = sign(—p).

Beweis. Der Zusatz ist wegen p = (—p) klar. Sei also sign(p) # oo und damit auch
sign(—p) # oo. In dieser Situation gilt genau dann sign(p) = 1, wenn es ein g € G
gibt mit p = g+G(p)", genau dann, wenn es ein g € G gibt mit —p = —g—G(p)* =

—g+G(p)” = —g+G(—p)~, also genau dann, wenn sign(—p) = —1 gilt. Damit folgt
die Behauptung fiir sign(p) € {£1}. Dann muf} sie aber auch im Falle sign(p) = 0
gelten. O

An dieser Stelle weisen wir auf eine Arbeit hin, in der die Signatur eines Schnittes
eines angeordneten Korpers implizit auftaucht. G.G. Pestov definiert in [P] den
Begriff eines symmetrischen Schnittes und benutzt ihn, um Schnitte angeordneter
Korper zu klassifizieren. Wir zeigen, dafl ein solcher symmetrischer Schnitt bei uns
gerade einem Schnitt mit Signatur 0 entspricht.
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Definition 1.29 (Pestov). Sei K ein angeordneter Korper und p = (p%, pft) ein
Schnitt von K.

a) Die linke Hilfte p* heifit lang, wenn es fiir jedes a < p ein a; < p gibt, so da8
(a1 + (a; — a)) > p gilt. Ebenso heiit die rechte Hilfte p lang, wenn es fiir jedes
b > pein by > p gibt, so daB (b + (by — b)) < p gilt. Eine Hilfte p* oder p® heifit
kurz, wenn sie nicht lang ist.

b) Der Schnitt p heifit symmetrisch, wenn p* und p lang sind.

Wir zeigen, wie wir die Begriffe kurz“, ,lang® und , symmetrisch“ aus Definition
1.29 mittels unseres Signaturbegriffs ausdriicken kénnen.

Lemma 1.30. Sei K ein angeordneter Kérper und p ein Schnitt von K. Dann gilt

(pl ist lang < sign(p) #1)  und (p" ist kurz & sign(p) = 1) sowie
(pf ist lang < sign(p) # —1) und (p% ist kurz < sign(p) = —1).

Beweis. Wir zeigen die erste Aquivalenzaussage, die restlichen drei folgen dann so-
fort.

Da (K,+) divisibel ist, ist p nicht realisiert in K ®; Q = K und damit gilt
sign(p) # oo. ,, <= “: Sei a < p. Dann gilt auch ohne weitere Voraussetzung a+p < p.
Wegen sign(p) # 1 gilt sogar a +p < p, das heifit, es existiert ein a +p < b < p. Wir
erhalten b—a > p und somit die Existenz eines Elements b < p mit v/ + (b—a) > p.
Wir setzen ¢ := max{b, b'}. Dann gilt c <pund ¢+ (c—a) >V +(b—a) > p. Daa
beliebig war, ist p* lang. ,, = “: Wir nehmen an, daf§ es ein a € K gibt mit p = a+p.
Dann ist a < p und fiir alle b < p gibt es ein ¢g(b) € G(p) mit b < a + g(b). Deshalb
gilt fiir alle b < p die Abschétzung (b+(b—a)) < a+g(b)+a+g(b)—a = a+2g(b) < p.
Dies bedeutet aber gerade, da8 p* kurz ist, was ein Widerspruch ist.

Die zweite Aussage ist lediglich eine Umformulierung der ersten. Wir sehen weiter
leicht ein, dafl p® genau dann lang ist, wenn (—p)” lang ist. Damit erhalten wir die
dritte Aquivalenz aus der ersten, da nach Proposition 1.28 sign(—p) = —sign(p) gilt.
Die vierte Aussage ist wieder gleichbedeutend mit der dritten. O

Korollar 1.31. Sei K ein angeordneter Korper und p ein Schnitt von K. Dann ist
p genau dann symmetrisch, wenn p Signatur sign(p) = 0 besitzt.

Wir zitieren noch eine Aussage aus [T2], die uns angibt, wie sich fiir Erweiterungen
eines Schnittes einer angeordneten abelschen Gruppe die zugehorigen Invarianzgrup-
pen in Abhéingigkeit von der Signatur des urspriinglichen Schnittes verhalten. Die
Proposition wird vor allem im Abschnitt 4.2.1 iiber realisierende Obergruppen und
Oberkorper sehr niitzlich sein. Deshalb werden wir auch in diesem Fall den Beweis
(leicht modifiziert) anfiithren statt nur auf die Quelle zu verweisen.

Proposition 1.32 (Tressl). Sei G C H eine Erweiterung von angeordneten abel-
schen Gruppen und p ein Schnitt von G. Dann gilt:

(i) Falls s eine Erweiterung von p auf H ist, so gilt G(s) NG C G(p).
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(ii) Falls s die kleinste oder grifste Erweiterung von p auf H ist, so ist § die kleinste
oder grofite Erweiterung von p auf H.

(111) Falls p in H nicht realisiert ist und s die eindeutige Erweiterung von p auf H
ist, so ist § die grofite Erweiterung von p auf H. Falls zusdtzlich sign(p) = 0
gilt, dann ist auch sign(s) = 0.

(iv) Seisign(p) = 0 und seien q und r die kleinste und die griofite Erweiterung von
p auf H. Dann ist ¢ = r die grofite Erweiterung von p auf H, und fiir jede
Realisierung h von p in H gilt q=h — ¢, r =h+7 und r = 2h — q.

(v) Seisign(p) = 1 und seien ¢ und r die kleinste und die grifite Erweiterung von
p auf H. Dann ist ¢ die kleinste Erweiterung von p auf H und 7 ist die grifste
FErweiterung von p auf H.

(vi) Sei sign(p) = —1 und seien q und r die kleinste und die grifite Erweiterung
von p auf H. Dann st ¢ die grofite Erweiterung von p auf H und 7 ist die
kleinste Erweiterung von p auf H.

(vii) Sei sign(p) = oo und sei g € G, so daff ¢ modG(p) das kleinste positive
FElement von G/G(p) ist. Seien q und r die kleinste und die grifste Erweiterung
von p auf H. Dann ist ¢ = 7 die kleinste Erweiterung von p auf H und es gilt

r=g—q.

Beweis. (i) Sei s eine Erweiterung von p auf H. Ist ¢ € G(s) N G, dann gilt
g+pl=g+GING) =(g+sH)NG =stNG =pl, also g € G(p).
Zwischenbehauptung: Ist s die kleinste oder grofite Erweiterung von p auf H ist, so
ist § eine Erweiterung von p auf H.

Beweis dazu: Sei g € G(p) mit g > 0. Ist s = (pL)+, soist g+st C sbIst s = (pft) ™,
so ist —g + s C s®. Mit Lemma 1.11 gilt immer g € G(s). Dies zeigt p* C s N G.
Nach (i) gilt s N G C pr. Insgesamt folgt die Zwischenbehauptung.

(iii) Sei h € H mit h+ s > s. Da p in H nicht realisiert ist, existiert ein g; € G
mit ¢y < p und h + g; > s. Aus demselben Grund existiert auch ein go € G mit
h+g1 > ge >s. Dannist h > go — g1 > G(p), denn es gilt g1 + (g2 — g1) = g2 > p.
Damit kann h keine Realisierung von p sein. Mit der Zwischenbehauptung folgt jetzt,
dafl § die grofite Erweiterung von p auf H ist.

Sei nun p nicht realisiert in H und zusétzlich sign(p) = 0. Wir nehmen an, daf
es ein h € H gibt mit s = h+ 5. Da p in H ausgelassen ist, gibt es ein g € G mit
h < g < p. Damit folgt s = g+ s und p = g + p, was nicht sein kann. Ebenso auf
einen Widerspruch fiihrt die Annahme, dafl es ein h € H gibt mit s = h — §. Das
zeigt sign(s) = 0.

(iv) Wegen Korollar 1.26 und Lemma 1.23 (v) ist die grofite Erweiterung von p auf
H die Oberkante einer konvexen Untergruppe Hy von H. Nach der Zwischenbehaup-
tung sind ¢ und 7 Erweiterungen von p auf H. Falls keine Realisierung von p in H,
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und damit in H existiert, so ist ¢ = 7 die eindeutige Erweiterung von p auf H.

Sei andernfalls hy € Hy eine Realisierung von p. Da sign(p) = 0 und & - hg € H
fiir alle k& € Z gilt, ist p nicht in der von G und hg erzeugten Untergruppe G(ho) C H
realisiert. Sei s die eindeutige Erweiterung von p auf G(hg). Dann sind ¢ und r die
kleinste und die grofte Erweiterung von s auf H. Nach Teil (iii) gilt ho+s = s. Nach
der Zwischenbehauptung angewandt auf s erhalten wir hg + ¢ = g und hy +7r = r.
Das zeigt ¢ =7 = H{.

Sei jetzt h € H eine Realisierung von p. Wir wissen bereits h + HJ < r. An-
genommen, es existiert ein hy € H mit h + Hy < hy < r. Dann ist hy — h keine
Realisierung von p, weil Hy™ die grofte Erweiterung von p auf H ist. Also existiert
ein g € Gmit hy —h > g > p. Es gilt h + g < hy, aber h + g realisiert p nicht,
weil g > p ist und somit ein z € G mit x < p < hund p < x + g < h + g existiert.
Dies ergibt einen Widerspruch. Analog kénnen wir ¢ = h — ¢ zeigen und erhalten
schlielich auch die Gleichung r =h+7=h+¢=h+h—q=2h—q.

(v), (vi) und (vii) sind direkte Folgerungen aus Lemma 1.23. (ii) folgt mit (iv)-
(vii). O
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1.2. Schnitte angeordneter Korper

In diesem Abschnitt betrachten wir Schnitte angeordneter Korper. Wir definieren
eine multiplikative Entsprechung zur (additiven) Invarianzgruppe und fithren den
Invarianzbewertungsring als weitere wichtige Invariante eines Schnittes eines ange-
ordneten Korpers ein.

Definition/Bemerkung 1.33. Sei K ein angeordneter Korper und p ein Schnitt
von K mit p > 0, dann betrachten wir p als Schnitt der angeordneten abelschen
Gruppen (K, +) und (K>°,-). Fiir alle a € K>° haben wir analog zu Definition 1.5
den Schnitt

a-p=(a-p" a-p").
Fiir Schnitte p von K mit p < 0 definieren wir fiir alle a € K>°

a-p:=—(a-(-p)) = (a-p", a-p").

Fiir beliebige Schnitte p von K definieren wir fiir alle a € K>°

(—a)-p=—(a-p).

Weiter definieren wir analog zur additiven Definition 1.5 fiir einen Schnitt p > 0 von
K=Y oder einen Schnitt p < 0 von K<° den Schnitt Il) von K~ beziehungsweise von

K<Y durch
1 1 1

R

pptpk

Wir kénnen den Schnitt % von K% beziechungsweise K<° auch jeweils als Schnitt
1

von K auffassen. Dann gilt i =~

Lemma 1.34. Sei K ein angeordneter Kiorper und Z C K eine Teilmenge von K
mit Z N K>°# 0. Dann gilt fir alle a € K>° und alle b € K

(a-Z+b)"=a-ZT+0.

Beweis. Da Z N K>% # () sowie a > 0 gilt und wir nur Oberkanten betrachten,
kénnen wir ohne Einschrinkung Z C K>° annehmen. Dann folgt die Behauptung
nach Lemma 1.17, einmal additiv und einmal multiplikativ angewandt. O

Proposition 1.35. Sei p ein Schnitt eines angeordneten Kérpers K. Dann gilt fir
alle a € K* := K \ {0}
G(a-p)=a-G(p).

Beweis. Sei zunéchst a > 0. Dann gilt
g € Glap) & ap* = g+ ap” & p' = L(g+ap") = L +p" & g € aG(p).

Fiir ein Element a < 0 gilt nach Proposition 1.13 und dem gerade Gezeigten G(ap) =
G(—(ap)) = G((=a)p) = —aG(p) = aG(p). u
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Definition 1.36 (Invarianzbewertungsring einer Gruppe). Sei K ein angeordneter
Korper und G C K eine konvexe Untergruppe von (K, +). Dann definieren wir den
Invarianzbewertungsring von G als

V(G) ={ae K|a-GCG}.

Proposition 1.37. Sei K ein angeordneter Korper und G C K eine konvexe Un-
tergruppe von (K,+). Dann ist V(G) ein konvexer Bewertungsring von K.

Beweis. Trivialerweise ist V(G) ein Teilring von K. Sei 0 < a < b mit b € V(G)
und a¢ € K. Dann sind mit G auch a - G und b - G konvexe Untergruppen von K
und es gilt a - G C b- G C G. Das zeigt a € V(G) und damit die Konvexitit von
V(G). Als konvexer Teilring von K ist V(G) nach [KS], Kap. II, §2, Satz 2, S. 55,
Bewertungsring. O

Bezeichnung 1.38. In der Situation von Proposition 1.37 ist V(G) ein Bewer-
tungsring und damit nach [KS], Kap. II, §2, Satz 1, S. 55, ein lokaler Ring. Wir
schreiben

m(G) = V(G)\ V(G)’

fir das eindeutige maximale Ideal von V(G), wobei V(G)* die Einheitengruppe von
V(G) bezeichnet.

Definition 1.39 (Invarianzbewertungsring eines Schnittes). Sei p ein Schnitt eines
angeordneten Korpers K. Wir definieren den Invarianzbewertungsring von p als
den Invarianzbewertungsring seiner Invarianzgruppe,

V(p) = V(G(p))-
Sein (eindeutiges) maximales Ideal bezeichnen wir mit
m(p) =V(p)\ V(p)",
wobei wieder V' (p)* die Einheitengruppe von V(p) bezeichnet.

Zwischen Invarianzbewertungsring eines Schnittes und dem zugehorigen maximalen
Ideal haben wir folgende Beziehung fiir die Kanten.

Proposition 1.40. Sei p ein Schnitt eines angeordneten Korpers K. Dann gilt

m(p)" = und m(p)”~ =

Vip)~
Beweis. Es gilt

0<z<mp) e0<zemp)=VE\VE) <L>Vp) er< e
Richtig gelesen folgt die zweite Aussage jetzt sofort wegen m(p)~ = —m(p)"™ =

T 1 1
TVt T Vvt T Vi) =
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Proposition 1.41. Set K ein angeordneter Kérper und p ein Schnitt von K. Fiir
alle a € K* = K\ {0} und alle b € K gilt dann

V(ap + b) = V(p).

Beweis. Nach Definition ist V(ap +b) = {c € K | ¢G(ap +b) C G(ap + b)}. Nach
den Propositionen 1.13 und 1.35 gilt G(ap + b) = G(ap) = aG(p). Damit folgt die
Behauptung. O

Definition 1.42 (Multiplikative Invarianzgruppe). Sei p ein Schnitt eines angeord-
neten Korpers K. Wir definieren die multiplikative Invarianzgruppe von p als

G*(p) :=={a€ K" |a-p=p}.

Also ist G*(p) die Invarianzgruppe von |p| beziiglich (K> -), insbesondere gilt
G*(p) C K.

Proposition 1.43. Sei p ein Schnitt eines angeordneten Korpers K. Dann gilt
G*(=p) = G*(p)
und damit fir alle a € K* = K \ {0}
G*(ap) = G"(p)-
Beweis. Wir bemerken, da§ G*(p) und G*(—p) > 0 gilt. Somit gilt
a € G (—p) & a(-p)' =—ap = (—p)' = p" o ™ =p" < ac G (p).

Das zeigt die erste Behauptung.

Fiir @ > 0 und p > 0 ist die zweite Behauptung gerade die multiplikative Version
von Propostion 1.13. Anhand von Definition 1.33 und der ersten Behauptung folgt
der Rest jetzt leicht.

Fiir a > 0 und p < 0 ist G*(ap) = G*(—(ap)) = G*(a(—p)) = G*(—p) = G*(p).

Fir a < 0 ist G*(ap) = G*(—(ap)) = G*((—a)p) = G*(p), nach den ersten zwei
Fiéllen. O

Proposition 1.44. Sei K ein angeordneter Kérper und G C K eine konvere Un-
tergruppe von (K,+). Dann gilt fiir die positiven Einheiten V(G)*>° von V(G)

V(G)”" =G (GT).

Beweis. Falls G = {0} die triviale Gruppe ist, so sehen wir leicht ein, daB V (G)**? =
K>% = G*(G™") gilt. Sei also ohne Einschrinkung {0} C G. Offensichtlich gilt
V(G ={acK>*|a-G=G}={ae K>°|a-G>° = G>°}. Wir kénnen ohne
Einschrankung nur Elemente grofler 1 betrachten. Dann liefert die multiplikativ ge-
lesene Version von Lemma 1.16 angewandt auf die konvexe Menge G~° C (K>Y)+)
die Behauptung. O
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Bezeichnung 1.45. Sei K ein angeordneter Kérper und p ein Schnitt von /K. Dann
definieren wir

pi=G"(p)" -1

Lemma 1.46. Sei K ein angeordneter Kérper und p ein Schnitt von K. Die fol-
genden Aussagen sind dquivalent:

(i) 2 € G*(p).
(i) |pl = p.
(iir) G*(p) = G*(p).
(iv) G*(p) — 1 ist keine konvexe Untergruppe von (K, +).

Beweis. (i)=(ii): Nach Proposition 1.15 gilt |p| > p. Angenommen, es gilt p > p.
Dann gibt es ein x € K mit p < x < p. Wegen = > p existiert ein y € K mit y < p
und z +y > p. Ist ohne Einschrinkung z < y, so folgt p < x +y < 2y € 2p" = p*
und damit ein Widerspruch. Aus der Annahme p < —p erhalten wir analog einen
Widerspruch.
(il)=(iii): Diese Behauptung ist trivial, da G*(p) = G*(—p) gilt.
(iii)=-(i): Offensichtlich gilt 2 € G*(p) und somit auch 2 € G*(p).
—(iv)= —(i): Diese Richtung finden wir in [K], Proposition 5.21. Wegen der Kiirze
des Beweises fithren wir ihn direkt an. Wegen G*(p) C K~ gilt —1 ¢ G*(p) — 1.
Nach Voraussetzung ist G*(p) — 1 eine additive Untergruppe von K, also gilt auch
1 ¢ G*(p) — 1. Damit folgt 2 ¢ G*(p).
—(i)= —(iv): Diese Richtung gilt nicht nur fiir G*(p), sondern allgemein fiir eine
konvexe Untergruppe von (K~ ). Wir finden den Beweis in [T1], und zwar als
Behauptung 1 im Beweis von Proposition 3.5. Sei also 2 > G*(p) =: H. Wir zeigen,
daB H — 1 eine konvexe Untergruppe von (K, +) ist. Da H konvex ist, ist es auch
H — 1. Damit miissen wir nur 2- (H —1)>°C H —1und —(H — 1) = H — 1 zeigen.
Sei0<e€ H—1 Danngilt 0 <2 < (14¢)>—1€ H — 1 und somit 2¢ € H — 1.
Wegen H < 2 folgt 2¢ < 1 und € < 1 —¢. Daraus erhalten wir f—i_ < e. Jetzt gilt

aber1<fgzl+€+%<l+2€€f[. Damitistl—iEEH,alsoauchl—f—:GH
und —e € H — 1.
Ist e > 0mit —e € H—1,s0gilt 1 <1+¢ < = € H und folgliche € H—1. [

Lemma 1.47 (Tressl). Sei K ein angeordneter Korper und p ein Schnitt von K
mit |p| > p. Dann gilt

G*(p) —1={ac K|[la|-p<p}={acK[laf-p<p}.

Beweis. Wir finden die Aussage in [T1] als Behauptung 2 im Beweis von Proposition
3.5. O
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2. Zusammenhang zwischen additiver und multi-
plikativer Invarianzgruppe

Nachdem wir in Kapitel 1 als zwei wichtige Invarianten eines Schnittes p eines an-
geordneten Korpers die additive und die multiplikative Invarianzgruppe G(p) und
G*(p) kennengelernt haben, untersuchen wir in diesem Kapitel den Zusammenhang
zwischen den beiden Gruppen. Wir werden in Abschnitt 2.1 zwei wichtige Mengen
definieren, die uns helfen, das Verhéltnis zwischen G(p) und G*(p) zu beschreiben.
Im Abschnitt 2.2 vergleichen wir unsere Herangehensweise an das Problem mit einer
Arbeit von F.- V. Kuhlmann und sehen, dafl wir auch mit unseren Mitteln einige
Aussagen dort beweisen kénnen.

2.1. Uber die Mengen J(p) und I(p) zu einem Schnitt p

In Theorem 2.1 formulieren wir gleich zu Beginn eine wichtige Aussage, die wir
zwar recht elementar beweisen konnen, die aber sowohl im folgenden Kapitel iiber
Signaturen von Schnitten angeordneter Korper als auch im restlichen Teil dieses
Abschnittes ein zentrales Hilfsmittel darstellt.

Theorem 2.1 (Schliissellemma). Seien K ein angeordneter Kéorper, G C K eine
konvexe Untergruppe von (K,+) und a € K mit |a| > G. Dann gilt

G*(G"+a)=G"(GT +a) =1G+1.

Beweis. Wir gliedern den Beweis in zwei Schritte. Als erstes zeigen wir
G (G~ +a) =G (GT +a) =G(GT)N(2G +1).

Behauptung 1: G*(GT 4+ a) = G*(G*) N (2G + 1)

, C “: Sei d € G*(GT + a). Dann gilt d(G* + a) = dGt 4+ ad = Gt + a, also auch
(dG)* 4+ ad—a = G*. Da G und dG konvexe Untergruppen von (K, +) sind, konnen
wir Lemma 1.19 anwenden und erhalten dG* = GT. Also gilt d € G*(G*). Damit
ergibt sich (dG)" +ad—a = GT+a(d—1) = G*, und es folgt a(d—1) € G(G*) = G.
Es gilt demnach d € %G + 1.

, 2% Seide G(GT)N(1G +1). Dann gilt d(GT + a) = dGT +ad = G" + ad =
GT+a(:g+1) mit einem g € G = G(GT). Es folgt d(GT+a) = GT+g+a = Gt +a,
also gilt d € G*(G* + a).

Behauptung 2: G*(G™ 4+ a) = G*(G1) N (:G + 1)

Mit Proposition 1.43 folgt G*(G~ + a) = G*(—(G~ 4+ a)) = G*(GT — a) und damit
gilt die Aussage nach Behauptung 1.

Fiir die eigentliche Behauptung der Proposition miissen wir nur noch zeigen:

LG +1C G (GH).
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Wegen |a| > G ist 1G < 1 und 1G + 1 < 2. Da aber G*(GT) = V(G)**° nach
Proposition 1.44 gilt, ist 2 € G*(G"), und damit gilt (G + 1)* < (G*(GT))™.
Umgekehrt folgt aus %G < 1 sofort %G > —1 und auch %G > —%. Also ist £G+1 > %
Da 3 € G*(G") gilt, zeigt dies (G*(G"))™ < (:G+1)". Da sowohl G*(G™) als auch
LG + 1 konvex sind, folgt insgesamt 1G + 1 C G*(G™). O

Korollar 2.2. Sei K ein angeordneter Kdorper und p ein Schnitt von K mit p > p.
Sei weiter a € K mit a < p < 2a. Dann gqilt fir alle a < ¢ < 2a die Gleichung
G*(a+p) = G*(c+ D).

Beweis. Aus der Voraussetzung a < p < 2a folgt p < a. Offensichtlich gelten fiir
alle a < ¢ < 2a die Inklusionen 3-G(p) + 1 C 1G(p) + 1 C 1G(p) + 1. Wir kénnen
nun Theorem 2.1 auf a, ¢ und 2a anwenden und erhalten G*(2a +p) C G*(c+p) C
G*(a 4+ p). Aufgrund der elementaren Beobachtung G*(a + p) = G*(2a + p) <
1G(p)+1=5Gp)+1 < 2G(p) = G(p) & 2 € V(G(p))~® und der Tatsache,
daBl V(G(p)) ein konvexer Bewertungsring ist, gilt G*(a + p) = G*(2a + p). Damit
folgt die Behauptung. O

Lemma 2.3. Sei K ein angeordneter Kiorper und p ein Schnitt von K mit p > p.
Dann existiert ein Element p < a < p mit G*(p) = G*(a + p).

Beweis. Wegen p < p finden wir ein Element a € K mit a < p < 2a. Dann gilt auch
p < a. Fiir dieses Element zeigen wir die Gleichheit G*(p) = G*(a + p) =: H.

, 2 “:Sei h € H, ohne Einschriankung nehmen wir A > 1 an. Wir miissen dann
h - p* C p* zeigen. Sei also ¢ < p gegeben. Wegen a < p kénnen wir auch nur den
Fall @ < ¢ < p betrachten. Dann gilt aber nach Korollar 2.2 G*(¢ + p) = H. Aus
¢ < c+ p folgt he < ¢+ p < p und die erste Inklusion ist gezeigt.

» C “: Wir haben bereits H C G*(p) gezeigt und nehmen jetzt an, es gibt ein
g € G*(p) mit g > H = G*(a + p). Mit Theorem 2.1 folgt dann g > 1G(p) + 1 oder
a(g—1) > G(p). Wir finden also ein Element a < b < p mit b+ a(g — 1) > p. Dann
gilt aber wegen g > 1 auch gb =0+ 0b(g — 1) > b+ a(g — 1) > p. Das ergibt einen
Widerspruch zu b < p und g € G*(p). O

Nun definieren wir eine wichtige Invariante eines Schnittes, die allgemein das Verhélt-
nis zwischen additiver und multiplikativer Invarianzgruppe beschreibt.

Definition 2.4. Sei p ein Schnitt eines angeordneten Korpers K. Wir definieren
J(p) :={ce K> | G*(p) = c- G(p) + 1}.

Lemma 2.5. Seip ein Schnitt eines angeordneten Kéorpers K. Dann ist J(p) konvex
und es gilt J(p) = J(—p).

Beweis. Zum Nachweis der Konvexitdt betrachten wir Elemente 0 < a < b < ¢ mit
a, ¢ € J(p). Dann gilt a - G(p) Cb-G(p) C c- G(p). Wegen aG(p) +1 = G*(p) =
cG(p) + 1 st aG(p) = ¢G(p), also gilt ,, = “ iiberall. Damit ist G*(p) = aG(p) + 1 =
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bG(p) + 1, also gilt b € J(p). DaBl J(p) = J(—p) gilt, folgt sofort aus der Definition,
da nach den Propositionen 1.13 und 1.43 sowohl G(p) als auch G*(p) nicht vom
Vorzeichen des Schnittes abhingen. O

In Lemma 2.5 sehen wir zwei erste elementare Eigenschaften der Menge J(p) zu
einem Schnitt p eines angeordneten Korpers K. Als geeignetes Instrument zur Un-
tersuchung, wie G(p) und G*(p) zusammenhéngen, kann J(p) aber nur fiir eine be-
stimmte, wenn auch sehr groffe und interessante Menge von Schnitten angeordneter
Korper dienen. Wir benétigen ndmlich eine Bedingung an p, damit J(p) nicht leer
ist. In der folgenden Proposition sehen wir diese Bedingung. Sie erscheint insofern
natiirlich, da von ihr auch in Kapitel 3 abhéngt, inwieweit wir allgemeine Aussa-
gen iiber die additiven und multiplikativen Signaturen von Schnitten angeordneter
Koérper machen kénnen.

Proposition 2.6. Sei K ein angeordneter Korper und p ein Schnitt von K. Dann
gilt
lpl >p < J(p) # 0.

Beweis. ,, < “: Sei ¢ € J(p) # 0. Dann gilt G*(p) — 1 = ¢- G(p) und G*(p) — 1
ist somit eine konvexe Untergruppe von (K, +). Nach Lemma 1.46 ist dann |p| # p,
also gilt |p| > p. , = “: Dies ist die deutlich stéarkere Aussage. Einen Beweis finden
wir in [T1], Proposition 3.5. Tressl benutzt dabei allerdings Realisierungen in einem
Oberkorper L O K. Wir bleiben mit unserem gewissermaflen elementareren Beweis
im Grundkorper K. Wegen Lemma 2.5 kénnen wir ohne Einschrénkung von einem
Schnitt p > p ausgehen. Nach Lemma 2.3 zusammen mit Schliissellemma 2.1 gibt
es dann ein p < a mit G*(p) = G*(a + p) = +G(p) + 1. Diese Gleichheit bedeutet
aber gerade + € J(p). O

Bevor wir uns eingehender mit der Menge J(p) zu einem Schnitt p eines angeordneten
Korpers K beschiftigen, weisen wir noch auf einen gewissen Spezialfall hin. Nicht
betrachten miissen wir J(p), falls eine der beiden Invarianzgruppen von p trivial ist.
Denn dann haben wir einen besonders einfachen Zusammenhang zwischen additiver
und multiplikativer Invarianzgruppe von p, den wir im folgenden Lemma darstellen.

Lemma 2.7. Sei K ein angeordneter Korper und p ein Schnitt von K ungleich 0T
oder 0~. Dann gilt

G*(p) = {1} & G(p) = {0}.
Ist dagegen p gleich 0% oder 0=, so gilt G(p) = {0} und G*(p) = K>°.

Beweis. Der Zusatz ist trivial. Wir zeigen nur die Aquivalenz, falls p # 0%, 0~. Da
nach den Propositionen 1.13 und 1.43 G(—p) = G(p) und G*(—p) = G*(p) gilt,
konnen wir uns auf den Fall p > 0" beschrinken.

» = “: Sel G*(p) = {1}. Wir nehmen an, es gibt ein 0 < ¢ € G(p). Dann kénnen
wir ein Element y > p > 0 wéahlen, da p = +00 wegen G*(p) = {1} nicht moglich ist.
Definieren wir n := 1 + i > 1, so konnen wir n € G*(p) zeigen und erhalten somit
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einen Widerspruch zur Voraussetzung. Denn angenommen, es gibt ein 0 < x <p mit
nx > p, dann folgt p < nx = (1 + i)x =x+ey <xte<p, was nicht sein kann.

, <= “: Sel nun G(p) = {0}. Es gilt |p| > p, denn Gleichheit hieBe wegen
G(p) = {0} sofort p = 0" oder p = 0~. Mit |p| > p aber folgt die Behauptung
mit Proposition 2.6. 0

Dennoch benotigen wir bei einem allgemeinen Schnitt p eines angeordneten Koérpers
K die Menge J(p), um den Zusammenhang zwischen G(p) und G*(p) zu beschreiben.
Wie wir allerdings im folgenden feststellen, 148t sich die Menge der Inversen von J(p)
besser darstellen. Deshalb machen wir noch folgende

Definition 2.8. Sei p ein Schnitt eines angeordneten Korpers K. Wir definieren die
Menge der Inversen der Elemente von J(p)

)= 55 = e € K| G'(p) = 16(0) + 1)

Mit J(p) ist natiirlich auch I(p) konvex.

Fiir die Ober- und Unterkanten der Mengen J(p) und I(p) eines Schnittes p eines
angeordneten Korpers K haben wir folgende einfache Umrechnung.

Lemma 2.9. Sei K ein angeordneter Korper und p ein Schnitt von K mit |p| > p.
Dann gilt

1 1
=J(p)~ und =J(p)".
i =W gy W
Beweis. Da nach Definition J(p) = ﬁ gilt, folgt die Aussage mit der multiplikativ
gelesenen Version von Lemma 1.6. O

Im folgenden Lemma sehen wir die erste Charakterisierung von J(p) und I(p) zu
einem Schnitt p eines angeordneten Korpers K. Sie liefert uns, dafy sowohl die Unter-
als auch die Oberkanten der beiden Mengen (, falls sie nichtleer sind,) die Oberkanten
von konvexen Untergruppen von (K, +) sind.

Lemma 2.10. Sei K ein angeordneter Kéorper und p ein Schnitt von K. Dann gilt

J(p) =c-V(p)=° fir alle c € J(p) und
I(p) =d-V(p)~° fir alle d € 1(p).

Insbesondere gilt auch J(p) -V (p)*”° = J(p) und I(p) - V(p)*~" = I(p).

Beweis. Wir zeigen nur die erste Behauptung. Die zweite folgt dann sofort anhand
der Definition von I(p), der Zusatz ist ohnehin nur eine Abschwichung.

Gilt J(p) = 0, so ist nichts zu zeigen. Sei also ¢ € J(p), wir zeigen J(p) =
c-V(p)* Fiir alle d € K>° gilt nach Definition d € .J(p) genau dann, wenn
dG(p) + 1 = G*(p) = cG(p) + 1 gilt, also genau dann, wenn dG(p) = cG(p) gilt.
Das ist aber gleichbedeutend mit ¢ € V(G(p))~’ = V(p)**°. Somit haben wir die
Behauptung gezeigt. O
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Lemma 2.11. Sei K ein angeordneter Kérper und p ein Schnitt von K. Fir alle
a € K> gilt dann
J(ap) = 3 - J(p) und I(ap) = a- I(p).

Beweis. Fiir alle z € K> gilt mit Hilfe der Propositionen 1.35 und 1.43
z € J(ap) & G*(ap) = xG(ap) + 1 & G*(p) = azG(p) + 1 & azx € J(p).
Hiermit folgt sofort auch die zweite Aussage. O

Die Menge I(p) zu einem Schnitt p eines angeordneten Korpers K mit |p| > p bildet
eine Umgebung von |p|. Dies konkretisieren wir in der folgenden

Proposition 2.12. Sei K ein angeordneter Korper und p ein Schnitt von K mit
|p| > p. Dann gilt
p<I(p) <lpl<I(p)".

Beweis. Wir zeigen die Behauptung ohne Einschrankung fiir einen Schnitt p > 0. Als
erstes weisen wir p < I(p)~ nach. Sei dazu ein a € I(p) gegeben. Dann ist G*(p) =
1G(p)+1. Lemma 1.46 zusammen mit der Voraussetzung sagt uns 2 ¢ G*(p). Damit
ist auch 1 ¢ G*(p) — 1 = 1G(p). Wegen a > 0 muB dann aber a > G(p) gelten.

Fiir den Rest zeigen wir zunéchst die Abschiatzungen

I(p)~ <p<Ip".

Sei also 0 < a < I(p), dann gilt auch a < p. Denn setzen wir ¢ := ip, so gilt
1 < 1I(p) = I(2) = I(g) nach Lemma 2.11. Dies bedeutet nach Definition von I(g),
daBl G*(q) € G(q) + 1 und somit ¢ < ¢ gilt. Wir kénnen also ein x € K~° wihlen
mit § < 2 < §. Wegen z > § = G*(¢)T — 1 = (G*(¢) — 1)" folgt mit Lemma 1.47
xq > ¢, und wir erhalten r < ¢ < xq. Also gilt 1 < ¢ = %p und somit a < p. Analog
zeigen wir p < I(p)™. Denn fiir ein a > I(p) folgt mit ¢ := p diesmal 1 > I(g) oder
G > ¢. Wir finden also ein z € K~Y mit § < # < ¢. Wieder nach Lemma 1.47 gilt
dann xq < ¢ < x, und wir erhalten 1 > ¢ = %p, also a > p.

Uns fehlen nur noch die strikten Abschétzungen, die jetzt aber schnell folgen.
Angenommen, es gilt p = I(p)*. Wegen 2 € V(p)*”" und Lemma 2.10 gilt I(p) =
2 - I(p) und somit folgt 2-p =2-I(p)* = I(p)™ = p. Dies bedeutet 2 € G*(p) und
ergibt mit Lemma 1.46 einen Widerspruch zur Voraussetzung p > p. Die Annahme
p = I(p)~ fithrt zum gleichen Widerspruch. O

Bemerkung 2.13. Die erste Abschétzung aus Proposition 2.12 ist scharf. Wir be-
trachten zum Beispiel einen angeordneten Korper K mit einer echten konvexen
Untergruppe G von (K, +). Zu einem Element a > G definieren wir den Schnitt
p:=a+ GT. Dann gilt p = a + p und p > p. Nach Proposition 2.12 gilt p < I(p)~.
Wir zeigen auch p > I(p)~ und erhalten in diesem Fall p = I(p)~.

Offensichtlich gilt p < a < p, deshalb folgt G*(p) = G*(a + p) = LG(p) + 1 mit
Schliissellemma 2.1. Damit gilt a € I(p). Um p > I(p)~ zu zeigen, kénnen wir uns



2. Zusammenhang zwischen additiver und multiplikativer Invarianzgruppe 27

demnach gleich ein Element b mit p < b < a vorgeben. Wegen 0 < b<a <p=a+p
existiert ein g € G(p) mit b = a 4+ g. Damit ist b —a = g € G(p) = G(p). Es folgt
b—a+p = poder b+p = a+p = p. Dann liefert uns aber wieder das Schliissellemma
%.1 die Gleichung G*(p) = G*(b+ p) = ;G(p) + 1 und somit b € I(p). Dies zeigt
p=1(p)".

Das Ergebnis aus Proposition 2.12 zusammen mit Schliissellemma 2.1 ermdglicht
uns folgende Charakterisierung der Menge I(p) eines Schnittes p eines angeordneten
Korpers K.

Korollar 2.14. Sei K ein angeordneter Kérper und p ein Schnitt von K mit |p| > p.
Dann gilt fiir alle a € K>°

@€ l(p) & G(p) = G a+5) & G'(p) = G*(a— ).
Beweis. Wir zeigen die Aquivalenz
a € I(p) & G*(p) = G"(a+p).

, < “ Seia € K”° mit G*(p) = G*(a + p). Dann gilt a > G(p), da aus a €
G(p) = G(p) mit Lemma 1.46 |p| = p folgt, was nach Voraussetzung ausgeschlossen
ist. Wir konnen also das Schliissellemma 2.1 anwenden und erhalten die Gleichung
G*(p) = G*(a+p) = G*(G(p)" + a) = LG(p) + 1. Das heifit aber gerade a € I(p).
, = “ Sei jetzt ein a € I(p) vorgegeben. Nach Proposition 2.12 ist dann a > p,
also gilt a > G(p). Theorem 2.1 liefert jetzt wieder die Behauptung, denn es gilt
G*(p) = ;G(p) + 1= G*(a+p).

Auch bei der zweiten Aquivalenz mufl immer a > G(p) gelten, deshalb koénnen
wir sie direkt aus dem Schliissellemma 2.1 ablesen. O

Korollar 2.15. Sei K ein angeordneter Kérper und p ein Schnitt von K mit |p| > p.
Dann gilt fir alle b € I(p)
I(p) = 1(b£p).

Beweis. Nach Korollar 2.14 gilt genau dann a € I(p), wenn G*(p) = G*(a £ p) gilt.
Da nach Voraussetzung b € I(p) und somit G*(p) = G*(b £ p) gilt, gilt a € I(p)
genau dann, wenn G*(a + p) = G*(b+ p) gilt. Anwenden von Korollar 2.14 auf den
Schnitt b £ p liefert die Behauptung. O
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2.2. Ein Vergleich mit der Arbeit [K] von F.-V. Kuhlmann

In [K] beschéftigt sich F.-V. Kuhlmann mit recht &hnlichen Fragen wie wir beziiglich
des Zusammenhangs zwischen additiver und multiplikativer Invarianzgruppe eines
Schnittes eines angeordneten Korpers. Allerdings wéhlen wir einen anderen Zugang
zu diesem Thema. Wir zeigen, dal wir auch mit unseren Methoden #hnliche Re-
sultate erzielen konnen. Kuhlmann definiert zu einem Schnitt p einer angeordneten
abelschen Gruppe G die konvexe symmetrische von p erzeugte Teilmenge

CS(p) :={g € G |lgl < Ipl}-

Mit MC(p) bezeichnet er die maximale konvexe Untergruppe von G, die in CS(p)
enthalten ist. p heift group,-cut, wenn |p| = p ist, also wenn p Ober- oder Unter-
kante seiner Invarianzgruppe G(p) ist. Wir zeigen, daf§ wir auch mit unseren Mitteln
Theorem 5.23 aus [K]| beweisen konnen.

Theorem 2.16 (F.-V. Kuhlmann). Sei K ein angeordneter Korper.
1) Falls p ein groupy-cut von K ist, so gilt

G*(p) =V
2) Falls p kein groupy-cut von K ist, so gilt fir alle g € CS(p) \ MC(p)
G*(p) = 1+ ;G(p).

Weiter gilt V(G*(p) — 1) = V(p).
3) Fiir jeden Schnitt p von K gilt

G(p) = (G*(p) — 1) - CS(p).

Beweis. 1) Diese Aussage steht bei uns in Proposition 1.44.
2) Wir beschrénken uns aus Symmetriegriinden auf einen Schnitt p > p und zeigen,
daf

(CS(p) \ MC(p))~" C 1(p)

gilt, dann folgt die erste Behauptung nach Definition von I(p). Wir wéhlen also
zuerst ein Element a € I(p) mit a < p. Dies geht nach Proposition 2.12, da nach
Voraussetzung p > p ist. Sei nun ein Element b € (CS(p) \ MC(p))>° gegeben.
Nach Definition von CS(p) gilt b < p. Ist b > a, folgt sofort b € I(p), da I(p) eine
Umgebung von p ist. Gilt dagegen b < a, so ist b zumindest archimedisch dquivalent
zu a, das heifit, es gibt ein n € N mit a < nb. Andererseits wire die von MC(p) und
b erzeugte Gruppe H eine echte Obergruppe von MC(p), aber wegen H< a <p wire
H enthalten in CS(p), was der Definition von MC(p) widerspricht. Es gibt also ein
n € Nmit a < nb. Dann gilt £a < b < p. Wegen = € V(p)”° und a € I(p) gilt nach
Lemma 2.10 auch 1a € I(p) und damit auch b € I(p). Das zeigt den ersten Teil der
Behauptung.
Der Zusatz folgt aus dem gerade Gezeigten mit Proposition 1.41.

3) Nach 2) gilt fiir alle g € CS(p) \ MC(p) sogar G(p) = (G*(p) — 1) - ¢g. Da |z| < |g|
fir alle 2 € MC(p) und alle g € CS(p) \ MC(p) gilt, folgt die Behauptung. O
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3. Signaturen von Schnitten angeordneter Korper

Wir interessieren uns jetzt auch im Koérperfall fiir die Signatur eines Schnittes. Wir
machen vorab eine leichte Bemerkung, die aber fiir die Betrachtungen im folgenden
sehr wichtig ist.

Bemerkung 3.1. Sei K ein angeordneter Korper und p ein Schnitt von K. Da (K, +)
divisibel ist, ist p nicht realisiert in K ®7 Q = K. Damit gilt sign(p) # oo.

Ein angeordneter Korper besitzt neben der Addition noch die Multiplikation als
zweite Verkniipfung. Auch beziiglich dieser fiihren wir einen Signaturbegriff ein und
machen folgende

Definition 3.2 (Multiplikative Signatur). Sei p ein Schnitt eines angeordneten Kor-
pers K. Wir definieren die multiplikative Signatur sign*(p) von p als die Signatur
von |p| beziiglich der angeordneten abelschen Gruppe (K>, ).

Im folgenden untersuchen wir den Zusammenhang zwischen additiver und multipli-
kativer Signatur. Wir unterscheiden fiir einen Schnitt p eines angeordneten Korpers
K nach Lemma 1.15 zwei Falle:

(a) Ip|
(b) p]

Diese Unterscheidung ist uns bereits aus Kapitel 2 bekannt, wo sich das von uns
untersuchte J(p) genau dann als nicht leer herausgestellt hat, wenn [p| > p gilt.

Wir werden sehen, da8 wir uns im Fall (a) auf die additive Signatur eines Schnit-
tes beschrianken konnen. Thre Kenntnis liefert uns bereits die multiplikative Signatur
des Schnittes. Im Fall (b) dagegen gibt es alle denkbaren Kombinationen aus ad-
ditiver und multiplikativer Signatur. Wir werden mit Hilfe des verallgemeinerten
Potenzreihenkorpers Beispiele konstruieren.

v

p
D.

3.1. Der Fall |p| > p

Allgemein gilt fiir einen Schnitt p eines angeordneten Korpers K nach Bemerkung 3.1
wegen der Divisibilitat von (K, +) schon sign(p) # oo. Mit der Zusatzvoraussetzung
Ip| > p gilt sogar sign*(p) # oo, was unsere Signaturbetrachtungen in diesem Fall
wesentlich erleichtert. Den Grund fiir diese Tatsache finden wir in [T2].

Lemma 3.3 (Tressl). Sei K ein angeordneter Kérper und G := K>° die multipli-
kative Gruppe von positiven Elementen von K. Ist H C G eine konvexe Untergruppe
von G mit 2 ¢ H, so ist H' nicht realisiert in der divisiblen Hiille G ® z Q von G.

Beweis. Wir nehmen an, da H' doch realisiert ist in G ®z Q. Nach Lemma 1.23
(multiplikativ gelesen) gibt es dann eine Realisierung a@ € G ®7 Q von H' mit
a? € K. Die Konstruktion dieses Elementes steht im Beweis von Richtung ,, (i) =(ii)“
des Lemmas. Da nach Voraussetzung 2 ¢ H gilt, ist H — 1 eine konvexe Untergruppe
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von (K, +). Wir haben den Beweis am Ende von Lemma 1.46 fiir die multiplikative
Invarianzgruppe eines Schnittes eines angeordneten Korpers K gesehen und schon
dort bemerkt, daf er allgemein fiir konvexe Untergruppen von (K>, -) funktioniert.
Da H — 1 nun also additiv eine konvexe Untergruppe von K ist, realisieren sowohl
a—1 als auch 3 (a— 1) ihre Oberkante (H —1)". Wegen 1 <1+ a <142 = 3 gilt
a—1<(a—1)(a+1) <3-(a—1), und auch (o — 1)(a + 1) muf eine Realisierung
von (H —1)* sein. Das fithrt aber zum Widerspruch, da (a—1)(a+1) =a?—1€ K
gilt. O

Korollar 3.4 (Tressl). Sei K ein angeordneter Korper und p ein Schnitt von K
mit |p| > p. Dann gilt sign*(p) # oc.

Beweis. Mit |p| > p gilt nach Lemma 1.46 auch 2 ¢ G*(p). Nach Lemma 3.3 ist
dann G*(p)™ nicht realisiert in (K9, ) @7 Q. O

Diese Beobachtung zusammen mit Schliissellemma 2.1 liefert uns folgende wertvolle
Aussage.

Theorem 3.5 (Additive und multiplikative Signaturen). Sei K ein angeordneter
Kérper und p ein Schnitt von K mit |p| > p. Ist p > p, so gilt sign(p) = sign*(p).
Ist p < —p, so gilt sign(p) = —sign*(p).

Beweis. Wir fiihren im folgenden die wesentlichen Schritte des Beweises fiir den Fall
p > p durch, der Fall p < —p folgt dann sehr schnell. Wir machen eine Fallunterschei-
dung nach sign*(p), wobei nach Korollar 3.4 der Fall sign*(p) = oo nicht auftritt.
Ist sign*(p) € {£1}, so sehen wir die gewiinschte Gleichheit sign(p) = sign*(p) di-
rekt. Denn ist sign*(p) = +1, so existiert ein a € K% mit p = a - G*(p)*. Wegen
p > p konnen wir nach Proposition 2.6 ein Element ¢ € J(p) wahlen. Mit diesem
gilt dann p = aG*(p)* = a - (cG(p) + 1)" = (acG(p))* + a nach Lemma 1.34. Da
acG(p) eine konvexe Untergruppe von (K, +) ist, bedeutet dies nach Bemerkung
1.27 sign(p) = 1. Ganz analog folgt aus sign*(p) = —1 auch sign(p) = —1.

Somit miissen wir nur noch den Fall sign*(p) = 0 betrachten. Angenommen,
es gilt sign(p) = +1, dann exisitiert ein @ € K mit p = a + p. Wegen p > p
gilt @ > G(p), so daB wir das Schliissellemma 2.1 anwenden konnen. Es liefert
G*(G(p)™ + a) = 2G(p) + 1. Wir erhalten also

a-G(p)F =a G(Gp)"+a)f =a-(3G(p)+ 1) =(Gp) +a)" =p.

Das bedeutet aber sign*(p) = +1 # 0, also einen Widerspruch. Auch die Annahme
sign(p) = —1 fiithrt zum Widerspruch, indem wir statt der Oberkanten die Unterkan-
ten der Invarianzgruppen betrachten. Da ohnehin sign(p) # oo gilt, muf} sign(p) = 0
gelten, was unseren Beweis fiir p > p vervollstandigt.

Fiir den Fall p < —p gehen wir iiber zu ¢ := —p. Dann ist ¢ > ¢ und somit
nach dem bereits Gezeigten sign(q) = sign*(¢). Da mit Proposition 1.28 sign(p) =
—sign(—p) = —sign(q) und nach Definition sign*(q) = sign*(—p) = sign*(p) gilt,
folgt die Behauptung. O
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3.2. Der Fall |p| =p

In diesem Abschnitt betrachten wir Schnitte p eines angeordneten Korpers mit
Ip| = p. In diesem Fall kann keine Aussage wie in Theorem 3.5 getroffen werden.
Fiir die Konstruktion von Beispielen verwenden wir den verallgemeinerten Potenz-
reihenkorper k((t1)) eines angeordneten Koérpers k zu einer angeordneten abelschen
Gruppe I'. Wir gehen davon aus, dafl der Leser mit diesem Objekt vertraut ist.
Zur Erinnerung verweisen wir auf den Anhang, wo der verallgemeinerte Potenzrei-
henkérper noch einmal detailliert eingefithrt wird.

Definition 3.6 (Triger). Sei X eine Menge und G eine (additive) Gruppe. Fiir
eine Abbildung f : X — G definieren wir den Tréger von f als

supp(f) == {z € X | f(z) # 0}.

Definition 3.7. Sei k ein Koérper und I' eine angeordnete abelsche Gruppe. Wir
definieren den verallgemeinerten Potenzreihenkorper

E((t")) := {a: T — k| supp(a) wohlgeordnet}.

Fiir ein a € k((t")) verwenden wir die Schreibweise
a= Z a(y)t7.

Fiir eine ausfiihrliche Begriindung dafiir, da8 k((t")) tatsichlich ein Koérper ist,
verweisen wir auf den Anhang, insbesondere auf Proposition/Definition 6.11.

Im folgenden werden wir auch auf Bewertungen zu sprechen kommen. Wir verwenden
die Bezeichnungen wie in [KS], Kap. II, §4, S. 61. Fiir eine angeordnete abelsche
Gruppe I bezeichnen wir mit I' U oo die disjunkte Vereinigung I' U {oo} (mit einem
zu I' fremden Element oo). I'Uoco wird zu einer total geordneten Halbgruppe, indem
wir fiir alle v € I" definieren: 7 < oo, und v+ 00 = 00 + v = 00 + 00 = 0.

Definition 3.8. Sei k£ ein angeordneter Korper und I' eine angeordnete abelsche
Gruppe. Wir definieren
v:k((tY) = TUoo
a + v(a) := min(supp(a)) (a € k((t"))).

Dabei verwenden wir die Konvention min () := occ.

Bemerkung 3.9. Die Abbildung v aus Definition 3.8 ist surjektiv. Desweiteren ist v
eine ordnungsvertriigliche Bewertung auf k((t')), also gilt fiir alle a, b € k((t")) die
Implikation

0<a<b=v(a)>vb).

Den Beweis hierfiir finden wir im Anhang in Proposition 6.15.
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Proposition 3.10. Sei k ein angeordneter Korper, I' eine angeordnete abelsche
Gruppe und K := k((t")) der zugehdrige verallgemeinerte Potenzreihenkdrper. Sei
weiter £ € DC(T') = T"U Cuts(T'). Dann ist

G:={ae K|<v(a)}
ewne konvexe Untergruppe von K.

Beweis. Wir sehen sofort ein, dafl G eine Untergruppe von K ist. Es gilt 0 € G,
weil v(0) = oo > ¢ gilt. (Das gilt auch fiir den Schnitt £ = oor, da co > T gilt.)
Fiir beliebige a,b € G gilt v(a — b) > min{v(a),v(=b)} = min{v(a),v(b)} > £ und
damit a — b € G.

Zum Nachweis der Konvexitéit betrachten wir beliebige Elemente a € K, b € G mit
0 < a < b. Nach Bemerkung 3.9 gilt v(a) > v(b) > &. Dies zeigt a € G. O

Die Ober- und Unterkanten der in Proposition 3.10 betrachteten Gruppen werden
uns als Beispiele fiir Schnitte p von angeordneten Kérpern mit |p| = p und verschie-
denen multiplikativen Signaturen dienen. Dafiir miissen wir zunéchst den Invarianz-
bewertungsring dieser Gruppen néher untersuchen.

Lemma 3.11. Sei k ein angeordneter Korper, I' eine angeordnete abelsche Gruppe,
K = k((t")) und & ein Schnitt von T. Sei weiter G := {a € K | £ < v(a)}. Dann
gilt

(1) V(G)" ={be K |v(b) € G} und

(it) v(V(G)") = G(&).

Beweis. (i) ,, € “: Sei b € V(G)*. Dann gilt nach Definition b - G = G. Fiir alle
a € G folgt deshalb ab € G und ab~! € G. Nach Definiton von G gilt fiir alle a € G
also v(a) +v(b) = v(ab) > &€ und v(a) — v(b) = v(a) + v(b7') = v(ab™) > & Daw
surjektiv ist, folgt v(b) € G(&).

, 2 “Sei b € Kmito(b) € G(§) und sei a € G beliebig. Dann gilt v(ab) =
v(a) +v(b) > & und v(ab™t) = v(a) — v(b) > £ und damit ab € G und ab™! € G. Da
a beliebig war, gilt b € V(G)".

(ii) folgt jetzt sofort. ,, C “: Diese Inklusion gilt nach (i). , D “: Fiir ein v € G(&)
konnen wir wegen der Surjektivitdt von v ein b € K mit v = v(b) wihlen. Wieder
nach (i) gilt dann b € V(G)", also v € v(V(G)"). O

Lemma 3.12. Sei k ein angeordneter Korper, I' eine angeordnete abelsche Gruppe,
K := k((t")) und & ein Schnitt von T. Sei weiter G := {a € K | £ < v(a)}. Dann
gilt

(1)) m(G) =V \V(G) ={ae K |v(a) >G(&)} und
(i) v(m(G)) ={y €T |v> G}
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Beweis. (i) , € “:Sei 0 < a € m(G) = V(G)\V(G)", also gilt a < V(G)". Dann gilt
v(a) > v(V(G)") = G(£) nach Bemerkung 3.9 und Lemma 3.11 (ii). Nach Lemma
3.11 (i) gilt v(a) ¢ G(&), also folgt v(a) > G(&).

» 2 “Seia € K mit v(a) > G(§). Ohne Einschrénkung sei @ > 0. Nehmen wir an,
dafl a ¢ m(G) gilt, dann existiert ein b € V(G)" mit 0 < b < a. Nach Bemerkung 3.9
und Lemma 3.11 gilt dann v(a) < v(b) € G(§), ein Widerspruch zur Voraussetzung.
(ii) ,, € “: Diese Inklusion ist klar nach (i). , 2 “: Sei v € I' mit v > G(&). Wir
konnen wegen der Surjektivitidt von v ein a € K~° wiihlen mit v(a) = 7. Nach Teil
(i) gilt @ € m(G), also v € v(m(G)). O

Wir wollen in der Situation eines angeordneten Korpers k& und einer angeordneten
abelschen Gruppe I' mit Hilfe von v aus Schnitten von I' Schnitte von k((t")) er-
halten. Deswegen betrachten wir allgemein das Zuriickziehen von Schnitten mittels
surjektiver ordnungserhaltender Abbildungen.

Definition 3.13. Seien X und Y zwei total geordnete Mengen. Eine Abbildung
f: X — Y heilt ordnungserhaltend, wenn fiir alle x, x5 € X mit z; < x5 auch

f(z1) < f(xe) gilt.

Beispiel 3.14. Sei k ein angeordneter Korper, I' eine angeordnete abelsche Gruppe
und K := k((t")). Dann ist die ,,Einschréinkung® von v

020 K20 — TOPP | 0o

a+— v(a) := min(supp(a)) (a € K=°)

nach Bemerkung 3.9 ordnungserhaltend. Dabei bezeichnet I'°PP U oo die Halbgruppe
I' U oo mit entgegengesetzter Ordnung, das heif3t fiir alle g, h € 'U oo gilt ¢ < h in
['PP U oo genau dann, wenn h < g in I' U oo gilt. Insbesondere wird das Element oo
in ['PP U 0o zu einem unendlich kleinen Element.

Bemerkung/Definition 3.15. Seien X und Y zwei total geordnete Mengen und
¢ : X — Y eine surjektive und ordnungserhaltende Abbildung. Fiir alle Schnitte &
von Y ist

pHE) = (¢71(€R), vT(E)
ein Schnitt von X. Denn es gilt o (X)) U p 1 (ER) = o L (L UER) = p 1Y) = X.
Ebenso gilt ¢71(£F) < ¢71(£"). Denn angenommen, es gibt ein x € ! (£%) und ein
y € o 1(ER) mit x >y, dann wiire £F 3 p(x) > p(y) € £, was nicht sein kann.

Wir nennen ¢~1(¢) den mittels ¢ auf X zuriickgezogenen Schnitt.

Lemma 3.16. Seien X und Y zwe: total geordnete Mengen und ¢ : X — Y eine
surjektive und ordnungserhaltende Abbildung. Sei & ein Schnitt von Y. Dann ist
0 (&) der einzige Schnitt n von X mit o(n’) = &L und o(n't) = 8.

Beweis. Natiirlich erfiillt p~!(€) die geforderte Eigenschaft. Denn aufgrund der Sur-
jektivitdt von ¢ gilt (e 1(EF)) = X und (o 1(ER)) = £
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Wir nehmen an, es existiert ein Schnitt 7 von X, verschieden von ¢ =*(€), mit der
obigen Eigenschaft. Sei ohne Einschrinkung n > ¢~'(£). Dann existiert ein z € X
mit =€) < x < n. Wegen z € (o 1(&)F gilt p(x) € £F. Da aus z € n* aber
o(z) € p(nt) = ¢* folgt, ergibt sich ein Widerspruch. O

Proposition 3.17. Sei k ein angeordneter Kdérper, I' eine angeordnete abelsche
Gruppe, K := k((t")) und £ ein Schnitt von T'. Sei weiter G := {a € K | { < v(a)}.
Dann gelten folgende zwei Aquivalenzen:

(a) sign*(G*)=1<sign(§) = -1
(b) sign*(G1) = —1 < sign(§) = 1.

Beweis. Wir betrachten wieder die surjektive und ordnungserhaltende ,,Einschrén-
kung® v=0 : K20 — T'°PP Joo von v aus Beispiel 3.14. Der Einfachheit unterscheiden
wir bei der Notation nicht zwischen v und v=°. Zu dem Schnitt ¢ von I' erhalten
wir den Schnitt v=!(&) = (v'(£"), v71(¢%)) von K=°. R und L vertauschen dabei
wegen der Anordnung von T'°PP. Nun gilt G=° = {a € K= | ¢ < v(a)} = v (&R).
Also gilt v(G) = v(G=0) = v(v71(£R)) = ¢ und damit

v(G)” = (") =¢

(a) , = “: Sei sign*(G") = 1. Nach Definition existiert dann ein ¢ € K~" mit
G =c- (G*G")T =c- (V@)™ =c-V(G)" = (¢V(G))". Nach Lemma 1.8
impliziert dies G = c¢V(G), weil beides konvexe Untergruppen von K sind. Also
berechnen wir mit Hilfe von Lemma 3.11 (ii)

§=0(G)" = (V@] = [V (G))] = [v(e) +o(VIG))] = v(e) +G(E),
und es gilt sign(§) = —1.

(a) ,, < “: Sei sign(§) = —1. Dann schreiben wir £ = v(c) + G(§)” mit einem
c € K>°. Dann folgt aber schon

G =cV(G).

Denn nehmen wir G C ¢V(G) an, dann gibt es ein x € V(G) mit cx > G. Es folgt
¢ > v(ex) = v(e) + v(x), aber wegen z € V(G) = V(G)" Um(G) gilt v(z) € G(§)
oder v(z) > G(£). Damit mufl £ > v(c) + v(z) > v(c) + G(§)” = & gelten, was
nicht sein kann. Ebenso folgt ein Widerspruch, wenn wir G 2 ¢V(G) annehmen.
Denn dann gibt es ein ¢ € G mit g > ¢V (G) bezichungsweise mit gc~! > V(G). Da
V(G) aber ein Bewertungsring ist, gilt dann cg~! € V(G) und cg™' € m(G). Mit
Lemma 3.12 (ii) folgt v(cg™') = —v(gc™!) > G(&), also gilt v(gc™) < G(&) oder
v(g) < v(c) + G(§) und damit v(g) < v(c) + G(§)” = &. Das steht im Widerspruch
zu g € G.

Aus G = ¢V(G) folgt sofort GT = ¢V (G)T = ¢+ (V(G)*”)T = c- (G*(GM))*".
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Das zeigt sign*(G*1) = 1.

(b),, = “: Seisign*(G") = —1. Dann existiert ein ¢ € K% mit G* = ¢ (G*(GT))™ =
c(V(G)*?°)~ = c-m(G)™, wobei die letzte Gleichheit wieder aufgrund der Konvexitét
von V(@) gilt. Dann folgt G = ¢ - m(G), weil beides konvexe Untergruppen von K
sind. Anhand Lemma 3.12 (ii) erhalten wir

€= 0(@)" = [u(em(G))]” = [o(e) + v(m(G))]” = v(c) + C(O)".

Die letzte Gleichheit folgt aus v(m(G)) = {y € I' | v > G(£)}. Das zeigt sign(¢) = 1.

(b) ,, < “: Sei sign(¢) = 1. Wir schreiben ¢ = v(c) + G(£)" mit einem ¢ € K>°.
Dann folgt aber bereits
G = cm(G).

Denn nehmen wir G 2 ¢m(G) an, so gibt es ein g € G mit g > em(G). Da V(G) ein
konvexer Bewertungsring ist, existiert dann ein z € V(G)*° mit g > cz. Es folgt
v(g) < vlex) = v(c)+v(z) < v(e)+G(€)T = €. Das steht im Widerspruch zu g € G.
Auch G € em(G) gilt nicht. Denn sonst gibt es ein m € m(G) mit cm > G. Dann
gilt aber £ > v(cm) = v(c) +v(m) > v(c) + G(€)" = £, was nicht sein kann.

Aus G = om(G) folgt aber unmittelbar GT = em(G)T = ¢ (V(G)*%)~ =
c- G*(GT)~. Das zeigt sign*(G*) = —1. O

Korollar 3.18. Sei k ein reell abgeschlossener Korper, I' eine divisible angeord-
nete abelsche Gruppe und K = k((t")) der zugehérige verallgemeinerte Potenzrei-
henkérper. Sei weiter & ein Schnitt von I' und G := {a € K | £ < v(a)}. Dann
gilt

sign*(G") = —sign(€).

Beweis. Da I' divisibel ist, ist é nicht realisiert in I' ®7 Q = I' und damit sicherlich
sign(£) # oo. Nach Proposition 6.13 ist K = k((t")) wieder reell abgeschlossen und
damit die multiplikative Gruppe K~° divisibel. Damit gilt auch sign*(G") # oo.
Mit Proposition 3.17 folgt sofort die Behauptung. O

In [T2] gibt Tressl ein Beispiel fiir einen Schnitt eines angeordneten Korpers an,
dessen multiplikative Signatur gleich oo ist. Nach Korollar 3.4 muf solch ein Schnitt
Ober- oder Unterkante seiner (additiven) Invarianzgruppe sein.

Beuspiel 3.19. Sei R der Korper der reellen Zahlen, w > R ein unendlich grofles
Element und K := Q(w). Sei U die konvexe Hiille von Q in K und sei p := U™.
Dann gilt Ut < \/w < p®. Da G*(p) = G*(U™") gleich der konvexen Hiille von Q>°
ist, ist G*(p)* = U™ realisiert in der multiplikativen divisiblen Hiille von K>° und
damit gilt sign*(p) = oo. Tatséchlich gilt auch p = p.

Im folgenden Theorem fassen wir die Ergebnisse dieses Abschnittes zusammen. Da-
mit wird klar, dal im allgemeinen Fall eines Schnittes p eines angeordneten Korpers
K mit |p| = p keine starke Aussage wie in Theorem 3.5 getroffen werden kann.
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Theorem 3.20. Seid € {£1} unde € {+1,0,—1,00}. Dann existiert ein angeord-
neter Kéorper K und ein Schnitt p von K mit § - p = p und sign*(p) = e.

Beweis. Da die multiplikative Signatur nach Definition nicht vom Vorzeichen des
Schnittes abhéngt, kénnen wir ohne Einschrinkung von 6 = 41 ausgehen. Ist
e = 00, so wiahlen wir K und p wie in Beispiel 3.19. Wir erhalten dann p = p
und sign*(p) = €. Ist € # 0o, so wihlen wir einen reell abgeschlossenen Korper k
und eine divisible angeordnete abelsche Gruppe I', in der Schnitte von Signatur 0
existieren, ganz konkret also zum Beispiel Q. Wir setzen K := k((¢"')) und wihlen
einen Schnitt £ von I' mit sign(§) = —e. Setzen wir G := {a € K | { < wv(a)}, so gilt
fiir den Schnitt p := Gt von K sofort p = p, aber auch sign*(p) = ¢ nach Korollar
3.18. O
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3.3. Beispiele: Von verallgemeinerten Potenzreihen induzier-
te Schnitte

Nachdem wir in den vorangehenden zwei Abschnitten allgemeine Aussagen iiber Si-
gnaturen von Schnitten angeordneter Koérper gemacht haben, berechnen wir diese
nun im konkreten Fall. Dariiberhinaus werden wir auch die meisten der in Kapitel
1 eingefithrten Invarianten tatséchlich im Beispiel sehen.

Sei im folgenden R ein reell abgeschlossener Korper und I' O @Q eine divisible
angeordnete abelsche Gruppe. Bekanntlich ist dann der verallgemeinerte Potenzrei-
henkorper N := R((t")) reell abgeschlossen. Die Aussage findet sich zum Beispiel in
[R], 6.10. Sei weiter

P:={aeR((t9))|a= Z ant* fiir ein ng € Z und ein k € N}

n>ng
der Korper der Puiseuxreihen und M ein reell abgeschlossener Zwischenkérper
R(t)C M C PCR((t")) =N.
Wir verwenden stets die bereits in Definition 3.8 eingefiihrte Bewertung
v:N — T['Uoo, v(a) := min(supp(a)) (a € N).

Wir betrachten dann Elemente b € N\ M. Diese sind als verallgemeinerte Potenzrei-
hen durch ihren Trager und ihre Koeffizienten charakterisiert. In Abhéngigkeit von
diesen Angaben suchen wir fiir die Schnitte p = b [ M, also die von den b’s iiber M
induzierten Schnitte, nach Aussagen iiber folgende Invarianten: G(p), sign(p), V (p)
und sign*(p). Fir den Fall, daf ' gleich Q und M gleich dem reellen Abschlufi von
R(t) in N ist, finden wir alle Ergebnisse in [T1], Beispiele 3.11, C.

Definition 3.21. Sei b € N. Dann ist der Trager supp(b) vom Ordnungstyp w
der natiirlichen Zahlen, wenn er ordnungsisomorph zu N ist.

Proposition 3.22. Sei b€ N\ M mit b > 0. Dann sind dquivalent:

(i) b= GT fiir eine konvexe Untergruppe G von M.
(ii) v(b) € Q.

Beweis. ,, = “: Wir nehmen an, es gilt v(b) € Q. Dann 148t sich b schreiben als b =
b(70)t+ (Terme héherer Ordnung) mit einem v € Q. Es gilt b < 2b(y)t7 < 2.
Also realisieren b und 2b nicht denselben Schnitt von M, weil gb(%)ﬁO € M gilt.
Demnach realisiert b nicht die Oberkante einer konvexen Untergruppe G von M.

, <= “ Sei v(b) ¢ Q. Wir schreiben p := b | M und zeigen p = G fiir eine
konvexe Untergruppe G von M. Wir haben keine Wahl bei der Definition und setzen
G = (pF N M=) U —(p" N M=Y). Offenbar gilt dann p = GT. Um einzusehen, daf G
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eine konvexe Untergruppe von M ist, rechnen wir nur nach, daf} fiir ein z € G mit
0 < x < bauch 2x < b gilt. Dies ist aber klar, da aus 0 < x < b nach Bemerkung 3.9
v(b) < v(x) folgt. Damit gilt v(b) < v(z). Denn nach Voraussetzung gilt v(b) ¢ Q,
andererseits gilt aber v(z) € Q, weil € M eine Puiseuxreihe ist. Also gilt wegen
v(2z) = v(z) > v(b) auch 2z < b. O

Wir betrachten zunéchst den Fall aus Proposition 3.22. Aus diesem konnen wir alles
ableiten, was nicht ohnehin schon in [T1] behandelt ist. Wir verwenden im weiteren
Verlauf folgende

Bezeichnung 3.23. Fiir ein Element b einer angeordneten abelschen Gruppe G
bezeichnen wir mit sgn(b) das Vorzeichen oder Signum von b, setzen also sgn(b) = 1,
falls b > 0, und sgn(b) = —1, falls b < 0 gilt. Wir verwenden spéter fiir Schnitte
dieselbe Schreibweise.

Proposition 3.24. Sei b € N\ M mit v(b) ¢ Q. Fiir den Schnitt p :==b | M gilt
dann sign(p) = sgn(b) € {£1} und G(p) = {g € M | v(b) <wv(g)}.

(i) Istv(b) > Q, so gilt G(p) = {0}, V(p) = M, G*(p) = M>° und sign*(p) = —1.
(ii) Ist v(b) < Q, so gilt G(p) = M, V(p) = M, G*(p) = M>° und sign*(p) = +1.

Sei im folgenden V' der zur Einschrinkung v|y : M — Q von v auf M gehdrende
Bewertungsring von M, das heift V- = {a € M | v(a) > 0} mit den positiven
Einheiten V*>° = {a € M>° | v(a) = 0} und dem eindeutigen mazimalen Ideal

m:=V\V*={ae M |v(a) > 0}.
(iii) Ist |[v(b)| # Q, so gilt V(p) =V und G*(p) = V*>°.

(a) Ist v(b) | Q = g~ fiir ein g € Q, so gilt G(p) = t?-V und sign*(p) = +1.
(b) Ist v(b) | Q =q" fiir ein ¢ € Q, so gilt G(p) = t?-m und sign*(p) = —1.
(c) Ist v(b) | Q frei, so gilt sign*(p) = 0.

Beweis. Wir betrachten nur den Fall b > 0. Ist b < 0, so dndert sich nur das
Vorzeichen von sign(b), alles andere bleibt aus Symmetriegriinden gleich.
Nach Proposition 3.22 gilt b = G fiir eine konvexe Untergruppe G von M. Mit
anderen Worten gilt p = b [ M = G und somit sign(p) = +1. Auch die Gleichung
G(p) ={g9 € M | v(b) < v(g)} sehen wir leicht. ,, C “: Sei g € G(p), ohne Einschrén-
kung nehmen wir ¢ > 0 an. Dann gilt 0 < g < p = p < b und mit Bemerkung 3.9
folgt v(g) > v(b). Da nach Voraussetzung v(b) ¢ Q gilt, folgt v(g) > v(b).
, 2 “Ist g € M mit v(g) > v(b), so dndert die Addition von g zu einem Element
a € M offensichtlich nichts an dessen Verhéltnis zu b, das heifit g € G(p).

(i) Betrachten wir zunédchst den einfachen Fall v(b) > Q. Dann gilt p = 0.
Sofort klar sind also die Aussagen G(p) = {0}, V(p) = M sowie G*(p) = M~°. Aus
p=1-0"=1-(M>%" =1-(G*(p))” sehen wir auch sign*(p) = —1.

(i) Ist v(b) < Q, so gilt p = +oo. Damit folgt leicht G(p) = V(p) = M und
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G*(p) = M>°. Ausp=M" =1-(G*(p))" sehen wir sign*(p) = +1.

(iii) Ist |v(b)| # Q, so ist der Schnitt £ := v(b) | Q von Q ungleich —oo oder +oo
und es gilt G(&) # Q. Da G(&) aber eine konvexe Untergruppe von (Q, +) ist, muf
G(&) = {0} gelten. Wir schreiben die Gleichung G(p) = {g € M | v(b) < v(g)} von
oben um und erhalten G(p)”° = {g € M>° | ¢ < v(g)}. Damit sehen wir G*(p) =
{a € M>° | v(a) = 0} = V*>% SchlieBlich gilt noch V(p)*> = V(G(p))*>° =
G*(G(p)*) = G*(p) = V**Y und deshalb V(p) = V.

(a) Sei £ = ¢~ mit einem ¢ € Q. Dann gilt G(p) = {g € M | £ < v(g)} =
{9 € M | ¢ < v(g)}. Daraus folgt sofort G(p) = t?- V. Denn fiir alle g € M
gilt v(%) = v(g) — v(t?) = v(g9) — ¢ > 0 genau dann, wenn g € G(p) gilt. Weiter
erhalten wir p = G(p)" =t¢-V* =17. (V*>0)+ = 4. G*(p)* und wegen t? > 0 also
sign*(p) = +1.

(b) Sei & = ¢t mit einem ¢ € Q. Dann gilt G(p) = {g € M | ¢ < v(g)}. Dies
bedeutet G(p) = t7 - m. Somit gilt p =19 -mT™ =4 (V*>0)~ =19. G*(p)~, und das
bedeutet sign*(p) = —1.

(c) Sei ¢ ein freier Schnitt von Q. Wir nehmen an, es gilt sign*(p) = 1. Dann
gibt es ein @ € M”° mit p = a-G*(p)" = a - V. Daraus folgt aber ¢ = v(a)”
und somit ein Widerspruch zur Voraussetzung. Aus der Annahme sign*(p) = —1
ergibt sich p = a - G*(p)” = a - (V**)~ = a-m™ fiir ein a € M. Dann aber gilt
¢ = v(a)" und wieder erhalten wir einen Widerspruch. Da p ein Schnitt des reell
abgeschlossenen Korpers M ist, ist auch sign®(p) = oo ausgeschlossen. Damit muf
sign*(p) = 0 gelten. O

Definition/Bemerkung 3.25. (a) Seien b, ¢ € N gegeben. b heifit ein vorderer
Abschnitt von ¢, wenn supp(c — b) > supp(b) gilt. Genau dann ist b ein vorderer
Abschnitt von ¢, wenn b = ¢ gilt auf (supp(b)*)L.

(b) Sei b € N mit unendlichem Tridger. Wir wéhlen induktiv n; := v(b) und
n; := min(supp(b)\{n1,... ,ni—1}) fiir © € N mit ¢ > 2. Damit definieren wir den

abzihlbaren vorderen Abschnitt trunc(d) : I' — R durch

b , falls v = n; fiir ein 7 € N gilt
trunc(b)(7) = { (g) sonst? °

Offensichtlich ist trunc(b) ein vorderer Abschnitt von b und hat der Triger von
trunc(b) Ordnungstyp w.

Proposition 3.26. Sei ¢ € N, und sei b € N\ M ein vorderer Abschnitt von c,
dessen Triger supp(b) vom Ordnungstyp w der natirlichen Zahlen ist. Dann hat
auch ¢ unendlichen Trager und es gilt b | M = ¢ | M. Gilt zusdtzlich trunc(c) ¢ M,
so gilt insbesondere trunc(c) = c | M.

Beweis. Sei ohne Einschriankung b < ¢. Wir nehmen an, es gibt ein a € M mit
b < a < c. Dann ist a eine Puiseuxreihe, also von der Form a = }_ . ant* fiir
ein k € N und ein ng € Z. Wegen b < a < ¢ und b = ¢ auf (supp(b)*)” gibt es ein
x € supp(a) mit x > supp(b). supp(a) ist entweder endlich oder vom Ordnungstyp
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w, also ergibt sich in beiden Féllen ein Widerspruch, da supp(b) vom Ordnungstyp
w ist. Fiir den Zusatz weisen wir darauf hin, dafl mit trunc(c) ¢ M auch ¢ ¢ M
gilt. O

Theorem 3.27. Sei R ein reell abgeschlossener Korper, I' O Q eine divisible ange-
ordnete abelsche Gruppe und N := R((t")) der zugehirige verallgemeinerte Potenz-
rethenkorper. Sei weiter P der Korper der Puiseuxreihen, M ein reell abgeschlosse-
ner Zwischenkorper

RH)CMCPCR(")=N

und v die bekannte Bewertung
v: N — T'Uoo, v(a) := min(supp(a)) (a € N).

Sei im folgenden V' der zur Einschrinkung v|y : M — Q von v auf M gehdrende
Bewertungsring von M, das heift V= {a € M | v(a) > 0} mit den positiven
Einheiten V*>° = {a € M>° | v(a) = 0} und dem eindeutigen mazimalen Ideal
m:=V\V*={ae M|v(a) >0}. Seibe N\ M mitb>0 und seip:=b| M der
von b auf M induzierte Schnitt.

(i) Ist supp(b) unendlich und gilt supp(trunc(b)) C Q, aber trunc(b) & M, so gilt
sign(p) = 0. Wir kénnen ohne Einschrinkung ein b mit Trdger supp(b) vom
Ordnungstyp w betrachten. Setzen wir & := supp(b)™ als die Oberkante von
supp(b) in Q, so ist & ungleich —oo und ungleich ¢* fiir alle ¢ € Q und es gibt
nur folgende drei Fille:

(a) Ist & = +o0, so gilt G(p) = {0}, V(p) = M, G*(p) = M>° sowie
sign*(p) = —1.

(b) Ist &€ = q~ fiir ein q € Q, so gilt G(p) =t1-V, V(p) =V, G*(p) = V*>°
sowie sign*(p) = +1.

(¢) Ist € frei, so gilt G(p) = {g € M | supp(b) < v(g)}, V(p) =V,
G*(p) = V*>0 sowie sign*(p) = 0.

(ii) Andernfalls gilt supp(b) € Q und wir setzen vy := min(supp(b)\Q). Es gilt
sign(p) = sgn(b(y0)) € {+1} und G(p) = {g € M [0 < v(g)}

(a) Ist o > Q, so gilt G(p) = {0}, V(p) = M, G*(p) = M>° und sign"(p) =
—1.

(b) Ist vo < Q, so gilt G(p) = M, V(p) = M, G*(p) = M~° und sign*(p) =
+1.

(c) Ist |v| # Q, so gilt V(p) =V und G*(p) = V*>0.
(1) Istyy | Q = q fiireinq € Q, so gilt G(p) = t4-V und sign*(p) = +1.
(2) Istvyy | Q =gt fir einq € Q, so gilt G(p) = t?-m und sign*(p) = —1.
(3) Ist vy [ Q frei, so gilt sign*(p) = 0.
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Beweis. Wir machen insgesamt dreimal eine Fallunterscheidung. Nur ein Fall fiihrt
uns zu Teil (i), die anderen behandeln wir alle in Teil (ii). Entweder ist supp(b)
endlich (und wir sind in Fall (ii)) oder unendlich. Ist supp(b) unendlich, kénnen wir
trunc(b) bilden und wir unterscheiden, ob supp(trunc(b)) C Q gilt oder nicht. Falls
nicht, sind wir in Fall (ii), falls doch, miissen wir ein drittes Mal aufspalten. Denn
falls supp(trunc(b)) C Q gilt, ist entweder trunc(b) € M oder nicht. Wir landen in
Fall (ii) beziehungsweise Fall (i).

(i) Sei also supp(b) unendlich und gelte supp(trunc(b)) C Q, aber trunc(b) ¢ M.
Nach Proposition 3.26 gilt dann p = trunc(b) | M. Daher kénnen wir ohne Ein-
schrankung von einem b mit Tréger supp(b) vom Ordnungstyp w ausgehen. Wir
befinden uns dann im Kontext von [T1] und sehen alle Rechnungen dort.

(ii) Als erstes zeigen wir, dafl hier supp(b) € Q gilt. Ist supp(b) endlich, so ist
supp(b) € Q, da nach Voraussetzung b ¢ M gilt. Auch wenn supp(b) unendlich ist
und schon supp(trunc(b)) € Q gilt, ist natiirlich auch supp(b) 2O supp(trunc(b)) nicht
enthalten in Q. Im dritten Fall, also wenn supp(b) unendlich, supp(trunc(d)) C Q
und trunc(b) € M gilt, so ist b # trunc(b) wegen b ¢ M, das heiBt es gibt ein
Element 7 € supp(b) mit v > supp(trunc(b)). Da trunc(b) als Element von M eine
Puiseuxreihe ist, ist supp(trunc(b)) unbeschréinkt in Q und somit gilt v > Q. Dies
zeigt auch hier supp(b) Z Q.

Es gilt also supp(b) € Q und wir setzen 7y, := min(supp(b)\Q). Wir kénnen nun
b als eine Summe b = a + b’ schreiben, wobei a € M und v(b') = vy ¢ Q gilt. Wir
setzen némlich a 1= Y )05, 0(7)17 und V' := b—a. Dann sehen wir leicht, daf
a € M und auch v(b') = vy ¢ Qgilt. Esfolgt p=0 M = (a+b') | M =a+(b' | M).
Dann ist p also ein Translat eines der Schnitte, die wir in Proposition 3.24 vollsténdig
behandelt haben, und da alle Aussagen nur von der Invarianzgruppe abhéngen, folgt
die Behauptung nach dieser Proposition. O

Wir veranschaulichen Theorem 3.27 mittels der nachfolgenden Tabelle. Befinden wir
uns in der Situation des Theorems, so kénnen wir leicht ablesen, welche Signaturen
von p und p in Abhéngigkeit von supp(b) auftreten. Wie im Text des Theorems
bezeichnen wir mit 7 das Minimum von supp(b) \ Q, falls dieses existiert. Die Fille
sign(p) gleich +1 und —1 koénnen wir zusammenfassen, da sich aus Symmetrie-
griinden jeweils einer sofort aus dem anderen ergibt. Wir weisen noch darauf hin,
daB der Fall sign(p) = 0 und sign*(p) = —1 nur fiir einen dichten Schnitt p moglich
ist, also nur wenn p frei ist und p = 0" gilt.
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Veranschaulichung der Signaturaussagen aus Theorem 3.27

sign(p) | sign®(p) || supp(b) supp(b) unendlich
endlich | supp(trunc(b)) supp(trunc(b)) € Q
ZQ trunc(b) € M | trunc(b) ¢ M
+1 Yo < Q oder vy | Q = ¢~ fiir ein ¢ € Q —
sgn(b(vo)) 0 Yo | Q freier Schnitt von Q -
-1 Yo > Q oder vy | Q = ¢ fiirein g € Q —
1 B supp(trunc(b))™ =
=q fireingeQ
0 0 B supp(trunc(b))™
freier Schnitt von Q
supp(trunc(b))™ =
-1 — = +00g (nur moglich,
wenn p = 07 gilt)
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4. Addition von Schnitten

4.1. Die Addition von Schnitten mittels Paaren zweier Schnit-
te

Im folgenden definieren wir fiir (echte) Schnitte einer angeordneten abelschen Grup-
pe G eine Addition. Fiir zwei echte Schnitte p und ¢ von G bilden wir intuitiv das
Paar (p* + ¢b, pf + ¢f). Zwar gilt dann p* + ¢& < pf + ¢, doch liefert dies im
allgemeinen keinen Schnitt von G. Betrachten wir zum Beispiel den Schnitt p := 17
von Z, so ist (p=+pl, pft+pft) = ({2 < 2}, {z > 4}) kein Schnitt von Z. Wir erhalten
jedoch zu zwei echten Schnitten kanonisch zwei Schnitte und machen folgende

Definition 4.1. Sei G eine angeordnete abelsche Gruppe. Seien p und ¢ echte
Schnitte von G. Dann definieren wir die zwei Schnitte

P+ Qs = GF+d) ={z+y|lr<py<qg} und
P+ Dyeatss = @F+) ={e+ylae>p y>q}.

Bemerkung 4.2. In Definition 4.1 beschrinken wir uns auf echte Schnitte. Zwar
konnten wir diese Definition der Addition von Schnitten in naheliegender Weise
auch auf unechte Schnitte ausdehnen. Dies wiirde jedoch einige Fallunterscheidun-
gen und damit deutlich gréfleren formalen Aufwand mit sich bringen. Da unser
Hauptaugenmerk zudem ohnehin der Addition von Schnitten mittels realisierender
Obergruppen und Oberkorper in Abschnitt 4.2 gilt, verzichten wir auf diese unwe-
sentliche Verallgemeinerung.

Natiirlich gilt in der Situation von Definition 4.1 immer (p + ¢) ;s < (P + @) roepie- 11
allgemeinen mufl aber keine Gleichheit gelten. Wir fithren dazu ein einfaches Beispiel
an, das auch mit einer divisiblen angeordneten abelschen Gruppe funktioniert. Eine

noch allgemeinere Aussage werden wir in Proposition 4.7 machen.

Beispiel 4.3. Sei {0} C G eine angeordnete abelsche Gruppe und a € G ein beliebi-
ges Element von G. Dann gilt

(@™ +0 )y =a <a<a"=(a"+0")

rechts”

Beweis. (a=+0") . ={z+y|lz<a,y<0t}r ={z+0|z<a}t =a".
Ebenfalls schnell sehen wir die rechte Gleichheit. Es gilt
(a= +07) ={z+yle>a,y>0"}y ={z+ylez>a y>0} =

={a+yly>0} ={z|z>a} =a".

rechts

0l

Falls wie in Beispiel 4.3 linker und rechter Schnitt nicht iibereinstimmen, machen
wir folgende Beobachtung, die zwar direkt aus der Definition folgt, aber trotzdem
fiir manche Beweise niitzlich ist.
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Bemerkung 4.4. Seien G eine angeordnete abelsche Gruppe und p < ¢ zwei echte
Schnitte von G. Weiter sei g € G mit (p+ ¢) e < 9 < (0 +¢q) Dann gilt fiir
alle x € G-

rechts”

(i) Ist z < p, so gilt g — = > q.
(i) Istp<ax<gsogiltp<g—x<gq.
(iii) Ist x > ¢, so gilt g — = < p.

Wie wir gesehen haben, stimmen in der Situation von Definition 4.1 der linke und
rechte Schnitt im allgemeinen nicht iiberein. Wir kénnen uns allerdings auf die Be-
trachtung eines Schnittes aus diesem Paar beschrianken, denn der andere 148t sich
dann sofort elementar berechnen.

Proposition 4.5. Seien G eine angeordnete abelsche Gruppe und p und q echte
Schnitte von G. Dann gilt

(p+ q)rechts = _(_p + (_q))links und
(p + Q)links = _(_p + (_Q))rechts'
Beweis. Wir zeigen fiir die erste Behauptung die Gleichheit der rechten Halften.
R L
(=P + (D] = = (=2 + (=0 i
=—{rtyle<-py<-g={-r-ylez<-py<-—q¢=
={ztyle>py>a} =0+ ean)™

Damit folgt auch die zweite Behauptung, da (—p + (—¢)),eans = — (P + @) jiure 8ilt-
U

Bezeichnung 4.6. Seien G eine angeordnete abelsche Gruppe und p und ¢ echte
Schnitte von GG. Dann schreiben wir

(P = Dinks = @+ (=0)tings 1A (P = @) oenis = (P + (=) rechis-

Proposition 4.7. Sei G eine angeordnete abelsche Gruppe und p ein echter Schnitt
von G. Dann gilt

(p _p)links = _ﬁ < ﬁ = (p _p)rechts'

Beweis. Wir zeigen zunéchst die zweite Gleichheit, die erste folgt dann sofort. Direkt
sehen wir folgende Darstellung von (p — p)

(p - p)rechts = (p + (_p))rechts =
={z+yle>py>-p} ={rx—ylax>p y<p} .

rechts®

Hiermit zeigen wir {x —y |z > p, y <p} = p., < “: Sei z > p. Dann existieren
nach Definition ein y < p und ein x > p mit y + z = x. Deshalb folgt sofort
z=x—y>{x—y|x>p,y<p} .Auch die Abschitzung , > “ folgt schnell aus
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der Definition. Sei z > {z —y |z > p, y < p} , dann gibt es Elemente x > p und
y<pmitz>z—y Esgilt y+2>y+2x—y =2 > pund somit muBl z > G(p)
oder z > p gelten. Die Behauptung (p — p), .. = D ist bewiesen.

Die erste Behauptung folgt jetzt sofort anhand Proposition 4.5. Denn es gilt

(p - p)llnks = (p + (_p)>l1nks = _<_p +p)rechts - _(p - p)rechts - _ﬁ l:‘
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4.2. Die Addition von Schnitten mittels realisierender Ober-
gruppen und Oberkorper

Die Definition der Addition von Schnitten in Abschnitt 4.1 ist intuitiv und elementar
durchfiihrbar, bereitet allerdings auch einige Probleme. Zum einen mufl man die De-
finition erweitern, wenn man auch nichtechte Schnitte beriicksichtigen will. Dies ist
zwar moglich, aber erscheint uns zu umstéandlich. Zum anderen ist diese Definition
fiir die Bildung mehrfacher Summen ungeeignet, da wir beim 6fteren Hintereinan-
derausfiithren der Addition immer zwischen einem linken und einem rechten Schnitt
unterscheiden miissen und sich somit pro Addition die Zahl der involvierten Schnitte
verdoppelt. SchliefSlich benotigen wir bei Rechnungen sténdig Fallunterscheidungen,
die uns nach einer alternativen Herangehensweise an das Problem suchen lassen.
Einen Ausweg finden wir in den realisierenden Obergruppen beziehungsweise rea-
lisierenden Oberkoérpern. Wir werden diese im Abschnitt 4.2.1 zunéchst definieren
und zeigen, daf} sie mit unserem Setting aus Kapitel 1 vertriglich sind, das heifit mit
wichtigen Invarianten eines Schnittes p eines angeordneten Korpers wie den Invari-
anzgruppen G(p) und G*(p), dem Invarianzbewertungsring V' (p) und den Mengen
J(p) und I(p). Danach erkldren wir in Abschnitt 4.2.2 mit Hilfe der realisierenden
Obergruppen beziehungsweise Oberkorper eine brauchbare Addition von Schnitten
und untersuchen den Zusammenhang mit der Addition aus Abschnitt 4.1.

4.2.1. Einfithrung von realisierenden Obergruppen und Oberkorpern

Definition 4.8 (Realisierende Obergruppe). Sei G eine angeordnete abelsche Grup-
pe. Eine angeordnete abelsche Obergruppe €2 O G heifit realisierend, wenn in (2
alle Schnitte von G realisiert sind.

Bemerkung 4.9. Fiir die Existenz einer realisierenden Obergruppe €2 zu einer ange-
ordneten abelschen Gruppe G verweisen wir auf Proposition 4.21.

Definition/Bemerkung 4.10. Sei GG eine angeordnete abelsche Gruppe, L O G
eine angeordnete abelsche Obergruppe und p ein Schnitt von G. Dann schreiben wir

Realy(p) :={a € L|akEp}

fiir die Menge aller Realisierungen von p in L. Realy(p) ist eine konvexe Teilmenge
von L und es gilt Real,(—p) ={a € L|afE —p}={a e L| —pt<a< —pl}=
—{a e L|pl<a<ptt=—RealL(p).

Definition 4.11. Sei GG eine angeordnete abelsche Gruppe und €2 O G eine reali-
sierende Obergruppe. Dann definieren wir die Abbildung

e: DC(G) — CT(QQ) := {konvexe Teilmengen von 2}

[ Az} furz e @
e(r) = { Realg(x) ={a € Q| a Ex} , fiir x € Cuts(G).
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Betrachten wir einen Schnitt p einer angeordneten abelschen Gruppe G mittels ei-
ner realisierenden Obergruppe 2 O G, fragen wir in diesem Kontext nach einer
Entsprechung fiir die Invariante G/(p). Wir machen folgende

Definition 4.12 (Q2-Invarianzgruppe). Sei G eine angeordnete abelsche Gruppe,
2 O @ eine realisierende Obergruppe und p ein Schnitt von G. Wir definieren die
Q-Invarianzgruppe von p als

Ga(p) ={w e Q]w+e(p) ==p)}

Proposition 4.13. Sei G eine angeordnete abelsche Gruppe, 2 O G eine realisie-
rende Obergruppe und p ein Schnitt von G. Dann ist Go(p) eine konvexe Untergruppe
von ) und es gilt

Ga(—p) = Ga(p).

Beweis. Natiirlich gilt 0 € Gq(p). Fiir Elemente wy, ws € Gq(p) gilt wy + e(p) =
£(p) = wy + ¢(p). Daraus folgt (w1 — w2) + &(p) = e(p) und somit w; — wy € Ga(p).
Zum Nachweis der Konvexitdt wihlen wir Elemente 0 < ov < w mit w € Gg(p). Sei
v€Ee(p),dann gilt y < a+y<w+vy€e(p)undy>v—a>v—w € (p). Wegen
der Konvexitét von e(p) gilt also a4+ € e(p) und y—a € €(p). Da v € ¢(p) beliebig
war, folgt a + ¢(p) = e(p), und das zeigt o € Gq(p).

Da e(—p) = —&(p) gilt und fiir alle w € © genau dann w +£(p) = e(p) gilt, wenn
w —e(p) = —¢(p) gilt, folgt Ga(p) = Ga(—p). O

Bemerkung 4.14. Zu jedem Schnitt p einer angeordneten abelschen Gruppe G mit
realisierender Obergruppe €2 O G existiert stets eine kleinste und eine groite Erwei-
terung von p auf Q, und zwar ist £(p)~ die kleinste und e(p)* die groBte Erweiterung
von p auf €.

Lemma 4.15. Sei G eine angeordnete abelsche Gruppe, C C G eine konvezxe Teil-
menge von G und g € G. Dann sind dquivalent:

(a) g+C=C
(b) geGCT)NG(CT)

Beweis. Sei ohne Einschrankung g > 0. ,,(a)=-(b)“: Fur alle z < C~, also alle z < C,
gilt g+ z < g+ C = C, demnach gilt g € G(C~) nach Lemma 1.11. Fiir alle c € C
gilt g+ ¢ € g+ C =C und damit g + ¢ < C*. Mit Lemma 1.16 folgt g € G(CT).

»(b)=(a)“: Sei g € G(C7)NG(CT) und ¢ € C. Dann gilt C~ < cund ¢ < CT, also
auch C~ < g+cund g+ ¢ < C*. Mit der Konvexitiat von C folgt g+ ¢ € C. Wegen
—g € G(CT)NG(CT) gilt auch —g +c € C. O

Korollar 4.16. Sei: G eine angeordnete abelsche Gruppe, 2 O G eine realisierende
Obergruppe und p ein Schnitt von G. Seien q := e(p)” und r := (p)* die kleinste
und die gréfste Erweiterung von p auf ). Dann gilt

Ga(p) = G(q) NG(r).
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Genauer gilt

Gao(p) =G(q) , falls sign(p) = +1,
Ga(p) = G(r) , fallssign(p) = —1, und

Gao(p) = G(q) = G(r) , falls sign(p) € {0,000} gilt.

Beweis. Dal Gq(p) = G(q) N G(r) gilt, ist die direkte Folge von Lemma 4.15, an-
gewandt auf die konvexe Menge C' = £(p). Damit lesen wir den Rest mit Hilfe von
Proposition 1.32 (iv)-(vii) ab. O

Proposition 4.17. Sei G eine angeordnete abelsche Gruppe, 2 O G eine realisie-
rende Obergruppe und p ein Schnitt von G. Dann gilt

Ga(p) NG = G(p).

Dariiberhinaus liegt Go(p) extremal iiber G(p), das heifst Go(p)™ ist die kleinste oder
grofste Erweiterung von G(p)*.

Beweis. Wir betrachten wieder ¢ := &(p)” und r := &(p)*, die kleinste und die
groBte Erweiterung von p auf Q. Dann gilt nach Korollar 4.16 Gq(p) = G(¢) N G(r).
Da G(q) und G(r) beides konvexe Untergruppen von {2 sind, ist Go(p) gleich G(q)
oder G(r). Damit ist Gq(p)* gleich ¢ oder 7, also nach Proposition 1.32 (ii) die
kleinste oder grofite Erweiterung von p = G(p)* auf Q. Da natiirlich auch Gg(p)~
Erweiterung von —p auf Q ist, liegt G (p) iiber G(p). O

Nachdem wir den Begriff der realisierenden Obergruppe eingefiihrt haben, definie-
ren wir im folgenden entsprechend im Korperfall einen realisierenden Oberkérper.
Anschlielend werden wir in Proposition 4.21 einen solchen explizit konstruieren.

Bezeichnung 4.18. Sei K ein angeordneter Koérper. Dann bezeichnen wir den re-
ellen Abschlufl von K mit K oder mit rcl(K).

Definition 4.19 (Realisierender Oberkorper). Sei K ein angeordneter Korper. Ein
angeordneter Oberkdrper 2 O K heifit realisierend, wenn in () alle Schnitte von
K realisiert sind.

Bemerkung 4.20. Ist K ein angeordneter Korper und 2 ein realisierender Ober-
korper, so ist insbesondere (€2, +) eine realisierende Obergruppe von (K, +) und
(279, .) eine realisierende Obergruppe von (K~Y,-).

Bis jetzt haben wir realisierende Obergruppen und Oberkorper zwar definiert, aber
noch nicht ihre Existenz nachgewiesen. Dies holen wir nach in der folgenden

Proposition 4.21. Sei K eine angeordnete abelsche Gruppe oder ein angeordneter
Korper. Dann existiert eine divisible realisierende Obergruppe beziehungsweise ein
reell abgeschlossener realisierender Oberkorper K von K.
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Beweis. Wir beschrinken uns auf den Fall eines angeordneten Kérpers K. Fiir eine
angeordnete abelsche Gruppe K konnen wir ganz analog verfahren.

Wir konstruieren also einen realisierenden Oberkorper von K und miissen dann
nur noch den reellen Abschlufl bilden. Sei zunéchst R der reelle Abschlul von K.
Wir definieren eine Menge von Variablen 7" := {t¢ | £ € Cuts(R)}. Fiir alle T, C T
sei

R(Tp) = {§ | f,9 € Rlt1,... ,tx) mit k € N, t; € To und g # 0}.

Weiter setzen wir
S :={(Tp,P) | Ty C T, P Anordnung von R(1j) mit t¢ = ¢ fiir alle ¢, € Tp}.

Wir erhalten eine partielle Ordnung von S, indem wir fiir alle (7o, P), (13, P') € S
definieren
(Ty, P) < (T, P') & Ty € Ty und P’ setzt P fort.

Wir konnen das Lemma von Zorn anwenden und erhalten ein maximales Element
(T,P) € S. Dann muB aber T = T gelten. Denn angenommen, es existiert ein
te € T\ T, dann wihlen wir einen beliebigen Schnitt n des angeordneten Korpers
(R(T), P) iiber &, zum Beispiel die kleinste Erweiterung von £ auf R(T). Wir wihlen
eine Realisierung ¢ von 7 in (R(T))(t) = (T U {t}) mit einer Anordnung, die
P fortsetzt. Wegen t = n und folglich ¢t = n | R = ¢ konnen wir ¢ auch in te
umbenennen und erhalten damit einen Wlderspruch zur Maximalitit von (7', P).

Wir definieren also K als den reellen AbschluB von R(T): K := R(T). O

Meistens werden wir zu einer angeordneten abelschen Gruppe oder einem angeord-
neten Korper K von einer realisierenden Obergruppe beziehungsweise einem reali-
sierenden Oberkorper 2 O K nur die Eigenschaft von ) benétigen, dafl in € alle
Schnitte von K realisiert sind. Manchmal brauchen wir aber auch Obergruppen
beziehungsweise Oberkorper von K mit einer starkeren Eigenschaft. Sie muf sicher-
stellen, dafl wir Schnitte in einer Oberstruktur realisieren kénnen, dann nochmals
Schnitte dieser Oberstruktur in einer zweiten Erweiterung realisieren kénnen und
dennoch eine noch groflere Oberstruktur nicht verlassen. Wir nutzen diese Eigen-
schaft im Beweis von Proposition 4.40. Formuliert und bereitgestellt wird sie in der
folgenden

Proposition 4.22. Sei K eine angeordnete abelsche Gruppe oder ein angeordneter
Koérper. Dann existiert eine divisible angeordnete abelsche Obergruppe beziehungs-
weise ein reell abgeschlossener Oberkérper 2 O K, so daf$ die Ordnung von ) die
Ordnung von K fortsetzt und Q) die folgende Eigenschaft (ZE) besitzt:

Ist K' O K eine angeordnete abelsche Gruppe mit dimg_vg(dh(K’)/dh(K)) < oo
beziehungsweise ein angeordneter Korper mit Transzendenzgrad trdeg(K'/K) < oo
und ist T K' 55 Q eine Ordnungseinbettung, dann existiert fir jede weitere ange-
ordnete abelsche Gruppe K" O K' mit dimg_vgr(dh(K")/dh(K")) < oo beziehungs-
weise fiir jeden weiteren angeordneten Kérper K" O K' mit trdeg(K”/K') < oo
eine Ordnungseinbettung 7 : K" — ), die T fortsetzt.
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Beweis. Wieder fiihren wir den Beweis fiir den Fall eines angeordneten Korpers K.
Fiir eine angeordnete abelsche Gruppe K erhalten wir die gewiinschte Eigenschaft
nach demselben Prinzip.

Zu K haben wir nach Proposition 4.21 einen reell abgeschlossenen Oberkorper
K D K, dessen Anordnung die von K fortsetzt und in dem alle Schnitte von K
realisiert sind. Wir definieren iterativ

— e~ —

QW = (K), Q0 = (Q@-D) (n > 2).

Damit definieren wir den reell abgeschlossenen Kérper Q := (J, oy Q) und zeigen,
daB dieser Korper die gewiinschte Eigenschaft besitzt. Seien also Korpererweiterun-
gen K'/K und K" /K’ gegeben mit trdeg(K'/K) < oo und trdeg(K”/K') =: n < oo.
Sei weiterhin 7 : K’ =5 Q eine Ordnungseinbettung. Da mit K’/K auch K'/K von
endlichem Transzendenzgrad ist, existiert ein m € N mit 7(K’) C Q™. Wir zeigen
mit Induktion nach n die Existenz einer Ordnungseinbettung 7* : K — Q(m+7) C Q,
die 7 fortsetzt.

n = 1: Dann existiert ein a; € K” mit K” = K'(a;). Da Q™ reell abgeschlossen
ist, existiert nach [KS], Kap. I, §11, Theorem 1, S. 44, genau ein ordnungstreuer

Homomorphismus
7K — QM)

der 7 fortsetzt. Nach [KS|, Kap. II, §9, Korollar 2, S. 81, entspricht die Anord-
nung von K'(a;) genau einem Schnitt ¢ von K'. Mittels 7 erhalten wir aus ¢ den
Schnitt 7 = (F(¢¥))* von Q). In Q™) sind nach Definition alle Schnitte von
Q™ realisiert, also kénnen wir ein ¢, € QY wiihlen mit ¢, = 7. Wir definieren

7 F(O&l) — Qm+D)

T =7, T'(aq) == t,.

Wieder mit [KS], Kap. I, §11, Theorem 1, S. 44, existiert genau ein ordnungstreuer
Homomorphismus 7* : rcl(K’(ay)) = K” — QU+ der 7/ fortsetzt. Nach Konstruk-
tion setzt 7* dann 7 fort.

n — n+1: Seien ay, ..., € K" mit K” = K'(ay, ... ,apy1). Nach Induktions-
voraussetzung existiert bereits eine Ordnungseinbettung

o K'(ay,... o) — Q)

die 7 fortsetzt. Wieder nach [KS|, Kap. I, §11, Theorem 1, S. 44, haben wir genau
einen ordnungstreuen Homomorphismus

g K'(ay,...,ap) — Qm+n)

der o fortsetzt. Auch hier entspricht der Anordnung von K'(ay,... ,a,)(an41) ein
Schnitt € von K'(aq,. .. ,a,) und mittels & erhalten wir den Schnitt n := (5(£5))*
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von Qmtn) Tp Qm+n+1) gind alle Schnitte von Q™™ realisiert. Wir finden demnach
ein ¢, € QU+ mit ¢, =1 und definieren

T K’(Oél, ce ,Oén>(Oén+1) — Q(m+n+1)

e = 0 Hana) =1y,

Bk

Wie vorher existiert dann genau ein ordnungstreuer Homomorphismus

T rCI(K/(alv s 7an)<an+1)) = W - Qm-}-n-i-l’
der 7 und damit 7 fortsetzt. O

Ist K ein angeordneter Korper mit realisierendem Oberkorper 2 O K, so betrachten
wir geméf Definition 4.11 die Einbettung ¢ : DC(K) — CT(9Q).

Proposition 4.23. Sei K ein angeordneter Korper, 2 O K ein realisierender Ober-
korper und p ein Schnitt von K. Sei ¢ : DC(K) — CT(Q2) die Einbettung aus
Definition 4.11. Dann gilt fiir alle a € K>° und alle b € K

e(ap +b) = as(p) +b.
Auferdem gilt
e(—p) = —&(p)-
Fiir alle ¢, d € Q>° gilt
(c+d)e(p) = ce(p) + de(p).
Beweis. Fiir alle a € K~° und alle b € K gilt
elap+b)={aeQ|aEap+b} =
—{aeQ|(ap+b) <a<@+b)Y={acQ|ap*+b<a<ap®+b} =
=a-{acQ|pr<a<p®+b=as(p)+0.

Die zweite Behauptung haben wir bereits in Definition/Bemerkung 4.10 gesehen.
Wir zeigen noch die letzte Aussage. Seien dafiir ¢, d € Q7°. Die Inklusion ,, C “

ist trivial. , D “: Selen a; < as € &(p). Dann gilt mit a3 := % natiirlich
cay + dag = (¢ + d)as. Da a; = craa + c%dal < cHa + j‘ldag = a3 < ay gilt und
e(p) konvex ist, gilt auch as € £(p). O

Wir haben fiir einen Schnitt p einer angeordneten abelschen Gruppe G mit realisie-
render Obergruppe 2 O G mit Gq(p) bereits eine Entsprechung fiir die elementare
Invariante G(p) von p gefunden. Im folgenden fithren wir im Falle eines Schnittes
p eines angeordneten Korpers auch Entsprechungen fiir die weiteren Invarianten
G*(p), V(p), J(p) und I(p) ein. Wir untersuchen dabei jeweils den Zusammenhang
zwischen diesen alten Invarianten und ihren neuen Entsprechungen.
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Definition 4.24 (Multiplikative Q-Invarianzgruppe). Sei K ein angeordneter Kor-
per, O K ein realisierender Oberkorper und p ein Schnitt von K. Wir definieren
die multiplikative (2-Invarianzgruppe von p als

Gop) ={weQ|w-e(p) =<c(p)}

Bemerkung 4.25. Sei K ein angeordneter Korper, €2 O K ein realisierender Ober-
korper und p ein Schnitt von K. Dann ist G§(p) eine konvexe Untergruppe von

(€27°,) und wegen e(—p) = —e(p) gilt Go(—p) = G4(p).

Proposition 4.26. Sei K ein angeordneter Korper, 2 O K ein realisierender Ober-
kéorper und p ein Schnitt von K. Seien q := e(p)~ und r := e(p)* die kleinste und
die grofite Erweiterung von p auf 2. Dann gilt

Galp) = G () NG*(r).
Ist p > 0, so gilt genauer

Golp) =G*(q) , falls sign™(p) = +1,
Go(p) = G*(r) , falls sign*(p) = —1, und
Go(p) = G*(q) = G*(r) , falls sign*(p) € {0,000} gilt.
Beweis. Fir p > 0 ist die Aussage gerade die multiplikative Version von Korollar

4.16. Ist p < 0, so gilt nach Bemerkung 4.25 und dem positiven Fall G§(p) =
Go(=p) =G (=) NG (—r) = G*(q) N G*(r). O

Proposition 4.27. Sei K ein angeordneter Kdorper mit realisierendem Oberkérper
Q DO K. Seip ein Schnitt von K. Dann gilt

Go(p) N K =G*(p).

Dariiberhinaus liegt G (p) extremal iber G*(p), das heifst G&(p)™ ist die grifite oder
kleinste Erweiterung von G*(p)™.

Beweis. Da offensichtlich G§(p) > 0 gilt, ist die Behauptung fiir p > 0 die multi-
plikative Version von Proposition 4.17. Da aber sowohl G§&(—p) = G§(p) als auch
G*(—p) = G*(p) gilt, gilt die Behauptung auch fiir negative Schnitte p < 0. O

Definition 4.28. Sei K ein angeordneter Korper, {2 O K ein realisierender Ober-
koérper und p ein Schnitt von K. Wir definieren den (2-Invarianzbewertungsring
von p als

Va(p) == V(Ga(p)) = {w € Q] w-Galp) € Galp)}-

Lemma 4.29. Sei K ein angeordneter Korper, 0 O K ein realisierender Ober-
korper und p ein Schnitt von K. Seien q := e(p)~ und r := (p)* die kleinste und
die grifste Erweiterung von p auf 2. Dann gilt

Valp) =V(q) , fallssign(p) = +1,
Va(p) = V(r) , falls sign(p) = —1, und
Valp) =V(g) =V(r) , fallssign(p) =0 gilt.
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Beweis. Mit Hilfe von Korollar 4.16 und Proposition 1.44 kénnen wir die positiven
Einheiten von Vi (p) berechnen als

Va(p)=" = V(Ga(p))~" = G*(Ga(p)*) = G*([G(g) N G(r)]*).

Ist sign(p) = +1, so gilt Vo(p)*? = G*(G(q)") = V(¢)*>? ist sign(p) = —1, so
gilt Va(p)*° = G*(G(r)") = V(r)*>? und gilt sign(p) = 0, so gilt Vo(p)*° =
V(g)*>°® = V(r)*>%. Je nach Signatur von p folgt damit Vo(p)t = (Va(p)*°)* =
(V(q)=°)* =V(g)* oder Va(p)" = (V(r)*°)" = V(r)*". Da Va(p), V(q) und V(r)
konvexe Untergruppen von €2 sind, folgt mit Lemma 1.8 die Behauptung. 0

Proposition 4.30. Sei K ein angeordneter Korper, 2 O K ein realisierender Ober-
korper und p ein Schnitt von K. Dann gilt

Va(p) N K =V (p).

Dariiberhinaus liegt Vo(p) extremal iber V (p), das heifit Vo(p)™ ist die grifite oder
kleinste Erweiterung von V (p)*.

Beweis. Seien q := ¢(p)” und r := £(p) ™ die kleinste und die grofte Erweiterung von
p auf 2. Nach Lemma 4.29 ist Vi(p) gleich V(q) oder V (r). Sei ohne Einschrankung
Va(p) = V(q). Dann gilt Vo(p)™ =V (¢)" = (V(q)*")" = G*(¢)*. Da ¢ die kleinste
Erweiterung von p ist, ist nach Proposition 1.32 (ii) ¢ die kleinste oder grofite Er-
weiterung von p auf 2. Wenden wir denselben Satz nochmal multiplikativ auf p und
¢ an, so erhalten wir, daB G*(§)" = Vq(p)™ die kleinste oder grofite Erweiterung
von G*(p)* = V(p)* ist. Da natiirlich auch Vq(p)~ eine Erweiterung von V(p)~ ist,
liegt Vo (p) iber V (p). O

Definition 4.31. Sei K ein angeordneter Korper, 2 O K ein realisierender Ober-
korper und p ein Schnitt von K. Dann definieren wir

Ja(p) :={w € Q7% | G&(p) = wGq(p) + 1} und
1

Ia(p) == Ta)’

Bemerkung 4.32. Sei K ein angeordneter Korper, 2 O K ein realisierender Ober-
korper und p ein Schnitt von K. Dann sind Jo(p) und Ig(p) konvex und es gilt

Ja(=p) = Ja(p) und Io(—p) = Ia(p).

Lemma 4.33. Sei K ein angeordneter Korper, 2 O K ein realisierender Oberkdrper
und p ein Schnitt von K mit |p| > p. Seien weiter q := e(p)” und r := e(p)* die
kleinste und die grofite Erweiterung von p auf 2. Dann gilt

Ja(p) = J(q) oder Jo(p) = J(r) sowie
Io(p) = 1(q) oder Io(p) = I(r).
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Genauer gilt

Ja(p) = J(q) ., falls sign(p) = 1,
Jo(p) = J(r) , fallssign(p) = —1, wund

Jo(p) = J(q) = J(r) , falls sign(p) =0 gilt.

Beweis. Sei zundchst p > 0. Nach Theorem 3.5 gilt sign(p) = sign*(p). Nach Korollar
4.16 und Proposition 4.26 erhalten wir folgende Fallunterscheidung.
Ist sign(p) = sign*(p) = +1, so gilt Go(p) = G(q) und G§(p) = G*(¢) und somit

Ja(p) = {w € Q7 | G (p) = wGa(p) + 1} = {w | G*(q) =wG(q) + 1} = J(q).
Ist sign(p) = sign*(p) = —1, so gilt Go(p) = G(r) und G§(p) = G*(r) und somit
Ja(p) = {w € X" | Go(p) = wGalp) + 1} = {w | G*(r) = wG(r) + 1} = J(r).

Ist sign(p) = sign*(p) = 0, so gilt Ga(p) = G(q) = G(r) und Gy (p) = G*(q) = G*(r)
und somit

Jo(p) = {w € Q7| G4(p) = wGal(p) + 1} = J(q) = J(r).

Nun betrachten wir einen Schnitt p < 0. Da ¢ und r die kleinste und die gréfite
Erweiterung von p auf € sind, sind natiirlich —r die kleinste und —q die grofite Er-
weiterung von —p auf 2. Da Jg und J nicht vom Vorzeichen des jeweiligen Schnittes
abhéngen, erhalten wir auch hier unsere behauptete Darstellung von Jo(p). Da die
Aussage iiber Ig(p) trivialerweise aus der iiber Jo(p) folgt, ist damit das Lemma
bewiesen. O

Proposition 4.34. Sei K ein angeordneter Korper, 0 O K ein realisierender Ober-
kérper und p ein Schnitt von K mit |p| > p. Dann gilt

Jo(p) N K = J(p) und Iq(p) N K = I(p).

Beweis. Wir kénnen uns auf einen positiven Schnitt p > p beschrénken, da Jo(p),
Io(p), J(p) und I(p) alle unabhéngig vom Vorzeichen von p sind. Weiter geniigt es,
nur Io(p)NK = I(p) zu zeigen, da die Aussage fiir Jo(p) dann sofort nach Definition
klar ist.

Seien ¢ := (p)” und r := e(p)* die kleinste und die grofte Erweiterung von p
auf Q. Nach Lemma 4.33 gilt Io(p) = I(q) oder Ig(p) = I(r). Wir nehmen ohne
Einschrankung Io(p) = I(q) an, das heift nach dem Zusatz von Lemma 4.33, daf§
sign(p) # —1 gilt. Dann folgt nach Lemma 4.29 auch Vo (p) = V(q). Da g = €(p)~
die kleinste Erweiterung von p ist und Io(p) = I(q) nach Proposition 2.12 eine
Umgebung von ¢ ist, finden wir ein ¢ € Io(p) N K. Fiir dieses gilt dann nach Lemma
2.10 Ig(p) = c¢-V(q)**" = ¢-Vo(p)*>°. Nun sind wir aber fertig, da nach Proposition
4.30 Vo(p)NK = V(p) und damit auch fiir die Einheiten Vo (p)*°NK = V (p)*>? gilt.
Es folgt Io(p) N K = (c-Va(p))NK = (Va(p)*”"NK) = c-V(p)~°* = I(p). O
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4.2.2. Die Addition von Schnitten mittels realisierender Obergruppen
und Oberkorper

In Abschnitt 4.2.1 haben wir realisierende Obergruppen und Oberkorper eingefiihrt
und durch Definition entsprechender Invaianten den Zusammenhang mit unserem
Setting aus Kapitel 1 hergestellt. Nun zeigen wir, wie wir mit Hilfe dieser realisieren-
den Oberstrukturen eine Addition von Schnitten angeordneter abelscher Gruppen
oder angeordneter Korper definieren konnen. Mittels der Abbildung ¢ aus Definition
4.11 ordnen wir jedem Schnitt einer angeordneten abelschen Gruppe G eine konvexe
Teilmenge einer realisierenden Obergruppe 2 O G zu. In ) kénnen wir zwei konvexe
Teilmengen im Sinne der folgenden Proposition ,addieren®.

Proposition 4.35. Seir G eine angeordnete abelsche Gruppe. Sind C;, D C G kon-
veze Teilmengen von G, so ist auch die Teilmenge C +D = {c+d|ce C,d e D}
von G konvex.

Beweis. Sei g € G. Seien weiter c1, ¢ € C, dy,dy € D mit ¢ +dy < g < ¢ + do.
Wir zeigen, dal g € C' + D gilt.

1. Fall (¢1 > ¢9, dy > dy): Dann folgt ¢; +dy > ¢y + dy, dieser Fall ist ausgeschlossen.
2. Fall (¢; > ¢9, dy < dy): Dann gilt dy < g —¢; < dy + ¢3 — ¢ < dy und es folgt
g —c1 € D aufgrund der Konvexitdt von D.

3. Fall (¢; < ¢g, di > dy): Dann gilt ¢; < g —dy < ¢co +dy — d; < ¢o und es folgt
g — d1 eC.

4. Fall (¢1 < ¢9, dy < dy): Dann gilt

cp+di<cotdi<cot+dound ¢y +dy < ¢ +dy < o+ ds.

Ohne Einschrinkung sei ¢; + dy < ¢ + dy. Wir erhalten drei Unterfélle:

A) ey +dy < g<c+dy Dann gilt dy < g — ¢ < dy und somit g — ¢ € D.

B) o +dy < g < g+ dy. Dann gilt dy < g — ¢o < dy und folglich g — ¢5 € D.
C)ep4dy <g<cotdy. Danngilt ¢ < g—dy < co+dy—dy < cound g—dy € C. [0

Damit kénnen wir Schnitte von angeordneten abelschen Gruppen addieren, indem
wir sie als konvexe Teilmengen einer realisierenden Obergruppe auffassen und dann
die Summe dieser Mengen bilden. Exakt gesprochen machen wir folgende

Definition 4.36. Sei G eine angeordnete abelsche Gruppe mit realisierender Ober-
gruppe 2 O . Wir definieren die Abbildung +¢

+q : Cuts(G) x Cuts(G) — CT(Q)
ptaq:=elp)+elg) (p g Cuts(G)).

Im Falle eines angeordneten Korpers K mit realisierendem Oberkorper Q O K
kénnen wir analog eine Multiplikation von Schnitten definieren. Wir bemerken dazu,
daf} fiir zwei Schnitte p und ¢ von K die Mengen £(p) und (q) jeweils entweder
links oder rechts von der 0 liegen. Damit ist nach Proposition 4.35 auch die Menge
e(p) - e(q) wieder konvex. Wir machen also folgende
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Definition 4.37. Sei K ein angeordneter Korper mit realisierendem Oberkérper
2 O K. Dann definieren wir die Abbildung -

.o Cuts(K) x Cuts(K) — CT(Q)
praq:=ce(p)-elq) (p, g€ Cuts(K)).

Wir erhalten in der Situation eines angeordneten Korpers K mit einem realisierenden
Oberkorper €2 O K fiir +¢ und -q zwar kein allgemeines Distributivitéitsgesetz, aber
zumindest Schnitte gleichen Vorzeichens bereiten uns hier keine Probleme.

Proposition 4.38. Sei G eine angeordnete abelsche Gruppe. Sind C, D, E C G
konvexe Teilmengen von G mit D, E > 0 oder D, E <0, so gilt

C-(D+E)=C-D+C-E.

Beweis. Wir gehen fiir den Beweis zunéchst von D, E > 0 aus, der zweite Fall folgt
dann sofort. Die Inklusion ,, C “ gilt trivialerweise auch ohne die Zusatzvorausset-
zung an D und E. ,, O “: Seien ¢1, co € O, de€ Dund e € E. Ist d = e = 0, so gilt
cd + coe = cl(d + e) € C’(D + E). Wir konnen also von d + e > 0 ausgehen und
definieren ¢ = ¢; 5% 3 +e + g . Ist ¢ < e, so gilt

d e d e / d e
a=tg,tageStg, thg=CSagtag =0

und somit ¢ € C wegen der Konvexitiat von C'. Ist ¢; > ¢o, so gilt ¢; > ¢ > ¢y und
wieder ¢ € C. Nach Konstruktion gilt demnach ¢;d + cee = d(d +¢e) € C(D + E).

Gilt nun D, F < 0, folgt die Aussage leicht aus dem bereits Gezeigten. Denn dann
gilt =D, —FE > O0und es folgt C(D+E) = (—C)(—(D+E)) = (=C)((—=D)+(—FE)) =
(-C)(—D)+ (-C)(—E)=CD + CE. O
Bemerkung 4.39. In der Situation von Proposition 4.38 148t sich die gezeigte Dis-
tributivitat C'- (D + E) = C'- D+ C - E nicht auf konvexe Mengen C, D und E mit
D < 0 und F > 0 ausweiten. Wir fithren folgende beispielhafte Rechnung mit den
Intervallen C' := [1,2], D := [-2,—1] und E := [2, 3] eines beliebigen angeordneten
Korpers K an:

L2 ([-2,-1]+[2,3]) =[1,2
[12][2, 1+1,2]-[2,3] = [~

Wollen wir von einer realisierenden Obergruppe zuriick in die zugehorige angeord-
nete abelsche Gruppe, stoflen wir wieder auf die Schnitte aus Definition 4.1:

J-10,2]=10,4] und
4,—-1]+[2,6] =

Proposition 4.40. Sei G eine angeordnete abelsche Gruppe mit einer realisieren-
den Obergruppe Q O G, die die Eigenschaft (ZE) aus Proposition 4.22 besitzt. Fiir
zwei echte Schnitte p und q von G gilt

(P + Diiniesr P+ Drectns) peey = 171G 17 € +aal.
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Beweis. Natiirlich gilt {7y [ G |y € p+aq} ={(a+6) [ G| a €e(p), B €c(q)}
Damit zeigen wir beide Inklusionen.

, 2 “Sel a € g(p), B € e(q). Wir zeigen nur (p+ q);,, < (a+ ) | G, die
Abschétzung (o + 5) [ G < (p + q) oy, f0lgt analog.

Ista+p3=g9g¢€ G, sogiltg=a+p>x+y fir alle x < p und fiir alle y < ¢,
also folgt ¢ > (P + @) e

Ist a+ 5 ¢ G, so folgt fiir jedes g € Gmit g > (a+0) [ G,daB g > a+ 5 > z+y
fir alle x < p und alle y < ¢ gilt. Das zeigt (a+ ) [ G > (p + @)1

, C 1. Fall: Sei g € Gmit (p+ @)y < 9 < P+ @) pocpiie-

Dann kénnen wir geméfl Bemerkung 4.4 ein x < p und ein y > ¢ wéhlen mit
g = x +y. Da ( eine realisierende Obergruppe von G ist, kénnen wir ein o € (2
wahlen mit « = p. Wegen g = a+ (g — «) zeigen wir nur g — o |= q.

Fiir alle h € G mit h < ¢ gilt wegen g = (g — h) +h > (p + ¢)},3 die Abschitzung
g—h > p, also auch g —h > o oder g — a > h. Fiir alle h € G mit h > ¢ gilt wegen
g=(g—h)+h < (P+ q),ca die Ungleichung g — h < p, also gilt dann g — h < «
oder g — a < h.

2. Fall: Sei £ € Cuts(G) mit (p+ ¢) e < €< P+ @) ochis:

Wir wihlen Elemente o, v € Q mit o = p und v | £ Wegen v = a + (7 — «)
miissen wir nur v — « = ¢ zeigen.

Wegen (p+ q)ue < € < (P4 @) o €Xistieren Elemente z, y € G mit

(p + q)links << g < Y < (p + q)rechts’

Fiir alle h € G mit h < ¢ gilt dann x — h > p, also auch x — h > «a. Da andererseits
x < 7y gilt, folgt v —h > o oder v —a > h. Fiir alle h € G mit h > q gilt y — h < p,
also auch y — h < . Da hier y > ~ gilt, folgt v — h < a oder v — a < h.

3. Fall: Sei & = (p + @)}

Wir wéhlen eine angeordnete abelsche Obergruppe G’ O G, in der p und ¢ reali-
siert sind und fiir die dimg_ygr(dh(G’")/dh(G)) < oo gilt. Wir betrachten die zwei
Schnitte 7, := Reale (p)~ und 7y := Realg(¢)~ von G'. Wihlen wir eine weitere
angeordnete abelsche Gruppe G” O G’, in der n; und 7, realisiert sind und fiir die
dimg_vyr(dh(G"”)/dh(G")) < oo gilt, dann existiert aufgrund der Eigenschaft (ZE)
von ) eine Ordnungseinbettung von G” in €, die die von G’ in Q fortsetzt. Wir
fassen deshalb G” als Teilmenge von 2 auf. Seien dann o/, ' € G” C Q mit o/ =1
und 3" | ny. Natiirlich gilt dann o’ € £(p) und ' € €(q). Wir werden zeigen, da8
(@ +3)1G =P+ @y gt

» > “Selenz,y e Gmit x <pundy < gq,alsosei v+y < (p+ q)yue P2 v < a
fiir alle @ € Realg: (p) gilt, folgt < n; und damit z < /. Ebenso gilt y < 79 und
somit y < 3'. Also folgt x +y < o’ + .

» < “: Wir nehmen an, daf§ ein g € G existiert mit (p+ ¢);,, < 9 < (¢/ +7) | G.
Fiir alle z, y € G mit x > p und y > ¢ gilt x > n; und y > 1, also auch z > o’
und y > #'. Damit folgt z +y > o'+ " und es gilt (&/ +3") [ G < (P + @) joens- WIr
erhalten also ein g € G mit (p+ ¢). < 9 < (P+q) Dann gibt es aber nach

rechts”
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Fall 1 ein o € Realg/(p) und ein § € Realg(q) mit g = o+ 3 < o/ + 3. Dies liefert
einen Widerspruch zu o =1, und ' = 7.

4. Fall: Sei & = (P + ) eons

Nach Proposition 4.5 gilt £ = (p + @) ,eans = —(—P + (—@))jinie- Nach Fall 3 existie-
ren also Elemente o € e(—p) und ' € 5( q) mit £ = —((¢/ + ') | G). Wegen
e(—p) = —e(p) und e(—q) = —¢(q) gilt also £ = (—a/ + (=3)) | G mit —a’ € (p)
und —3' € £(q). O

Eine wichtige Anwendung findet Proposition 4.40 bei Fragen, wann fiir zwei echte
Schnitte p und ¢ einer angeordneten abelschen Gruppe G die Schnitte (p + q)y;
und (p + q) e Uibereinstimmen. Dies ist némlich genau dann der Fall, wenn der
Schnitt (a+ ) | G nicht von der Wahl der Elemente a € €(p) und 5 € £(q) abhéngt.

Wir suchen noch nach einem Kriterium ohne die Verwendung von Realisierun-
genF', wann fiir zwei echte Schnitte p und ¢ einer angeordneten abelschen Gruppe
G die Schnitte (p+ @)y Und (P + ),y 2usammenfallen. In Theorem 4.44 fin-
den wir eine Antwort fiir divisible angeordnete abelsche Gruppen. Fiir den Beweis
einer Teilaussage benotigen wir Lemma 4.42, das wir mit Hilfe einer realisierenden
Obergruppe zeigen. Ansonsten kommen wir fiir den Beweis des Theorems ohne diese
Konstruktion aus und konnten es auch schon in Abschnitt 4.1 anfiihren.

Zuerst erlautern wir noch, wie wir zu einem Schnitt £ einer divisiblen angeordne-
ten abelschen Gruppe G fiir alle ¢ € Q* = Q\ {0} das g-fache Vielfache des Schnittes
definieren kénnen.

Bemerkung/Definition 4.41. Sei G eine divisible angeordnete abelsche Gruppe
und sei € ein Schnitt von G. Dann ist das Paar (q-£F, ¢ - £€8) fiir alle ¢ € Q>0 wieder
ein Schnitt von G und wir definieren fiir alle ¢ € Q* den Schnitt ¢ - & als

£ = {(q & q-€R)  fiir ¢ > 0
57U () €8 (~q) - €7) |, fir g < 0.

Lemma 4.42. Sei G eine divisible angeordnete abelsche Gruppe und p ein Schnitt
von G mit sign(p) = 0. Dann gilt fir alle a € Q mit a > 1

(ap — P)tinks = (AP = P)rechts = (@ — 1) - p.

Beweis. Wir bemerken zunéchst, dafl p wegen sign(p) = 0 echt ist, und wihlen mit
Hilfe von Proposition 4.21 eine divisible realisierende Obergruppe €2 O G. Nach
Proposition 4.40 ist die Aussage des Lemmas dquivalent dazu, daf§ fiir alle Elemente

a € ap +q (—p) gilt:
a = (a—1)p.

Um dies zu zeigen, geben wir uns also ein Element « € ap +q (—p) = (ap) + &(—p)
vor. Mit Proposition 4.23 kénnen wir diese Menge umschreiben in (ap) + ¢(—p) =
ag(p) —e(p) = (a — 1)e(p) + €(p) — (p), wobei unsere Bedingung a > 1 eingeht.
Also kénnen wir a schreiben als Summe a = (a — 1) + v mit Elementen 5 € £(p)
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und v € ¢(p) — e(p). Demnach gilt a |= (a — 1)p genau dann, wenn 3 + a%l’y Ep
gilt. Wegen [ € (p) gentigt es also ﬁv € Gq(p) zu zeigen, beziehungsweise nur
v € Go(p), weil a—il € Q gilt und Gg(p) eine konvexe Untergruppe von €2 ist. Hierfiir
haben die erforderliche Vorarbeit geleistet. Da nach Voraussetzung sign(p) = 0 gilt,
liefert uns Korollar 4.16 Gq(p) = G(q) = G(r), wobei ¢ die kleinste und r die grofite
Erweiterung von p auf Q ist. Go(p)™ = ¢ = 7 ist somit nach Proposition 1.32 (iv) die
grofite Erweiterung von p auf 2. Anhand der Propositionen 4.7 und 4.40 wissen wir
andererseits, dal —p < v [ K < p gilt. Damit folgt Go(p)™ = —¢ < v < ¢ = Ga(p)™".
Somit haben wir v € Gq(p) und damit das Lemma bewiesen. O

Definition 4.43. Sei G eine divisible angeordnete abelsche Gruppe. Zwei Schnitte
& und 7 von G heiflen Aquivalent, wenn es ein ¢ € G und ein ¢ € Q* gibt mit
& = g + qn. Wir schreiben hierfiir £ ~ 7).

Theorem 4.44. Sei G eine divisible angeordnete abelsche Gruppe, und seien & und
n echte Schnitte von G. Dann gilt:

(1) Folgende Aussagen sind dquivalent:

(a) 4
(b) Fiir alle q1, g2 € Q* gilt (1€ + ©27) s = (@€ + ©N) recnis-

(2) Ist & ~m, so sind fir alle ¢1, g2 € QF folgende Aussagen dquivalent:

(a) (Q1§ + q?n)links = (Q1§ + Q277)rechts
(b) Es gilt eine der folgenden Bedingungen:

(i) sgn(q1) - sgn(qz) = sgn(q)
(1i) sgn(q1) - sgn(ge) = —sgn(q), sign(§) = 0 und 2L 7 —1.

Beweis. Wir beweisen zunéchst Teil (1).
(b) = (a): Wir nehmen an, es gibt ein g € G und ein ¢ € Q* mit £ = g + ¢n. Fiir
alle echten Schnitte p; und ps von G und jedes h € G gilt

(p1 +h_p2)links =
={z+yle<p+hy<-p} ={z+h+yle<p,y<-p}" =
:{$+y|$<p1,y<—P2}++h:<P1—p2)nnks+h’

und nach analoger Rechnung (p1 +h = P2)eenis = (P1 = P2)ecnis + - Damit erhal-
ten wir (§ =&y = €= 9+ i = €= 9= Minis = (€ = WMijas — 9 =
(€=M reents — 9 = (€ =9 = 1) earis = (€ = &) o~ Dies aber ist ein Widerspruch
zu Proposition 4.7.

(a) = (b): Wir nehmen an, es gibt ¢1, ¢2 € Q" mit (1€ + ¢21) 0 # (G1€ + @) pectrie-
Da dann mit Hilfe von Proposition 4.5 auch —(¢1& + ¢21) i = (—@1E€ — ©2N) ocnis 7
(—1€ — @) = — (@€ + @N) o 8ilt, konnen wir ohne Einschriankung ¢; > 0

annehmen. Somit gilt also (¢1& + ¢2n) e = @1 (€ + o) < (1€ + @) renis =
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@€+ g—in)rechts, also gibt es ein g € G mit (£ + g—fn)hnks <g<(&E+ Z—fn)rechts. Dann
kénnen wir aber zeigen:

E=9—En
, < ¢ Seix < £ Dann gilt nach Bemerkung 4.4 g — z > Z—fn, also folgt x < g — Z—fn.
s > “tSeix > € dann gilt g — o < g—fn, also x > g — g—fn. Hiermit erhalten wir einen
Widerspruch zur Voraussetzung.

Jetzt kommen wir zum Beweis von (2). Sei also £ = g + gn mit einem g € G und
einem ¢ € Q*. Wir werden den Beweis fiir ein ¢ > 0 fithren, der Fall ¢ < 0 148t sich
dann leicht ableiten. Denn haben wir die Aussage fiir positives ¢, so erhalten wir
sie fiir ein negatives ¢, indem wir zu —¢, —n und —gs iibergehen und den positiven
Fall benutzen. Somit erklart sich das Auftreten von sgn(q) in den Bedingungen, in
denen ¢o, aber nicht ¢ vorkommt.

(a) = (b): Seien q1, @2 € Q* mit (1€ + ¢2M) s = (G1€ + M) jeenis- Wir nehmen
an, Bedingung (i) gilt nicht, und zeigen, dafl dann (ii) gelten muf}. Seien also ¢; und
@2 von unterschiedlichem Vorzeichen, ohne Einschrénkung kénnen wir von ¢; > 0
und ¢ < 0 ausgehen. Aus (¢1€ + @7)iinks = (1€ + @2M)recnts folgen nach Einsetzen
der Darstellung von £ die Gleichungen (q19+q1g1+ @21)iinks = (419 + 107+ q21) rechts
und (197 + @Mhinks = (G197 + @2M)rechts- Mit ¥ := |g2|n und der Abkiirzung a := quq21|
erhalten wir

(T) (CM? - ﬁ)links = ((119 - ﬁ)rechts-

Sofort sehen wir, dal a = |qu1| = f’f; = 1 wegen Proposition 4.7 nicht moglich ist.
Wir miissen also nur noch sign(¢) = 0 zeigen und gehen vom Gegenteil aus. Da die
zugrundeliegende Gruppe G nach Voraussetzung divisibel ist, gilt dann sign(§) = +1
oder sign(¢) = —1. Wir betrachten nur den Fall sign(§) = 1, denn aus sign(§) = —1
ergibt sich wegen Proposition 4.5 nichts Neues. Mit sign(£) = 1 folgt aber nach
einfacher Rechnung auch sign(?) = sign(n) = 1. Dann gibt es also ein h € G
mit ¥ = h 4+ 9. Da V() ein konvexer Bewertungsring ist, gilt Q € V(¥) und
deshalb nach Proposition 1.44 auch a € Q*° C V()" = G*(ﬁ‘) Wir erhalten
ad = ah + ad = ah + 19 und mit Gleichung () folgt (ah + 9 — ah — ﬁ)llnks =
(ah + 9 — ah — ﬁ)rechtb, gleichbedeutend mit (19 19)hnkb = (19 ﬁ)rechts Dies ergibt
wiederum einen Widerspruch zu Proposition 4.7.

(b)(i) = (a): Seien zunichst q;, go € Q>°. Dann gilt
(1€ + @My = (@9 + Qa0 + @)y = 09 +{x+y |2 € quan®™, y € "} =
=qg+ (qa* + @) =qg+ (g + )"t =qg+ (g + ¢)n.

Analog erhalten wir auch (¢1§ + ¢21),eones = 019 + (010 + @2)7.

Sind q1, g2 € Q<°, so kénnen wir diesen Fall auf den Fall positiver Faktoren zuriick-
ziechen. Denn dann sind —q;, —¢ € Q>° und nach dem gerade Gezeigten gilt
(—q1€ + (=) s = (—01E€ + (—92)N) jeens- J€tzt liefert uns Proposition 4.5

(1€ + ©Myines = —(—01€ + (=) reents = —(—GE + (@) Mk = (@1€ + 82N recnts-
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(b)(ii)) = (a): Seien ¢, ¢2 € Q* mit unterschiedlichem Vorzeichen, ohne Ein-
schrinkung rechnen wir mit ¢; > 0 und ¢ < 0. Mit den Bezeichnungen ¥ := [g2[n
und a = % aus der Richtung (a) = (b) haben wir dort folgende Aquivalenz gese-

hen:
(Q15 + q277>links = (Q1f + q2n)rechts = (6“9 - ﬁ)links = (CM9 - ﬁ)rechts-

Wir zeigen also die zweite Gleichheit und sind fertig. Da nach Voraussetzung
a = %12 # 1 gilt, diirfen wir wegen Proposition 4.5 und der moglichen Substitu-
tion ¥ := —%19 auch von einem a > 1 ausgehen. Leicht konnen wir verifizieren, daf3
aus der Voraussetzung sign(§) = 0 auch sign(¢) = 0 folgt. Damit sind wir aber in
der Situation von Lemma 4.42 und erhalten die gewiinschte Gleichung. 0
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5. Bewegung von Schnitten angeordneter Korper

Die in Definition 1.5 eingefiihrte Operation einer angeordneten abelschen Gruppe G
auf die Menge Cuts(G) konnen wir als die Anwendung von sehr einfachen semialge-
braischen Abbildungen auf die Schnitte von G verstehen. Damit stellt sich die Frage,
wie man allgemein semialgebraische Abbildungen auf Schnitte angeordneter Korper
anwenden kann. Ist der Kérper reell abgeschlossen, so bietet der wohlbekannte Mo-
notoniesatz 5.1 die Moglichkeit einer naheliegenden Definition. Im allgemeinen Fall
eines angeordneten Korpers ist das Problem zunéchst nicht so leicht zu 16sen, da uns
hier eine Entsprechung fiir den Monotoniesatz fehlt. Zumindest fiir rationale Funk-
tionen finden wir in diesem Kapitel eine Losung (Theorem 5.18), indem wir unter
gewissen Gradbedingungen auch hier wieder Monotie der Abbildungen erhalten.

Vieles in diesem Kapitel zitieren wir aus [T2]. Die Hauptaussage dort beziiglich
des vorliegenden Problems betrifft jedoch Polynome, wéhrend wir mit Theorem 5.18
den Rahmen auf rationale Funktionen ausdehnen kénnen.

Zunéchst erinnern wir noch einmal an den angesprochenen Monotoniesatz.

Proposition 5.1 (Monotoniesatz). Sei R ein reell abgeschlossener Kérper und
f: R — R eine semialgebraische Abbildung. Dann existieren cq, . .. ,c, € RU{£oo},

Cp i =—00< << ... <y <Cpi=+00,
so daf fir alle i € {0,... ,n — 1} entweder
(A) f
(B) f
(C) fliei,cirn) Streng monoton fallend und stetig ist.

(ci,cisr) Komstant ist oder

(ci,cir1) Streng monoton steigend und stetig ist oder

Beweis. Wir finden die Aussage zum Beispiel in modelltheoretischer Form in [vdD],
Kapitel 3, §1, Theorem 1.2, S. 43. O

Mit Hilfe des Monotoniesatzes 5.1 konnen wir semialgebraische Abbildungen auch
auf Schnitte reell abgeschlossener Korper anwenden.

Definition 5.2. Sei R ein reell abgeschlossener Kérper und p ein Schnitt von R.
Sei weiter s : R — R eine semialgebraische Abbildung. Nach dem Monotoniesatz
5.1 existieren a, b € RU {£o0}, so daB a < p < b gilt und s|y) : (a,b) — s((a,b))
konstant oder streng monoton ist. Wir definieren s(p) folgendermafien:

(i) Ist s = ¢ konstant auf (a,b), so setzen wir s(p) := c.

(ii) Ist s streng monoton steigend auf (a, b), so setzen wir s(p) := f((a,00)Np*)*,
or

p
falls (a,00) NpL # 0, und s(p) := s((—o0,b) Npf)~, falls (a,00) N pt = 0 gilt.
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(iii) Ist s streng monoton fallend auf (a,b), so setzen wir s(p) := s((a,00) N p¥)~,
falls (a,00) NpL # 0, und s(p) := s((—o0,b) Npf)*, falls (a,00) N pl = 0 gilt.

Wir kénnen diese Definition auch mittels Realisierungen verstehen. Dafiir erinnern
wir an die Erweiterung einer semialgebraischen Abbildung.

Bezeichnung 5.3. Sei R ein reell abgeschlossener Korper und s : R — R eine
semialgebraische Abbildung. Fiir einen reell abgeschlossenen Oberkérper L O R
bezeichnen wir mit s;, die Erweiterung von s auf L. Fiir die Definition verweisen wir

auf [BCR], Abschnitt 5.3.

Proposition 5.4. Sei R ein reell abgeschlossener Kérper und p ein Schnitt von
R. Sei weiter s : R — R eine semialgebraische Abbildung und L O R ein reell
abgeschlossener Oberkérper von R. Fir alle a € Realp(p) gilt dann sp(a) = s(p),
falls s(p) € R, und sp(a) = s(p), falls s(p) € Cuts(R) gilt. Mit anderen Worten gilt

s(p) = sp(a) [ R mit einer beliebigen Realisierung o € L von p.

Beweis. Nach dem Monotoniesatz 5.1 konnen wir Elemente a, b € RU{+00} wihlen,
sodaB a < p < bgilt und s auf (a, b) g konstant oder streng monoton ist. Nach Tarski
verhélt sich dann sy auf (a,b); genauso. Ist s = ¢ konstant auf (a,b)r, also gilt
s(p) = ¢, so gilt auch sy («) = c fiir alle Realisierungen o € L von p. Wir betrachten
noch den Fall, daf§ s streng monoton steigend auf (a, b) ist und (a, o) Npt # @ gilt,
die anderen Fille sind alle #hnlich. Dann gilt s(p) = s((a, 00) Np¥)™ nach Definition
und sy (a) > s(p), weil auch sy, streng monoton steigend auf (a,b) ist. Wegen der
strengen Monotonie gibt es kein Element » € R mit s(p) < r < sp(«), also gilt

sr(a) = s(p). O

Lemma 5.5. Sei R ein reell abgeschlossener Kéorper und L O R ein reell abge-
schlossener Oberkorper von R. Sei weiter p ein Schnitt von R und s : R — R eine
semialgebraische Abbildung. Ist s(p) € Cuts(R), so gilt

sp(Realy(p)) = Realy, (s(p)).

Beweis. Die Inklusion ,, C “ haben wir bereits in Proposition 5.4 nachgewiesen. Wir
miissen nur noch ,, O “ zeigen. Dazu wéhlen wir mit Hilfe des Monotoniesatzes 5.1
Elemente a < p < b in R U {%o0}, so dafl s streng monoton auf (a,b)p ist. Dafl s
auf einer Umgebung von p konstant ist, ist durch die Voraussetzung s(p) € Cuts(R)
ausgeschlossen. Wir nehmen s ohne Einschrankung als streng monoton steigend auf
(a,b)g an. Nun gilt lim;. , s(t) < s(p) < lim; -, s(¢). Da s auf (a, b) g streng monoton
ist, ist es hier umkehrbar mit der Umkehrung s—'. Sei nun « € Realy(s(p)). Dann
kénnen wir uns iiberzeugen, daf s;'(a) eine Realisierung von p ist. Somit finden
wir ein Urbild von a und die Behauptung gilt. O

In Definition 5.2 haben wir gesehen, wie wir im Falle reell abgeschlossener Kérper
semialgebraische Abbildungen auch auf Schnitte anwenden koénnen. Im folgenden
untersuchen wir, wie wir im allgemeineren Fall angeordneter Korper vorzugehen

haben.
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Definition 5.6. Sei K ein angeordneter Korper mit reellem Abschlufl R sowie £ ein
Schnitt von K.
a) Wir definieren den Grad von ¢ als

deg(§) :==inf{n € N|n = [K(«a) : K] fiir ein & € R mit o |= £}

Ist & nicht realisiert in R, so gilt deg(§) = inf(0) := oc.
b) Eine Realisierung o von £ in einem angeordneten Oberkérper L O K heifit &-
generisch, falls [K(«) : K] = deg(§) gilt.

Bemerkung 5.7. Fiir jeden Schnitt € eines angeordneten Korpers K gilt deg(§) > 2,
da keine Realisierung von ¢ in K liegen kann.

Lemma 5.8. Seien K C L angeordnete Kiorper und & ein Schnitt von K. Seien
weiter o, B € L Realisierungen von € und f, g € K|[t] Polynome mit f/g ¢ K. Fulls

deg(f), deg(g) < deg(¢) gilt, dann gilt f(o)/g(e) | K = f(3)/9(B) I K.

Beweis. Zunéchst stellen wir fest, daf8 f(«)/g(a) und f(8)/g(5) tatséchlich Schnitte
iber K induzieren. Denn wegen f/g ¢ K und der Gradbedingung an f und g gilt
fla)/g(a), f(B)/g(B) ¢ K. Gdbe es ndmlich zum Beispiel ein Element ¢ € K mit
¢ = f(a)/g(a), so wire o Nullstelle des Polynoms f — ¢ - ¢ € K[t] und somit
deg(&) < deg{f — cg} < max{deg(f),deg(g)}, was wir ausgeschlossen haben.

Wir zeigen nun die Gleichheit der Schnitte, wobei wir der Einfachheit halber L
ohne Einschrinkung als reell abgeschlossen betrachten. Nehmen wir an, es gibt ein
a € K mit f(a)/g(a) < a < f(8)/9(B). Aus der Gradbedingung deg(g) < deg(&)
folgt, daB g auf [«, 8], C Realy(§) keine Nullstellen besitzt und somit f(¢)/g(t) auf
diesem Intervall definiert ist. Der Zwischenwertsatz fiir reell abgeschlossene Koérper,
den wir zum Beispiel in [KS], Kapitel I, §7, Satz 2, Seite 20, finden, liefert uns ein
v € (a, ) mit f(v)/g(y) = a. Da v den Schnitt £ realisiert und Nullstelle des
Polynoms h := f —a-g € K[t] ist, erhalten wir den Widerspruch deg(§) < deg(h) <

max{deg(f), deg(g)} < deg(§). O

Definition 5.9. Sei K ein angeordneter Koérper und & ein Schnitt von K. Sei
h € K(t)\ K, und seien f, g € KJt] Polynome mit deg(f), deg(g) < deg(), so
daB h = f/g gilt. Dann koénnen wir nach Lemma 5.8 den Schnitt A(§) von K defi-

nieren als
hE) = fla)/g(a) I K,

wobei « eine Realisierung von ¢ in einem angeordneten Oberkorper L O K ist.

Definition 5.10. Sei K ein angeordneter Korper mit reellem Abschluff R und &
ein Schnitt von K. Sei weiter s : R — R eine semialgebraische Abbildung. s heifit
streng monoton steigend in £, wenn fiir alle Realisierungen o < /3 von £ in einem
angeordneten Oberkorper L O R gilt, dafl s(a) < s(f) ist.

s heiflit streng monoton fallend in £, wenn fiir alle Realisierungen o« < 3 von
¢ in einem angeordneten Oberkorper L O R gilt, dal s(a) > s(() ist.

s heiffit konstant in &, wenn s fiir alle Realisierungen von £ in einem angeord-
neten Oberkorper L O R konstant ist.
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Lemma 5.11. Sei K ein angeordneter Kiorper mit reellem Abschlufs R und & ein
Schnitt von K. Sei weiter s : R — R eine semialgebraische Abbildung. Falls & nicht
i R realisiert ist, so ist s konstant oder streng monoton in &.

Beweis. Da & nach Voraussetzung nicht in R realisiert ist, gibt es genau eine Erwei-
terung 1 := (p¥)* von £ auf R. Damit realisiert ein Element « in einem angeordneten
Oberkorper L O R den Schnitt € genau dann, wenn es 7 realisiert. Wir konnen al-
so ohne Einschriankung K = R annehmen. Nach Monotoniesatz 5.1 existieren nun
a, be KU{xoo} mit a < £ < b, so dal s konstant oder streng monoton auf (a, b) g
ist. Betrachten wir dann einen angeordneten Oberkorper L O K, so ist auch sy,
konstant oder streng monoton auf (a, b). Dies zeigt die Behauptung. O

Im allgemeinen ist aber im Falle eines angeordneten Korpers K nicht einmal ein
Polynom f € K|[t] in jedem Schnitt £ von K konstant oder streng monoton. Wir
betrachten dazu folgendes

Beispiel 5.12. Wir setzen K := R(¢) mit infinitesimalem ¢ und betrachten den
Schnitt ¢ := v/t | K von K. Da & von v/t realisiert wird und +/¢ Nullstelle des
iiber K irreduziblen Polynoms z? — ¢ € K|z] ist, gilt deg(¢) = 2. Wir betrachten
nun das Polynom f(z) := 2° — 3taz? — 2ta® + 3t%2% — 6t%x + t* — 3. Es zerfillt in
folgende Linearfaktoren:
f@)= (2 - (Vt+ V1) (v — (—VE+ V) - (2 — (VE+ V) -
(= (—VEH V) - (2= (VE+ CV) - (2 = (—=VE+ V).

Hierbei bezeichnet ( die komplexe dritte Einheitswurzel ¢ := e’s". Wie wir leicht
nachpriifen, ist f iiber K irreduzibel. An seiner Linearfaktorzerlegung lesen wir die
beiden Nullstellen /¢ + v/t von f ab, die beide ¢ realisieren. Da offensichtlich f auf
[\% — WVttt + \/E] - RealK(\/ﬂ ) (&) nicht konstant, aber stetig ist, kann es nicht
streng monoton auf diesem Intervall sein.

Definition 5.13. Sei K ein angeordneter Korper mit reellem Abschluff R. Eine Ab-
bildung s : R — R heifit stiickweise K-rational, wenn es eine disjunkte Zerlegung
von R = [; U...UI, in Intervalle mit Endpunkten in K U {£o0} gibt, so daB fiir
jedes 1 < j <rein Q € K(t) ohne Pole auf I; existiert mit s|;;, = Q|;,. Insbesondere
gilt dann s(K) C K.

Lemma 5.14. Sei K ein angeordneter Kdorper mit reellem Abschlufl R und & ein
Schnitt von K. Sei weiter s : R — R eine stiickweise K -rationale Abbildung.

(i) Falls & prinzipal ist, so ist € in R ausgelassen. Ist n die eindeutige Erweiterung
von & auf R, so gilt entweder s(n) € K oder s(n) | K ist ein prinzipaler Schnitt
von K.

(ii) Falls £ frei und s streng monoton in £ ist, so existieren ein stickweise K-
rationaler, streng monotoner Homdéomorphismus t : R — R mit t(K) = K
und Elemente a < § < bin K, so daf s|jap) = t|a eine K-rationale Abbildung
auf [a,b], also gleich einem Q € K(t) auf |a,b] ist.
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Beweis. (i) Wir betrachten zunéchst den Fall £ = +o00. Natiirlich ist £ dann in R
ausgelassen. Denn angenommen, es gibt ein @« € R mit o | +oog, dann ist «
unendlich grof§ beziiglich K. Dies kann aber nicht sein, da « in diesem Fall nicht
algebraisch iiber K ist. Sei also a := lim;_. 1 s(t) € R U {xoo}. Ist a = %00,
so gilt s(n) = oo und dieser Schnitt ist prinzipal. Aus a € R folgt wegen der
K-Rationalitdt von s sofort auch a € K, und in diesem Fall gilt s(n) = a~ oder
s(n) = a™ oder s(n) = a.

Im Fall £ = a™ mit einem a € K ist £ wieder ausgelassen in R. Wir iiberzeugen
uns mit einer realtiv umfangreichen, aber leichten Fallunterscheidung davon, dafl
entweder s(n) € K gilt oder s(n) | K prinzipal ist. Der Fall £ = o~ fiir ein a € K
geht analog.

(ii) Wir nehmen s ohne Einschrinkung als streng monoton steigend in & an.
Da s nach Voraussetzung stiickweise K-rational ist, gibt es Elemente a, b € K mit
a < & <bundein Q € K(t) mit sy = Ql@p. Seien p; und p, die kleinste
und die grofite Erweiterung von & auf R. Da s streng monoton steigend in £ ist,
muf} @ auf Realy(p;) und Realy(p2) mit einem angeordneten Oberkorper L O R
streng monoton steigen. Mit Hilfe des Monotoniesatzes 5.1 konnen wir Umgebungen
(c1,dy) von p; und (e9,dy) von ps finden, auf denen ) streng monoton steigt. Da £
frei ist, konnen wir das Intervall (a,b) so weit verkleinern, dafi @ auf (a,d;) U (ca, b)
streng monoton steigt. Jetzt mufl aber () streng monoton steigend auf dem gesamten
Intervall (a,b)g sein, da s streng monoton steigend in ¢ ist. Falls nétig, konnen wir
durch nochmaliges Verkleinern des Intervalls (a, b) erreichen, daf§ @) keine Pole auf
[a,b]r besitzt. Dann kénnen wir @ auf (—oo, a)r durch t; := id + (Q(a) — a) und
auf (b, +00)r durch ty := id + (Q(b) — b) fortsetzen und erhalten unsere gesuchte
Abbildung t : R — R. O

Definition 5.15. Sei GG eine angeordnete abelsche Gruppe. Ein Schnitt ¢ von G
heifit dicht, wenn ¢ frei ist und G(§) = {0} gilt.

Bemerkung 5.16. Sei R ein reell abgeschlossener Korper. Aus [T1], Korollar 3.6,
wissen wir, daB fiir jeden freien Schnitt p von R genau dann G(p) = {0} gilt, wenn
R fiir jede Realisierung a von p dicht in rcl(R(«)) liegt. Dies motiviert den Begriff
,dicht“ aus Definition 5.15.

Korollar 5.17. Sei K ein angeordneter Korper mit reellem Abschlufl R und & ein
Schnitt von K, der in R nicht realisiert ist. Sei n die eindeutige Erweiterung von
¢ auf R und s : R — R eine stickweise K-rationale und in & nicht konstante
Abbildung. Dann ist s(n) die eindeutige Erweiterung von s(n) [ K und es gilt:

(i) & ist genau dann prinzipal, wenn s(n) | K prinzipal ist.
(ii) € ist genau dann dicht, wenn s(n) [ K dicht ist.

Beweis. Falls £ prinzipal ist, gelten alle Behauptungen nach Lemma 5.14 (i). Hierzu
bemerken wir noch, da8 s(n) € K nicht vorkommen kann, da s nicht konstant ist.
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Wir gehen also fiir den Rest des Beweises von einem freien Schnitt & aus. Da &
in R ausgelassen ist und s nicht konstant in £ ist, ist s nach Lemma 5.11 streng
monoton in &. Sei s ohne Einschrinkung streng monoton steigend. Wegen Lemma
5.14 (ii) nehmen wir s an als einen streng monoton steigenden Homéomorphismus
s : R — R mit s(K) = K. Dann folgt aber sofort s(n) = (s(n*),s(n%)) und
s(n) I K = (s(&%),s(€")). Damit ist s(n) die eindeutige Erweiterung von s(n) | K
und der Schnitt s(n) | K ist frei. Die letzte Aussage vervollstéindigt unseren Beweis
von (i).

Wir miissen noch Teil (ii) zeigen. Der freie Schnitt £ ist genau dann dicht, wenn
es 7 ist, weil 7 nach Proposition 1.32 (ii) eine Erweiterung von ¢ ist. Wie wir in
Bemerkung 5.16 erwdhnt haben, gilt fiir jeden freien Schnitt p von R genau dann
G(p) = {0}, wenn R fiir jede Realisierung « von p dicht in rcl(R(«)) liegt. Wegen
der strengen Monotonie von s ist aber einerseits  genau dann frei, wenn s(n) frei
ist, und andererseits gilt rcl(R(«)) = rcl(R(s(«))) fiir alle Realisierungen o von 7.
Da «a | n dquivalent ist zu s(a) | s(n), ist 7 genau dann dicht, wenn s(n) dicht
ist. Wieder aufgrund von Proposition 1.32 (ii) ist s(n) genau dann dicht, wenn es
s(n) | K ist. Alles zusammen zeigt die Behauptung. O

Theorem 5.18. Seien K C L angeordnete Korper und & ein Schnitt von K. Seien
weiter f, g € K[t], g # 0, mit f/g ¢ K und deg(f) + deg(g) < deg(&). Dann gilt:

(i) Falls g keine Nullstelle auf den Realisierungen von & in L hat, so ist f/g
streng monoton auf Realp(§). Andernfalls hat g héchstens eine Nullstelle
a € Realp(§), und f/g ist jeweils streng monoton auf den zwei Intervallen

{y € Real (&) | v < a} und { € Real (§) | v > a}.

(i1) Gilt zusdtzlich deg(f), deg(g) < deg(§), und ist L reell abgeschlossen, so bildet
f/g die Realisierungen von & surjektiv auf die Realisierungen von (f/g)(§) in
L ab. In diesem Full erhalten wir also die Bijektion

f/g : Realp(€) = Realr((f/9)(£))-

Beweis. (i) Falls g keine Nullstelle auf Realy(£) hat, so ist f/g auf ganz Realy (&)
definiert. Wegen (f/g)" = (f'g— fg')/9? und deg(f'g— fg') < deg(f) +deg(g) —1 <
deg(&) hat (f/g) keine Nullstelle auf Realy(§) und somit ist f/g streng monoton
auf diesem Intervall. Nehmen wir nun an, g besitzt eine Nullstelle @ € Real(§).
Nach der Gradvoraussetzung gilt dann deg(g) = deg(&) und deg(f) = 0, f ist also
konstant. Da aber deg(g’') < deg(§) gilt, hat ¢’ keine Nullstelle auf Real(§) und
g ist streng monoton auf diesem Intervall. Deshalb hat g nur die einzige Nullstel-
le o auf Real(¢) und 1/g ist jeweils streng monoton auf den beiden Intervallen
{7y € Real(§) | v < a} und {7y € Real,(§) | v > a}. Da f konstant ungleich 0 ist,
folgt auch in diesem Fall die Behauptung.

(ii) Aufgrund der zusétzlichen Gradvoraussetzung an f und ¢ kénnen wir den
Ausdruck (f/g)(§) im Sinne von Definition 5.9 verstehen. Es gilt (f/g)(Real.(§)) C
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Realr((f/g)(€)). Wegen deg(g) < deg(€) hat g keine Nullstellen auf den Realisie-
rungen von £ in L. Nach Teil (i) ist deshalb f/g streng monoton auf Realy(£) und
somit injektiv. Zu zeigen bleibt nur die Surjektivitit.

Wir nehmen zunéchst an, daf§ L der reelle Abschlufl von K ist. Falls dann &
in L ausgelassen ist, folgt (ii) bereits nach Korollar 5.17. Wir gehen also im weite-
ren davon aus, daf§ ¢ in L realisiert ist, also dafl £ frei ist. Da f/g in & nach Teil
(i) in & streng monoton ist, finden wir mit Hilfe von Lemma 5.14 (ii) Elemente
a < & < bin K und einen stiickweise K-rationalen, streng monotonen Homoomor-
phismus ¢ : L — L mit ¢(K) = K, so daB (f/g)|ps = t|@y gilt. Damit ist jede
Realisierung von (f/g)(§) in L das Bild einer Realisierung von & in L unter f/g.

Sei nun L ein beliebiger reell abgeschlossener Korper iiber K und sei R der reelle
Abschlufl von K in L. Seien weiter 1y, 7o die kleinste und die grofite Erweiterung
von ¢ auf R, sowie i und 75 die kleinste und die grofite Erweiterung von £ auf L.
Nach dem schon Gezeigten sind (f/g)(n1) und (f/g)(n2) die kleinste und die grofite
Erweiterung von (f/g)(§) auf R - oder andersherum. Da f/g streng monoton in &
ist, sind nach Lemma 5.5 auch (f/g)(n}) und (f/g)(n}) die kleinste und die grofite
Erweiterung von (f/g¢)(&) auf L - oder andersherum. Das zeigt (ii). O

Bemerkung 5.19. Sei K ein angeordneter Korper und £ ein Schnitt von K. Insbe-
sondere erfiillen fiir alle a,b,¢,d € K mit (¢,d) # (0,0) € K x K die rationalen
Funktionen Zttis € K(t) die Bedingungen von Theorem 5.18, da nach Bemerkung
5.7 im allgemeinen deg(§) > 2 gilt.

Korollar 5.20. Sei K ein angeordneter Kiorper mit reellem Abschluff R und & ein
Schnitt von K. Seien o € R eine {-generische Realisierung von & und f, g € K[t|\ K
Polynome mit g # 0 und deg(f) + deg(g) < deg(§) sowie deg(f), deg(g) < deg(€).
Dann werden von /g die kleinste und die grifite Erweiterung von & auf R auf die
kleinste und die grifite Erweiterung von (f/g)(&) = (f/g)(a) [ K abgebildet.

Beweis. Die Aussage folgt mit Theorem 5.18 (ii). O
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6. Anhang: Der verallgemeinerte Potenzreihenko6rper

In diesem Abschnitt wird fiir den Leser, der mit dem verallgemeinerten Potenzrei-
henkérper nicht vertraut ist, dieser Begriff detailliert eingefiihrt und erklédrt. Am
Ende des Abschnitts erwdhnen wir noch die standardméfig verwendete ordnungs-
vertriagliche Bewertung dieses Korpers.

Definition 6.1. Sei X eine total geordnete Menge. Dann heifit X wohlgeordnet,
wenn jede Teilmenge M C X ein kleinstes Element besitzt.

Definition 6.2 (Tréger). Sei X eine Menge und G eine (additiv geschriebene)
Gruppe. Fiir eine Abbildung f : X — G definieren wir den Trager von f als

supp(f) :={z € X | f(z) # 0}.

Definition 6.3. Sei k£ ein Korper und I' eine angeordnete abelsche Gruppe. Wir
definieren die Menge von Abbildungen

E((t")) := {a: T — k | supp(a) wohlgeordnet}.
Fiir ein a € k((t")) verwenden wir die Schreibweise
a= Z a(y)t7.
~erl

Um fiir einen Korper k£ und eine angeordnete abelsche Gruppe I' eine Kérperstruktur
auf k((t")) definieren zu kénnen, benétigen wir folgendes

Lemma 6.4. Sei k ein Korper und I' eine angeordnete abelsche Gruppe. Fiir alle
a, b€ k((th)) sind die Mengen

{yeTa(y)+b(y) # 0} und {y € I'[ 325 ccr, s1emry al0) - b(e) # 0}
wohlgeordnet.
Beweis. Der Beweis ist leicht. O

Mit Hilfe dieses Lemmas erhalten wir fiir einen Kérper £ und eine angeordnete
abelsche Gruppe I' eine wohldefinierte Addition und Multiplikation auf k((¢")).

Definition 6.5. Sei k£ ein Korper und I' eine angeordnete abelsche Gruppe. Wir
definieren eine Addition auf k((t')), indem wir fiir zwei Elemente a, b € k((t"))

setzen:
a+b:= Z (a(y) +b()) t7 € k((")).

vel’

Das Produkt zweier Elemente a, b € k((t")) definieren wir als

a-b:z{ 3 a(d)-b(a)}ﬂek((tr)).

vyel'  §,e€l’, d+e=y
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Proposition 6.6. Sei k ein Korper und I eine angeordnete abelsche Gruppe. Dann
ist (k((t7)), +,-) mit der in Definition 6.5 definierten Addition und Multiplikation
ein kommutativer Ring mit Einselement

1 firy=0
1:I'—k, 1<7):{ 0 ,sonst.

Beweis. Der Beweis geht straightforward. O

Im folgenden werden wir zeigen, dafl wir auf diese Weise tatséchlich einen Korper
erhalten. Dafiir beweisen wir mehrere Lemmata.

Lemma 6.7. Sei k ein Korper und I' eine angeordnete abelsche Gruppe. Sei weiter
a € k((tY))\{0}. Dann existieren Elemente o € T, c € k* = k\ {0} und ¢ € k((t"))
mit supp(e) > 0 und

a=c-t"° - (1+¢).

Beweis. Wir setzen vy := min(supp(a)) und ¢ := a(vy) # 0. Weiter definieren wir

0 , fiir v <0
5(7) = a(y+0) fiir v > 0
a() Y=

Offensichtlich gilt supp(e) > 0. AuBerdem berechnen wir:

t’Yo e =
=2 { X @@= { X @)}t = a((y—70)+70)t" =
yell  §1,62€l ~el 5>0 fyep
d1+02=7 Yo+6=> >0
= ~ 1"
Daraus folgt jetzt sofort ¢ -t - (14 ¢) = a(79)t"° + a — a(y0)t"° = a. 0]

Lemma 6.8 (Neumann). Sei G eine angeordnete abelsche Gruppe und S C G~°
eine wohlgeordnete Teilmenge von G=°. Fiir jedes n € N sei nS die n-fache Summe
S+ ...+ S. Dann gilt:

(i) Die Menge |J nS ist wohlgeordnet.

neN
(i) Fiir jedes g € G ist die Menge {n € N | g € nS} endlich.
Beweis. Wir verweisen auf [N], Theoreme 3.4 und 3.5. O

Lemma/Definition 6.9. Sei k ein Korper, I' eine angeordnete abelsche Gruppe
und ¢ € k((t")) mit supp(e) > 0. Fiir jedes v € I" sind dann bis auf endlich viele alle
Summanden der formalen Summe Y 2 (e*(7)) gleich 0 und wir kénnen definieren:

iek ::Z(Zg )twek(tr))

vyel =
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Beweis. Wir zeigen per Induktion fiir alle v € I und alle k£ € N die Darstellung

fy) = D eldr)- ... -2(0n).
Y A

Sei also v € T" beliebig. Fiir £k = 1 ist die Behauptung trivial. Wir betrachten den
Induktionsschritt £ — k + 1. Es gilt

e(y) = (")) =
- Z’YH-’Yz:’Y 6]{(71)6(72) - ZW1+’Y2:’Y <Z51+~--+5k:’71 6(51> o .6(5k)€(72)) -
— 251+---+5k+72:'7 £(01)...e(0)e(ye) = 251+---+6k+1:’7 e(01) .. e(0ka1)-

Anhand dieser Darstellung erkennen wir, daf supp(e*) C k - supp(e) fiir alle k € N
gilt. Da aber nach Voraussetzung supp(e) C I'>? gilt, ist nach Lemma 6.8 (ii) fiir
jedes v € T die Menge {n € N | v € n-supp(e)} endlich. Fiir jedes v € I ist somit
¥ () nur fiir endlich viele k£ € N ungleich 0. Damit kénnen wir definieren:

Dot iD=k, (3, €M)(v) = 2opo (e ()

Dann ist supp(d e €) € U, cn 7 - supp(e) nach Lemma 6.8 (i) wohlgeordnet. Das
zeigh > po & € k((tY)). O

Als letztes Hilfsmittel beweisen wir noch folgendes

Lemma 6.10. Sei k ein Korper und I' eine angeordnete abelsche Gruppe. Ist dann
e € k((t")) mit supp(e) > 0, so ist Y ooy (—e)* das multiplikativ Inverse zu 1 + ¢ in

B().
Beweis. Nach Lemma,/Definition 6.9 gilt 327° (=€) € k((t")). Wir zeigen explizit
die Gleichung
(1+e) 3, (—e)" = 1.
Wir schreiben £ := min(supp(e)). Fiir ein beliebiges v € I' gilt dann

= > (a+96) - =hE) = > (040 (3 (=M +
01+02=" k=0 5?1;;%;2() k=0
3 (040 =)+ 3 ((0+26)) - (X (-))(02)) =
= M- X~ 1 (=) + 15)]) =

51 €supp(e)
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=1(7) = () + (X (=) +2() = 3 (= 2(60) - (X (=) ) v = 1)) =
=101 + (3 (=) = (3 (=) = 1(7),

0

Proposition/Definition 6.11 (Verallgemeinerter Potenzreihenkorper). Sei k ein
Kérper und T eine angeordnete abelsche Gruppe. Dann ist k((¢")) ein Kérper. Wir
nennen ihn den verallgemeinerten Potenzreihenkorper.

Beweis. Nach Proposition 6.6 ist k((t")) bereits ein Ring. Wir miissen demnach
nur noch die Existenz von multiplikativ Inversen nachweisen. Sei also ein Element
a € k((t")) \ {0} gegeben. Nach Lemma 6.7 existieren Elemente v € T, ¢ € k '\ {0}
und € € k((t")) mit supp(e) > 0 und

a=c-1° - (1+¢).

Da 1+ ¢ nach Lemma 6.10 invertierbar ist, zeigen wir nur noch die Invertierbarkeit
von t7°. Fiir ein beliebiges v € I' gilt

[0 - t770](v) = Z 10 (8,)t770(6) =
_J ()t (=) =1 Jfiry=0 1 _
- { 0(10)t7° (7 = 70) + 1 (v +70)t7 (=) =0, sonst } =100

0l

Definition 6.12. Sei k ein angeordneter Kérper und I' eine angeordnete abelsche
Gruppe. Dann ordnen wir den Kérper k((t1)) an, indem wir fiir alle a € k((tV))\ {0}
definieren:

a > 0 :< a(min(supp(a))) > 0.

Proposition 6.13. Ist k ein reell abgeschlossener Kérper und I' eine divisible an-
geordnete abelsche Gruppe, so ist k((t")) reell abgeschlossen.

Beweis. Eine sogar etwas stirkere Aussage finden wir in [R], 6.10. 0

Wir definieren abschlieBend noch eine Bewertung des verallgemeinerten Potenzrei-
henkorpers. Wir verwenden die Bezeichnungen aus [KS], Kap. II, §4, S. 61. Fiir
eine angeordnete abelsche Gruppe I' bezeichnen wir mit I' U oo die disjunkte Ver-
einigung I' U {oo} (mit einem zu I' fremden Element oo). I' U oo wird zu einer
total geordneten Halbgruppe, indem wir fiir alle v € I' definieren: v < oo, und
Y+ 00 =004+7=00+ 00 = 0.
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Definition 6.14. Sei k ein angeordneter Kérper und I' eine angeordnete abelsche
Gruppe. Wir definieren

v k((tY) = TUoo
a +— v(a) := min(supp(a)) (a € k((t"))).

Dabei verwenden wir die Konvention min(f) := oc.

Proposition 6.15. Sei k ein angeordneter Korper und I' eine angeordnete abelsche
Gruppe. Dann ist v eine ordnungsvertrigliche Bewertung von k((tV)).

Beweis. Wir zeigen zuniichst, dafl v eine Bewertung von k((t)) ist, und weisen dafiir
fiir beliebige Elemente a, b € k((t")) folgende drei Eigenschaften nach.
(1) v(a) = 00 < a = 0. Das ist trivial.
(2) v(ab) = v(a) + v(b).
, = “t Natiirlich gilt (ab)(v(ab)) = > 5., @(0)b(€) # 0. Deshalb existieren ein
d € supp(a) und ein ¢ € supp(b) mit v(ab) = 0 + . Nach Definition von v gilt
( ) < 0 und v(b) < e. Es folgt v(ab) = § + & > v(a) + v(b).
, < “: Die Abschitzung v(ab) < v(a) + v(b) gilt wegen

(ab)(v(a) +o() = D> aln)b(r) = a(v(a)b(v(b)) # 0.
v(a

y1+y2=v(a)+v(b)

(3) v(a + b) > min{v(a),v(b)}. Wir nehmen an, es gilt v(a + b) < v(a), v(b). Dann
folgt (a + b)(v(a + b)) = a(v(a + b)) + b(v(a + b)) = 0+ 0 = 0. Das aber ist ein
Widerspruch zur Definition von v.

Damit bleibt uns nur noch zu zeigen, dafl v auch ordnungsvertriglich ist, das
heiBt, daBl fiir alle a, b € k((t")) mit 0 < a < b auch v(a) > v(b) gilt. Seien also
Elemente a, b € k((t")) gegeben. Wir nehmen an, es gilt v(a) < v(b). Nach Definition
von v gilt dann v(b — a) = v(a). Mit b —a > 0 folgt also 0 < (b —a)(v(b—a)) =
(b — a)(v(a)) = b(v(a)) — a(v(a)) = 0 — a(v(a)) = —a(v(a)). Das bedeutet aber
a(v(a)) < 0, im Widerspruch zu a > 0. O
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Symbolverzeichnis

lal, 7
ph, pf T
Cuts(X), 7
DC(X), 7
AN
a,a’, 7
—Xx, +OOX, 7
ql X,8
yFEp 8

y | X,8
—p, 8

p, 8
g+p,8
G(p), 9

p, 10
dh(G), 12
sign(p), 13

sign*(p), 29

supp(f), 31

k((t)), 31

U oo, 31

v, 31

p1(8), 33

w, 37

sgn(b), 38

trunc(b), 39

(P + Diiness (P @ recnisr 43

Realy, (p), 46
€, 46
CT(9), 46
gﬁ(p)v 47
K, 48
rel(K), 48
Go(p), 52
Va, 52
JQ<p)’ 93
Iﬂ(p)> 23
p+aq, 55

P-aq, 96

q-§ (q€Q), 58

§~mn, 59
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Stichwortverzeichnis

K-rational, stiickweise, 65
&-generisch, 64
Q-Invarianzbewertungsring, 52
Q-Invarianzgruppe (additive), 47
multiplikative, 52

dquivalent, 59
ausgelassen, 8

Betrag (eines Schnittes), 8

Dedekind-Komplettierung, 7
Dedekindschnitt, siehe Schnitt
Divisible Hiille, 12

Erweiterung, 8

Grad (eines Schnittes), 64
group,-cut, 28

Invarianzbewertungsring
einer Gruppe, 19
eines Schnittes, 19

Invarianzgruppe
additive, 9
multiplikative, 20

konstant (in einem Schnitt), 64
konvexe symmetrische Teilmenge, 28
kurze Halfte (eines Schnittes), 15

lange Hélfte (eines Schnittes), 15
linke Halfte, 7

Oberkante, 7
Ordnungstyp w, 37

Potenzreihenkorper (verallgemeinerter),

31

realisierende Obergruppe, 46
realisierender Oberkoérper, 48
realisiert, 8
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Realisierung, 8

rechte Hilfte, 7

Schnitt
(verallgemeinerter), 7
dquivalenter, 59
dichter, 66
echter, 7
freier, 7
prinzipaler, 7
symmetrischer, 15
zuriickgezogener, 33

Signatur (additive), 13
multiplikative, 29

Signum, 38

streng monoton steigend /fallend (in ei-

nem Schnitt), 64

stiickweise K-rational, 65

Tréger, 31
Unterkante, 7

verallgemeinerter Potenzreihenkérper,
31
vorderer Abschnitt, 39
abzahlbarer, 39

wohlgeordnet, 69
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