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Einleitung

Sei (X,≤) eine total geordnete Menge. Ein (Dedekind-)Schnitt p von X ist ein Paar
(pL, pR) von Teilmengen pL, pR von X mit pL ∪ pR = X und pL < pR, das heißt
a < b für alle a ∈ pL, b ∈ pR. Dedekindschnitte wurden von Richard Dedekind
(1831-1916) zu dem Zweck eingeführt, die reellen Zahlen axiomatisch zu beschrei-
ben. Sie tauchen jedoch heutzutage in vielen anderen Zusammenhängen auf. Da-
bei werden auch im allgemeineren Kontext meist nur Dedekindschnitte bestimmter
Strukturen betrachtet. Zum Beispiel ist es eine aus der reellen Algebra wohlbekannte
Tatsache, daß eine natürliche Bijektion zwischen den Dedekindschnitten eines reell
abgeschlossenen Körpers R und den Anordnungen des rationalen Funktionenkörpers
R(t) besteht. Somit bietet das reelle Spektrum eine Möglichkeit, Dedekindschnitte
reell abgeschlossener Körper zu verstehen.

In dieser Arbeit betrachten wir Dedekindschnitte in einer allgemeineren Situa-
tion. So beschäftigen wir uns hauptsächlich mit grundlegenden Eigenschaften von
Schnitten angeordneter Körper, die bei uns nicht notwendig reell abgeschlossen sind.
Hier können wir nicht analog unser Wissen über das reelle Spektrum eines Körpers
ausnutzen, sondern müssen auf andere Weise an das Problem herangehen. Gibt
es auch einige Arbeiten über Schnitte angeordneter Körper, erscheint es dennoch
dringend notwendig, die grundlegenden algebraischen Eigenschaften zu untersuchen.
Auch wenn sich die Vielzahl unserer Ergebnisse und Anwendungen im Fall eines an-
geordneten Körpers abspielt, ist es doch sinnvoll, noch allgemeiner Schnitte angeord-
neter (abelscher) Gruppen zu betrachten. Vieles ist bereits auf dieser Ebene möglich
und steht uns dann automatisch sowohl für die additive Gruppe (K, +) als auch die
multiplikative Gruppe (K>0, ·) eines angeordneten Körpers K zur Verfügung.

Wir beginnen in Kapitel 1 mit einer Einführung der grundlegenden Begriffe so-
wie der Bereitstellung der wichtigsten Hilfsmittel. In Abschnitt 1.1 betrachten wir
Schnitte einer angeordneten abelschen Gruppe G. Wir ordnen die Menge Cuts(G)
der Schnitte von G an, indem wir für zwei Schnitte p und q von G definieren:
p ≤ q :⇔ pL ⊆ qL. Weiter definieren wir das Negative eines Schnittes sowie eine
Operation + von G auf der Menge der Schnitte von G. Die Standgruppe eines Schnit-
tes p von G unter dieser Operation, also die Menge G(p) := {g ∈ G | g + p = p} ist
eine konvexe Untergruppe von G und heißt die Invarianzgruppe von p. Sie stellt die
erste wichtige Invariante eines Schnittes dar. Die Oberkante von G(p), das ist der
Schnitt p̂ = G(p)+ =

(
{g ∈ G | g ≤ h für ein h ∈ G(p)}, {g ∈ G | g > G(p)}

)
von

G, liefert uns eine im folgenden wichtige Fallunterscheidung. So gilt immer p̂ ≤ |p|
(Proposition 1.15), wobei der Fall p̂ < |p| für uns der interessantere ist. Ein weiteres
wichtiges Instrument zur Einteilung von Dedekindschnitten finden wir in der soge-
nannten Signatur eines Schnittes (Definition 1.24). Diese teilt uns im wesentlichen
mit, ob der Schnitt p von G als Translat der Ober- oder Unterkante seiner Invari-
anzgruppe darstellbar ist oder nicht.

In Abschnitt 1.2 betrachten wir dann einen angeordneten Körper K mit der Mul-
tiplikation als zweiter Operation neben der Addition. Wir definieren entsprechend
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eine Multiplikation von Körperelementen mit den Schnitten von K. Die multiplika-
tive Invarianzgruppe G∗(p) eines Schnittes p von K führen wir ein als die Invari-
anzgruppe von |p| bezüglich der angeordneten abelschen Gruppe (K>0, ·) im Sinne
unserer ersten Definition der (additiven) Invarianzgruppe. Der sogenannte Invari-
anzbewertungsring V (p) von p, gegeben durch V (p) = {a ∈ K | a · G(p) ⊆ G(p)},
ist ein konvexer Bewertungsring von K und stellt aufgrund der wichtigen Bezie-
hung V (p)∗>0 = G∗(G(p)+) (Proposition 1.44) eine weitere elementare Invariante
des Schnittes p von K dar.

In Kapitel 2 betrachten wir einen Schnitt p eines angeordneten Körpers K. Wir
haben bereits G(p) und G∗(p) als additive und multiplikative konvexe Untergruppen
von (K, +) beziehungsweise (K>0, ·) kennengelernt und untersuchen den Zusammen-
hang zwischen beiden. Zur Beschreibung dieses Zusammenhangs definieren wir die
Menge J(p) := {c ∈ K>0 | G∗(p) = c · G(p) + 1}, welche sich genau dann als
nichtleer herausstellt, wenn |p| > p̂ gilt (Proposition 2.6). In diesem Fall finden wir
für die Menge I(p) := 1

J(p)
der Inversen der Elemente von J(p) drei nützliche Be-

schreibungen. Lemma 2.10 sagt aus, daß sowohl die Ober- als auch die Unterkante
von I(p) Oberkanten von konvexen Untergruppen von (K, +) sind. Mit Proposition
2.12 können wir I(p) als Umgebung von p verstehen, und Korollar 2.14 liefert eine
Darstellung von I(p) mittels einer Bedingung an die multiplikative Invarianzgruppe
G∗(p) von p. Diese letzte Darstellung wird ermöglicht durch das Schlüssellemma 2.1,
das für Schnitte von Signatur 1 oder −1 die multiplikative Invarianzgruppe berech-
net. Im kurzen Abschnitt 2.2 beweisen wir mit unseren Mitteln ein Theorem aus [K]
von F.-V. Kuhlmann.

Kapitel 3 ist dem bereits in Definition 1.24 eingeführten Begriff der Signatur eines
Schnittes gewidmet. Zu einem Schnitt p eines angeordneten Körpers K geben uns die
additive Signatur sign(p) und die multiplikative Signatur sign∗(p) im wesentlichen
an, ob p durch Addition beziehungsweise Multiplikation mit einem Körperelement
aus der Ober- oder Unterkante seiner additiven beziehungsweise multiplikativen In-
varianzgruppe entstehen kann. Hier stoßen wir wieder auf die bereits in Kapitel 2
wichtige Fallunterscheidung zwischen |p| > p̂ und |p| = p̂. Im Fall |p| > p̂ erhal-
ten wir mit Theorem 3.5 eine direkte Verbindung zwischen sign(p) und sign∗(p).
Für positive Schnitte p > 0 stimmen beide nämlich überein, für negative Schnitte
p < 0 unterscheiden sie sich genau durch das Vorzeichen. Den Beweis dieser Aussage
ermöglicht uns zum einen die Entdeckung, daß unter der Bedingung |p| > p̂ nicht
nur sign(p), sondern auch sign∗(p) ungleich ∞ sein müssen. Zum anderen kommt
auch hier eine entscheidende Bedeutung dem Schlüssellemma 2.1 zu, das bereits in
Abschnitt 2.1 die dritte Beschreibung der Menge I(p) ermöglicht hat.

Im Fall |p| = p̂ in Teil 3.2 stellen wir fest, daß wir keine Beziehung zwischen
sign(p) und sign∗(p) wie die von Theorem 3.5 finden können. Vielmehr konstruie-
ren wir mit Hilfe des verallgemeinerten Potenzreihenkörpers Beispiele dafür, daß
alle denkbaren Kombinationen aus additiven und multiplikativen Signaturen auch
tatsächlich auftreten.
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Nach den ersten drei Kapiteln mit hauptsächlich allgemeinen Aussagen führen
wir in Abschnitt 3.3 eine Vielzahl von Beispielen an und rechnen die bis dahin ein-
geführten Invarianten von Schnitten explizit aus. Wir betrachten dazu den verallge-
meinerten Potenzreihenkörper R((tΓ)) mit einer divisiblen angeordneten abelschen
Gruppe Γ und einem reell abgeschlossenen Körper R. Wir wählen einen reell abge-
schlossenen Zwischenkörper R(t) ⊆ M ⊆ P , wobei P = R((t

1
∞

Z)) den Körper der
Puiseuxreihen bezeichnet. Jedes Element b ∈ N \ M induziert dann auf natürliche
Weise einen Schnitt p := b � M von M . Bereits Tressl führt diese Schnitte als Beispie-
le an ([T1], Beispiele 3.11, C). Allerdings beschränkt er sich auf den Fall Γ = Q und
erhält nur Schnitte mit additiver Signatur 0. Wir lassen auch divisible angeordnete
abelsche Obergruppen Γ von Q zu und geben in Theorem 3.27 genaue Bedingungen
für das Auftreten aller möglichen Kombinationen von sign(p) und sign∗(p̂) an. Des-
weiteren sehen wir dort explizit die jeweiligen Invarianten G(p), V (p) und G∗(p̂).
Da uns aber die Signaturen an dieser Stelle am meisten interessieren, finden wir die
betreffenden Aussagen noch einmal zusammengefaßt in einer Tabelle am Ende des
Abschnitts.

Nachdem wir zu einem Schnitt eines angeordneten Körpers seine elementaren
Invarianten wie Invarianzgruppen und Signaturen kennengelernt haben, befassen
wir uns in Kapitel 4 mit einer weiteren fundamentalen Frage über Schnitte: Wie
kann man eine Addition von Schnitten definieren? Um dieser Frage nachzugehen,
betrachten wir wieder Schnitte angeordneter abelscher Gruppen und untersuchen
zunächst in Abschnitt 4.1 folgenden intuitiven Ansatz. Zu zwei echten Schnitten p
und q einer angeordneten abelschen Gruppe G bilden wir das Paar (pL+qL, pR+qR)
von Teilmengen von G. Es stellt sich allerdings schnell heraus, daß es sich dabei im
allgemeinen nicht um einen Schnitt von G handelt. So betrachten wir die beiden
Schnitte (p + q)links := (pL + qL)+ und (p + q)rechts := (pR + qR)− (Definition 4.1)
und fragen, unter welchen Bedingungen beide übereinstimmen. Die wichtige Pro-
position 4.7 zeigt, daß sich immer Schnitte finden, für die dies nicht der Fall ist.
Zwar können wir mit Theorem 4.44 zumindest im Fall einer divisiblen angeordneten
abelschen Gruppe genaue Kriterien für das Zusammenfallen des linken und rechten
Schnittes geben. Der Beweis benutzt jedoch ein Werkzeug, das wir erst im nachfol-
genden Abschnitt bereitstellen, und steht deshalb am Ende von Kapitel 4.

Da der intuitive Versuch Schnitte zu addieren im allgemeinen ein Paar von
Schnitten liefert, kann Definition 4.1 nicht zufriedenstellen. Wollen wir die Addi-
tion mehrmals hintereinander ausführen oder fragen wir nach der Assoziativität der
Addition, so stoßen wir sofort auf eine Vielzahl von Fallunterscheidungen und auf
Probleme mit dieser Definition. Zudem läßt sich Definition 4.1 nur mit beträchtli-
chem formalen Aufwand auf unechte Schnitte ausdehnen. In Abschnitt 4.2 zeigen
wir einen Weg auf, der die Addition von Schnitten von angeordneten abelschen
Gruppen ohne Einschränkungen ermöglicht. Anstatt die linken oder rechten Hälften
der Schnitte zu addieren, addieren wir zu den Schnitten assoziierte konvexe Men-
gen. Der Ausganspunkt bei dieser Überlegung ist die Tatsache, daß für zwei kon-
vexe Teilmengen C und D einer angeordneten abelschen Gruppe G deren Summe
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C+D = {c+d | c ∈ C, d ∈ D} wieder eine konvexe Teilmenge ist. Auch F.-V. Kuhl-
mann macht sich diese Beobachtung in [K] zunutze. Er definiert zu einem Schnitt
p einer angeordneten abelschen Gruppe die von p erzeugte konvexe symmetrische
Menge CS(p) := {g ∈ G | |g| < |p|} und erhält hiermit eine Möglichkeit Schnitte
zu addieren. Unsere Methode unterscheidet sich in der Wahl der zu einem Schnitt
assoziierten konvexen Menge. Wir gehen dazu bei einer gegebenen angeordneten
abelschen Gruppe G zu einer (divisiblen) angeordneten abelschen Obergruppe Ω
über, in der alle Schnitte von G realisiert sind. Das heißt, daß für jeden Schnitt p
von G ein Element ω ∈ Ω existiert, so daß pL < ω < pR gilt. In dieser Obergruppe
Ω ist die Menge RealΩ(p) aller Realisierungen eines Schnittes p offensichtlich eine
konvexe Teilmenge. Zur Addition zweier Schnitte p und q von G gehen wir zunächst
zur Menge CT(Ω) aller konvexen Teilmengen von Ω über und addieren dort die zu p
und q assoziierten konvexen Teilmengen (Definition 4.36). Die wichtige Proposition
4.40 zeigt, daß sich beim Zurückziehen der Situation auf die ursprüngliche Gruppe
G im wesentlichen wieder das Paar des linken und rechten Schnittes aus der intui-
tiven Definition ergibt. Somit ist die Addition mittels realisierender Obergruppen
verträglich mit der anfangs untersuchten Addition mittels Paaren von Schnitten.

Bevor wir in Abschnitt 4.2.2 die Sinnhaftigkeit einer Definition der Addition von
Schnitten mittels realisierender Obergruppen beziehungsweise bei Schnitten ange-
ordneter Körper mittels realisierender Oberkörper aufzeigen, versichern wir uns in
Abschnitt 4.2.1 davon, daß diese realisierenden Oberstrukturen auch mit den Be-
griffen aus Kapitel 1 und 2 harmonieren. So definieren wir zu den Invarianten G(p),
G∗(p), V (p), J(p) und I(p) eines Schnittes p eines angeordneten Körpers K mit
realisierendem Oberkörper Ω in naheliegender Weise jeweils eine Entsprechung in Ω
mit dem Index Ω. Es stellt sich heraus, daß diese Mengen über ihren Entsprechungen
in K liegen, also beim Zurückgehen auf K wieder die ursprünglichen Mengen liefern.
Diese Beobachtung liefert ein weiteres Argument für die Qualität der Addition von
Schnitten mittels realisierender Oberstrukturen.

Bereits in Kapitel 1 haben wir Operationen von Gruppen auf Mengen von Schnit-
ten eingeführt. Man kann diese als die Anwendung elementarer semialgebraischer
Abbildungen auf Schnitte betrachten. So stellt sich die Frage, wie man beliebige se-
mialgebraische Abbildungen auf Schnitte angeordneter Körper anwenden kann. Im
Fall eines reell abgeschlossenen Körpers gibt uns der aus der reellen algebraischen
Geometrie wohlbekannte Monotoniesatz 5.1 die Möglichkeit, die strenge Monotonie
oder Konstanz einer semialgebraischen Abbildung in der Umgebung eines Schnittes
auszunutzen und die recht naheliegende Definition 5.2 zu machen. Im allgemeinen
Fall eines angeordneten Körpers ist dies nicht durchführbar. Denn Beispiel 5.12 zeigt,
daß selbst Polynome nicht im allgemeinen konstant oder streng monoton in jedem
Schnitt eines angeordneten Körpers sind. Theorem 5.18 liefert uns eine Bedingung,
unter der dies jedoch schon gilt. Vielmehr zeigen wir hier, daß rationale Funktionen
f/g ∈ K(t) mit einem angeordneten Körper K konstant oder streng monoton in ei-
nem Schnitt ξ von K sind, falls f und g gewisse Gradbedingungen in Abhängigkeit
von ξ erfüllen.
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Wir gehen noch kurz auf zwei Arbeiten über Schnitte angeordneter Körper ein,
nämlich [P] von G.G. Pestov und [K] von F.-V. Kuhlmann.

G.G. Pestov bedient sich in [P] hauptsächlich zweier Kriterien zur Klassifizierung
von Schnitten angeordneter Körper, nämlich ob der Schnitt Symmetrie aufweist, und
wie sich Polynome in einer Umgebung des Schnittes verhalten. Das Hauptergebnis
bezüglich des zweiten Kriteriums finden wir in [P], Theorem 3.2. Während Pestov
hier Vorzeichenbedingungen an das Polynom und sämtliche seiner Ableitungen stellt,
benötigen wir für unser Theorem 5.18 lediglich eine Gradbedingung. Zumal befinden
wir uns in Kapitel 5 in einer etwas allgemeineren Situation, da wir nicht nur Poly-
nome, sondern auch rationale Funktionen behandeln. Pestovs Begriff der Symmetrie
läßt sich leicht in unseren Zusammenhang übertragen. So zeigen wir in Abschnitt
1.1, daß ein Schnitt eines angeordneten Körpers genau dann symmetrisch im Sinne
von [P] ist, wenn seine (additive) Signatur gleich 0 ist.

Bereits angesprochen haben wir die Arbeit [K]. F.-V. Kuhlmann behandelt dort
recht ähnliche Fragen wie wir. So betrachtet er zu einem Schnitt p eines angeordne-
ten Körpers K ebenfalls die additive und muliplikative Invarianzgruppe sowie den
Invarianzbewertungsring von p. Viele unserer Aussagen aus Kapitel 1 finden sich
auch bei Kuhlmann. Daneben beschäftigt sich Kuhlmann wie wir mit der Frage
nach der Addition und Multiplikation von Schnitten, wählt aber wie beschrieben
einen etwas anderen Weg. Da im zweiten Teil seiner Arbeit bewertungstheoretische
Aspekte im Vordergrund stehen, beschränken sich die Gemeinsamkeiten von [K] mit
der vorliegenden Arbeit eher auf die genannten Invarianten eines Schnittes.

Hervorzuheben sind noch die Arbeiten [T1] und [T2] von Tressl. In [T1] werden
die grundlegenden Invarianten eines Schnittes eingeführt, wie sie auch wir verwen-
den. Während bei Tressl im wesentlichen nur reell abgeschlossene Körper auftreten
können, legen wir unseren Schwerpunkt auf die allgemeine Betrachtung von Schnit-
ten angeordneter Körper. Ideen aus [T2] gehen bei uns vor allem bezüglich des
Signaturbegriffs sowie im Kapitel über die Bewegung von Schnitten ein.

Abschließend möchte ich mich herzlich bei Herrn Prof. Dr. Manfred Knebusch für
die Möglichkeit bedanken, unter seiner Anleitung an einem Thema zu arbeiten, das
für mich sehr interessant und motivierend war. Mein besonderer Dank gilt Herrn Dr.
Marcus Tressl, bei dem ich jederzeit ein offenes Ohr fand. Seine zahlreichen, nicht
nur inhaltlichen Ratschläge waren mir eine große Hilfe.
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1. Allgemeines über Schnitte

In diesem ersten Kapitel definieren wir die wichtigsten Begriffe bezüglich Schnit-
ten angeordneter Strukturen und führen grundlegende Eigenschaften auf. Wir be-
schränken uns zunächst in Abschnitt 1.1 auf den allgemeinen Fall angeordneter
abelscher Gruppen mit der Addition als einziger Operation. Danach nehmen wir
in Abschnitt 1.2 mit der Multiplikation eine zweite Operation dazu und betrachten
Schnitte angeordneter Körper. Hier wissen wir aufgrund unserer Betrachtungen des
Gruppenfalles schon alles über die Operationen für sich, machen aber auch schon
erste Aussagen über das Verhältnis von Addition und Multiplikation.

Zu Beginn machen wir einige elementare Definitionen, für die wir noch keinerlei
Struktur auf der betrachteten angeordneten Menge benötigen.

Vorbemerkung 1.1. Sei (X,≤) eine total geordnete Menge. Für ein Element a ∈ X
und Teilmengen M,N ⊆ X schreiben wir a < M , falls a < m für alle m ∈ M , und
M < N , falls m < n für alle m ∈ M, n ∈ N . Für ein Element a ∈ X bezeichnet
|a| := max{−a, a} den Betrag von a.

Definition 1.2. Sei (X,≤) eine total geordnete Menge. Ein (verallgemeinerter)
(Dedekind-)Schnitt p von X ist ein Paar (pL, pR) von Teilmengen pL und pR von
X, so daß pL ∪ pR = X und pL < pR gilt, das heißt a < b für alle a ∈ pL, b ∈ pR.
Dabei nennen wir pL die linke und pR die rechte Hälfte von p. Die Bezeichnungen
pL und pR finden wir erstmals bei J.H. Conway, [C]. Ein Schnitt p von X heißt echt,
wenn pL und pR beide nicht leer sind. Ein Schnitt p von M heißt frei, wenn er echt
ist und weder pL ein größtes noch pR ein kleinstes Element enthält.
Wir schreiben Cuts(X) für die Menge der Schnitte von X. Wir ordnen Cuts(X) an,
indem wir für zwei Schnitte p, q ∈ Cuts(X) definieren:

p ≤ q :⇔ pL ⊆ qL.

Wir schreiben DC(X) := X∪Cuts(X) und setzen die Anordnung von Cuts(X) fort,
indem wir für ein x ∈ X und ein p ∈ Cuts(X) definieren:

x < p :⇔ x ∈ pL.

DC(X) heißt die Dedekind-Komplettierung von X. (Untersucht wurde die Ver-
vollständigung teilweise geordneter Mengen mittels Dedekindschnitten bereits von
MacNeille in [M]. Baer betrachtet in [Ba] den Dedekindschen Abschluß eines ange-
ordneten Körpers.) Für eine nichtleere Teilmenge Z ⊆ X schreiben wir Z− für den
Schnitt p von X mit pL = {x ∈ X | x < Z} und Z+ für den Schnitt q von X mit
qR = {x ∈ X | x > Z}. Wir nennen Z− die Unterkante von Z und Z+ die Ober-
kante von Z. Im Falle eines einpunktigen Z = {a} schreiben wir kurz a+ := {a}+

und a− := {a}−. Für Z = X setzen wir Z− =: −∞X und Z+ =: +∞X . Den Index
werden wir auch weglassen, wenn es der Zusammenhang erlaubt. Ein Schnitt p von
X heißt prinzipal, wenn p nicht frei ist, das heißt, wenn p gleich −∞ oder +∞
oder gleich a− oder a+ für ein a ∈ X ist.
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Definition/Bemerkung 1.3 (Erweiterung, Realisierung). Sei p ein Schnitt einer
total geordneten Menge X und sei Y ⊇ X eine weitere total geordnete Menge.
a) Falls q ein Schnitt von Y ist, so heißt q eine Erweiterung von p auf Y , falls
qL ∩ X = pL gilt. In diesem Fall schreiben wir p = q � X. p hat stets eine kleinste
und eine größte Erweiterung auf Y , nämlich die Schnitte (pL)

+
und (pR)

−
von Y .

b) Ein Element y ∈ Y heißt Realisierung von p, falls pL < y < pR gilt. Wir sagen,
p wird in Y realisiert und schreiben y |= p. In diesem Fall ist y /∈ X. Wird p nicht
in Y realisiert, so sagen wir: p ist in Y ausgelassen.
c) Eine Teilmenge N ⊆ Y liegt über einer Teilmenge M ⊆ X, wenn N ∩ X = M .
d) Ist y ∈ Y \X, so bezeichnen wir den Schnitt

(
{x ∈ X | x < y}, {x ∈ X | x > y}

)

von X mit y � X. Für ein x ∈ X setzen wir x � X := x.

Lemma 1.4. Sei X eine total geordnete Menge und seien C, D ⊆ X konvexe Teil-
mengen von X. Gilt C− = D− und C+ = D+, so ist C = D.

Beweis. Sei c ∈ C. Dann ist c > C− = D− und c < C+ = D+, also gibt es Elemente
d1, d2 ∈ D mit d1 ≤ c ≤ d2. Weil D konvex ist, gilt c ∈ D. Das zeigt C ⊆ D. Die
andere Inklusion gilt aus Symmetriegründen.

1.1. Schnitte angeordneter abelscher Gruppen

Definition 1.5. Sei G eine angeordnete abelsche Gruppe. Für einen Schnitt p von
G definieren wir den Schnitt −p von G durch

−p := (−pR,−pL).

Wir definieren den Betrag von p als

|p| :=

{
p , falls p > 0

−p , falls p < 0.

Weiter definieren wir die Operation + der Gruppe G auf Cuts(G) durch

+ : G × Cuts(G) → Cuts(G)

g + p := (g + pL, g + pR) (g ∈ G, p ∈ Cuts(G)).

Wir werden dabei gleichwertig sowohl die Schreibweise g+p als auch p+g verwenden.

Lemma 1.6. Sei G eine angeordnete abelsche Gruppe und Z ⊆ G eine nichtleere
Teilmenge von G. Dann gilt

Z+ = −((−Z)−) und Z− = −((−Z)+).

Beweis. Wir zeigen den ersten Teil der Aussage, indem wir die Gleichheit der beiden
rechten Hälften nachrechnen:(

− ((−Z)−)
)R

= −
(
(−Z)−

)L
= −{g ∈ G | g < −Z} =

= −{g ∈ G | −g > Z} = {g ∈ G | g > Z} = (Z+)R.

Der zweite Teil der Behauptung folgt jetzt durch Anwenden des eben Gezeigten
auf −Z.
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Meistens brauchen wir diese allgemeine Tatsache nur für konvexe Untergruppen, in
welchem Falle wir die Aussage etwas einfacher formulieren können.

Korollar 1.7. Sei G eine angeordnete abelsche Gruppe und H ⊆ G eine Unter-
gruppe. Dann gilt

−(H+) = H−.

Beweis. Die Behauptung folgt sofort nach Lemma 1.6, weil H = −H.

Lemma 1.8. Sei G eine angeordnete abelsche Gruppe und seien H1, H2 ⊆ G kon-
vexe Untergruppen von G. Ist H+

1 = H+
2 oder H−

1 = H−
2 , so gilt H1 = H2.

Beweis. Mit H+
1 = H+

2 folgt auch H−
1 = −H+

1 = −H+
2 = H−

2 und mit H−
1 = H−

2

folgt auch H+
1 = −H−

1 = −H−
2 = H+

2 . Die Behauptung folgt mit Lemma 1.4.

Wir kommen zur ersten fundamentalen Invariante eines Schnittes einer angeordneten
abelschen Gruppe.

Definition 1.9 (Invarianzgruppe eines Schnittes). Sei G eine angeordnete abelsche
Gruppe und p ein Schnitt von G. Dann definieren wir die (additive) Invarianz-
gruppe von p als die Standgruppe von p bezüglich der Operation +

G(p) := {g ∈ G | g + p = p}.

Bemerkung 1.10. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von G.
Da zwei Schnitte bereits gleich sind, wenn ihre linken oder rechten Hälften überein-
stimmen, haben wir für die Invarianzgruppe G(p) auch die Darstellungen

G(p) = {g ∈ G | g + pL = pL} = {g ∈ G | g + pR = pR}.

Für die Berechnung von Invarianzgruppen ist folgendes Lemma nützlich.

Lemma 1.11. Seien G eine angeordnete abelsche Gruppe, p ein Schnitt von G und
g ∈ G. Ist g > 0, dann gilt g ∈ G(p) genau dann, wenn g + pL ⊆ pL gilt. Ist g < 0,
dann gilt g ∈ G(p) genau dann, wenn g + pR ⊆ pR gilt.

Beweis. Wir beweisen nur die Aussage für g > 0, für g < 0 geht der Beweis völlig
analog. Sei also g > 0 mit g + pL ⊆ pL. Wegen g > 0 gilt auch g + pR ⊆ pR. Aus
(g + pL)∪ (g + pR) = G und g + pL < g + pR folgt g + pL = pL und damit g ∈ G(p).
Die andere Richtung ist trivial.

Proposition 1.12. Sei G eine angeordnete Gruppe und p ein Schnitt von G. Dann
ist die Invarianzgruppe G(p) eine konvexe Untergruppe von G.

Beweis. Daß G(p) eine Untergruppe von G ist, folgt aus der Tatsache, daß G(p) die
Standgruppe einer Operation von G auf Cuts(G) ist. Seien nun Elemente g ∈ G(p)
und h ∈ G gegeben mit 0 < h < g. Für alle x ∈ pL gilt dann h + x < g + x ∈
(g + p)L = pL und damit h + x ∈ pL. Damit ist h + pL ⊆ pL und nach Lemma 1.11
gilt h ∈ G(p).



1. Allgemeines über Schnitte 10

Proposition 1.13. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Dann gilt

G(−p) = G(p),

und für alle g ∈ G gilt
G(g + p) = G(p).

Beweis. Die Behauptungen folgen sofort aus den Definitionen. Denn weil G(p) eine
Gruppe ist, gilt g ∈ G(p) genau dann, wenn −g ∈ G(p) gilt. Das ist aber äquivalent
zu −g + pL = pL, also auch zu g + (−pL) = −pL. Dies wiederum ist gleichwertig zu
g + (−p)R = (−p)R oder g ∈ G(−p).
Für alle g, h ∈ G gilt h + g + pL = g + pL genau dann, wenn h + pL = pL gilt. Dies
zeigt die zweite Behauptung.

Definition 1.14 (Oberkante der Invarianzgruppe). Sei G eine angeordnete abel-
sche Gruppe und p ein Schnitt von G. Dann setzen wir

p̂ := G(p)+.

Proposition 1.15. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Dann gilt

p̂ ≤ |p|.

Beweis. Da nach Proposition 1.13 G(p) = G(−p) gilt, können wir ohne Einschrän-
kung p > 0 annehmen. Sei also x ∈ pR, mit anderen Worten x > p. Dann ist 0 < p,
aber 0 + x > p, das heißt x /∈ G(p). Wegen x > 0 folgt x > p̂. Wir erhalten also
(p̂)R ⊇ pR. Dies ist äquivalent zu (p̂)L ⊆ pL oder p̂ ≤ p.

Lemma 1.16. Sei G eine angeordnete abelsche Gruppe und Z ⊆ G eine nichtleere
Teilmenge von G. Sei g ∈ G mit g > 0. Dann ist g ∈ G(Z+) genau dann, wenn
g + z < Z+ für alle z ∈ Z gilt.

Beweis. Ist g ∈ G(Z+), so gilt für alle z ∈ Z natürlich g + z < g + Z+ = Z+. Sei
umgekehrt g + z < Z+ für alle z ∈ Z. Für ein beliebiges x < Z+ existiert nach
Definition von Z+ ein z(x) ∈ Z mit x ≤ z(x) und damit ist g + x ≤ g + z(x) < Z+.
Deshalb ist g + (Z+)

L ⊆ (Z+)
L

und mit Lemma 1.11 folgt g ∈ G(Z+).

Lemma 1.17. Sei G eine angeordnete abelsche Gruppe und Z ⊆ G eine nichtleere
Teilmenge von G. Dann gilt für alle g ∈ G

(g + Z)+ = g + Z+.

Beweis. Für ein g ∈ G zeigen wir die Gleichheit der rechten Hälften:

((g + Z)+)
R

= {h ∈ G | h > g+Z} = g+{h ∈ G | h > Z} = g+(Z+)
R

= (g + Z+)
R
.
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Proposition 1.18. Sei G eine angeordnete abelsche Gruppe und sei H ⊆ G eine
konvexe Untergruppe von G. Dann gilt

G(H+) = H.

Beweis.
”
⊆ “: Sei ohne Einschränkung g ∈ G(H+) mit g ≥ 0. Dann gilt g + H+ =

H+ und somit ist 0 ≤ g + 0 < g + H+ = H+. Da H konvex ist, folgt g ∈ H.

”
⊇ “: Sei ohne Einschräkung h ∈ H mit h > 0. Für alle h′ ∈ H ist natürlich

h + h′ < H+ und damit ist h ∈ G(H+) nach Lemma 1.16.

Das folgende Lemma verallgemeinert Lemma 1.8.

Lemma 1.19. Sei G eine angeordnete abelsche Gruppe, seien H1, H2 ⊆ G konvexe
Untergruppen von G und sei g ∈ G. Ist g + H+

1 = H+
2 , so gilt H1 = H2.

Beweis. Sei ohne Einschränkung H1 ⊆ H2. Ist g ≤ 0, so gilt H+
2 = g + H+

1 ≤ H+
1 ≤

H+
2 . Damit gilt Gleichheit überall und mit Lemma 1.8 folgt H1 = H2. Ist g > 0, so

gilt die Abschätzung 0 < g + 0 < g + H+
1 = H+

2 . Da H2 eine konvexe Untergruppe
von G ist, folgt g ∈ H2. Nach Proposition 1.18 gilt dann g ∈ G(H+

2 ) und somit
H+

1 = H+
2 − g = H+

2 . Wieder mit Lemma 1.8 folgt H1 = H2.

Wir führen nun zu einem Schnitt p einer angeordneten abelschen Gruppe eine weitere
Invariante ein, nämlich die Signatur von p. Dafür benötigen wir den Begriff der
divisiblen Hülle einer angeordneten abelschen Gruppe.

Definition/Bemerkung 1.20 (Divisible Hülle). Sei G eine angeordnete abelsche
Gruppe. Dann definieren wir

dh(G) := G × N/ ∼

mit N = {1, 2, . . . } der Menge der natürlichen Zahlen und der Äquivalenzrelation

(g, n) ∼ (h, k) :⇔ k · g = n · h ((g, n), (h, k) ∈ G × N).

Wir schreiben g

n
für die Äquivalenzklassen (g, n) bezüglich ∼. Mit der Addition

g

n
+

h

k
:=

kg + nh

kn
(
g

n
,

h

k
∈ dh(G))

ist dh(G) eine abelsche Gruppe. Die Gruppe G ist via

G ↪→ dh(G), g 7→ g

1
(g ∈ G)

eingebettet in dh(G). dh(G) ist divisibel (das heißt n·dh(G) = dh(G) für alle n ∈ N),
da für alle h

k
∈ dh(G) und für alle n ∈ N die Gleichung h

k
= n · h

nk
gilt. Wir definieren

auf dh(G) eine Anordnung durch

g

n
≤ h

k
:⇔ k · g ≤G n · h (

g

n
,

h

k
∈ dh(G)).
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Wir rechnen leicht nach, daß dh(G) damit zu einer angeordneten abelschen Grup-
pe wird. Seien nämlich g

n
, h

k
, i

l
∈ dh(G) und sei g

n
≤ h

k
. Dann ist nach Definition

kg ≤ nh und damit auch kl2g = nl2h. Daraus folgt kl2g + nkli ≤ nl2h + nkli oder
kl(lg + ni) ≤ nl(lh + ki). Das bedeutet aber g

n
+ i

l
= lg+ni

nl
≤ lh+ki

kl
= h

k
+ i

l
.

dh(G) ist also eine divisble angeordnete abelsche Obergruppe von G, deren Anord-
nung die Anordnung von G fortsetzt. Da für jede divisible angeordnete abelsche
Obergruppe H von G, deren Ordnung die von G fortsetzt, genau ein Homomorphis-

mus ϕ von angeordneten Gruppen dh(G)
G−→ H über G existiert, so daß folgendes

Diagramm kommutiert,

dh(G)
ϕ

// H

G
0 P

``AAAAA
2�

CC
�

�
�

�

heißt dh(G) die divisible Hülle von G.

Bemerkung 1.21. Sei G eine angeordnete abelsche Gruppe. Dann ist die Abbildung

G ⊗Z Q ∼−→ dh(G)

g ⊗ r
s
7→ rg

s
(g ⊗ r

s
∈ G ⊗Z Q)

mit der Menge der ganzen Zahlen Z und der Menge der rationalen Zahlen Q ein
kanonischer Isomorphismus. Für Details verweisen wir auf [B], 7.2, Satz 8 (ii), S. 304.
Wir identifizieren von nun an dh(G) mit G ⊗Z Q.

Bemerkung 1.22. Sei G eine angeordnete abelsche Gruppe und sei H ⊆ G eine
konvexe Untergruppe von G. Dann wird durch

g mod H ≥ 0 :⇔ es existiert ein h ∈ H mit g ≥ h

eine Anordnung auf der Restklassengruppe G/H definiert. Für ein g ∈ G gilt

g mod H > 0 genau dann, wenn g > H.

Denn es gilt g mod H > 0 genau dann, wenn g mod H ≥ 0 und g mod H 6= 0, genau
dann, wenn ein h ∈ H existiert mit g ≥ h und g /∈ H, genau dann, wenn g > H,
Letzteres, weil H konvex ist.

Wir zitieren ein wichtiges Lemma aus [T2], das uns die Definition der Signatur eines
Schnittes einer angeordneten abelschen Gruppe im Anschluß ermöglicht.

Lemma 1.23 (Tressl). Sei G eine angeordnete abelsche Gruppe und H ⊆ G eine
konvexe Untergruppe von G. Dann sind die folgenden Aussagen äquivalent:

(i) H+ besitzt eine Realisierung in G ⊗Z Q.

(ii) G/H besitzt ein kleinstes positives Element.
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(iii) Es existiert ein g ∈ G mit H+ = g + H−.

(iv) Es existiert ein g ∈ G mit g > H, so daß für alle g0 ∈ G mit H < 2g0 gilt,
daß 2g0 > g ist.

(v) Es existiert eine angeordnete abelsche Gruppe L ⊇ G, so daß die größte Er-
weiterung von H+ auf L nicht die Oberkante einer konvexen Untergruppe von
L ist.

Für ein g ∈ G gilt in diesem Fall H+ = g + H− genau dann, wenn g/2 |= H+ gilt,
genau dann, wenn g mod H das kleinste positive Element von G/H ist.

Beweis. Den (etwas knapperen) Beweis finden wir in der vorliegenden Form in [T2].
Wegen der grundlegenden Bedeutung des Lemmas führen wir ihn dennoch an.

(i) ⇒ (ii): Sei g′

k
∈ G ⊗Z Q eine Realisierung von H+. Dann gilt auch g′

2k |= H+.

Wir setzen l := min{n ∈ N | g′

2n |= H+}. Ist g′

2l−1 ∈ G, so setzen wir g := g′

2l−1 und

erhalten g/2 |= H+. Ist g′

2l−1 /∈ G, so existiert wegen g′

2l−1 6|= H+ ein x ∈ G mit

H < x < g′

2l−1 . Dann gilt H < x
2

< g′

2l , also ist x ∈ G mit x
2
|= H+. In jedem Fall

erhalten wir ein g ∈ G mit g/2 |= H+.
Angenommen, es gilt 0 < a mod H < g mod H für ein a ∈ G. Dann ist a > H und
g − a > H, also a > g/2 und g − a > g/2. Aber aus g − a > g/2 folgt 2g − 2a > g,
also g > 2a, ein Widerspruch zu a > g/2.

(ii) ⇒ (iii): Sei g mod H das kleinste positive Element von G/H. Ist a ∈ G
mit a > g + H−, dann ist a ≥ g + h für ein h ∈ H. Da g > H ist, gilt auch
a > H. Dies zeigt H+ ≤ g + H−. Ist umgekehrt a ∈ G mit a > H, dann ist
a mod H ≥ g mod H, also (a−g) mod H ≥ 0, also existiert ein h ∈ H mit a−g ≥ h.
Dies zeigt H+ ≥ g + H−.

(iii) ⇒ (iv): Sei g ∈ G mit H+ = g + H− und sei g0 ∈ G mit H < 2g0. Dann ist
g0 > H und g−h ≤ g0 für ein h ∈ H. Daraus folgt 2g0 ≥ g0+g−h = g+(g0−h) > g.

(iv) ⇒ (i): Sei g ∈ G mit g > H mit der Eigenschaft, daß 2g0 > g für alle g0 ∈ G
mit 2g0 > H. Dann ist auch g/2 > H und g/2 < g0 für alle g0 ∈ G mit g0 > H, also
gilt g/2 |= H+.

(i) ⇒ (v): L := G ⊗Z Q liefert das Gewünschte.
(v) ⇒ (i): Wir wählen ein l ∈ L mit l |= H+, so daß 2l die Oberkante H+ nicht

realisiert. Dann existiert ein g ∈ G mit H < g ≤ 2l und g/2 |= H+.
Unser Beweis zeigt gleichzeitig den Zusatz.

Definition 1.24 (Signatur). Sei G eine angeordnete abelsche Gruppe und p ein
Schnitt von G. Dann definieren wir die Signatur von p als

sign(p) :=





1 falls p = g + p̂ für ein g ∈ G und p̂ nicht realisiert ist in G ⊗Z Q
−1 falls p = g − p̂ für ein g ∈ G und p̂ nicht realisiert ist in G ⊗Z Q
0 falls kein g ∈ G existiert mit p = g + p̂ oder p = g − p̂
∞ sonst.
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Beispiel 1.25. Sei G eine angeordnete abelsche Gruppe. Wir erinnern an die Defi-
nitionen −∞ := G− und +∞ := G+. Da G(G−) = G(G+) = G gilt und G+ nicht
realisiert ist in G ⊗Z Q, gilt für diese beiden Schnitte

sign(−∞) = −1 und sign(+∞) = +1.

Korollar 1.26 (Tressl). Sei G eine angeordnete abelsche Gruppe und p ein Schnitt
von G. Ist sign(p) = 0, so ist p̂ nicht realisiert in G ⊗Z Q.

Beweis. Auch diesen Beweis zitieren wir aus [T2]. Angenommen, p̂ ist realisiert in
G ⊗Z Q. Dann existiert nach Lemma 1.23, angewandt auf H = G(p), ein g ∈ G,
so daß g mod G(p) das kleinste positive Element in G/G(p) ist. Wegen g > G(p)
existiert ein h ∈ G mit h < p < h + g. Wir zeigen p = h + p̂. Die Abschätzung
h + p̂ ≤ p ist klar. Sei umgekehrt g1 ∈ G mit h + p̂ < g1. Dann ist g1 − h > p̂, also
(g1 − h) mod G(p) > 0 in G/G(p). Deshalb ist (g1 − h) mod G(p) ≥ g mod G(p) und
es existiert ein a ∈ G(p) mit g1 −h ≥ g + a. Es folgt g1 ≥ h+ g + a > p+ a = p.

Bemerkung 1.27. Für einen Schnitt p einer angeordneten abelschen Gruppe G sagt
die Signatur sign(p) im wesentlichen aus, ob sich p als Translat der Ober- oder
Unterkante seiner Invarianzgruppe darstellen läßt. Schreibt sich p als Translat der
Ober- oder Unterkante einer beliebigen konvexen Untergruppe H von G, so folgt
bereits H = G(p). Denn ist zum Beispiel p = g+H+ mit einem g ∈ G, so liefern uns
die Propositionen 1.13 und 1.18 die Gleichheit G(p) = G(g + H+) = G(H+) = H.

Die folgende Aussage ist nicht schwer zu zeigen, dennoch aber recht wichtig. Zum
einen verdeutlicht sie den engen Zusammenhang zwischen den Signaturen +1 und
−1 und erlaubt uns oftmals, uns auf positive Schnitte von angeordneten abelschen
Gruppen zu beschränken.

Proposition 1.28. Sei G eine angeordnete abelsche Gruppe und p ein Schnitt von
G. Ist sign(p) 6= ∞, so gilt

sign(−p) = −sign(p).

Ist sign(p) = ∞, so gilt sign(p) = sign(−p).

Beweis. Der Zusatz ist wegen p̂ = (̂−p) klar. Sei also sign(p) 6= ∞ und damit auch
sign(−p) 6= ∞. In dieser Situation gilt genau dann sign(p) = 1, wenn es ein g ∈ G
gibt mit p = g+G(p)+, genau dann, wenn es ein g ∈ G gibt mit −p = −g−G(p)+ =
−g+G(p)− = −g+G(−p)−, also genau dann, wenn sign(−p) = −1 gilt. Damit folgt
die Behauptung für sign(p) ∈ {±1}. Dann muß sie aber auch im Falle sign(p) = 0
gelten.

An dieser Stelle weisen wir auf eine Arbeit hin, in der die Signatur eines Schnittes
eines angeordneten Körpers implizit auftaucht. G.G. Pestov definiert in [P] den
Begriff eines symmetrischen Schnittes und benutzt ihn, um Schnitte angeordneter
Körper zu klassifizieren. Wir zeigen, daß ein solcher symmetrischer Schnitt bei uns
gerade einem Schnitt mit Signatur 0 entspricht.
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Definition 1.29 (Pestov). Sei K ein angeordneter Körper und p = (pL, pR) ein
Schnitt von K.
a) Die linke Hälfte pL heißt lang, wenn es für jedes a < p ein a1 < p gibt, so daß
(a1 + (a1 − a)) > p gilt. Ebenso heißt die rechte Hälfte pR lang, wenn es für jedes
b > p ein b1 > p gibt, so daß (b1 + (b1 − b)) < p gilt. Eine Hälfte pL oder pR heißt
kurz, wenn sie nicht lang ist.
b) Der Schnitt p heißt symmetrisch, wenn pL und pR lang sind.

Wir zeigen, wie wir die Begriffe
”
kurz“,

”
lang“ und

”
symmetrisch“ aus Definition

1.29 mittels unseres Signaturbegriffs ausdrücken können.

Lemma 1.30. Sei K ein angeordneter Körper und p ein Schnitt von K. Dann gilt

(pL ist lang ⇔ sign(p) 6= 1) und (pL ist kurz ⇔ sign(p) = 1) sowie
(pR ist lang ⇔ sign(p) 6= −1) und (pR ist kurz ⇔ sign(p) = −1).

Beweis. Wir zeigen die erste Äquivalenzaussage, die restlichen drei folgen dann so-
fort.
Da (K, +) divisibel ist, ist p̂ nicht realisiert in K ⊗Z Q = K und damit gilt
sign(p) 6= ∞.

”
⇐ “: Sei a < p. Dann gilt auch ohne weitere Voraussetzung a+p̂ ≤ p.

Wegen sign(p) 6= 1 gilt sogar a+ p̂ < p, das heißt, es existiert ein a+ p̂ < b < p. Wir
erhalten b−a > p̂ und somit die Existenz eines Elements b′ < p mit b′ +(b−a) > p.
Wir setzen c := max{b, b′}. Dann gilt c < p und c + (c− a) ≥ b′ + (b− a) > p. Da a
beliebig war, ist pL lang.

”
⇒ “: Wir nehmen an, daß es ein a ∈ K gibt mit p = a+ p̂.

Dann ist a < p und für alle b < p gibt es ein g(b) ∈ G(p) mit b ≤ a + g(b). Deshalb
gilt für alle b < p die Abschätzung (b+(b−a)) ≤ a+g(b)+a+g(b)−a = a+2g(b) < p.
Dies bedeutet aber gerade, daß pL kurz ist, was ein Widerspruch ist.
Die zweite Aussage ist lediglich eine Umformulierung der ersten. Wir sehen weiter
leicht ein, daß pR genau dann lang ist, wenn (−p)L lang ist. Damit erhalten wir die
dritte Äquivalenz aus der ersten, da nach Proposition 1.28 sign(−p) = −sign(p) gilt.
Die vierte Aussage ist wieder gleichbedeutend mit der dritten.

Korollar 1.31. Sei K ein angeordneter Körper und p ein Schnitt von K. Dann ist
p genau dann symmetrisch, wenn p Signatur sign(p) = 0 besitzt.

Wir zitieren noch eine Aussage aus [T2], die uns angibt, wie sich für Erweiterungen
eines Schnittes einer angeordneten abelschen Gruppe die zugehörigen Invarianzgrup-
pen in Abhängigkeit von der Signatur des ursprünglichen Schnittes verhalten. Die
Proposition wird vor allem im Abschnitt 4.2.1 über realisierende Obergruppen und
Oberkörper sehr nützlich sein. Deshalb werden wir auch in diesem Fall den Beweis
(leicht modifiziert) anführen statt nur auf die Quelle zu verweisen.

Proposition 1.32 (Tressl). Sei G ⊆ H eine Erweiterung von angeordneten abel-
schen Gruppen und p ein Schnitt von G. Dann gilt:

(i) Falls s eine Erweiterung von p auf H ist, so gilt G(s) ∩ G ⊆ G(p).
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(ii) Falls s die kleinste oder größte Erweiterung von p auf H ist, so ist ŝ die kleinste
oder größte Erweiterung von p̂ auf H.

(iii) Falls p in H nicht realisiert ist und s die eindeutige Erweiterung von p auf H
ist, so ist ŝ die größte Erweiterung von p̂ auf H. Falls zusätzlich sign(p) = 0
gilt, dann ist auch sign(s) = 0.

(iv) Sei sign(p) = 0 und seien q und r die kleinste und die größte Erweiterung von
p auf H. Dann ist q̂ = r̂ die größte Erweiterung von p̂ auf H, und für jede
Realisierung h von p in H gilt q = h − q̂, r = h + r̂ und r = 2h − q.

(v) Sei sign(p) = 1 und seien q und r die kleinste und die größte Erweiterung von
p auf H. Dann ist q̂ die kleinste Erweiterung von p̂ auf H und r̂ ist die größte
Erweiterung von p̂ auf H.

(vi) Sei sign(p) = −1 und seien q und r die kleinste und die größte Erweiterung
von p auf H. Dann ist q̂ die größte Erweiterung von p̂ auf H und r̂ ist die
kleinste Erweiterung von p̂ auf H.

(vii) Sei sign(p) = ∞ und sei g ∈ G, so daß g mod G(p) das kleinste positive
Element von G/G(p) ist. Seien q und r die kleinste und die größte Erweiterung
von p auf H. Dann ist q̂ = r̂ die kleinste Erweiterung von p̂ auf H und es gilt
r̂ = g − q̂.

Beweis. (i) Sei s eine Erweiterung von p auf H. Ist g ∈ G(s) ∩ G, dann gilt
g + pL = g + (sL ∩ G) = (g + sL) ∩ G = sL ∩ G = pL, also g ∈ G(p).

Zwischenbehauptung: Ist s die kleinste oder größte Erweiterung von p auf H ist, so
ist ŝ eine Erweiterung von p̂ auf H.

Beweis dazu: Sei g ∈ G(p) mit g > 0. Ist s = (pL)
+
, so ist g+sL ⊆ sL. Ist s = (pR)

−
,

so ist −g + sR ⊆ sR. Mit Lemma 1.11 gilt immer g ∈ G(s). Dies zeigt p̂L ⊆ ŝL ∩ G.
Nach (i) gilt ŝL ∩ G ⊆ p̂L. Insgesamt folgt die Zwischenbehauptung.

(iii) Sei h ∈ H mit h + s > s. Da p in H nicht realisiert ist, existiert ein g1 ∈ G
mit g1 < p und h + g1 > s. Aus demselben Grund existiert auch ein g2 ∈ G mit
h + g1 ≥ g2 > s. Dann ist h ≥ g2 − g1 > G(p), denn es gilt g1 + (g2 − g1) = g2 > p.
Damit kann h keine Realisierung von p̂ sein. Mit der Zwischenbehauptung folgt jetzt,
daß ŝ die größte Erweiterung von p̂ auf H ist.

Sei nun p nicht realisiert in H und zusätzlich sign(p) = 0. Wir nehmen an, daß
es ein h ∈ H gibt mit s = h + ŝ. Da p in H ausgelassen ist, gibt es ein g ∈ G mit
h ≤ g < p. Damit folgt s = g + ŝ und p = g + p̂, was nicht sein kann. Ebenso auf
einen Widerspruch führt die Annahme, daß es ein h ∈ H gibt mit s = h − ŝ. Das
zeigt sign(s) = 0.
(iv) Wegen Korollar 1.26 und Lemma 1.23 (v) ist die größte Erweiterung von p̂ auf
H die Oberkante einer konvexen Untergruppe H0 von H. Nach der Zwischenbehaup-
tung sind q̂ und r̂ Erweiterungen von p̂ auf H. Falls keine Realisierung von p̂ in H0
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und damit in H existiert, so ist q̂ = r̂ die eindeutige Erweiterung von p̂ auf H.
Sei andernfalls h0 ∈ H0 eine Realisierung von p̂. Da sign(p) = 0 und k · h0 ∈ H0

für alle k ∈ Z gilt, ist p nicht in der von G und h0 erzeugten Untergruppe G(h0) ⊆ H
realisiert. Sei s die eindeutige Erweiterung von p auf G(h0). Dann sind q und r die
kleinste und die größte Erweiterung von s auf H. Nach Teil (iii) gilt h0+s = s. Nach
der Zwischenbehauptung angewandt auf s erhalten wir h0 + q = q und h0 + r = r.
Das zeigt q̂ = r̂ = H+

0 .
Sei jetzt h ∈ H eine Realisierung von p. Wir wissen bereits h + H+

0 ≤ r. An-
genommen, es existiert ein h1 ∈ H mit h + H0 < h1 < r. Dann ist h1 − h keine
Realisierung von p̂, weil H+

0 die größte Erweiterung von p̂ auf H ist. Also existiert
ein g ∈ G mit h1 − h ≥ g > p̂. Es gilt h + g ≤ h1, aber h + g realisiert p nicht,
weil g > p̂ ist und somit ein x ∈ G mit x < p < h und p < x + g < h + g existiert.
Dies ergibt einen Widerspruch. Analog können wir q = h − q̂ zeigen und erhalten
schließlich auch die Gleichung r = h + r̂ = h + q̂ = h + h − q = 2h − q.
(v), (vi) und (vii) sind direkte Folgerungen aus Lemma 1.23. (ii) folgt mit (iv)-
(vii).
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1.2. Schnitte angeordneter Körper

In diesem Abschnitt betrachten wir Schnitte angeordneter Körper. Wir definieren
eine multiplikative Entsprechung zur (additiven) Invarianzgruppe und führen den
Invarianzbewertungsring als weitere wichtige Invariante eines Schnittes eines ange-
ordneten Körpers ein.

Definition/Bemerkung 1.33. Sei K ein angeordneter Körper und p ein Schnitt
von K mit p > 0, dann betrachten wir p als Schnitt der angeordneten abelschen
Gruppen (K, +) und (K>0, ·). Für alle a ∈ K>0 haben wir analog zu Definition 1.5
den Schnitt

a · p = (a · pL, a · pR).

Für Schnitte p von K mit p < 0 definieren wir für alle a ∈ K>0

a · p := −(a · (−p)) = (a · pL, a · pR).

Für beliebige Schnitte p von K definieren wir für alle a ∈ K>0

(−a) · p = −(a · p).

Weiter definieren wir analog zur additiven Definition 1.5 für einen Schnitt p > 0 von
K>0 oder einen Schnitt p < 0 von K<0 den Schnitt 1

p
von K>0 beziehungsweise von

K<0 durch
1

p
:= (

1

pR
,

1

pL
).

Wir können den Schnitt 1
p

von K>0 beziehungsweise K<0 auch jeweils als Schnitt

von K auffassen. Dann gilt 1
p

= − 1
(−p)

.

Lemma 1.34. Sei K ein angeordneter Körper und Z ⊆ K eine Teilmenge von K
mit Z ∩ K>0 6= ∅. Dann gilt für alle a ∈ K>0 und alle b ∈ K

(a · Z + b)+ = a · Z+ + b.

Beweis. Da Z ∩ K>0 6= ∅ sowie a > 0 gilt und wir nur Oberkanten betrachten,
können wir ohne Einschränkung Z ⊆ K>0 annehmen. Dann folgt die Behauptung
nach Lemma 1.17, einmal additiv und einmal multiplikativ angewandt.

Proposition 1.35. Sei p ein Schnitt eines angeordneten Körpers K. Dann gilt für
alle a ∈ K∗ := K \ {0}

G(a · p) = a · G(p).

Beweis. Sei zunächst a > 0. Dann gilt

g ∈ G(ap) ⇔ apL = g + apL ⇔ pL = 1
a
(g + apL) = g

a
+ pL ⇔ g ∈ aG(p).

Für ein Element a < 0 gilt nach Proposition 1.13 und dem gerade Gezeigten G(ap) =
G(−(ap)) = G((−a)p) = −aG(p) = aG(p).
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Definition 1.36 (Invarianzbewertungsring einer Gruppe). Sei K ein angeordneter
Körper und G ⊆ K eine konvexe Untergruppe von (K, +). Dann definieren wir den
Invarianzbewertungsring von G als

V (G) := {a ∈ K | a · G ⊆ G}.

Proposition 1.37. Sei K ein angeordneter Körper und G ⊆ K eine konvexe Un-
tergruppe von (K, +). Dann ist V (G) ein konvexer Bewertungsring von K.

Beweis. Trivialerweise ist V (G) ein Teilring von K. Sei 0 < a < b mit b ∈ V (G)
und a ∈ K. Dann sind mit G auch a · G und b · G konvexe Untergruppen von K
und es gilt a · G ⊆ b · G ⊆ G. Das zeigt a ∈ V (G) und damit die Konvexität von
V (G). Als konvexer Teilring von K ist V (G) nach [KS], Kap. II, §2, Satz 2, S. 55,
Bewertungsring.

Bezeichnung 1.38. In der Situation von Proposition 1.37 ist V (G) ein Bewer-
tungsring und damit nach [KS], Kap. II, §2, Satz 1, S. 55, ein lokaler Ring. Wir
schreiben

m(G) := V (G) \ V (G)∗

für das eindeutige maximale Ideal von V (G), wobei V (G)∗ die Einheitengruppe von
V (G) bezeichnet.

Definition 1.39 (Invarianzbewertungsring eines Schnittes). Sei p ein Schnitt eines
angeordneten Körpers K. Wir definieren den Invarianzbewertungsring von p als
den Invarianzbewertungsring seiner Invarianzgruppe,

V (p) := V (G(p)).

Sein (eindeutiges) maximales Ideal bezeichnen wir mit

m(p) = V (p) \ V (p)∗,

wobei wieder V (p)∗ die Einheitengruppe von V (p) bezeichnet.

Zwischen Invarianzbewertungsring eines Schnittes und dem zugehörigen maximalen
Ideal haben wir folgende Beziehung für die Kanten.

Proposition 1.40. Sei p ein Schnitt eines angeordneten Körpers K. Dann gilt

m(p)+ =
1

V (p)+
und m(p)− =

1

V (p)−
.

Beweis. Es gilt

0 < x < m(p)+ ⇔ 0 < x ∈ m(p) = V (p) \ V (p)∗ ⇔ 1
x

> V (p) ⇔ x < 1
V (p)+

.

Richtig gelesen folgt die zweite Aussage jetzt sofort wegen m(p)− = −m(p)+ =
− 1

V (p)+
= 1

−V (p)+
= 1

V (p)−
.



1. Allgemeines über Schnitte 20

Proposition 1.41. Sei K ein angeordneter Körper und p ein Schnitt von K. Für
alle a ∈ K∗ = K \ {0} und alle b ∈ K gilt dann

V (ap + b) = V (p).

Beweis. Nach Definition ist V (ap + b) = {c ∈ K | cG(ap + b) ⊆ G(ap + b)}. Nach
den Propositionen 1.13 und 1.35 gilt G(ap + b) = G(ap) = aG(p). Damit folgt die
Behauptung.

Definition 1.42 (Multiplikative Invarianzgruppe). Sei p ein Schnitt eines angeord-
neten Körpers K. Wir definieren die multiplikative Invarianzgruppe von p als

G∗(p) := {a ∈ K>0 | a · p = p}.

Also ist G∗(p) die Invarianzgruppe von |p| bezüglich (K>0, ·), insbesondere gilt
G∗(p) ⊆ K>0.

Proposition 1.43. Sei p ein Schnitt eines angeordneten Körpers K. Dann gilt

G∗(−p) = G∗(p)

und damit für alle a ∈ K∗ = K \ {0}

G∗(ap) = G∗(p).

Beweis. Wir bemerken, daß G∗(p) und G∗(−p) > 0 gilt. Somit gilt

a ∈ G∗(−p) ⇔ a(−p)L = −apR = (−p)L = −pR ⇔ apR = pR ⇔ a ∈ G∗(p).

Das zeigt die erste Behauptung.
Für a > 0 und p > 0 ist die zweite Behauptung gerade die multiplikative Version
von Propostion 1.13. Anhand von Definition 1.33 und der ersten Behauptung folgt
der Rest jetzt leicht.
Für a > 0 und p < 0 ist G∗(ap) = G∗(−(ap)) = G∗(a(−p)) = G∗(−p) = G∗(p).
Für a < 0 ist G∗(ap) = G∗(−(ap)) = G∗((−a)p) = G∗(p), nach den ersten zwei
Fällen.

Proposition 1.44. Sei K ein angeordneter Körper und G ⊆ K eine konvexe Un-
tergruppe von (K, +). Dann gilt für die positiven Einheiten V (G)∗>0 von V (G)

V (G)∗>0 = G∗(G+).

Beweis. Falls G = {0} die triviale Gruppe ist, so sehen wir leicht ein, daß V (G)∗>0 =
K>0 = G∗(G+) gilt. Sei also ohne Einschränkung {0} ( G. Offensichtlich gilt
V (G)∗>0 = {a ∈ K>0 | a · G = G} = {a ∈ K>0 | a · G>0 = G>0}. Wir können ohne
Einschränkung nur Elemente größer 1 betrachten. Dann liefert die multiplikativ ge-
lesene Version von Lemma 1.16 angewandt auf die konvexe Menge G>0 ⊆ (K>0, ·)
die Behauptung.
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Bezeichnung 1.45. Sei K ein angeordneter Körper und p ein Schnitt von K. Dann
definieren wir

p̃ := G∗(p)+ − 1.

Lemma 1.46. Sei K ein angeordneter Körper und p ein Schnitt von K. Die fol-
genden Aussagen sind äquivalent:

(i) 2 ∈ G∗(p).

(ii) |p| = p̂.

(iii) G∗(p) = G∗(p̂).

(iv) G∗(p) − 1 ist keine konvexe Untergruppe von (K, +).

Beweis. (i)⇒(ii): Nach Proposition 1.15 gilt |p| ≥ p̂. Angenommen, es gilt p > p̂.
Dann gibt es ein x ∈ K mit p̂ < x < p. Wegen x > p̂ existiert ein y ∈ K mit y < p
und x + y > p. Ist ohne Einschränkung x ≤ y, so folgt p < x + y ≤ 2y ∈ 2pL = pL

und damit ein Widerspruch. Aus der Annahme p < −p̂ erhalten wir analog einen
Widerspruch.
(ii)⇒(iii): Diese Behauptung ist trivial, da G∗(p) = G∗(−p) gilt.
(iii)⇒(i): Offensichtlich gilt 2 ∈ G∗(p̂) und somit auch 2 ∈ G∗(p).
¬(iv)⇒ ¬(i): Diese Richtung finden wir in [K], Proposition 5.21. Wegen der Kürze
des Beweises führen wir ihn direkt an. Wegen G∗(p) ⊆ K>0 gilt −1 /∈ G∗(p) − 1.
Nach Voraussetzung ist G∗(p) − 1 eine additive Untergruppe von K, also gilt auch
1 /∈ G∗(p) − 1. Damit folgt 2 /∈ G∗(p).
¬(i)⇒ ¬(iv): Diese Richtung gilt nicht nur für G∗(p), sondern allgemein für eine
konvexe Untergruppe von (K>0, ·). Wir finden den Beweis in [T1], und zwar als
Behauptung 1 im Beweis von Proposition 3.5. Sei also 2 > G∗(p) =: H. Wir zeigen,
daß H − 1 eine konvexe Untergruppe von (K, +) ist. Da H konvex ist, ist es auch
H − 1. Damit müssen wir nur 2 · (H − 1)>0 ⊆ H − 1 und −(H − 1) = H − 1 zeigen.
Sei 0 < ε ∈ H − 1. Dann gilt 0 < 2ε < (1 + ε)2 − 1 ∈ H − 1 und somit 2ε ∈ H − 1.

Wegen H < 2 folgt 2ε < 1 und ε < 1− ε. Daraus erhalten wir ε2

1−ε
< ε. Jetzt gilt

aber 1 < 1
1−ε

= 1 + ε + ε2

1−ε
< 1 + 2ε ∈ H. Damit ist 1

1−ε
∈ H, also auch 1 − ε ∈ H

und −ε ∈ H − 1.
Ist ε > 0 mit −ε ∈ H−1, so gilt 1 < 1+ε < 1

1−ε
∈ H und folglich ε ∈ H−1.

Lemma 1.47 (Tressl). Sei K ein angeordneter Körper und p ein Schnitt von K
mit |p| > p̂. Dann gilt

G∗(p) − 1 = {a ∈ K | |a| · p < p̂} = {a ∈ K | |a| · p ≤ p̂}.

Beweis. Wir finden die Aussage in [T1] als Behauptung 2 im Beweis von Proposition
3.5.
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2. Zusammenhang zwischen additiver und multi-

plikativer Invarianzgruppe

Nachdem wir in Kapitel 1 als zwei wichtige Invarianten eines Schnittes p eines an-
geordneten Körpers die additive und die multiplikative Invarianzgruppe G(p) und
G∗(p) kennengelernt haben, untersuchen wir in diesem Kapitel den Zusammenhang
zwischen den beiden Gruppen. Wir werden in Abschnitt 2.1 zwei wichtige Mengen
definieren, die uns helfen, das Verhältnis zwischen G(p) und G∗(p) zu beschreiben.
Im Abschnitt 2.2 vergleichen wir unsere Herangehensweise an das Problem mit einer
Arbeit von F.- V. Kuhlmann und sehen, daß wir auch mit unseren Mitteln einige
Aussagen dort beweisen können.

2.1. Über die Mengen J(p) und I(p) zu einem Schnitt p

In Theorem 2.1 formulieren wir gleich zu Beginn eine wichtige Aussage, die wir
zwar recht elementar beweisen können, die aber sowohl im folgenden Kapitel über
Signaturen von Schnitten angeordneter Körper als auch im restlichen Teil dieses
Abschnittes ein zentrales Hilfsmittel darstellt.

Theorem 2.1 (Schlüssellemma). Seien K ein angeordneter Körper, G ⊆ K eine
konvexe Untergruppe von (K, +) und a ∈ K mit |a| > G. Dann gilt

G∗(G− + a) = G∗(G+ + a) = 1
a
G + 1.

Beweis. Wir gliedern den Beweis in zwei Schritte. Als erstes zeigen wir

G∗(G− + a) = G∗(G+ + a) = G∗(G+) ∩ ( 1
a
G + 1).

Behauptung 1: G∗(G+ + a) = G∗(G+) ∩ ( 1
a
G + 1)

”
⊆ “: Sei d ∈ G∗(G+ + a). Dann gilt d(G+ + a) = dG+ + ad = G+ + a, also auch

(dG)+ +ad−a = G+. Da G und dG konvexe Untergruppen von (K, +) sind, können
wir Lemma 1.19 anwenden und erhalten dG+ = G+. Also gilt d ∈ G∗(G+). Damit
ergibt sich (dG)++ad−a = G++a(d−1) = G+, und es folgt a(d−1) ∈ G(G+) = G.
Es gilt demnach d ∈ 1

a
G + 1.

”
⊇ “: Sei d ∈ G∗(G+) ∩ ( 1

a
G + 1). Dann gilt d(G+ + a) = dG+ + ad = G+ + ad =

G++a( 1
a
g+1) mit einem g ∈ G = G(G+). Es folgt d(G++a) = G++g+a = G++a,

also gilt d ∈ G∗(G+ + a).
Behauptung 2: G∗(G− + a) = G∗(G+) ∩ ( 1

a
G + 1)

Mit Proposition 1.43 folgt G∗(G− + a) = G∗(−(G− + a)) = G∗(G+ − a) und damit
gilt die Aussage nach Behauptung 1.

Für die eigentliche Behauptung der Proposition müssen wir nur noch zeigen:

1
a
G + 1 ⊆ G∗(G+).



2. Zusammenhang zwischen additiver und multiplikativer Invarianzgruppe 23

Wegen |a| > G ist 1
a
G < 1 und 1

a
G + 1 < 2. Da aber G∗(G+) = V (G)∗>0 nach

Proposition 1.44 gilt, ist 2 ∈ G∗(G+), und damit gilt ( 1
a
G + 1)+ < (G∗(G+))+.

Umgekehrt folgt aus 1
a
G < 1 sofort 1

a
G > −1 und auch 1

a
G > −1

2
. Also ist 1

a
G+1 > 1

2
.

Da 1
2
∈ G∗(G+) gilt, zeigt dies (G∗(G+))− < ( 1

a
G+1)−. Da sowohl G∗(G+) als auch

1
a
G + 1 konvex sind, folgt insgesamt 1

a
G + 1 ⊆ G∗(G+).

Korollar 2.2. Sei K ein angeordneter Körper und p ein Schnitt von K mit p > p̂.
Sei weiter a ∈ K mit a < p < 2a. Dann gilt für alle a ≤ c ≤ 2a die Gleichung
G∗(a + p̂) = G∗(c + p̂).

Beweis. Aus der Voraussetzung a < p < 2a folgt p̂ < a. Offensichtlich gelten für
alle a ≤ c ≤ 2a die Inklusionen 1

2a
G(p) + 1 ⊆ 1

c
G(p) + 1 ⊆ 1

a
G(p) + 1. Wir können

nun Theorem 2.1 auf a, c und 2a anwenden und erhalten G∗(2a + p̂) ⊆ G∗(c + p̂) ⊆
G∗(a + p̂). Aufgrund der elementaren Beobachtung G∗(a + p̂) = G∗(2a + p̂) ⇔
1
a
G(p) + 1 = 1

2a
G(p) + 1 ⇔ 2a

a
G(p) = G(p) ⇔ 2 ∈ V (G(p))∗>0 und der Tatsache,

daß V (G(p)) ein konvexer Bewertungsring ist, gilt G∗(a + p̂) = G∗(2a + p̂). Damit
folgt die Behauptung.

Lemma 2.3. Sei K ein angeordneter Körper und p ein Schnitt von K mit p > p̂.
Dann existiert ein Element p̂ < a < p mit G∗(p) = G∗(a + p̂).

Beweis. Wegen p̂ < p finden wir ein Element a ∈ K mit a < p < 2a. Dann gilt auch
p̂ < a. Für dieses Element zeigen wir die Gleichheit G∗(p) = G∗(a + p̂) =: H.

”
⊇ “: Sei h ∈ H, ohne Einschränkung nehmen wir h > 1 an. Wir müssen dann

h · pL ⊆ pL zeigen. Sei also c < p gegeben. Wegen a < p können wir auch nur den
Fall a ≤ c < p betrachten. Dann gilt aber nach Korollar 2.2 G∗(c + p̂) = H. Aus
c < c + p̂ folgt hc < c + p̂ ≤ p und die erste Inklusion ist gezeigt.

”
⊆ “: Wir haben bereits H ⊆ G∗(p) gezeigt und nehmen jetzt an, es gibt ein

g ∈ G∗(p) mit g > H = G∗(a + p̂). Mit Theorem 2.1 folgt dann g > 1
a
G(p) + 1 oder

a(g − 1) > G(p). Wir finden also ein Element a ≤ b < p mit b + a(g − 1) > p. Dann
gilt aber wegen g > 1 auch gb = b + b(g − 1) ≥ b + a(g − 1) > p. Das ergibt einen
Widerspruch zu b < p und g ∈ G∗(p).

Nun definieren wir eine wichtige Invariante eines Schnittes, die allgemein das Verhält-
nis zwischen additiver und multiplikativer Invarianzgruppe beschreibt.

Definition 2.4. Sei p ein Schnitt eines angeordneten Körpers K. Wir definieren

J(p) := {c ∈ K>0 | G∗(p) = c · G(p) + 1}.

Lemma 2.5. Sei p ein Schnitt eines angeordneten Körpers K. Dann ist J(p) konvex
und es gilt J(p) = J(−p).

Beweis. Zum Nachweis der Konvexität betrachten wir Elemente 0 < a < b < c mit
a, c ∈ J(p). Dann gilt a · G(p) ⊆ b · G(p) ⊆ c · G(p). Wegen aG(p) + 1 = G∗(p) =
cG(p) + 1 ist aG(p) = cG(p), also gilt

”
= “ überall. Damit ist G∗(p) = aG(p) + 1 =
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bG(p) + 1, also gilt b ∈ J(p). Daß J(p) = J(−p) gilt, folgt sofort aus der Definition,
da nach den Propositionen 1.13 und 1.43 sowohl G(p) als auch G∗(p) nicht vom
Vorzeichen des Schnittes abhängen.

In Lemma 2.5 sehen wir zwei erste elementare Eigenschaften der Menge J(p) zu
einem Schnitt p eines angeordneten Körpers K. Als geeignetes Instrument zur Un-
tersuchung, wie G(p) und G∗(p) zusammenhängen, kann J(p) aber nur für eine be-
stimmte, wenn auch sehr große und interessante Menge von Schnitten angeordneter
Körper dienen. Wir benötigen nämlich eine Bedingung an p, damit J(p) nicht leer
ist. In der folgenden Proposition sehen wir diese Bedingung. Sie erscheint insofern
natürlich, da von ihr auch in Kapitel 3 abhängt, inwieweit wir allgemeine Aussa-
gen über die additiven und multiplikativen Signaturen von Schnitten angeordneter
Körper machen können.

Proposition 2.6. Sei K ein angeordneter Körper und p ein Schnitt von K. Dann
gilt

|p| > p̂ ⇔ J(p) 6= ∅.

Beweis.
”
⇐ “: Sei c ∈ J(p) 6= ∅. Dann gilt G∗(p) − 1 = c · G(p) und G∗(p) − 1

ist somit eine konvexe Untergruppe von (K, +). Nach Lemma 1.46 ist dann |p| 6= p̂,
also gilt |p| > p̂.

”
⇒ “: Dies ist die deutlich stärkere Aussage. Einen Beweis finden

wir in [T1], Proposition 3.5. Tressl benutzt dabei allerdings Realisierungen in einem
Oberkörper L ⊇ K. Wir bleiben mit unserem gewissermaßen elementareren Beweis
im Grundkörper K. Wegen Lemma 2.5 können wir ohne Einschränkung von einem
Schnitt p > p̂ ausgehen. Nach Lemma 2.3 zusammen mit Schlüssellemma 2.1 gibt
es dann ein p̂ < a mit G∗(p) = G∗(a + p̂) = 1

a
G(p) + 1. Diese Gleichheit bedeutet

aber gerade 1
a
∈ J(p).

Bevor wir uns eingehender mit der Menge J(p) zu einem Schnitt p eines angeordneten
Körpers K beschäftigen, weisen wir noch auf einen gewissen Spezialfall hin. Nicht
betrachten müssen wir J(p), falls eine der beiden Invarianzgruppen von p trivial ist.
Denn dann haben wir einen besonders einfachen Zusammenhang zwischen additiver
und multiplikativer Invarianzgruppe von p, den wir im folgenden Lemma darstellen.

Lemma 2.7. Sei K ein angeordneter Körper und p ein Schnitt von K ungleich 0+

oder 0−. Dann gilt
G∗(p) = {1} ⇔ G(p) = {0}.

Ist dagegen p gleich 0+ oder 0−, so gilt G(p) = {0} und G∗(p) = K>0.

Beweis. Der Zusatz ist trivial. Wir zeigen nur die Äquivalenz, falls p 6= 0+, 0−. Da
nach den Propositionen 1.13 und 1.43 G(−p) = G(p) und G∗(−p) = G∗(p) gilt,
können wir uns auf den Fall p > 0+ beschränken.

”
⇒ “: Sei G∗(p) = {1}. Wir nehmen an, es gibt ein 0 < ε ∈ G(p). Dann können

wir ein Element y > p > 0 wählen, da p = +∞ wegen G∗(p) = {1} nicht möglich ist.
Definieren wir η := 1 + ε

y
> 1, so können wir η ∈ G∗(p) zeigen und erhalten somit
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einen Widerspruch zur Voraussetzung. Denn angenommen, es gibt ein 0 < x <p mit
ηx > p, dann folgt p < ηx = (1 + ε

y
)x = x + εx

y
< x + ε < p, was nicht sein kann.

”
⇐ “: Sei nun G(p) = {0}. Es gilt |p| > p̂, denn Gleichheit hieße wegen

G(p) = {0} sofort p = 0+ oder p = 0−. Mit |p| > p̂ aber folgt die Behauptung
mit Proposition 2.6.

Dennoch benötigen wir bei einem allgemeinen Schnitt p eines angeordneten Körpers
K die Menge J(p), um den Zusammenhang zwischen G(p) und G∗(p) zu beschreiben.
Wie wir allerdings im folgenden feststellen, läßt sich die Menge der Inversen von J(p)
besser darstellen. Deshalb machen wir noch folgende

Definition 2.8. Sei p ein Schnitt eines angeordneten Körpers K. Wir definieren die
Menge der Inversen der Elemente von J(p)

I(p) :=
1

J(p)
= {c ∈ K>0 | G∗(p) = 1

c
G(p) + 1}.

Mit J(p) ist natürlich auch I(p) konvex.

Für die Ober- und Unterkanten der Mengen J(p) und I(p) eines Schnittes p eines
angeordneten Körpers K haben wir folgende einfache Umrechnung.

Lemma 2.9. Sei K ein angeordneter Körper und p ein Schnitt von K mit |p| > p̂.
Dann gilt

1

I(p)+
= J(p)− und

1

I(p)−
= J(p)+.

Beweis. Da nach Definition J(p) = 1
I(p)

gilt, folgt die Aussage mit der multiplikativ
gelesenen Version von Lemma 1.6.

Im folgenden Lemma sehen wir die erste Charakterisierung von J(p) und I(p) zu
einem Schnitt p eines angeordneten Körpers K. Sie liefert uns, daß sowohl die Unter-
als auch die Oberkanten der beiden Mengen (, falls sie nichtleer sind,) die Oberkanten
von konvexen Untergruppen von (K, +) sind.

Lemma 2.10. Sei K ein angeordneter Körper und p ein Schnitt von K. Dann gilt

J(p) = c · V (p)∗>0 für alle c ∈ J(p) und

I(p) = d · V (p)∗>0 für alle d ∈ I(p).

Insbesondere gilt auch J(p) · V (p)∗>0 = J(p) und I(p) · V (p)∗>0 = I(p).

Beweis. Wir zeigen nur die erste Behauptung. Die zweite folgt dann sofort anhand
der Definition von I(p), der Zusatz ist ohnehin nur eine Abschwächung.

Gilt J(p) = ∅, so ist nichts zu zeigen. Sei also c ∈ J(p), wir zeigen J(p) =
c · V (p)∗>0. Für alle d ∈ K>0 gilt nach Definition d ∈ J(p) genau dann, wenn
dG(p) + 1 = G∗(p) = cG(p) + 1 gilt, also genau dann, wenn dG(p) = cG(p) gilt.
Das ist aber gleichbedeutend mit d

c
∈ V (G(p))∗>0 = V (p)∗>0. Somit haben wir die

Behauptung gezeigt.
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Lemma 2.11. Sei K ein angeordneter Körper und p ein Schnitt von K. Für alle
a ∈ K>0 gilt dann

J(ap) = 1
a
· J(p) und I(ap) = a · I(p).

Beweis. Für alle x ∈ K>0 gilt mit Hilfe der Propositionen 1.35 und 1.43

x ∈ J(ap) ⇔ G∗(ap) = xG(ap) + 1 ⇔ G∗(p) = axG(p) + 1 ⇔ ax ∈ J(p).

Hiermit folgt sofort auch die zweite Aussage.

Die Menge I(p) zu einem Schnitt p eines angeordneten Körpers K mit |p| > p̂ bildet
eine Umgebung von |p|. Dies konkretisieren wir in der folgenden

Proposition 2.12. Sei K ein angeordneter Körper und p ein Schnitt von K mit
|p| > p̂. Dann gilt

p̂ ≤ I(p)− < |p| < I(p)+.

Beweis. Wir zeigen die Behauptung ohne Einschränkung für einen Schnitt p > 0. Als
erstes weisen wir p̂ ≤ I(p)− nach. Sei dazu ein a ∈ I(p) gegeben. Dann ist G∗(p) =
1
a
G(p)+1. Lemma 1.46 zusammen mit der Voraussetzung sagt uns 2 /∈ G∗(p). Damit

ist auch 1 /∈ G∗(p) − 1 = 1
a
G(p). Wegen a > 0 muß dann aber a > G(p) gelten.

Für den Rest zeigen wir zunächst die Abschätzungen

I(p)− ≤ p ≤ I(p)+.

Sei also 0 < a < I(p), dann gilt auch a < p. Denn setzen wir q := 1
a
p, so gilt

1 < 1
a
I(p) = I( p

a
) = I(q) nach Lemma 2.11. Dies bedeutet nach Definition von I(q),

daß G∗(q) ( G(q) + 1 und somit q̃ < q̂ gilt. Wir können also ein x ∈ K>0 wählen
mit q̃ < x < q̂. Wegen x > q̃ = G∗(q)+ − 1 = (G∗(q) − 1)+ folgt mit Lemma 1.47
xq > q̂, und wir erhalten x < q̂ < xq. Also gilt 1 < q = 1

a
p und somit a < p. Analog

zeigen wir p ≤ I(p)+. Denn für ein a > I(p) folgt mit q := 1
a
p diesmal 1 > I(q) oder

q̃ > q̂. Wir finden also ein x ∈ K>0 mit q̂ < x < q̃. Wieder nach Lemma 1.47 gilt
dann xq ≤ q̂ < x, und wir erhalten 1 > q = 1

a
p, also a > p.

Uns fehlen nur noch die strikten Abschätzungen, die jetzt aber schnell folgen.
Angenommen, es gilt p = I(p)+. Wegen 2 ∈ V (p)∗>0 und Lemma 2.10 gilt I(p) =
2 · I(p) und somit folgt 2 · p = 2 · I(p)+ = I(p)+ = p. Dies bedeutet 2 ∈ G∗(p) und
ergibt mit Lemma 1.46 einen Widerspruch zur Voraussetzung p > p̂. Die Annahme
p = I(p)− führt zum gleichen Widerspruch.

Bemerkung 2.13. Die erste Abschätzung aus Proposition 2.12 ist scharf. Wir be-
trachten zum Beispiel einen angeordneten Körper K mit einer echten konvexen
Untergruppe G von (K, +). Zu einem Element a > G definieren wir den Schnitt
p := a + G+. Dann gilt p = a + p̂ und p > p̂. Nach Proposition 2.12 gilt p̂ ≤ I(p)−.
Wir zeigen auch p̂ ≥ I(p)− und erhalten in diesem Fall p̂ = I(p)−.

Offensichtlich gilt p̂ < a < p, deshalb folgt G∗(p) = G∗(a + p̂) = 1
a
G(p) + 1 mit

Schlüssellemma 2.1. Damit gilt a ∈ I(p). Um p̂ ≥ I(p)− zu zeigen, können wir uns
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demnach gleich ein Element b mit p̂ < b < a vorgeben. Wegen 0 < b < a < p = a+ p̂
existiert ein g ∈ G(p) mit b = a + g. Damit ist b − a = g ∈ G(p) = G(p̂). Es folgt
b−a+ p̂ = p̂ oder b+ p̂ = a+ p̂ = p. Dann liefert uns aber wieder das Schlüssellemma
2.1 die Gleichung G∗(p) = G∗(b + p̂) = 1

b
G(p) + 1 und somit b ∈ I(p). Dies zeigt

p̂ ≥ I(p)−.

Das Ergebnis aus Proposition 2.12 zusammen mit Schlüssellemma 2.1 ermöglicht
uns folgende Charakterisierung der Menge I(p) eines Schnittes p eines angeordneten
Körpers K.

Korollar 2.14. Sei K ein angeordneter Körper und p ein Schnitt von K mit |p| > p̂.
Dann gilt für alle a ∈ K>0

a ∈ I(p) ⇔ G∗(p) = G∗(a + p̂) ⇔ G∗(p) = G∗(a − p̂).

Beweis. Wir zeigen die Äquivalenz

a ∈ I(p) ⇔ G∗(p) = G∗(a + p̂).

”
⇐ “: Sei a ∈ K>0 mit G∗(p) = G∗(a + p̂). Dann gilt a > G(p), da aus a ∈

G(p) = G(p̂) mit Lemma 1.46 |p| = p̂ folgt, was nach Voraussetzung ausgeschlossen
ist. Wir können also das Schlüssellemma 2.1 anwenden und erhalten die Gleichung
G∗(p) = G∗(a + p̂) = G∗(G(p)+ + a) = 1

a
G(p) + 1. Das heißt aber gerade a ∈ I(p).

”
⇒ “: Sei jetzt ein a ∈ I(p) vorgegeben. Nach Proposition 2.12 ist dann a > p̂,

also gilt a > G(p). Theorem 2.1 liefert jetzt wieder die Behauptung, denn es gilt
G∗(p) = 1

a
G(p) + 1 = G∗(a + p̂).

Auch bei der zweiten Äquivalenz muß immer a > G(p) gelten, deshalb können
wir sie direkt aus dem Schlüssellemma 2.1 ablesen.

Korollar 2.15. Sei K ein angeordneter Körper und p ein Schnitt von K mit |p| > p̂.
Dann gilt für alle b ∈ I(p)

I(p) = I(b ± p̂).

Beweis. Nach Korollar 2.14 gilt genau dann a ∈ I(p), wenn G∗(p) = G∗(a± p̂) gilt.
Da nach Voraussetzung b ∈ I(p) und somit G∗(p) = G∗(b ± p̂) gilt, gilt a ∈ I(p)
genau dann, wenn G∗(a ± p̂) = G∗(b ± p̂) gilt. Anwenden von Korollar 2.14 auf den
Schnitt b ± p̂ liefert die Behauptung.
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2.2. Ein Vergleich mit der Arbeit [K] von F.-V. Kuhlmann

In [K] beschäftigt sich F.-V. Kuhlmann mit recht ähnlichen Fragen wie wir bezüglich
des Zusammenhangs zwischen additiver und multiplikativer Invarianzgruppe eines
Schnittes eines angeordneten Körpers. Allerdings wählen wir einen anderen Zugang
zu diesem Thema. Wir zeigen, daß wir auch mit unseren Methoden ähnliche Re-
sultate erzielen können. Kuhlmann definiert zu einem Schnitt p einer angeordneten
abelschen Gruppe G die konvexe symmetrische von p erzeugte Teilmenge

CS(p) := {g ∈ G | |g| ≤ |p|}.
Mit MC(p) bezeichnet er die maximale konvexe Untergruppe von G, die in CS(p)
enthalten ist. p heißt group0-cut, wenn |p| = p̂ ist, also wenn p Ober- oder Unter-
kante seiner Invarianzgruppe G(p) ist. Wir zeigen, daß wir auch mit unseren Mitteln
Theorem 5.23 aus [K] beweisen können.

Theorem 2.16 (F.-V. Kuhlmann). Sei K ein angeordneter Körper.
1) Falls p ein group0-cut von K ist, so gilt

G∗(p) = V (p)∗>0.

2) Falls p kein group0-cut von K ist, so gilt für alle g ∈ CS(p) \ MC(p)

G∗(p) = 1 + 1
g
G(p).

Weiter gilt V (G∗(p) − 1) = V (p).
3) Für jeden Schnitt p von K gilt

G(p) = (G∗(p) − 1) · CS(p).

Beweis. 1) Diese Aussage steht bei uns in Proposition 1.44.
2) Wir beschränken uns aus Symmetriegründen auf einen Schnitt p > p̂ und zeigen,
daß (

CS(p) \ MC(p)
)>0 ⊆ I(p)

gilt, dann folgt die erste Behauptung nach Definition von I(p). Wir wählen also
zuerst ein Element a ∈ I(p) mit a < p. Dies geht nach Proposition 2.12, da nach
Voraussetzung p > p̂ ist. Sei nun ein Element b ∈ (CS(p) \ MC(p))>0 gegeben.
Nach Definition von CS(p) gilt b < p. Ist b ≥ a, folgt sofort b ∈ I(p), da I(p) eine
Umgebung von p ist. Gilt dagegen b < a, so ist b zumindest archimedisch äquivalent
zu a, das heißt, es gibt ein n ∈ N mit a ≤ nb. Andererseits wäre die von MC(p) und
b erzeugte Gruppe H eine echte Obergruppe von MC(p), aber wegen H< a <p wäre
H enthalten in CS(p), was der Definition von MC(p) widerspricht. Es gibt also ein
n ∈ N mit a < nb. Dann gilt 1

n
a < b < p. Wegen 1

n
∈ V (p)∗>0 und a ∈ I(p) gilt nach

Lemma 2.10 auch 1
n
a ∈ I(p) und damit auch b ∈ I(p). Das zeigt den ersten Teil der

Behauptung.
Der Zusatz folgt aus dem gerade Gezeigten mit Proposition 1.41.

3) Nach 2) gilt für alle g ∈ CS(p) \MC(p) sogar G(p) = (G∗(p)− 1) · g. Da |x| < |g|
für alle x ∈ MC(p) und alle g ∈ CS(p) \ MC(p) gilt, folgt die Behauptung.
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3. Signaturen von Schnitten angeordneter Körper

Wir interessieren uns jetzt auch im Körperfall für die Signatur eines Schnittes. Wir
machen vorab eine leichte Bemerkung, die aber für die Betrachtungen im folgenden
sehr wichtig ist.

Bemerkung 3.1. Sei K ein angeordneter Körper und p ein Schnitt von K. Da (K, +)
divisibel ist, ist p̂ nicht realisiert in K ⊗Z Q = K. Damit gilt sign(p) 6= ∞.

Ein angeordneter Körper besitzt neben der Addition noch die Multiplikation als
zweite Verknüpfung. Auch bezüglich dieser führen wir einen Signaturbegriff ein und
machen folgende

Definition 3.2 (Multiplikative Signatur). Sei p ein Schnitt eines angeordneten Kör-
pers K. Wir definieren die multiplikative Signatur sign∗(p) von p als die Signatur
von |p| bezüglich der angeordneten abelschen Gruppe (K>0, ·).

Im folgenden untersuchen wir den Zusammenhang zwischen additiver und multipli-
kativer Signatur. Wir unterscheiden für einen Schnitt p eines angeordneten Körpers
K nach Lemma 1.15 zwei Fälle:

(a) |p| > p̂
(b) |p| = p̂.

Diese Unterscheidung ist uns bereits aus Kapitel 2 bekannt, wo sich das von uns
untersuchte J(p) genau dann als nicht leer herausgestellt hat, wenn |p| > p̂ gilt.

Wir werden sehen, daß wir uns im Fall (a) auf die additive Signatur eines Schnit-
tes beschränken können. Ihre Kenntnis liefert uns bereits die multiplikative Signatur
des Schnittes. Im Fall (b) dagegen gibt es alle denkbaren Kombinationen aus ad-
ditiver und multiplikativer Signatur. Wir werden mit Hilfe des verallgemeinerten
Potenzreihenkörpers Beispiele konstruieren.

3.1. Der Fall |p| > p̂

Allgemein gilt für einen Schnitt p eines angeordneten Körpers K nach Bemerkung 3.1
wegen der Divisibilität von (K, +) schon sign(p) 6= ∞. Mit der Zusatzvoraussetzung
|p| > p̂ gilt sogar sign∗(p) 6= ∞, was unsere Signaturbetrachtungen in diesem Fall
wesentlich erleichtert. Den Grund für diese Tatsache finden wir in [T2].

Lemma 3.3 (Tressl). Sei K ein angeordneter Körper und G := K>0 die multipli-
kative Gruppe von positiven Elementen von K. Ist H ⊆ G eine konvexe Untergruppe
von G mit 2 /∈ H, so ist H+ nicht realisiert in der divisiblen Hülle G ⊗Z Q von G.

Beweis. Wir nehmen an, daß H+ doch realisiert ist in G ⊗Z Q. Nach Lemma 1.23
(multiplikativ gelesen) gibt es dann eine Realisierung α ∈ G ⊗Z Q von H+ mit
α2 ∈ K. Die Konstruktion dieses Elementes steht im Beweis von Richtung

”
(i) ⇒(ii)“

des Lemmas. Da nach Voraussetzung 2 /∈ H gilt, ist H−1 eine konvexe Untergruppe
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von (K, +). Wir haben den Beweis am Ende von Lemma 1.46 für die multiplikative
Invarianzgruppe eines Schnittes eines angeordneten Körpers K gesehen und schon
dort bemerkt, daß er allgemein für konvexe Untergruppen von (K>0, ·) funktioniert.
Da H − 1 nun also additiv eine konvexe Untergruppe von K ist, realisieren sowohl
α− 1 als auch 3 · (α− 1) ihre Oberkante (H − 1)+. Wegen 1 ≤ 1+α ≤ 1+2 = 3 gilt
α− 1 ≤ (α− 1)(α + 1) ≤ 3 · (α− 1), und auch (α− 1)(α + 1) muß eine Realisierung
von (H−1)+ sein. Das führt aber zum Widerspruch, da (α−1)(α+1) = α2−1 ∈ K
gilt.

Korollar 3.4 (Tressl). Sei K ein angeordneter Körper und p ein Schnitt von K
mit |p| > p̂. Dann gilt sign∗(p) 6= ∞.

Beweis. Mit |p| > p̂ gilt nach Lemma 1.46 auch 2 /∈ G∗(p). Nach Lemma 3.3 ist
dann G∗(p)+ nicht realisiert in (K>0, ·) ⊗Z Q.

Diese Beobachtung zusammen mit Schlüssellemma 2.1 liefert uns folgende wertvolle
Aussage.

Theorem 3.5 (Additive und multiplikative Signaturen). Sei K ein angeordneter
Körper und p ein Schnitt von K mit |p| > p̂. Ist p > p̂, so gilt sign(p) = sign∗(p).
Ist p < −p̂, so gilt sign(p) = −sign∗(p).

Beweis. Wir führen im folgenden die wesentlichen Schritte des Beweises für den Fall
p > p̂ durch, der Fall p < −p̂ folgt dann sehr schnell. Wir machen eine Fallunterschei-
dung nach sign∗(p), wobei nach Korollar 3.4 der Fall sign∗(p) = ∞ nicht auftritt.
Ist sign∗(p) ∈ {±1}, so sehen wir die gewünschte Gleichheit sign(p) = sign∗(p) di-
rekt. Denn ist sign∗(p) = +1, so existiert ein a ∈ K>0 mit p = a · G∗(p)+. Wegen
p > p̂ können wir nach Proposition 2.6 ein Element c ∈ J(p) wählen. Mit diesem
gilt dann p = aG∗(p)+ = a · (cG(p) + 1)+ = (acG(p))+ + a nach Lemma 1.34. Da
acG(p) eine konvexe Untergruppe von (K, +) ist, bedeutet dies nach Bemerkung
1.27 sign(p) = 1. Ganz analog folgt aus sign∗(p) = −1 auch sign(p) = −1.

Somit müssen wir nur noch den Fall sign∗(p) = 0 betrachten. Angenommen,
es gilt sign(p) = +1, dann exisitiert ein a ∈ K mit p = a + p̂. Wegen p > p̂
gilt a > G(p), so daß wir das Schlüssellemma 2.1 anwenden können. Es liefert
G∗(G(p)+ + a) = 1

a
G(p) + 1. Wir erhalten also

a · G∗(p)+ = a · G∗(G(p)+ + a)+ = a · ( 1
a
G(p) + 1)+ = (G(p) + a)+ = p.

Das bedeutet aber sign∗(p) = +1 6= 0, also einen Widerspruch. Auch die Annahme
sign(p) = −1 führt zum Widerspruch, indem wir statt der Oberkanten die Unterkan-
ten der Invarianzgruppen betrachten. Da ohnehin sign(p) 6= ∞ gilt, muß sign(p) = 0
gelten, was unseren Beweis für p > p̂ vervollständigt.

Für den Fall p < −p̂ gehen wir über zu q := −p. Dann ist q > q̂ und somit
nach dem bereits Gezeigten sign(q) = sign∗(q). Da mit Proposition 1.28 sign(p) =
−sign(−p) = −sign(q) und nach Definition sign∗(q) = sign∗(−p) = sign∗(p) gilt,
folgt die Behauptung.
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3.2. Der Fall |p| = p̂

In diesem Abschnitt betrachten wir Schnitte p eines angeordneten Körpers mit
|p| = p̂. In diesem Fall kann keine Aussage wie in Theorem 3.5 getroffen werden.
Für die Konstruktion von Beispielen verwenden wir den verallgemeinerten Potenz-
reihenkörper k((tΓ)) eines angeordneten Körpers k zu einer angeordneten abelschen
Gruppe Γ. Wir gehen davon aus, daß der Leser mit diesem Objekt vertraut ist.
Zur Erinnerung verweisen wir auf den Anhang, wo der verallgemeinerte Potenzrei-
henkörper noch einmal detailliert eingeführt wird.

Definition 3.6 (Träger). Sei X eine Menge und G eine (additive) Gruppe. Für
eine Abbildung f : X → G definieren wir den Träger von f als

supp(f) := {x ∈ X | f(x) 6= 0}.

Definition 3.7. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Wir
definieren den verallgemeinerten Potenzreihenkörper

k((tΓ)) := {a : Γ → k | supp(a) wohlgeordnet}.

Für ein a ∈ k((tΓ)) verwenden wir die Schreibweise

a =
∑

γ∈Γ

a(γ)tγ.

Für eine ausführliche Begründung dafür, daß k((tΓ)) tatsächlich ein Körper ist,
verweisen wir auf den Anhang, insbesondere auf Proposition/Definition 6.11.

Im folgenden werden wir auch auf Bewertungen zu sprechen kommen. Wir verwenden
die Bezeichnungen wie in [KS], Kap. II, §4, S. 61. Für eine angeordnete abelsche
Gruppe Γ bezeichnen wir mit Γ∪∞ die disjunkte Vereinigung Γ∪ {∞} (mit einem
zu Γ fremden Element ∞). Γ∪∞ wird zu einer total geordneten Halbgruppe, indem
wir für alle γ ∈ Γ definieren: γ < ∞, und γ + ∞ = ∞ + γ = ∞ + ∞ = ∞.

Definition 3.8. Sei k ein angeordneter Körper und Γ eine angeordnete abelsche
Gruppe. Wir definieren

v : k((tΓ)) → Γ ∪∞
a 7→ v(a) := min(supp(a))

(
a ∈ k((tΓ))

)
.

Dabei verwenden wir die Konvention min(∅) := ∞.

Bemerkung 3.9. Die Abbildung v aus Definition 3.8 ist surjektiv. Desweiteren ist v
eine ordnungsverträgliche Bewertung auf k((tΓ)), also gilt für alle a, b ∈ k((tΓ)) die
Implikation

0 < a < b ⇒ v(a) ≥ v(b).

Den Beweis hierfür finden wir im Anhang in Proposition 6.15.
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Proposition 3.10. Sei k ein angeordneter Körper, Γ eine angeordnete abelsche
Gruppe und K := k((tΓ)) der zugehörige verallgemeinerte Potenzreihenkörper. Sei
weiter ξ ∈ DC(Γ) = Γ ∪ Cuts(Γ). Dann ist

G := {a ∈ K | ξ < v(a)}

eine konvexe Untergruppe von K.

Beweis. Wir sehen sofort ein, daß G eine Untergruppe von K ist. Es gilt 0 ∈ G,
weil v(0) = ∞ > ξ gilt. (Das gilt auch für den Schnitt ξ = ∞Γ, da ∞ > Γ gilt.)
Für beliebige a, b ∈ G gilt v(a − b) ≥ min{v(a), v(−b)} = min{v(a), v(b)} > ξ und
damit a − b ∈ G.
Zum Nachweis der Konvexität betrachten wir beliebige Elemente a ∈ K, b ∈ G mit
0 < a < b. Nach Bemerkung 3.9 gilt v(a) ≥ v(b) > ξ. Dies zeigt a ∈ G.

Die Ober- und Unterkanten der in Proposition 3.10 betrachteten Gruppen werden
uns als Beispiele für Schnitte p von angeordneten Körpern mit |p| = p̂ und verschie-
denen multiplikativen Signaturen dienen. Dafür müssen wir zunächst den Invarianz-
bewertungsring dieser Gruppen näher untersuchen.

Lemma 3.11. Sei k ein angeordneter Körper, Γ eine angeordnete abelsche Gruppe,
K := k((tΓ)) und ξ ein Schnitt von Γ. Sei weiter G := {a ∈ K | ξ < v(a)}. Dann
gilt

(i) V (G)∗ = {b ∈ K | v(b) ∈ G(ξ)} und

(ii) v(V (G)∗) = G(ξ).

Beweis. (i)
”
⊆ “: Sei b ∈ V (G)∗. Dann gilt nach Definition b · G = G. Für alle

a ∈ G folgt deshalb ab ∈ G und ab−1 ∈ G. Nach Definiton von G gilt für alle a ∈ G
also v(a) + v(b) = v(ab) > ξ und v(a) − v(b) = v(a) + v(b−1) = v(ab−1) > ξ. Da v
surjektiv ist, folgt v(b) ∈ G(ξ).

”
⊇ “: Sei b ∈ K mit v(b) ∈ G(ξ) und sei a ∈ G beliebig. Dann gilt v(ab) =

v(a) + v(b) > ξ und v(ab−1) = v(a)− v(b) > ξ und damit ab ∈ G und ab−1 ∈ G. Da
a beliebig war, gilt b ∈ V (G)∗.
(ii) folgt jetzt sofort.

”
⊆ “: Diese Inklusion gilt nach (i).

”
⊇ “: Für ein γ ∈ G(ξ)

können wir wegen der Surjektivität von v ein b ∈ K mit γ = v(b) wählen. Wieder
nach (i) gilt dann b ∈ V (G)∗, also γ ∈ v(V (G)∗).

Lemma 3.12. Sei k ein angeordneter Körper, Γ eine angeordnete abelsche Gruppe,
K := k((tΓ)) und ξ ein Schnitt von Γ. Sei weiter G := {a ∈ K | ξ < v(a)}. Dann
gilt

(i) m(G) = V (G) \ V (G)∗ = {a ∈ K | v(a) > G(ξ)} und

(ii) v(m(G)) = {γ ∈ Γ | γ > G(ξ)}.
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Beweis. (i)
”
⊆ “: Sei 0 < a ∈ m(G) = V (G)\V (G)∗, also gilt a < V (G)∗. Dann gilt

v(a) ≥ v(V (G)∗) = G(ξ) nach Bemerkung 3.9 und Lemma 3.11 (ii). Nach Lemma
3.11 (i) gilt v(a) /∈ G(ξ), also folgt v(a) > G(ξ).

”
⊇ “: Sei a ∈ K mit v(a) > G(ξ). Ohne Einschränkung sei a > 0. Nehmen wir an,

daß a /∈ m(G) gilt, dann existiert ein b ∈ V (G)∗ mit 0 < b ≤ a. Nach Bemerkung 3.9
und Lemma 3.11 gilt dann v(a) ≤ v(b) ∈ G(ξ), ein Widerspruch zur Voraussetzung.
(ii)

”
⊆ “: Diese Inklusion ist klar nach (i).

”
⊇ “: Sei γ ∈ Γ mit γ > G(ξ). Wir

können wegen der Surjektivität von v ein a ∈ K>0 wählen mit v(a) = γ. Nach Teil
(i) gilt a ∈ m(G), also γ ∈ v(m(G)).

Wir wollen in der Situation eines angeordneten Körpers k und einer angeordneten
abelschen Gruppe Γ mit Hilfe von v aus Schnitten von Γ Schnitte von k((tΓ)) er-
halten. Deswegen betrachten wir allgemein das Zurückziehen von Schnitten mittels
surjektiver ordnungserhaltender Abbildungen.

Definition 3.13. Seien X und Y zwei total geordnete Mengen. Eine Abbildung
f : X → Y heißt ordnungserhaltend, wenn für alle x1, x2 ∈ X mit x1 ≤ x2 auch
f(x1) ≤ f(x2) gilt.

Beispiel 3.14. Sei k ein angeordneter Körper, Γ eine angeordnete abelsche Gruppe
und K := k((tΓ)). Dann ist die

”
Einschränkung“ von v

v≥0 : K≥0 � Γopp ∪∞
a 7→ v(a) := min(supp(a)) (a ∈ K≥0)

nach Bemerkung 3.9 ordnungserhaltend. Dabei bezeichnet Γopp ∪∞ die Halbgruppe
Γ ∪∞ mit entgegengesetzter Ordnung, das heißt für alle g, h ∈ Γ ∪∞ gilt g ≤ h in
Γopp ∪∞ genau dann, wenn h ≤ g in Γ∪∞ gilt. Insbesondere wird das Element ∞
in Γopp ∪∞ zu einem unendlich kleinen Element.

Bemerkung/Definition 3.15. Seien X und Y zwei total geordnete Mengen und
ϕ : X � Y eine surjektive und ordnungserhaltende Abbildung. Für alle Schnitte ξ
von Y ist

ϕ−1(ξ) :=
(
ϕ−1(ξL), ϕ−1(ξR)

)

ein Schnitt von X. Denn es gilt ϕ−1(ξL) ∪ ϕ−1(ξR) = ϕ−1(ξL ∪ ξR) = ϕ−1(Y ) = X.
Ebenso gilt ϕ−1(ξL) < ϕ−1(ξR). Denn angenommen, es gibt ein x ∈ ϕ−1(ξL) und ein
y ∈ ϕ−1(ξR) mit x ≥ y, dann wäre ξL 3 ϕ(x) ≥ ϕ(y) ∈ ξR, was nicht sein kann.

Wir nennen ϕ−1(ξ) den mittels ϕ auf X zurückgezogenen Schnitt.

Lemma 3.16. Seien X und Y zwei total geordnete Mengen und ϕ : X � Y eine
surjektive und ordnungserhaltende Abbildung. Sei ξ ein Schnitt von Y . Dann ist
ϕ−1(ξ) der einzige Schnitt η von X mit ϕ(ηL) = ξL und ϕ(ηR) = ξR.

Beweis. Natürlich erfüllt ϕ−1(ξ) die geforderte Eigenschaft. Denn aufgrund der Sur-
jektivität von ϕ gilt ϕ(ϕ−1(ξL)) = ξL und ϕ(ϕ−1(ξR)) = ξR.
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Wir nehmen an, es existiert ein Schnitt η von X, verschieden von ϕ−1(ξ), mit der
obigen Eigenschaft. Sei ohne Einschränkung η > ϕ−1(ξ). Dann existiert ein x ∈ X
mit ϕ−1(ξ) < x < η. Wegen x ∈ (ϕ−1(ξ))R gilt ϕ(x) ∈ ξR. Da aus x ∈ ηL aber
ϕ(x) ∈ ϕ(ηL) = ξL folgt, ergibt sich ein Widerspruch.

Proposition 3.17. Sei k ein angeordneter Körper, Γ eine angeordnete abelsche
Gruppe, K := k((tΓ)) und ξ ein Schnitt von Γ. Sei weiter G := {a ∈ K | ξ < v(a)}.
Dann gelten folgende zwei Äquivalenzen:

(a) sign∗(G+) = 1 ⇔ sign(ξ) = −1
(b) sign∗(G+) = −1 ⇔ sign(ξ) = 1.

Beweis. Wir betrachten wieder die surjektive und ordnungserhaltende
”
Einschrän-

kung“ v≥0 : K≥0 � Γopp∪∞ von v aus Beispiel 3.14. Der Einfachheit unterscheiden
wir bei der Notation nicht zwischen v und v≥0. Zu dem Schnitt ξ von Γ erhalten
wir den Schnitt v−1(ξ) =

(
v−1(ξR), v−1(ξL)

)
von K≥0. R und L vertauschen dabei

wegen der Anordnung von Γopp. Nun gilt G≥0 = {a ∈ K≥0 | ξ < v(a)} = v−1(ξR).
Also gilt v(G) = v(G≥0) = v(v−1(ξR)) = ξR und damit

v(G)− = (ξR)− = ξ.

(a)
”
⇒ “: Sei sign∗(G+) = 1. Nach Definition existiert dann ein c ∈ K>0 mit

G+ = c · (G∗(G+))+ = c · (V (G)∗>0)+ = c · V (G)+ = (cV (G))+. Nach Lemma 1.8
impliziert dies G = cV (G), weil beides konvexe Untergruppen von K sind. Also
berechnen wir mit Hilfe von Lemma 3.11 (ii)

ξ = v(G)− = [v(cV (G))]− = [v(cV (G)∗)]
−

= [v(c) + v(V (G)∗)]
−

= v(c) + G(ξ)−,

und es gilt sign(ξ) = −1.

(a)
”
⇐ “: Sei sign(ξ) = −1. Dann schreiben wir ξ = v(c) + G(ξ)− mit einem

c ∈ K>0. Dann folgt aber schon

G = cV (G).

Denn nehmen wir G ( cV (G) an, dann gibt es ein x ∈ V (G) mit cx > G. Es folgt
ξ > v(cx) = v(c) + v(x), aber wegen x ∈ V (G) = V (G)∗ ∪ m(G) gilt v(x) ∈ G(ξ)
oder v(x) > G(ξ). Damit muß ξ > v(c) + v(x) > v(c) + G(ξ)− = ξ gelten, was
nicht sein kann. Ebenso folgt ein Widerspruch, wenn wir G ) cV (G) annehmen.
Denn dann gibt es ein g ∈ G mit g > cV (G) beziehungsweise mit gc−1 > V (G). Da
V (G) aber ein Bewertungsring ist, gilt dann cg−1 ∈ V (G) und cg−1 ∈ m(G). Mit
Lemma 3.12 (ii) folgt v(cg−1) = −v(gc−1) > G(ξ), also gilt v(gc−1) < G(ξ) oder
v(g) < v(c) + G(ξ) und damit v(g) < v(c) + G(ξ)− = ξ. Das steht im Widerspruch
zu g ∈ G.

Aus G = cV (G) folgt sofort G+ = cV (G)+ = c · (V (G)∗>0)+ = c · (G∗(G+))+.
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Das zeigt sign∗(G+) = 1.

(b)
”
⇒ “: Sei sign∗(G+) = −1. Dann existiert ein c ∈ K>0 mit G+ = c·(G∗(G+))− =

c(V (G)∗>0)− = c·m(G)+, wobei die letzte Gleichheit wieder aufgrund der Konvexität
von V (G) gilt. Dann folgt G = c · m(G), weil beides konvexe Untergruppen von K
sind. Anhand Lemma 3.12 (ii) erhalten wir

ξ = v(G)− = [v(cm(G))]− = [v(c) + v(m(G))]− = v(c) + G(ξ)+.

Die letzte Gleichheit folgt aus v(m(G)) = {γ ∈ Γ | γ > G(ξ)}. Das zeigt sign(ξ) = 1.

(b)
”
⇐ “: Sei sign(ξ) = 1. Wir schreiben ξ = v(c) + G(ξ)+ mit einem c ∈ K>0.

Dann folgt aber bereits
G = cm(G).

Denn nehmen wir G ) cm(G) an, so gibt es ein g ∈ G mit g > cm(G). Da V (G) ein
konvexer Bewertungsring ist, existiert dann ein x ∈ V (G)∗>0 mit g ≥ cx. Es folgt
v(g) ≤ v(cx) = v(c)+v(x) < v(c)+G(ξ)+ = ξ. Das steht im Widerspruch zu g ∈ G.
Auch G ( cm(G) gilt nicht. Denn sonst gibt es ein m ∈ m(G) mit cm > G. Dann
gilt aber ξ > v(cm) = v(c) + v(m) > v(c) + G(ξ)+ = ξ, was nicht sein kann.

Aus G = cm(G) folgt aber unmittelbar G+ = cm(G)+ = c · (V (G)∗>0)− =
c · G∗(G+)−. Das zeigt sign∗(G+) = −1.

Korollar 3.18. Sei k ein reell abgeschlossener Körper, Γ eine divisible angeord-
nete abelsche Gruppe und K := k((tΓ)) der zugehörige verallgemeinerte Potenzrei-
henkörper. Sei weiter ξ ein Schnitt von Γ und G := {a ∈ K | ξ < v(a)}. Dann
gilt

sign∗(G+) = −sign(ξ).

Beweis. Da Γ divisibel ist, ist ξ̂ nicht realisiert in Γ ⊗Z Q = Γ und damit sicherlich
sign(ξ) 6= ∞. Nach Proposition 6.13 ist K = k((tΓ)) wieder reell abgeschlossen und
damit die multiplikative Gruppe K>0 divisibel. Damit gilt auch sign∗(G+) 6= ∞.
Mit Proposition 3.17 folgt sofort die Behauptung.

In [T2] gibt Tressl ein Beispiel für einen Schnitt eines angeordneten Körpers an,
dessen multiplikative Signatur gleich ∞ ist. Nach Korollar 3.4 muß solch ein Schnitt
Ober- oder Unterkante seiner (additiven) Invarianzgruppe sein.

Beispiel 3.19. Sei R der Körper der reellen Zahlen, ω > R ein unendlich großes
Element und K := Q(ω). Sei U die konvexe Hülle von Q in K und sei p := U+.
Dann gilt U+ <

√
ω < pR. Da G∗(p) = G∗(U+) gleich der konvexen Hülle von Q>0

ist, ist G∗(p)+ = U+ realisiert in der multiplikativen divisiblen Hülle von K>0 und
damit gilt sign∗(p) = ∞. Tatsächlich gilt auch p = p̂.

Im folgenden Theorem fassen wir die Ergebnisse dieses Abschnittes zusammen. Da-
mit wird klar, daß im allgemeinen Fall eines Schnittes p eines angeordneten Körpers
K mit |p| = p̂ keine starke Aussage wie in Theorem 3.5 getroffen werden kann.
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Theorem 3.20. Sei δ ∈ {±1} und ε ∈ {+1, 0,−1,∞}. Dann existiert ein angeord-
neter Körper K und ein Schnitt p von K mit δ · p = p̂ und sign∗(p) = ε.

Beweis. Da die multiplikative Signatur nach Definition nicht vom Vorzeichen des
Schnittes abhängt, können wir ohne Einschränkung von δ = +1 ausgehen. Ist
ε = ∞, so wählen wir K und p wie in Beispiel 3.19. Wir erhalten dann p = p̂
und sign∗(p) = ε. Ist ε 6= ∞, so wählen wir einen reell abgeschlossenen Körper k
und eine divisible angeordnete abelsche Gruppe Γ, in der Schnitte von Signatur 0
existieren, ganz konkret also zum Beispiel Q. Wir setzen K := k((tΓ)) und wählen
einen Schnitt ξ von Γ mit sign(ξ) = −ε. Setzen wir G := {a ∈ K | ξ < v(a)}, so gilt
für den Schnitt p := G+ von K sofort p = p̂, aber auch sign∗(p) = ε nach Korollar
3.18.
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3.3. Beispiele: Von verallgemeinerten Potenzreihen induzier-
te Schnitte

Nachdem wir in den vorangehenden zwei Abschnitten allgemeine Aussagen über Si-
gnaturen von Schnitten angeordneter Körper gemacht haben, berechnen wir diese
nun im konkreten Fall. Darüberhinaus werden wir auch die meisten der in Kapitel
1 eingeführten Invarianten tatsächlich im Beispiel sehen.

Sei im folgenden R ein reell abgeschlossener Körper und Γ ⊇ Q eine divisible
angeordnete abelsche Gruppe. Bekanntlich ist dann der verallgemeinerte Potenzrei-
henkörper N := R((tΓ)) reell abgeschlossen. Die Aussage findet sich zum Beispiel in
[R], 6.10. Sei weiter

P :=
{
a ∈ R((tQ)) | a =

∑

n≥n0

ant
n
k für ein n0 ∈ Z und ein k ∈ N

}

der Körper der Puiseuxreihen und M ein reell abgeschlossener Zwischenkörper

R(t) ⊆ M ⊆ P ⊆ R((tΓ)) = N.

Wir verwenden stets die bereits in Definition 3.8 eingeführte Bewertung

v : N → Γ ∪∞, v(a) := min(supp(a)) (a ∈ N).

Wir betrachten dann Elemente b ∈ N \M . Diese sind als verallgemeinerte Potenzrei-
hen durch ihren Träger und ihre Koeffizienten charakterisiert. In Abhängigkeit von
diesen Angaben suchen wir für die Schnitte p = b � M , also die von den b’s über M
induzierten Schnitte, nach Aussagen über folgende Invarianten: G(p), sign(p), V (p)
und sign∗(p̂). Für den Fall, daß Γ gleich Q und M gleich dem reellen Abschluß von
R(t) in N ist, finden wir alle Ergebnisse in [T1], Beispiele 3.11, C.

Definition 3.21. Sei b ∈ N . Dann ist der Träger supp(b) vom Ordnungstyp ω
der natürlichen Zahlen, wenn er ordnungsisomorph zu N ist.

Proposition 3.22. Sei b ∈ N \ M mit b > 0. Dann sind äquivalent:

(i) b |= G+ für eine konvexe Untergruppe G von M .

(ii) v(b) /∈ Q.

Beweis.
”
⇒ “: Wir nehmen an, es gilt v(b) ∈ Q. Dann läßt sich b schreiben als b =

b(γ0)t
γ0+ (Terme höherer Ordnung) mit einem γ0 ∈ Q. Es gilt b < 3

2
b(γ0)t

γ0 < 2b.
Also realisieren b und 2b nicht denselben Schnitt von M , weil 3

2
b(γ0)t

γ0 ∈ M gilt.
Demnach realisiert b nicht die Oberkante einer konvexen Untergruppe G von M .

”
⇐ “: Sei v(b) /∈ Q. Wir schreiben p := b � M und zeigen p = G+ für eine

konvexe Untergruppe G von M . Wir haben keine Wahl bei der Definition und setzen
G := (pL ∩M≥0)∪−(pL ∩M≥0). Offenbar gilt dann p = G+. Um einzusehen, daß G
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eine konvexe Untergruppe von M ist, rechnen wir nur nach, daß für ein x ∈ G mit
0 < x < b auch 2x < b gilt. Dies ist aber klar, da aus 0 < x < b nach Bemerkung 3.9
v(b) ≤ v(x) folgt. Damit gilt v(b) < v(x). Denn nach Voraussetzung gilt v(b) /∈ Q,
andererseits gilt aber v(x) ∈ Q, weil x ∈ M eine Puiseuxreihe ist. Also gilt wegen
v(2x) = v(x) > v(b) auch 2x < b.

Wir betrachten zunächst den Fall aus Proposition 3.22. Aus diesem können wir alles
ableiten, was nicht ohnehin schon in [T1] behandelt ist. Wir verwenden im weiteren
Verlauf folgende

Bezeichnung 3.23. Für ein Element b einer angeordneten abelschen Gruppe G
bezeichnen wir mit sgn(b) das Vorzeichen oder Signum von b, setzen also sgn(b) = 1,
falls b > 0, und sgn(b) = −1, falls b < 0 gilt. Wir verwenden später für Schnitte
dieselbe Schreibweise.

Proposition 3.24. Sei b ∈ N \ M mit v(b) /∈ Q. Für den Schnitt p := b � M gilt
dann sign(p) = sgn(b) ∈ {±1} und G(p) = {g ∈ M | v(b) < v(g)}.

(i) Ist v(b) > Q, so gilt G(p) = {0}, V (p) = M , G∗(p̂) = M>0 und sign∗(p̂) = −1.

(ii) Ist v(b) < Q, so gilt G(p) = M , V (p) = M , G∗(p̂) = M>0 und sign∗(p̂) = +1.

Sei im folgenden V der zur Einschränkung v|M : M → Q von v auf M gehörende
Bewertungsring von M , das heißt V = {a ∈ M | v(a) ≥ 0} mit den positiven
Einheiten V ∗>0 = {a ∈ M>0 | v(a) = 0} und dem eindeutigen maximalen Ideal
m := V \ V ∗ = {a ∈ M | v(a) > 0}.

(iii) Ist |v(b)| 6> Q, so gilt V (p) = V und G∗(p̂) = V ∗>0.

(a) Ist v(b) � Q = q− für ein q ∈ Q, so gilt G(p) = tq · V und sign∗(p̂) = +1.

(b) Ist v(b) � Q = q+ für ein q ∈ Q, so gilt G(p) = tq · m und sign∗(p̂) = −1.

(c) Ist v(b) � Q frei, so gilt sign∗(p̂) = 0.

Beweis. Wir betrachten nur den Fall b > 0. Ist b < 0, so ändert sich nur das
Vorzeichen von sign(b), alles andere bleibt aus Symmetriegründen gleich.
Nach Proposition 3.22 gilt b |= G+ für eine konvexe Untergruppe G von M . Mit
anderen Worten gilt p = b � M = G+ und somit sign(p) = +1. Auch die Gleichung
G(p) = {g ∈ M | v(b) < v(g)} sehen wir leicht.

”
⊆ “: Sei g ∈ G(p), ohne Einschrän-

kung nehmen wir g > 0 an. Dann gilt 0 < g < p̂ = p < b und mit Bemerkung 3.9
folgt v(g) ≥ v(b). Da nach Voraussetzung v(b) /∈ Q gilt, folgt v(g) > v(b).

”
⊇ “: Ist g ∈ M mit v(g) > v(b), so ändert die Addition von g zu einem Element

a ∈ M offensichtlich nichts an dessen Verhältnis zu b, das heißt g ∈ G(p).
(i) Betrachten wir zunächst den einfachen Fall v(b) > Q. Dann gilt p = 0+.

Sofort klar sind also die Aussagen G(p) = {0}, V (p) = M sowie G∗(p̂) = M>0. Aus
p̂ = 1 · 0+ = 1 · (M>0)− = 1 · (G∗(p̂))− sehen wir auch sign∗(p̂) = −1.

(ii) Ist v(b) < Q, so gilt p = +∞. Damit folgt leicht G(p) = V (p) = M und
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G∗(p) = M>0. Aus p̂ = M+ = 1 · (G∗(p̂))+ sehen wir sign∗(p̂) = +1.
(iii) Ist |v(b)| 6> Q, so ist der Schnitt ξ := v(b) � Q von Q ungleich −∞ oder +∞

und es gilt G(ξ) 6= Q. Da G(ξ) aber eine konvexe Untergruppe von (Q, +) ist, muß
G(ξ) = {0} gelten. Wir schreiben die Gleichung G(p) = {g ∈ M | v(b) < v(g)} von
oben um und erhalten G(p)>0 = {g ∈ M>0 | ξ < v(g)}. Damit sehen wir G∗(p̂) =
{a ∈ M>0 | v(a) = 0} = V ∗>0. Schließlich gilt noch V (p)∗>0 = V (G(p))∗>0 =
G∗(G(p)+) = G∗(p̂) = V ∗>0 und deshalb V (p) = V .

(a) Sei ξ = q− mit einem q ∈ Q. Dann gilt G(p) = {g ∈ M | ξ < v(g)} =
{g ∈ M | q ≤ v(g)}. Daraus folgt sofort G(p) = tq · V . Denn für alle g ∈ M
gilt v( g

tq
) = v(g) − v(tq) = v(g) − q ≥ 0 genau dann, wenn g ∈ G(p) gilt. Weiter

erhalten wir p̂ = G(p)+ = tq · V + = tq · (V ∗>0)+ = tq ·G∗(p̂)+ und wegen tq > 0 also
sign∗(p̂) = +1.

(b) Sei ξ = q+ mit einem q ∈ Q. Dann gilt G(p) = {g ∈ M | q < v(g)}. Dies
bedeutet G(p) = tq · m. Somit gilt p̂ = tq · m+ = tq · (V ∗>0)− = tq · G∗(p̂)−, und das
bedeutet sign∗(p̂) = −1.

(c) Sei ξ ein freier Schnitt von Q. Wir nehmen an, es gilt sign∗(p̂) = 1. Dann
gibt es ein a ∈ M>0 mit p̂ = a · G∗(p̂)+ = a · V +. Daraus folgt aber ξ = v(a)−

und somit ein Widerspruch zur Voraussetzung. Aus der Annahme sign∗(p̂) = −1
ergibt sich p̂ = a · G∗(p̂)− = a · (V ∗>0)− = a · m+ für ein a ∈ M>0. Dann aber gilt
ξ = v(a)+ und wieder erhalten wir einen Widerspruch. Da p̂ ein Schnitt des reell
abgeschlossenen Körpers M ist, ist auch sign∗(p̂) = ∞ ausgeschlossen. Damit muß
sign∗(p̂) = 0 gelten.

Definition/Bemerkung 3.25. (a) Seien b, c ∈ N gegeben. b heißt ein vorderer
Abschnitt von c, wenn supp(c − b) > supp(b) gilt. Genau dann ist b ein vorderer
Abschnitt von c, wenn b = c gilt auf (supp(b)+)L.
(b) Sei b ∈ N mit unendlichem Träger. Wir wählen induktiv n1 := v(b) und
ni := min(supp(b)\{n1, . . . , ni−1}) für i ∈ N mit i ≥ 2. Damit definieren wir den
abzählbaren vorderen Abschnitt trunc(b) : Γ → R durch

trunc(b)(γ) :=

{
b(γ) , falls γ = ni für ein i ∈ N gilt
0 , sonst.

Offensichtlich ist trunc(b) ein vorderer Abschnitt von b und hat der Träger von
trunc(b) Ordnungstyp ω.

Proposition 3.26. Sei c ∈ N , und sei b ∈ N \ M ein vorderer Abschnitt von c,
dessen Träger supp(b) vom Ordnungstyp ω der natürlichen Zahlen ist. Dann hat
auch c unendlichen Träger und es gilt b � M = c � M . Gilt zusätzlich trunc(c) /∈ M ,
so gilt insbesondere trunc(c) |= c � M .

Beweis. Sei ohne Einschränkung b < c. Wir nehmen an, es gibt ein a ∈ M mit
b < a ≤ c. Dann ist a eine Puiseuxreihe, also von der Form a =

∑
n≥n0

ant
n
k für

ein k ∈ N und ein n0 ∈ Z. Wegen b < a ≤ c und b = c auf (supp(b)+)L gibt es ein
x ∈ supp(a) mit x > supp(b). supp(a) ist entweder endlich oder vom Ordnungstyp
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ω, also ergibt sich in beiden Fällen ein Widerspruch, da supp(b) vom Ordnungstyp
ω ist. Für den Zusatz weisen wir darauf hin, daß mit trunc(c) /∈ M auch c /∈ M
gilt.

Theorem 3.27. Sei R ein reell abgeschlossener Körper, Γ ⊇ Q eine divisible ange-
ordnete abelsche Gruppe und N := R((tΓ)) der zugehörige verallgemeinerte Potenz-
reihenkörper. Sei weiter P der Körper der Puiseuxreihen, M ein reell abgeschlosse-
ner Zwischenkörper

R(t) ⊆ M ⊆ P ⊆ R((tΓ)) = N

und v die bekannte Bewertung

v : N → Γ ∪∞, v(a) := min(supp(a)) (a ∈ N).

Sei im folgenden V der zur Einschränkung v|M : M → Q von v auf M gehörende
Bewertungsring von M , das heißt V = {a ∈ M | v(a) ≥ 0} mit den positiven
Einheiten V ∗>0 = {a ∈ M>0 | v(a) = 0} und dem eindeutigen maximalen Ideal
m := V \V ∗ = {a ∈ M | v(a) > 0}. Sei b ∈ N \M mit b > 0 und sei p := b � M der
von b auf M induzierte Schnitt.

(i) Ist supp(b) unendlich und gilt supp(trunc(b)) ⊆ Q, aber trunc(b) /∈ M , so gilt
sign(p) = 0. Wir können ohne Einschränkung ein b mit Träger supp(b) vom
Ordnungstyp ω betrachten. Setzen wir ξ := supp(b)+ als die Oberkante von
supp(b) in Q, so ist ξ ungleich −∞ und ungleich q+ für alle q ∈ Q und es gibt
nur folgende drei Fälle:

(a) Ist ξ = +∞, so gilt G(p) = {0}, V (p) = M , G∗(p̂) = M>0 sowie
sign∗(p̂) = −1.

(b) Ist ξ = q− für ein q ∈ Q, so gilt G(p) = tq · V , V (p) = V , G∗(p̂) = V ∗>0

sowie sign∗(p̂) = +1.

(c) Ist ξ frei, so gilt G(p) = {g ∈ M | supp(b) < v(g)}, V (p) = V ,
G∗(p̂) = V ∗>0 sowie sign∗(p̂) = 0.

(ii) Andernfalls gilt supp(b) 6⊆ Q und wir setzen γ0 := min(supp(b)\Q). Es gilt
sign(p) = sgn(b(γ0)) ∈ {±1} und G(p) = {g ∈ M | γ0 < v(g)}.

(a) Ist γ0 > Q, so gilt G(p) = {0}, V (p) = M , G∗(p̂) = M>0 und sign∗(p̂) =
−1.

(b) Ist γ0 < Q, so gilt G(p) = M , V (p) = M , G∗(p̂) = M>0 und sign∗(p̂) =
+1.

(c) Ist |γ0| 6> Q, so gilt V (p) = V und G∗(p̂) = V ∗>0.

(1) Ist γ0 � Q = q− für ein q ∈ Q, so gilt G(p) = tq ·V und sign∗(p̂) = +1.

(2) Ist γ0 � Q = q+ für ein q ∈ Q, so gilt G(p) = tq ·m und sign∗(p̂) = −1.

(3) Ist γ0 � Q frei, so gilt sign∗(p̂) = 0.
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Beweis. Wir machen insgesamt dreimal eine Fallunterscheidung. Nur ein Fall führt
uns zu Teil (i), die anderen behandeln wir alle in Teil (ii). Entweder ist supp(b)
endlich (und wir sind in Fall (ii)) oder unendlich. Ist supp(b) unendlich, können wir
trunc(b) bilden und wir unterscheiden, ob supp(trunc(b)) ⊆ Q gilt oder nicht. Falls
nicht, sind wir in Fall (ii), falls doch, müssen wir ein drittes Mal aufspalten. Denn
falls supp(trunc(b)) ⊆ Q gilt, ist entweder trunc(b) ∈ M oder nicht. Wir landen in
Fall (ii) beziehungsweise Fall (i).

(i) Sei also supp(b) unendlich und gelte supp(trunc(b)) ⊆ Q, aber trunc(b) /∈ M .
Nach Proposition 3.26 gilt dann p = trunc(b) � M . Daher können wir ohne Ein-
schränkung von einem b mit Träger supp(b) vom Ordnungstyp ω ausgehen. Wir
befinden uns dann im Kontext von [T1] und sehen alle Rechnungen dort.

(ii) Als erstes zeigen wir, daß hier supp(b) 6⊆ Q gilt. Ist supp(b) endlich, so ist
supp(b) 6⊆ Q, da nach Voraussetzung b /∈ M gilt. Auch wenn supp(b) unendlich ist
und schon supp(trunc(b)) 6⊆ Q gilt, ist natürlich auch supp(b) ⊇ supp(trunc(b)) nicht
enthalten in Q. Im dritten Fall, also wenn supp(b) unendlich, supp(trunc(b)) ⊆ Q
und trunc(b) ∈ M gilt, so ist b 6= trunc(b) wegen b /∈ M , das heißt es gibt ein
Element γ ∈ supp(b) mit γ > supp(trunc(b)). Da trunc(b) als Element von M eine
Puiseuxreihe ist, ist supp(trunc(b)) unbeschränkt in Q und somit gilt γ > Q. Dies
zeigt auch hier supp(b) 6⊆ Q.

Es gilt also supp(b) 6⊆ Q und wir setzen γ0 := min(supp(b)\Q). Wir können nun
b als eine Summe b = a + b′ schreiben, wobei a ∈ M und v(b′) = γ0 /∈ Q gilt. Wir
setzen nämlich a :=

∑
supp(b)∩Q3γ<γ0

b(γ)tγ und b′ := b−a. Dann sehen wir leicht, daß

a ∈ M und auch v(b′) = γ0 /∈ Q gilt. Es folgt p = b � M = (a+b′) � M = a+(b′ � M).
Dann ist p also ein Translat eines der Schnitte, die wir in Proposition 3.24 vollständig
behandelt haben, und da alle Aussagen nur von der Invarianzgruppe abhängen, folgt
die Behauptung nach dieser Proposition.

Wir veranschaulichen Theorem 3.27 mittels der nachfolgenden Tabelle. Befinden wir
uns in der Situation des Theorems, so können wir leicht ablesen, welche Signaturen
von p und p̂ in Abhängigkeit von supp(b) auftreten. Wie im Text des Theorems
bezeichnen wir mit γ0 das Minimum von supp(b) \Q, falls dieses existiert. Die Fälle
sign(p) gleich +1 und −1 können wir zusammenfassen, da sich aus Symmetrie-
gründen jeweils einer sofort aus dem anderen ergibt. Wir weisen noch darauf hin,
daß der Fall sign(p) = 0 und sign∗(p̂) = −1 nur für einen dichten Schnitt p möglich
ist, also nur wenn p frei ist und p̂ = 0+ gilt.
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Veranschaulichung der Signaturaussagen aus Theorem 3.27

sign(p) sign∗(p̂) supp(b) supp(b) unendlich
endlich supp(trunc(b)) supp(trunc(b)) ⊆ Q

6⊆ Q trunc(b) ∈ M trunc(b) /∈ M

+1 γ0 < Q oder γ0 � Q = q− für ein q ∈ Q −
sgn(b(γ0)) 0 γ0 � Q freier Schnitt von Q −

−1 γ0 > Q oder γ0 � Q = q+ für ein q ∈ Q −
+1 − supp(trunc(b))+ =

= q− für ein q ∈ Q

0 0 − supp(trunc(b))+

freier Schnitt von Q

−1 −
supp(trunc(b))+ =
= +∞Q (nur möglich,
wenn p̂ = 0+ gilt)
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4. Addition von Schnitten

4.1. Die Addition von Schnitten mittels Paaren zweier Schnit-
te

Im folgenden definieren wir für (echte) Schnitte einer angeordneten abelschen Grup-
pe G eine Addition. Für zwei echte Schnitte p und q von G bilden wir intuitiv das
Paar (pL + qL, pR + qR). Zwar gilt dann pL + qL < pR + qR, doch liefert dies im
allgemeinen keinen Schnitt von G. Betrachten wir zum Beispiel den Schnitt p := 1+

von Z, so ist (pL+pL, pR+pR) = ({z ≤ 2}, {z ≥ 4}) kein Schnitt von Z. Wir erhalten
jedoch zu zwei echten Schnitten kanonisch zwei Schnitte und machen folgende

Definition 4.1. Sei G eine angeordnete abelsche Gruppe. Seien p und q echte
Schnitte von G. Dann definieren wir die zwei Schnitte

(p + q)links := (pL + qL)+ = {x + y | x < p, y < q}+ und
(p + q)rechts := (pR + qR)− = {x + y | x > p, y > q}−.

Bemerkung 4.2. In Definition 4.1 beschränken wir uns auf echte Schnitte. Zwar
könnten wir diese Definition der Addition von Schnitten in naheliegender Weise
auch auf unechte Schnitte ausdehnen. Dies würde jedoch einige Fallunterscheidun-
gen und damit deutlich größeren formalen Aufwand mit sich bringen. Da unser
Hauptaugenmerk zudem ohnehin der Addition von Schnitten mittels realisierender
Obergruppen und Oberkörper in Abschnitt 4.2 gilt, verzichten wir auf diese unwe-
sentliche Verallgemeinerung.

Natürlich gilt in der Situation von Definition 4.1 immer (p + q)links ≤ (p + q)rechts. Im
allgemeinen muß aber keine Gleichheit gelten. Wir führen dazu ein einfaches Beispiel
an, das auch mit einer divisiblen angeordneten abelschen Gruppe funktioniert. Eine
noch allgemeinere Aussage werden wir in Proposition 4.7 machen.

Beispiel 4.3. Sei {0} ( G eine angeordnete abelsche Gruppe und a ∈ G ein beliebi-
ges Element von G. Dann gilt

(a− + 0+)links = a− < a < a+ = (a− + 0+)rechts.

Beweis. (a− + 0+)links = {x + y | x < a−, y < 0+}+ = {x + 0 | x < a−}+ = a−.
Ebenfalls schnell sehen wir die rechte Gleichheit. Es gilt

(a− + 0+)rechts = {x + y | x > a−, y > 0+}− = {x + y | x ≥ a, y > 0}− =

= {a + y | y > 0}− = {x | x > a}− = a+.

Falls wie in Beispiel 4.3 linker und rechter Schnitt nicht übereinstimmen, machen
wir folgende Beobachtung, die zwar direkt aus der Definition folgt, aber trotzdem
für manche Beweise nützlich ist.
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Bemerkung 4.4. Seien G eine angeordnete abelsche Gruppe und p < q zwei echte
Schnitte von G. Weiter sei g ∈ G mit (p + q)links < g < (p + q)rechts. Dann gilt für
alle x ∈ G:

(i) Ist x < p, so gilt g − x > q.

(ii) Ist p < x < q, so gilt p < g − x < q.

(iii) Ist x > q, so gilt g − x < p.

Wie wir gesehen haben, stimmen in der Situation von Definition 4.1 der linke und
rechte Schnitt im allgemeinen nicht überein. Wir können uns allerdings auf die Be-
trachtung eines Schnittes aus diesem Paar beschränken, denn der andere läßt sich
dann sofort elementar berechnen.

Proposition 4.5. Seien G eine angeordnete abelsche Gruppe und p und q echte
Schnitte von G. Dann gilt

(p + q)rechts = −(−p + (−q))links und
(p + q)links = −(−p + (−q))rechts.

Beweis. Wir zeigen für die erste Behauptung die Gleichheit der rechten Hälften.

[−(−p + (−q))links]
R = −[(−p + (−q))links]

L =

= −{x + y | x < −p, y < −q} = {−x − y | x < −p, y < −q} =

= {x + y | x > p, y > q} = ((p + q)rechts)
R.

Damit folgt auch die zweite Behauptung, da (−p + (−q))rechts = −(p + q)links gilt.

Bezeichnung 4.6. Seien G eine angeordnete abelsche Gruppe und p und q echte
Schnitte von G. Dann schreiben wir

(p − q)links := (p + (−q))links und (p − q)rechts := (p + (−q))rechts.

Proposition 4.7. Sei G eine angeordnete abelsche Gruppe und p ein echter Schnitt
von G. Dann gilt

(p − p)links = −p̂ < p̂ = (p − p)rechts.

Beweis. Wir zeigen zunächst die zweite Gleichheit, die erste folgt dann sofort. Direkt
sehen wir folgende Darstellung von (p − p)rechts:

(p − p)rechts = (p + (−p))rechts =

= {x + y | x > p, y > −p}− = {x − y | x > p, y < p}−.

Hiermit zeigen wir {x − y | x > p, y < p}− = p̂.
”
≤ “: Sei z > p̂. Dann existieren

nach Definition ein y < p und ein x > p mit y + z = x. Deshalb folgt sofort
z = x − y > {x − y | x > p, y < p}−. Auch die Abschätzung

”
≥ “ folgt schnell aus
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der Definition. Sei z > {x − y | x > p, y < p}−, dann gibt es Elemente x > p und
y < p mit z ≥ x − y. Es gilt y + z ≥ y + x − y = x > p und somit muß z > G(p)
oder z > p̂ gelten. Die Behauptung (p − p)rechts = p̂ ist bewiesen.

Die erste Behauptung folgt jetzt sofort anhand Proposition 4.5. Denn es gilt
(p − p)links = (p + (−p))links = −(−p + p)rechts = −(p − p)rechts = −p̂



4. Addition von Schnitten 46

4.2. Die Addition von Schnitten mittels realisierender Ober-
gruppen und Oberkörper

Die Definition der Addition von Schnitten in Abschnitt 4.1 ist intuitiv und elementar
durchführbar, bereitet allerdings auch einige Probleme. Zum einen muß man die De-
finition erweitern, wenn man auch nichtechte Schnitte berücksichtigen will. Dies ist
zwar möglich, aber erscheint uns zu umständlich. Zum anderen ist diese Definition
für die Bildung mehrfacher Summen ungeeignet, da wir beim öfteren Hintereinan-
derausführen der Addition immer zwischen einem linken und einem rechten Schnitt
unterscheiden müssen und sich somit pro Addition die Zahl der involvierten Schnitte
verdoppelt. Schließlich benötigen wir bei Rechnungen ständig Fallunterscheidungen,
die uns nach einer alternativen Herangehensweise an das Problem suchen lassen.
Einen Ausweg finden wir in den realisierenden Obergruppen beziehungsweise rea-
lisierenden Oberkörpern. Wir werden diese im Abschnitt 4.2.1 zunächst definieren
und zeigen, daß sie mit unserem Setting aus Kapitel 1 verträglich sind, das heißt mit
wichtigen Invarianten eines Schnittes p eines angeordneten Körpers wie den Invari-
anzgruppen G(p) und G∗(p), dem Invarianzbewertungsring V (p) und den Mengen
J(p) und I(p). Danach erklären wir in Abschnitt 4.2.2 mit Hilfe der realisierenden
Obergruppen beziehungsweise Oberkörper eine brauchbare Addition von Schnitten
und untersuchen den Zusammenhang mit der Addition aus Abschnitt 4.1.

4.2.1. Einführung von realisierenden Obergruppen und Oberkörpern

Definition 4.8 (Realisierende Obergruppe). Sei G eine angeordnete abelsche Grup-
pe. Eine angeordnete abelsche Obergruppe Ω ⊇ G heißt realisierend, wenn in Ω
alle Schnitte von G realisiert sind.

Bemerkung 4.9. Für die Existenz einer realisierenden Obergruppe Ω zu einer ange-
ordneten abelschen Gruppe G verweisen wir auf Proposition 4.21.

Definition/Bemerkung 4.10. Sei G eine angeordnete abelsche Gruppe, L ⊇ G
eine angeordnete abelsche Obergruppe und p ein Schnitt von G. Dann schreiben wir

RealL(p) := {α ∈ L | α |= p}

für die Menge aller Realisierungen von p in L. RealL(p) ist eine konvexe Teilmenge
von L und es gilt RealL(−p) = {α ∈ L | α |= −p} = {α ∈ L | −pR < α < −pL} =
−{α ∈ L | pL < α < pR} = −RealL(p).

Definition 4.11. Sei G eine angeordnete abelsche Gruppe und Ω ⊇ G eine reali-
sierende Obergruppe. Dann definieren wir die Abbildung

ε : DC(G) → CT(Ω) := {konvexe Teilmengen von Ω}

ε(x) :=

{
{x} , für x ∈ G
RealΩ(x) = {α ∈ Ω | α |= x} , für x ∈ Cuts(G).
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Betrachten wir einen Schnitt p einer angeordneten abelschen Gruppe G mittels ei-
ner realisierenden Obergruppe Ω ⊇ G, fragen wir in diesem Kontext nach einer
Entsprechung für die Invariante G(p). Wir machen folgende

Definition 4.12 (Ω-Invarianzgruppe). Sei G eine angeordnete abelsche Gruppe,
Ω ⊇ G eine realisierende Obergruppe und p ein Schnitt von G. Wir definieren die
Ω-Invarianzgruppe von p als

GΩ(p) := {ω ∈ Ω | ω + ε(p) = ε(p)}.

Proposition 4.13. Sei G eine angeordnete abelsche Gruppe, Ω ⊇ G eine realisie-
rende Obergruppe und p ein Schnitt von G. Dann ist GΩ(p) eine konvexe Untergruppe
von Ω und es gilt

GΩ(−p) = GΩ(p).

Beweis. Natürlich gilt 0 ∈ GΩ(p). Für Elemente ω1, ω2 ∈ GΩ(p) gilt ω1 + ε(p) =
ε(p) = ω2 + ε(p). Daraus folgt (ω1 − ω2) + ε(p) = ε(p) und somit ω1 − ω2 ∈ GΩ(p).
Zum Nachweis der Konvexität wählen wir Elemente 0 < α < ω mit ω ∈ GΩ(p). Sei
γ ∈ ε(p), dann gilt γ < α + γ < ω + γ ∈ ε(p) und γ > γ − α > γ − ω ∈ ε(p). Wegen
der Konvexität von ε(p) gilt also α+γ ∈ ε(p) und γ−α ∈ ε(p). Da γ ∈ ε(p) beliebig
war, folgt α + ε(p) = ε(p), und das zeigt α ∈ GΩ(p).

Da ε(−p) = −ε(p) gilt und für alle ω ∈ Ω genau dann ω + ε(p) = ε(p) gilt, wenn
ω − ε(p) = −ε(p) gilt, folgt GΩ(p) = GΩ(−p).

Bemerkung 4.14. Zu jedem Schnitt p einer angeordneten abelschen Gruppe G mit
realisierender Obergruppe Ω ⊇ G existiert stets eine kleinste und eine größte Erwei-
terung von p auf Ω, und zwar ist ε(p)− die kleinste und ε(p)+ die größte Erweiterung
von p auf Ω.

Lemma 4.15. Sei G eine angeordnete abelsche Gruppe, C ⊆ G eine konvexe Teil-
menge von G und g ∈ G. Dann sind äquivalent:

(a) g + C = C

(b) g ∈ G(C−) ∩ G(C+)

Beweis. Sei ohne Einschränkung g > 0.
”
(a)⇒(b)“: Für alle z < C−, also alle z < C,

gilt g + z < g + C = C, demnach gilt g ∈ G(C−) nach Lemma 1.11. Für alle c ∈ C
gilt g + c ∈ g + C = C und damit g + c < C+. Mit Lemma 1.16 folgt g ∈ G(C+).

”
(b)⇒(a)“: Sei g ∈ G(C−)∩G(C+) und c ∈ C. Dann gilt C− < c und c < C+, also

auch C− < g + c und g + c < C+. Mit der Konvexität von C folgt g + c ∈ C. Wegen
−g ∈ G(C−) ∩ G(C+) gilt auch −g + c ∈ C.

Korollar 4.16. Sei G eine angeordnete abelsche Gruppe, Ω ⊇ G eine realisierende
Obergruppe und p ein Schnitt von G. Seien q := ε(p)− und r := ε(p)+ die kleinste
und die größte Erweiterung von p auf Ω. Dann gilt

GΩ(p) = G(q) ∩ G(r).
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Genauer gilt

GΩ(p) = G(q) , falls sign(p) = +1,

GΩ(p) = G(r) , falls sign(p) = −1, und

GΩ(p) = G(q) = G(r) , falls sign(p) ∈ {0,∞} gilt.

Beweis. Daß GΩ(p) = G(q) ∩ G(r) gilt, ist die direkte Folge von Lemma 4.15, an-
gewandt auf die konvexe Menge C = ε(p). Damit lesen wir den Rest mit Hilfe von
Proposition 1.32 (iv)-(vii) ab.

Proposition 4.17. Sei G eine angeordnete abelsche Gruppe, Ω ⊇ G eine realisie-
rende Obergruppe und p ein Schnitt von G. Dann gilt

GΩ(p) ∩ G = G(p).

Darüberhinaus liegt GΩ(p) extremal über G(p), das heißt GΩ(p)+ ist die kleinste oder
größte Erweiterung von G(p)+.

Beweis. Wir betrachten wieder q := ε(p)− und r := ε(p)+, die kleinste und die
größte Erweiterung von p auf Ω. Dann gilt nach Korollar 4.16 GΩ(p) = G(q)∩G(r).
Da G(q) und G(r) beides konvexe Untergruppen von Ω sind, ist GΩ(p) gleich G(q)
oder G(r). Damit ist GΩ(p)+ gleich q̂ oder r̂, also nach Proposition 1.32 (ii) die
kleinste oder größte Erweiterung von p̂ = G(p)+ auf Ω. Da natürlich auch GΩ(p)−

Erweiterung von −p̂ auf Ω ist, liegt GΩ(p) über G(p).

Nachdem wir den Begriff der realisierenden Obergruppe eingeführt haben, definie-
ren wir im folgenden entsprechend im Körperfall einen realisierenden Oberkörper.
Anschließend werden wir in Proposition 4.21 einen solchen explizit konstruieren.

Bezeichnung 4.18. Sei K ein angeordneter Körper. Dann bezeichnen wir den re-
ellen Abschluß von K mit K oder mit rcl(K).

Definition 4.19 (Realisierender Oberkörper). Sei K ein angeordneter Körper. Ein
angeordneter Oberkörper Ω ⊇ K heißt realisierend, wenn in Ω alle Schnitte von
K realisiert sind.

Bemerkung 4.20. Ist K ein angeordneter Körper und Ω ein realisierender Ober-
körper, so ist insbesondere (Ω, +) eine realisierende Obergruppe von (K, +) und
(Ω>0, ·) eine realisierende Obergruppe von (K>0, ·).
Bis jetzt haben wir realisierende Obergruppen und Oberkörper zwar definiert, aber
noch nicht ihre Existenz nachgewiesen. Dies holen wir nach in der folgenden

Proposition 4.21. Sei K eine angeordnete abelsche Gruppe oder ein angeordneter
Körper. Dann existiert eine divisible realisierende Obergruppe beziehungsweise ein
reell abgeschlossener realisierender Oberkörper K̃ von K.
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Beweis. Wir beschränken uns auf den Fall eines angeordneten Körpers K. Für eine
angeordnete abelsche Gruppe K können wir ganz analog verfahren.

Wir konstruieren also einen realisierenden Oberkörper von K und müssen dann
nur noch den reellen Abschluß bilden. Sei zunächst R der reelle Abschluß von K.
Wir definieren eine Menge von Variablen T := {tξ | ξ ∈ Cuts(R)}. Für alle T0 ⊆ T
sei

R(T0) := { f

g
| f, g ∈ R[t1, . . . , tk] mit k ∈ N, ti ∈ T0 und g 6= 0}.

Weiter setzen wir

S := {(T0, P ) | T0 ⊆ T, P Anordnung von R(T0) mit tξ |= ξ für alle tξ ∈ T0}.

Wir erhalten eine partielle Ordnung von S, indem wir für alle (T0, P ), (T ′
0, P

′) ∈ S
definieren

(T0, P ) ≤ (T ′
0, P

′) :⇔ T0 ⊆ T ′
0 und P ′ setzt P fort.

Wir können das Lemma von Zorn anwenden und erhalten ein maximales Element
(T̃ , P̃ ) ∈ S. Dann muß aber T̃ = T gelten. Denn angenommen, es existiert ein
tξ ∈ T \ T̃ , dann wählen wir einen beliebigen Schnitt η des angeordneten Körpers
(R(T̃ ), P̃ ) über ξ, zum Beispiel die kleinste Erweiterung von ξ auf R(T̃ ). Wir wählen
eine Realisierung t von η in (R(T̃ ))(t) = R(T̃ ∪ {t}) mit einer Anordnung, die
P̃ fortsetzt. Wegen t |= η und folglich t |= η � R = ξ können wir t auch in tξ
umbenennen und erhalten damit einen Widerspruch zur Maximalität von (T̃ , P̃ ).
Wir definieren also K̃ als den reellen Abschluß von R(T ): K̃ := R(T ).

Meistens werden wir zu einer angeordneten abelschen Gruppe oder einem angeord-
neten Körper K von einer realisierenden Obergruppe beziehungsweise einem reali-
sierenden Oberkörper Ω ⊇ K nur die Eigenschaft von Ω benötigen, daß in Ω alle
Schnitte von K realisiert sind. Manchmal brauchen wir aber auch Obergruppen
beziehungsweise Oberkörper von K mit einer stärkeren Eigenschaft. Sie muß sicher-
stellen, daß wir Schnitte in einer Oberstruktur realisieren können, dann nochmals
Schnitte dieser Oberstruktur in einer zweiten Erweiterung realisieren können und
dennoch eine noch größere Oberstruktur nicht verlassen. Wir nutzen diese Eigen-
schaft im Beweis von Proposition 4.40. Formuliert und bereitgestellt wird sie in der
folgenden

Proposition 4.22. Sei K eine angeordnete abelsche Gruppe oder ein angeordneter
Körper. Dann existiert eine divisible angeordnete abelsche Obergruppe beziehungs-
weise ein reell abgeschlossener Oberkörper Ω ⊇ K, so daß die Ordnung von Ω die
Ordnung von K fortsetzt und Ω die folgende Eigenschaft (ZE) besitzt:
Ist K ′ ⊇ K eine angeordnete abelsche Gruppe mit dimQ−VR(dh(K ′)/dh(K)) < ∞
beziehungsweise ein angeordneter Körper mit Transzendenzgrad trdeg(K ′/K) < ∞
und ist τ : K ′ K−→ Ω eine Ordnungseinbettung, dann existiert für jede weitere ange-
ordnete abelsche Gruppe K ′′ ⊇ K ′ mit dimQ−VR(dh(K ′′)/dh(K ′)) < ∞ beziehungs-
weise für jeden weiteren angeordneten Körper K ′′ ⊇ K ′ mit trdeg(K ′′/K ′) < ∞
eine Ordnungseinbettung τ ∗ : K ′′ → Ω, die τ fortsetzt.
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Beweis. Wieder führen wir den Beweis für den Fall eines angeordneten Körpers K.
Für eine angeordnete abelsche Gruppe K erhalten wir die gewünschte Eigenschaft
nach demselben Prinzip.

Zu K haben wir nach Proposition 4.21 einen reell abgeschlossenen Oberkörper
K̃ ⊇ K, dessen Anordnung die von K fortsetzt und in dem alle Schnitte von K
realisiert sind. Wir definieren iterativ

Ω(1) := (̃K̃), Ω(n) := ˜(Ω(n−1)) (n ≥ 2).

Damit definieren wir den reell abgeschlossenen Körper Ω :=
⋃

n∈N Ω(n) und zeigen,
daß dieser Körper die gewünschte Eigenschaft besitzt. Seien also Körpererweiterun-
gen K ′/K und K ′′/K ′ gegeben mit trdeg(K ′/K) < ∞ und trdeg(K ′′/K ′) =: n < ∞.

Sei weiterhin τ : K ′ K−→ Ω eine Ordnungseinbettung. Da mit K ′/K auch K ′/K von
endlichem Transzendenzgrad ist, existiert ein m ∈ N mit τ(K ′) ⊆ Ω(m). Wir zeigen
mit Induktion nach n die Existenz einer Ordnungseinbettung τ ∗ : K ′′ → Ω(m+n) ⊆ Ω,
die τ fortsetzt.
n = 1: Dann existiert ein α1 ∈ K ′′ mit K ′′ = K ′(α1). Da Ω(m) reell abgeschlossen
ist, existiert nach [KS], Kap. I, §11, Theorem 1, S. 44, genau ein ordnungstreuer
Homomorphismus

τ̃ : K ′ → Ω(m),

der τ fortsetzt. Nach [KS], Kap. II, §9, Korollar 2, S. 81, entspricht die Anord-
nung von K ′(α1) genau einem Schnitt ξ von K ′. Mittels τ̃ erhalten wir aus ξ den
Schnitt η := (τ̃(ξL))+ von Ω(m). In Ω(m+1) sind nach Definition alle Schnitte von
Ω(m) realisiert, also können wir ein tη ∈ Ω(m+1) wählen mit tη |= η. Wir definieren

τ̃ ′ : K ′(α1) → Ω(m+1)

τ̃ ′|K′ := τ̃ , τ̃ ′(α1) := tη.

Wieder mit [KS], Kap. I, §11, Theorem 1, S. 44, existiert genau ein ordnungstreuer
Homomorphismus τ ∗ : rcl(K ′(α1)) = K ′′ → Ω(m+1), der τ̃ ′ fortsetzt. Nach Konstruk-
tion setzt τ ∗ dann τ fort.
n → n + 1: Seien α1, . . . , αn+1 ∈ K ′′ mit K ′′ = K ′(α1, . . . , αn+1). Nach Induktions-
voraussetzung existiert bereits eine Ordnungseinbettung

σ : K ′(α1, . . . , αn) → Ω(m+n),

die τ fortsetzt. Wieder nach [KS], Kap. I, §11, Theorem 1, S. 44, haben wir genau
einen ordnungstreuen Homomorphismus

σ̃ : K ′(α1, . . . , αn) → Ω(m+n),

der σ fortsetzt. Auch hier entspricht der Anordnung von K ′(α1, . . . , αn)(αn+1) ein
Schnitt ξ von K ′(α1, . . . , αn) und mittels σ̃ erhalten wir den Schnitt η := (σ̃(ξL))+
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von Ω(m+n). In Ω(m+n+1) sind alle Schnitte von Ω(m+n) realisiert. Wir finden demnach
ein tη ∈ Ω(m+n+1) mit tη |= η und definieren

τ̃ : K ′(α1, . . . , αn)(αn+1) → Ω(m+n+1)

τ̃ |K′(α1,... ,αn) := σ̃, τ̃(αn+1) := tη.

Wie vorher existiert dann genau ein ordnungstreuer Homomorphismus

τ ∗ : rcl
(
K ′(α1, . . . , αn)(αn+1)

)
= K ′′ → Ωm+n+1,

der τ̃ und damit τ fortsetzt.

Ist K ein angeordneter Körper mit realisierendem Oberkörper Ω ⊇ K, so betrachten
wir gemäß Definition 4.11 die Einbettung ε : DC(K) → CT(Ω).

Proposition 4.23. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Sei ε : DC(K) → CT(Ω) die Einbettung aus
Definition 4.11. Dann gilt für alle a ∈ K>0 und alle b ∈ K

ε(ap + b) = aε(p) + b.

Außerdem gilt
ε(−p) = −ε(p).

Für alle c, d ∈ Ω>0 gilt
(c + d)ε(p) = cε(p) + dε(p).

Beweis. Für alle a ∈ K>0 und alle b ∈ K gilt

ε(ap + b) = {α ∈ Ω | α |= ap + b} =

= {α ∈ Ω | (ap + b)L < α < (ap + b)R} = {α ∈ Ω | apL + b < α < apR + b} =

= a · {α ∈ Ω | pL < α < pR} + b = aε(p) + b.

Die zweite Behauptung haben wir bereits in Definition/Bemerkung 4.10 gesehen.
Wir zeigen noch die letzte Aussage. Seien dafür c, d ∈ Ω>0. Die Inklusion

”
⊆ “

ist trivial.
”
⊇ “: Seien a1 ≤ a2 ∈ ε(p). Dann gilt mit a3 := ca1+da2

c+d
natürlich

ca1 + da2 = (c + d)a3. Da a1 = c
c+d

a1 + d
c+d

a1 ≤ c
c+d

a1 + d
c+d

a2 = a3 ≤ a2 gilt und
ε(p) konvex ist, gilt auch a3 ∈ ε(p).

Wir haben für einen Schnitt p einer angeordneten abelschen Gruppe G mit realisie-
render Obergruppe Ω ⊇ G mit GΩ(p) bereits eine Entsprechung für die elementare
Invariante G(p) von p gefunden. Im folgenden führen wir im Falle eines Schnittes
p eines angeordneten Körpers auch Entsprechungen für die weiteren Invarianten
G∗(p), V (p), J(p) und I(p) ein. Wir untersuchen dabei jeweils den Zusammenhang
zwischen diesen alten Invarianten und ihren neuen Entsprechungen.
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Definition 4.24 (Multiplikative Ω-Invarianzgruppe). Sei K ein angeordneter Kör-
per, Ω ⊇ K ein realisierender Oberkörper und p ein Schnitt von K. Wir definieren
die multiplikative Ω-Invarianzgruppe von p als

G∗
Ω(p) := {ω ∈ Ω | ω · ε(p) = ε(p)}.

Bemerkung 4.25. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Dann ist G∗

Ω(p) eine konvexe Untergruppe von
(Ω>0, ·) und wegen ε(−p) = −ε(p) gilt G∗

Ω(−p) = G∗
Ω(p).

Proposition 4.26. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Seien q := ε(p)− und r := ε(p)+ die kleinste und
die größte Erweiterung von p auf Ω. Dann gilt

G∗
Ω(p) = G∗(q) ∩ G∗(r).

Ist p > 0, so gilt genauer

G∗
Ω(p) = G∗(q) , falls sign∗(p) = +1,

G∗
Ω(p) = G∗(r) , falls sign∗(p) = −1, und

G∗
Ω(p) = G∗(q) = G∗(r) , falls sign∗(p) ∈ {0,∞} gilt.

Beweis. Für p > 0 ist die Aussage gerade die multiplikative Version von Korollar
4.16. Ist p < 0, so gilt nach Bemerkung 4.25 und dem positiven Fall G∗

Ω(p) =
G∗

Ω(−p) = G∗(−q) ∩ G∗(−r) = G∗(q) ∩ G∗(r).

Proposition 4.27. Sei K ein angeordneter Körper mit realisierendem Oberkörper
Ω ⊇ K. Sei p ein Schnitt von K. Dann gilt

G∗
Ω(p) ∩ K = G∗(p).

Darüberhinaus liegt G∗
Ω(p) extremal über G∗(p), das heißt G∗

Ω(p)+ ist die größte oder
kleinste Erweiterung von G∗(p)+.

Beweis. Da offensichtlich G∗
Ω(p) > 0 gilt, ist die Behauptung für p > 0 die multi-

plikative Version von Proposition 4.17. Da aber sowohl G∗
Ω(−p) = G∗

Ω(p) als auch
G∗(−p) = G∗(p) gilt, gilt die Behauptung auch für negative Schnitte p < 0.

Definition 4.28. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Wir definieren den Ω-Invarianzbewertungsring
von p als

VΩ(p) := V (GΩ(p)) = {ω ∈ Ω | ω · GΩ(p) ⊆ GΩ(p)}.
Lemma 4.29. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Seien q := ε(p)− und r := ε(p)+ die kleinste und
die größte Erweiterung von p auf Ω. Dann gilt

VΩ(p) = V (q) , falls sign(p) = +1,

VΩ(p) = V (r) , falls sign(p) = −1, und

VΩ(p) = V (q) = V (r) , falls sign(p) = 0 gilt.
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Beweis. Mit Hilfe von Korollar 4.16 und Proposition 1.44 können wir die positiven
Einheiten von VΩ(p) berechnen als

VΩ(p)∗>0 = V (GΩ(p))∗>0 = G∗(GΩ(p)+) = G∗([G(q) ∩ G(r)]+).

Ist sign(p) = +1, so gilt VΩ(p)∗>0 = G∗(G(q)+) = V (q)∗>0; ist sign(p) = −1, so
gilt VΩ(p)∗>0 = G∗(G(r)+) = V (r)∗>0, und gilt sign(p) = 0, so gilt VΩ(p)∗>0 =
V (q)∗>0 = V (r)∗>0. Je nach Signatur von p folgt damit VΩ(p)+ = (VΩ(p)∗>0)+ =
(V (q)∗>0)+ = V (q)+ oder VΩ(p)+ = (V (r)∗>0)+ = V (r)+. Da VΩ(p), V (q) und V (r)
konvexe Untergruppen von Ω sind, folgt mit Lemma 1.8 die Behauptung.

Proposition 4.30. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Dann gilt

VΩ(p) ∩ K = V (p).

Darüberhinaus liegt VΩ(p) extremal über V (p), das heißt VΩ(p)+ ist die größte oder
kleinste Erweiterung von V (p)+.

Beweis. Seien q := ε(p)− und r := ε(p)+ die kleinste und die größte Erweiterung von
p auf Ω. Nach Lemma 4.29 ist VΩ(p) gleich V (q) oder V (r). Sei ohne Einschränkung
VΩ(p) = V (q). Dann gilt VΩ(p)+ = V (q)+ = (V (q)∗>0)+ = G∗(q̂)+. Da q die kleinste
Erweiterung von p ist, ist nach Proposition 1.32 (ii) q̂ die kleinste oder größte Er-
weiterung von p̂ auf Ω. Wenden wir denselben Satz nochmal multiplikativ auf p̂ und
q̂ an, so erhalten wir, daß G∗(q̂)+ = VΩ(p)+ die kleinste oder größte Erweiterung
von G∗(p̂)+ = V (p)+ ist. Da natürlich auch VΩ(p)− eine Erweiterung von V (p)− ist,
liegt VΩ(p) über V (p).

Definition 4.31. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Dann definieren wir

JΩ(p) := {ω ∈ Ω>0 | G∗
Ω(p) = ωGΩ(p) + 1} und

IΩ(p) :=
1

JΩ(p)
.

Bemerkung 4.32. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K. Dann sind JΩ(p) und IΩ(p) konvex und es gilt
JΩ(−p) = JΩ(p) und IΩ(−p) = IΩ(p).

Lemma 4.33. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Oberkörper
und p ein Schnitt von K mit |p| > p̂. Seien weiter q := ε(p)− und r := ε(p)+ die
kleinste und die größte Erweiterung von p auf Ω. Dann gilt

JΩ(p) = J(q) oder JΩ(p) = J(r) sowie

IΩ(p) = I(q) oder IΩ(p) = I(r).
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Genauer gilt

JΩ(p) = J(q) , falls sign(p) = 1,

JΩ(p) = J(r) , falls sign(p) = −1, und

JΩ(p) = J(q) = J(r) , falls sign(p) = 0 gilt.

Beweis. Sei zunächst p > 0. Nach Theorem 3.5 gilt sign(p) = sign∗(p). Nach Korollar
4.16 und Proposition 4.26 erhalten wir folgende Fallunterscheidung.
Ist sign(p) = sign∗(p) = +1, so gilt GΩ(p) = G(q) und G∗

Ω(p) = G∗(q) und somit

JΩ(p) = {ω ∈ Ω>0 | G∗
Ω(p) = ωGΩ(p) + 1} = {ω | G∗(q) = ωG(q) + 1} = J(q).

Ist sign(p) = sign∗(p) = −1, so gilt GΩ(p) = G(r) und G∗
Ω(p) = G∗(r) und somit

JΩ(p) = {ω ∈ Ω>0 | G∗
Ω(p) = ωGΩ(p) + 1} = {ω | G∗(r) = ωG(r) + 1} = J(r).

Ist sign(p) = sign∗(p) = 0, so gilt GΩ(p) = G(q) = G(r) und G∗
Ω(p) = G∗(q) = G∗(r)

und somit

JΩ(p) = {ω ∈ Ω>0 | G∗
Ω(p) = ωGΩ(p) + 1} = J(q) = J(r).

Nun betrachten wir einen Schnitt p < 0. Da q und r die kleinste und die größte
Erweiterung von p auf Ω sind, sind natürlich −r die kleinste und −q die größte Er-
weiterung von −p auf Ω. Da JΩ und J nicht vom Vorzeichen des jeweiligen Schnittes
abhängen, erhalten wir auch hier unsere behauptete Darstellung von JΩ(p). Da die
Aussage über IΩ(p) trivialerweise aus der über JΩ(p) folgt, ist damit das Lemma
bewiesen.

Proposition 4.34. Sei K ein angeordneter Körper, Ω ⊇ K ein realisierender Ober-
körper und p ein Schnitt von K mit |p| > p̂. Dann gilt

JΩ(p) ∩ K = J(p) und IΩ(p) ∩ K = I(p).

Beweis. Wir können uns auf einen positiven Schnitt p > p̂ beschränken, da JΩ(p),
IΩ(p), J(p) und I(p) alle unabhängig vom Vorzeichen von p sind. Weiter genügt es,
nur IΩ(p)∩K = I(p) zu zeigen, da die Aussage für JΩ(p) dann sofort nach Definition
klar ist.

Seien q := ε(p)− und r := ε(p)+ die kleinste und die größte Erweiterung von p
auf Ω. Nach Lemma 4.33 gilt IΩ(p) = I(q) oder IΩ(p) = I(r). Wir nehmen ohne
Einschränkung IΩ(p) = I(q) an, das heißt nach dem Zusatz von Lemma 4.33, daß
sign(p) 6= −1 gilt. Dann folgt nach Lemma 4.29 auch VΩ(p) = V (q). Da q = ε(p)−

die kleinste Erweiterung von p ist und IΩ(p) = I(q) nach Proposition 2.12 eine
Umgebung von q ist, finden wir ein c ∈ IΩ(p)∩K. Für dieses gilt dann nach Lemma
2.10 IΩ(p) = c ·V (q)∗>0 = c ·VΩ(p)∗>0. Nun sind wir aber fertig, da nach Proposition
4.30 VΩ(p)∩K = V (p) und damit auch für die Einheiten VΩ(p)∗>0∩K = V (p)∗>0 gilt.
Es folgt IΩ(p)∩K = (c ·VΩ(p)∗>0)∩K = c · (VΩ(p)∗>0 ∩K) = c ·V (p)∗>0 = I(p).
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4.2.2. Die Addition von Schnitten mittels realisierender Obergruppen
und Oberkörper

In Abschnitt 4.2.1 haben wir realisierende Obergruppen und Oberkörper eingeführt
und durch Definition entsprechender Invaianten den Zusammenhang mit unserem
Setting aus Kapitel 1 hergestellt. Nun zeigen wir, wie wir mit Hilfe dieser realisieren-
den Oberstrukturen eine Addition von Schnitten angeordneter abelscher Gruppen
oder angeordneter Körper definieren können. Mittels der Abbildung ε aus Definition
4.11 ordnen wir jedem Schnitt einer angeordneten abelschen Gruppe G eine konvexe
Teilmenge einer realisierenden Obergruppe Ω ⊇ G zu. In Ω können wir zwei konvexe
Teilmengen im Sinne der folgenden Proposition

”
addieren“.

Proposition 4.35. Sei G eine angeordnete abelsche Gruppe. Sind C, D ⊆ G kon-
vexe Teilmengen von G, so ist auch die Teilmenge C + D = {c + d | c ∈ C, d ∈ D}
von G konvex.

Beweis. Sei g ∈ G. Seien weiter c1, c2 ∈ C, d1, d2 ∈ D mit c1 + d1 < g < c2 + d2.
Wir zeigen, daß g ∈ C + D gilt.
1. Fall (c1 ≥ c2, d1 ≥ d2): Dann folgt c1 +d1 ≥ c2 +d2, dieser Fall ist ausgeschlossen.
2. Fall (c1 ≥ c2, d1 < d2): Dann gilt d1 < g − c1 < d2 + c2 − c1 ≤ d2 und es folgt
g − c1 ∈ D aufgrund der Konvexität von D.
3. Fall (c1 < c2, d1 ≥ d2): Dann gilt c1 < g − d1 < c2 + d2 − d1 ≤ c2 und es folgt
g − d1 ∈ C.
4. Fall (c1 < c2, d1 < d2): Dann gilt

c1 + d1 < c2 + d1 < c2 + d2 und c1 + d1 < c1 + d2 < c2 + d2.

Ohne Einschränkung sei c1 + d2 ≤ c2 + d1. Wir erhalten drei Unterfälle:
A) c1 + d1 < g < c1 + d2. Dann gilt d1 < g − c1 < d2 und somit g − c1 ∈ D.
B) c2 + d1 < g < c2 + d2. Dann gilt d1 < g − c2 < d2 und folglich g − c2 ∈ D.
C) c1+d2 ≤ g ≤ c2+d1. Dann gilt c1 ≤ g−d2 ≤ c2+d1−d2 < c2 und g−d2 ∈ C.

Damit können wir Schnitte von angeordneten abelschen Gruppen addieren, indem
wir sie als konvexe Teilmengen einer realisierenden Obergruppe auffassen und dann
die Summe dieser Mengen bilden. Exakt gesprochen machen wir folgende

Definition 4.36. Sei G eine angeordnete abelsche Gruppe mit realisierender Ober-
gruppe Ω ⊇ G. Wir definieren die Abbildung +Ω

+Ω : Cuts(G) × Cuts(G) → CT(Ω)

p +Ω q := ε(p) + ε(q) (p, q ∈ Cuts(G)).

Im Falle eines angeordneten Körpers K mit realisierendem Oberkörper Ω ⊇ K
können wir analog eine Multiplikation von Schnitten definieren. Wir bemerken dazu,
daß für zwei Schnitte p und q von K die Mengen ε(p) und ε(q) jeweils entweder
links oder rechts von der 0 liegen. Damit ist nach Proposition 4.35 auch die Menge
ε(p) · ε(q) wieder konvex. Wir machen also folgende
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Definition 4.37. Sei K ein angeordneter Körper mit realisierendem Oberkörper
Ω ⊇ K. Dann definieren wir die Abbildung ·Ω

·Ω : Cuts(K) × Cuts(K) → CT(Ω)

p ·Ω q := ε(p) · ε(q) (p, q ∈ Cuts(K)).

Wir erhalten in der Situation eines angeordneten Körpers K mit einem realisierenden
Oberkörper Ω ⊇ K für +Ω und ·Ω zwar kein allgemeines Distributivitätsgesetz, aber
zumindest Schnitte gleichen Vorzeichens bereiten uns hier keine Probleme.

Proposition 4.38. Sei G eine angeordnete abelsche Gruppe. Sind C, D, E ⊆ G
konvexe Teilmengen von G mit D, E ≥ 0 oder D, E ≤ 0, so gilt

C · (D + E) = C · D + C · E.

Beweis. Wir gehen für den Beweis zunächst von D, E ≥ 0 aus, der zweite Fall folgt
dann sofort. Die Inklusion

”
⊆ “ gilt trivialerweise auch ohne die Zusatzvorausset-

zung an D und E.
”
⊇ “: Seien c1, c2 ∈ C, d ∈ D und e ∈ E. Ist d = e = 0, so gilt

c1d + c2e = c1(d + e) ∈ C(D + E). Wir können also von d + e > 0 ausgehen und
definieren c′ := c1

d
d+e

+ c2
e

d+e
. Ist c1 ≤ c2, so gilt

c1 = c1
d

d+e
+ c1

e
d+e

≤ c1
d

d+e
+ c2

e
d+e

= c′ ≤ c2
d

d+e
+ c2

e
d+e

= c2

und somit c′ ∈ C wegen der Konvexität von C. Ist c1 > c2, so gilt c1 ≥ c′ ≥ c2 und
wieder c′ ∈ C. Nach Konstruktion gilt demnach c1d + c2e = c′(d + e) ∈ C(D + E).

Gilt nun D, E ≤ 0, folgt die Aussage leicht aus dem bereits Gezeigten. Denn dann
gilt −D, −E ≥ 0 und es folgt C(D+E) = (−C)(−(D+E)) = (−C)((−D)+(−E)) =
(−C)(−D) + (−C)(−E) = CD + CE.

Bemerkung 4.39. In der Situation von Proposition 4.38 läßt sich die gezeigte Dis-
tributivität C · (D + E) = C ·D + C ·E nicht auf konvexe Mengen C, D und E mit
D < 0 und E > 0 ausweiten. Wir führen folgende beispielhafte Rechnung mit den
Intervallen C := [1, 2], D := [−2,−1] und E := [2, 3] eines beliebigen angeordneten
Körpers K an:

[1, 2] ·
(
[−2,−1] + [2, 3]

)
= [1, 2] · [0, 2] = [0, 4] und

[1, 2] · [−2,−1] + [1, 2] · [2, 3] = [−4,−1] + [2, 6] = [−2, 5].

Wollen wir von einer realisierenden Obergruppe zurück in die zugehörige angeord-
nete abelsche Gruppe, stoßen wir wieder auf die Schnitte aus Definition 4.1:

Proposition 4.40. Sei G eine angeordnete abelsche Gruppe mit einer realisieren-
den Obergruppe Ω ⊇ G, die die Eigenschaft (ZE) aus Proposition 4.22 besitzt. Für
zwei echte Schnitte p und q von G gilt

[
(p + q)links, (p + q)rechts

]
DC(G)

= {γ � G | γ ∈ p +Ω q}.
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Beweis. Natürlich gilt {γ � G | γ ∈ p +Ω q} = {(α + β) � G | α ∈ ε(p), β ∈ ε(q)}.
Damit zeigen wir beide Inklusionen.

”
⊇ “: Sei α ∈ ε(p), β ∈ ε(q). Wir zeigen nur (p + q)links ≤ (α + β) � G, die

Abschätzung (α + β) � G ≤ (p + q)rechts folgt analog.
Ist α + β = g ∈ G, so gilt g = α + β > x + y für alle x < p und für alle y < q,

also folgt g > (p + q)links.
Ist α+β /∈ G, so folgt für jedes g ∈ G mit g > (α+β) � G, daß g > α+β > x+y

für alle x < p und alle y < q gilt. Das zeigt (α + β) � G ≥ (p + q)links.

”
⊆ “ : 1. Fall: Sei g ∈ G mit (p + q)links < g < (p + q)rechts.

Dann können wir gemäß Bemerkung 4.4 ein x < p und ein y > q wählen mit
g = x + y. Da Ω eine realisierende Obergruppe von G ist, können wir ein α ∈ Ω
wählen mit α |= p. Wegen g = α + (g − α) zeigen wir nur g − α |= q.
Für alle h ∈ G mit h < q gilt wegen g = (g − h) + h > (p + q)links die Abschätzung
g − h > p, also auch g − h > α oder g − α > h. Für alle h ∈ G mit h > q gilt wegen
g = (g − h) + h < (p + q)rechts die Ungleichung g − h < p, also gilt dann g − h < α
oder g − α < h.
2. Fall: Sei ξ ∈ Cuts(G) mit (p + q)links < ξ < (p + q)rechts.
Wir wählen Elemente α, γ ∈ Ω mit α |= p und γ |= ξ. Wegen γ = α + (γ − α)
müssen wir nur γ − α |= q zeigen.
Wegen (p + q)links < ξ < (p + q)rechts existieren Elemente x, y ∈ G mit

(p + q)links < x < ξ < y < (p + q)rechts.

Für alle h ∈ G mit h < q gilt dann x− h > p, also auch x− h > α. Da andererseits
x < γ gilt, folgt γ − h > α oder γ − α > h. Für alle h ∈ G mit h > q gilt y − h < p,
also auch y − h < α. Da hier y > γ gilt, folgt γ − h < α oder γ − α < h.
3. Fall: Sei ξ = (p + q)links.
Wir wählen eine angeordnete abelsche Obergruppe G′ ⊇ G, in der p und q reali-
siert sind und für die dimQ−VR(dh(G′)/dh(G)) < ∞ gilt. Wir betrachten die zwei
Schnitte η1 := RealG′(p)− und η2 := RealG′(q)− von G′. Wählen wir eine weitere
angeordnete abelsche Gruppe G′′ ⊇ G′, in der η1 und η2 realisiert sind und für die
dimQ−VR(dh(G′′)/dh(G′)) < ∞ gilt, dann existiert aufgrund der Eigenschaft (ZE)
von Ω eine Ordnungseinbettung von G′′ in Ω, die die von G′ in Ω fortsetzt. Wir
fassen deshalb G′′ als Teilmenge von Ω auf. Seien dann α′, β′ ∈ G′′ ⊆ Ω mit α′ |= η1

und β′ |= η2. Natürlich gilt dann α′ ∈ ε(p) und β ′ ∈ ε(q). Wir werden zeigen, daß
(α′ + β′) � G = (p + q)links gilt.

”
≥ “: Seien x, y ∈ G mit x < p und y < q, also sei x + y < (p + q)links. Da x < α

für alle α ∈ RealG′(p) gilt, folgt x < η1 und damit x < α′. Ebenso gilt y < η2 und
somit y < β ′. Also folgt x + y < α′ + β′.

”
≤ “: Wir nehmen an, daß ein g ∈ G existiert mit (p + q)links < g < (α′ + β′) � G.

Für alle x, y ∈ G mit x > p und y > q gilt x > η1 und y > η2, also auch x > α′

und y > β ′. Damit folgt x + y > α′ + β′ und es gilt (α′ + β′) � G ≤ (p + q)rechts. Wir
erhalten also ein g ∈ G mit (p + q)links < g < (p + q)rechts. Dann gibt es aber nach
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Fall 1 ein α ∈ RealG′(p) und ein β ∈ RealG′(q) mit g = α + β < α′ + β′. Dies liefert
einen Widerspruch zu α′ |= η1 und β′ |= η2.
4. Fall: Sei ξ = (p + q)rechts

Nach Proposition 4.5 gilt ξ = (p + q)rechts = −(−p + (−q))links. Nach Fall 3 existie-
ren also Elemente α′ ∈ ε(−p) und β ′ ∈ ε(−q) mit ξ = −((α′ + β′) � G). Wegen
ε(−p) = −ε(p) und ε(−q) = −ε(q) gilt also ξ = (−α′ + (−β ′)) � G mit −α′ ∈ ε(p)
und −β ′ ∈ ε(q).

Eine wichtige Anwendung findet Proposition 4.40 bei Fragen, wann für zwei echte
Schnitte p und q einer angeordneten abelschen Gruppe G die Schnitte (p + q)links

und (p + q)rechts übereinstimmen. Dies ist nämlich genau dann der Fall, wenn der
Schnitt (α+β) � G nicht von der Wahl der Elemente α ∈ ε(p) und β ∈ ε(q) abhängt.

Wir suchen noch nach einem Kriterium ohne die Verwendung von Realisierun-
genF, wann für zwei echte Schnitte p und q einer angeordneten abelschen Gruppe
G die Schnitte (p + q)links und (p + q)rechts zusammenfallen. In Theorem 4.44 fin-
den wir eine Antwort für divisible angeordnete abelsche Gruppen. Für den Beweis
einer Teilaussage benötigen wir Lemma 4.42, das wir mit Hilfe einer realisierenden
Obergruppe zeigen. Ansonsten kommen wir für den Beweis des Theorems ohne diese
Konstruktion aus und könnten es auch schon in Abschnitt 4.1 anführen.

Zuerst erläutern wir noch, wie wir zu einem Schnitt ξ einer divisiblen angeordne-
ten abelschen Gruppe G für alle q ∈ Q∗ = Q\{0} das q-fache Vielfache des Schnittes
definieren können.

Bemerkung/Definition 4.41. Sei G eine divisible angeordnete abelsche Gruppe
und sei ξ ein Schnitt von G. Dann ist das Paar (q · ξL, q · ξR) für alle q ∈ Q>0 wieder
ein Schnitt von G und wir definieren für alle q ∈ Q∗ den Schnitt q · ξ als

q · ξ :=

{
(q · ξL, q · ξR) , für q > 0
−

(
(−q) · ξL, (−q) · ξR

)
, für q < 0.

Lemma 4.42. Sei G eine divisible angeordnete abelsche Gruppe und p ein Schnitt
von G mit sign(p) = 0. Dann gilt für alle a ∈ Q mit a > 1

(ap − p)links = (ap − p)rechts = (a − 1) · p.

Beweis. Wir bemerken zunächst, daß p wegen sign(p) = 0 echt ist, und wählen mit
Hilfe von Proposition 4.21 eine divisible realisierende Obergruppe Ω ⊇ G. Nach
Proposition 4.40 ist die Aussage des Lemmas äquivalent dazu, daß für alle Elemente
α ∈ ap +Ω (−p) gilt:

α |= (a − 1)p.

Um dies zu zeigen, geben wir uns also ein Element α ∈ ap +Ω (−p) = ε(ap) + ε(−p)
vor. Mit Proposition 4.23 können wir diese Menge umschreiben in ε(ap) + ε(−p) =
aε(p) − ε(p) = (a − 1)ε(p) + ε(p) − ε(p), wobei unsere Bedingung a > 1 eingeht.
Also können wir α schreiben als Summe α = (a − 1)β + γ mit Elementen β ∈ ε(p)
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und γ ∈ ε(p) − ε(p). Demnach gilt α |= (a − 1)p genau dann, wenn β + 1
a−1

γ |= p

gilt. Wegen β ∈ ε(p) genügt es also 1
a−1

γ ∈ GΩ(p) zu zeigen, beziehungsweise nur

γ ∈ GΩ(p), weil 1
a−1

∈ Q gilt und GΩ(p) eine konvexe Untergruppe von Ω ist. Hierfür
haben die erforderliche Vorarbeit geleistet. Da nach Voraussetzung sign(p) = 0 gilt,
liefert uns Korollar 4.16 GΩ(p) = G(q) = G(r), wobei q die kleinste und r die größte
Erweiterung von p auf Ω ist. GΩ(p)+ = q̂ = r̂ ist somit nach Proposition 1.32 (iv) die
größte Erweiterung von p̂ auf Ω. Anhand der Propositionen 4.7 und 4.40 wissen wir
andererseits, daß −p̂ ≤ γ � K ≤ p̂ gilt. Damit folgt GΩ(p)− = −q̂ < γ < q̂ = GΩ(p)+.
Somit haben wir γ ∈ GΩ(p) und damit das Lemma bewiesen.

Definition 4.43. Sei G eine divisible angeordnete abelsche Gruppe. Zwei Schnitte
ξ und η von G heißen äquivalent, wenn es ein g ∈ G und ein q ∈ Q∗ gibt mit
ξ = g + qη. Wir schreiben hierfür ξ ∼ η.

Theorem 4.44. Sei G eine divisible angeordnete abelsche Gruppe, und seien ξ und
η echte Schnitte von G. Dann gilt:

(1) Folgende Aussagen sind äquivalent:

(a) ξ 6∼ η

(b) Für alle q1, q2 ∈ Q∗ gilt (q1ξ + q2η)links = (q1ξ + q2η)rechts.

(2) Ist ξ ∼ η, so sind für alle q1, q2 ∈ Q∗ folgende Aussagen äquivalent:

(a) (q1ξ + q2η)links = (q1ξ + q2η)rechts

(b) Es gilt eine der folgenden Bedingungen:

(i) sgn(q1) · sgn(q2) = sgn(q)

(ii) sgn(q1) · sgn(q2) = −sgn(q), sign(ξ) = 0 und qq1

q2
6= −1.

Beweis. Wir beweisen zunächst Teil (1).
(b) ⇒ (a): Wir nehmen an, es gibt ein g ∈ G und ein q ∈ Q∗ mit ξ = g + qη. Für

alle echten Schnitte p1 und p2 von G und jedes h ∈ G gilt

(p1 + h − p2)links =

= {x + y | x < p1 + h, y < −p2}+ = {x + h + y | x < p1, y < −p2}+ =

= {x + y | x < p1, y < −p2}+ + h = (p1 − p2)links + h,

und nach analoger Rechnung (p1 + h − p2)rechts = (p1 − p2)rechts + h. Damit erhal-
ten wir (ξ − ξ)links = (ξ − (g + qη))links = (ξ − g − qη)links = (ξ − qη)links − g =
(ξ − qη)rechts − g = (ξ − g − qn)rechts = (ξ − ξ)rechts. Dies aber ist ein Widerspruch
zu Proposition 4.7.

(a) ⇒ (b): Wir nehmen an, es gibt q1, q2 ∈ Q∗ mit (q1ξ + q2η)links 6= (q1ξ + q2η)rechts.
Da dann mit Hilfe von Proposition 4.5 auch −(q1ξ + q2η)links = (−q1ξ − q2η)rechts 6=
(−q1ξ − q2η)links = −(q1ξ + q2η)rechts gilt, können wir ohne Einschränkung q1 > 0
annehmen. Somit gilt also (q1ξ + q2η)links = q1(ξ + q2

q1
η)

links
< (q1ξ + q2η)rechts =
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q1(ξ + q2

q1
η)

rechts
, also gibt es ein g ∈ G mit (ξ + q2

q1
η)

links
< g < (ξ + q2

q1
η)

rechts
. Dann

können wir aber zeigen:
ξ = g − q2

q1
η.

”
≤ “: Sei x < ξ. Dann gilt nach Bemerkung 4.4 g − x > q2

q1
η, also folgt x < g − q2

q1
η.

”
≥ “: Sei x > ξ, dann gilt g− x < q2

q1
η, also x > g− q2

q1
η. Hiermit erhalten wir einen

Widerspruch zur Voraussetzung.

Jetzt kommen wir zum Beweis von (2). Sei also ξ = g + qη mit einem g ∈ G und
einem q ∈ Q∗. Wir werden den Beweis für ein q > 0 führen, der Fall q < 0 läßt sich
dann leicht ableiten. Denn haben wir die Aussage für positives q, so erhalten wir
sie für ein negatives q, indem wir zu −q, −η und −q2 übergehen und den positiven
Fall benutzen. Somit erklärt sich das Auftreten von sgn(q) in den Bedingungen, in
denen q2, aber nicht q vorkommt.

(a) ⇒ (b): Seien q1, q2 ∈ Q∗ mit (q1ξ + q2η)links = (q1ξ + q2η)rechts. Wir nehmen
an, Bedingung (i) gilt nicht, und zeigen, daß dann (ii) gelten muß. Seien also q1 und
q2 von unterschiedlichem Vorzeichen, ohne Einschränkung können wir von q1 > 0
und q2 < 0 ausgehen. Aus (q1ξ + q2η)links = (q1ξ + q2η)rechts folgen nach Einsetzen
der Darstellung von ξ die Gleichungen (q1g+q1qη+q2η)links = (q1g+q1qη+q2η)rechts

und (q1qη + q2η)links = (q1qη + q2η)rechts. Mit ϑ := |q2|η und der Abkürzung a := qq1

|q2|
erhalten wir

(†) (aϑ − ϑ)links = (aϑ − ϑ)rechts.

Sofort sehen wir, daß a = qq1

|q2| = qq1

−q2
= 1 wegen Proposition 4.7 nicht möglich ist.

Wir müssen also nur noch sign(ξ) = 0 zeigen und gehen vom Gegenteil aus. Da die
zugrundeliegende Gruppe G nach Voraussetzung divisibel ist, gilt dann sign(ξ) = +1
oder sign(ξ) = −1. Wir betrachten nur den Fall sign(ξ) = 1, denn aus sign(ξ) = −1
ergibt sich wegen Proposition 4.5 nichts Neues. Mit sign(ξ) = 1 folgt aber nach
einfacher Rechnung auch sign(ϑ) = sign(η) = 1. Dann gibt es also ein h ∈ G
mit ϑ = h + ϑ̂. Da V (ϑ) ein konvexer Bewertungsring ist, gilt Q ⊆ V (ϑ) und
deshalb nach Proposition 1.44 auch a ∈ Q>0 ⊆ V (ϑ)∗>0 = G∗(ϑ̂). Wir erhalten
aϑ = ah + aϑ̂ = ah + ϑ̂, und mit Gleichung (†) folgt (ah + ϑ̂ − ah − ϑ̂)links =
(ah + ϑ̂ − ah − ϑ̂)rechts, gleichbedeutend mit (ϑ̂ − ϑ̂)links = (ϑ̂ − ϑ̂)rechts. Dies ergibt
wiederum einen Widerspruch zu Proposition 4.7.

(b)(i) ⇒ (a): Seien zunächst q1, q2 ∈ Q>0. Dann gilt

(q1ξ + q2η)links = (q1g + q1qη + q2η)links = q1g + {x + y | x ∈ q1qη
L, y ∈ q2η

L}+ =

= q1g + (q1qη
L + q2η

L)+ = q1g + (q1q + q2)(η
L)+ = q1g + (q1q + q2)η.

Analog erhalten wir auch (q1ξ + q2η)rechts = q1g + (q1q + q2)η.
Sind q1, q2 ∈ Q<0, so können wir diesen Fall auf den Fall positiver Faktoren zurück-
ziehen. Denn dann sind −q1, −q2 ∈ Q>0 und nach dem gerade Gezeigten gilt
(−q1ξ + (−q2)η)links = (−q1ξ + (−q2)η)rechts. Jetzt liefert uns Proposition 4.5

(q1ξ + q2η)links = −(−q1ξ + (−q2)η)rechts = −(−q1ξ + (−q2)η)links = (q1ξ + q2η)rechts.
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(b)(ii) ⇒ (a): Seien q1, q2 ∈ Q∗ mit unterschiedlichem Vorzeichen, ohne Ein-
schränkung rechnen wir mit q1 > 0 und q2 < 0. Mit den Bezeichnungen ϑ := |q2|η
und a := qq1

|q2| aus der Richtung (a) ⇒ (b) haben wir dort folgende Äquivalenz gese-
hen:

(q1ξ + q2η)links = (q1ξ + q2η)rechts ⇔ (aϑ − ϑ)links = (aϑ − ϑ)rechts.

Wir zeigen also die zweite Gleichheit und sind fertig. Da nach Voraussetzung
a = qq1

−q2
6= 1 gilt, dürfen wir wegen Proposition 4.5 und der möglichen Substitu-

tion ϑ′ := − 1
a
ϑ auch von einem a > 1 ausgehen. Leicht können wir verifizieren, daß

aus der Voraussetzung sign(ξ) = 0 auch sign(ϑ) = 0 folgt. Damit sind wir aber in
der Situation von Lemma 4.42 und erhalten die gewünschte Gleichung.
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5. Bewegung von Schnitten angeordneter Körper

Die in Definition 1.5 eingeführte Operation einer angeordneten abelschen Gruppe G
auf die Menge Cuts(G) können wir als die Anwendung von sehr einfachen semialge-
braischen Abbildungen auf die Schnitte von G verstehen. Damit stellt sich die Frage,
wie man allgemein semialgebraische Abbildungen auf Schnitte angeordneter Körper
anwenden kann. Ist der Körper reell abgeschlossen, so bietet der wohlbekannte Mo-
notoniesatz 5.1 die Möglichkeit einer naheliegenden Definition. Im allgemeinen Fall
eines angeordneten Körpers ist das Problem zunächst nicht so leicht zu lösen, da uns
hier eine Entsprechung für den Monotoniesatz fehlt. Zumindest für rationale Funk-
tionen finden wir in diesem Kapitel eine Lösung (Theorem 5.18), indem wir unter
gewissen Gradbedingungen auch hier wieder Monotie der Abbildungen erhalten.

Vieles in diesem Kapitel zitieren wir aus [T2]. Die Hauptaussage dort bezüglich
des vorliegenden Problems betrifft jedoch Polynome, während wir mit Theorem 5.18
den Rahmen auf rationale Funktionen ausdehnen können.

Zunächst erinnern wir noch einmal an den angesprochenen Monotoniesatz.

Proposition 5.1 (Monotoniesatz). Sei R ein reell abgeschlossener Körper und
f : R → R eine semialgebraische Abbildung. Dann existieren c0, . . . , cn ∈ R∪{±∞},

c0 := −∞ < c1 < c2 < . . . < cn−1 < cn := +∞,

so daß für alle i ∈ {0, . . . , n − 1} entweder

(A) f |(ci, ci+1) konstant ist oder

(B) f |(ci, ci+1) streng monoton steigend und stetig ist oder

(C) f |(ci, ci+1) streng monoton fallend und stetig ist.

Beweis. Wir finden die Aussage zum Beispiel in modelltheoretischer Form in [vdD],
Kapitel 3, §1, Theorem 1.2, S. 43.

Mit Hilfe des Monotoniesatzes 5.1 können wir semialgebraische Abbildungen auch
auf Schnitte reell abgeschlossener Körper anwenden.

Definition 5.2. Sei R ein reell abgeschlossener Körper und p ein Schnitt von R.
Sei weiter s : R → R eine semialgebraische Abbildung. Nach dem Monotoniesatz
5.1 existieren a, b ∈ R ∪ {±∞}, so daß a < p < b gilt und s|(a,b) : (a, b) → s((a, b))
konstant oder streng monoton ist. Wir definieren s(p) folgendermaßen:

(i) Ist s = c konstant auf (a, b), so setzen wir s(p) := c.

(ii) Ist s streng monoton steigend auf (a, b), so setzen wir s(p) := f((a,∞)∩pL)+,
falls (a,∞) ∩ pL 6= ∅, und s(p) := s((−∞, b) ∩ pR)−, falls (a,∞) ∩ pL = ∅ gilt.
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(iii) Ist s streng monoton fallend auf (a, b), so setzen wir s(p) := s((a,∞) ∩ pL)−,
falls (a,∞) ∩ pL 6= ∅, und s(p) := s((−∞, b) ∩ pR)+, falls (a,∞) ∩ pL = ∅ gilt.

Wir können diese Definition auch mittels Realisierungen verstehen. Dafür erinnern
wir an die Erweiterung einer semialgebraischen Abbildung.

Bezeichnung 5.3. Sei R ein reell abgeschlossener Körper und s : R → R eine
semialgebraische Abbildung. Für einen reell abgeschlossenen Oberkörper L ⊇ R
bezeichnen wir mit sL die Erweiterung von s auf L. Für die Definition verweisen wir
auf [BCR], Abschnitt 5.3.

Proposition 5.4. Sei R ein reell abgeschlossener Körper und p ein Schnitt von
R. Sei weiter s : R → R eine semialgebraische Abbildung und L ⊇ R ein reell
abgeschlossener Oberkörper von R. Für alle α ∈ RealL(p) gilt dann sL(α) = s(p),
falls s(p) ∈ R, und sL(α) |= s(p), falls s(p) ∈ Cuts(R) gilt. Mit anderen Worten gilt
s(p) = sL(α) � R mit einer beliebigen Realisierung α ∈ L von p.

Beweis. Nach dem Monotoniesatz 5.1 können wir Elemente a, b ∈ R∪{±∞} wählen,
so daß a < p < b gilt und s auf (a, b)R konstant oder streng monoton ist. Nach Tarski
verhält sich dann sL auf (a, b)L genauso. Ist s = c konstant auf (a, b)R, also gilt
s(p) = c, so gilt auch sL(α) = c für alle Realisierungen α ∈ L von p. Wir betrachten
noch den Fall, daß s streng monoton steigend auf (a, b)R ist und (a,∞)∩pL 6= ∅ gilt,
die anderen Fälle sind alle ähnlich. Dann gilt s(p) = s((a,∞)∩pL)+ nach Definition
und sL(α) > s(p), weil auch sL streng monoton steigend auf (a, b)L ist. Wegen der
strengen Monotonie gibt es kein Element r ∈ R mit s(p) < r < sL(α), also gilt
sL(α) |= s(p).

Lemma 5.5. Sei R ein reell abgeschlossener Körper und L ⊇ R ein reell abge-
schlossener Oberkörper von R. Sei weiter p ein Schnitt von R und s : R → R eine
semialgebraische Abbildung. Ist s(p) ∈ Cuts(R), so gilt

sL

(
RealL(p)

)
= RealL

(
s(p)

)
.

Beweis. Die Inklusion
”
⊆ “ haben wir bereits in Proposition 5.4 nachgewiesen. Wir

müssen nur noch
”
⊇ “ zeigen. Dazu wählen wir mit Hilfe des Monotoniesatzes 5.1

Elemente a < p < b in R ∪ {±∞}, so daß s streng monoton auf (a, b)R ist. Daß s
auf einer Umgebung von p konstant ist, ist durch die Voraussetzung s(p) ∈ Cuts(R)
ausgeschlossen. Wir nehmen s ohne Einschränkung als streng monoton steigend auf
(a, b)R an. Nun gilt limt↘a s(t) < s(p) < limt↗b s(t). Da s auf (a, b)R streng monoton
ist, ist es hier umkehrbar mit der Umkehrung s−1. Sei nun α ∈ RealL(s(p)). Dann
können wir uns überzeugen, daß s−1

L (α) eine Realisierung von p ist. Somit finden
wir ein Urbild von α und die Behauptung gilt.

In Definition 5.2 haben wir gesehen, wie wir im Falle reell abgeschlossener Körper
semialgebraische Abbildungen auch auf Schnitte anwenden können. Im folgenden
untersuchen wir, wie wir im allgemeineren Fall angeordneter Körper vorzugehen
haben.
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Definition 5.6. Sei K ein angeordneter Körper mit reellem Abschluß R sowie ξ ein
Schnitt von K.
a) Wir definieren den Grad von ξ als

deg(ξ) := inf{n ∈ N | n = [K(α) : K] für ein α ∈ R mit α |= ξ}.
Ist ξ nicht realisiert in R, so gilt deg(ξ) = inf(∅) := ∞.
b) Eine Realisierung α von ξ in einem angeordneten Oberkörper L ⊇ K heißt ξ-
generisch, falls [K(α) : K] = deg(ξ) gilt.

Bemerkung 5.7. Für jeden Schnitt ξ eines angeordneten Körpers K gilt deg(ξ) ≥ 2,
da keine Realisierung von ξ in K liegen kann.

Lemma 5.8. Seien K ⊆ L angeordnete Körper und ξ ein Schnitt von K. Seien
weiter α, β ∈ L Realisierungen von ξ und f, g ∈ K[t] Polynome mit f/g /∈ K. Falls
deg(f), deg(g) < deg(ξ) gilt, dann gilt f(α)/g(α) � K = f(β)/g(β) � K.

Beweis. Zunächst stellen wir fest, daß f(α)/g(α) und f(β)/g(β) tatsächlich Schnitte
über K induzieren. Denn wegen f/g /∈ K und der Gradbedingung an f und g gilt
f(α)/g(α), f(β)/g(β) /∈ K. Gäbe es nämlich zum Beispiel ein Element c ∈ K mit
c = f(α)/g(α), so wäre α Nullstelle des Polynoms f − c · g ∈ K[t] und somit
deg(ξ) ≤ deg{f − cg} ≤ max{deg(f), deg(g)}, was wir ausgeschlossen haben.

Wir zeigen nun die Gleichheit der Schnitte, wobei wir der Einfachheit halber L
ohne Einschränkung als reell abgeschlossen betrachten. Nehmen wir an, es gibt ein
a ∈ K mit f(α)/g(α) < a < f(β)/g(β). Aus der Gradbedingung deg(g) < deg(ξ)
folgt, daß g auf [α, β]L ⊆ RealL(ξ) keine Nullstellen besitzt und somit f(t)/g(t) auf
diesem Intervall definiert ist. Der Zwischenwertsatz für reell abgeschlossene Körper,
den wir zum Beispiel in [KS], Kapitel I, §7, Satz 2, Seite 20, finden, liefert uns ein
γ ∈ (α, β)L mit f(γ)/g(γ) = a. Da γ den Schnitt ξ realisiert und Nullstelle des
Polynoms h := f −a ·g ∈ K[t] ist, erhalten wir den Widerspruch deg(ξ) ≤ deg(h) ≤
max{deg(f), deg(g)} < deg(ξ).

Definition 5.9. Sei K ein angeordneter Körper und ξ ein Schnitt von K. Sei
h ∈ K(t) \ K, und seien f, g ∈ K[t] Polynome mit deg(f), deg(g) < deg(ξ), so
daß h = f/g gilt. Dann können wir nach Lemma 5.8 den Schnitt h(ξ) von K defi-
nieren als

h(ξ) := f(α)/g(α) � K,

wobei α eine Realisierung von ξ in einem angeordneten Oberkörper L ⊇ K ist.

Definition 5.10. Sei K ein angeordneter Körper mit reellem Abschluß R und ξ
ein Schnitt von K. Sei weiter s : R → R eine semialgebraische Abbildung. s heißt
streng monoton steigend in ξ, wenn für alle Realisierungen α < β von ξ in einem
angeordneten Oberkörper L ⊇ R gilt, daß s(α) < s(β) ist.

s heißt streng monoton fallend in ξ, wenn für alle Realisierungen α < β von
ξ in einem angeordneten Oberkörper L ⊇ R gilt, daß s(α) > s(β) ist.

s heißt konstant in ξ, wenn s für alle Realisierungen von ξ in einem angeord-
neten Oberkörper L ⊇ R konstant ist.
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Lemma 5.11. Sei K ein angeordneter Körper mit reellem Abschluß R und ξ ein
Schnitt von K. Sei weiter s : R → R eine semialgebraische Abbildung. Falls ξ nicht
in R realisiert ist, so ist s konstant oder streng monoton in ξ.

Beweis. Da ξ nach Voraussetzung nicht in R realisiert ist, gibt es genau eine Erwei-
terung η := (pL)+ von ξ auf R. Damit realisiert ein Element α in einem angeordneten
Oberkörper L ⊇ R den Schnitt ξ genau dann, wenn es η realisiert. Wir können al-
so ohne Einschränkung K = R annehmen. Nach Monotoniesatz 5.1 existieren nun
a, b ∈ K ∪ {±∞} mit a < ξ < b, so daß s konstant oder streng monoton auf (a, b)K

ist. Betrachten wir dann einen angeordneten Oberkörper L ⊇ K, so ist auch sL

konstant oder streng monoton auf (a, b)L. Dies zeigt die Behauptung.

Im allgemeinen ist aber im Falle eines angeordneten Körpers K nicht einmal ein
Polynom f ∈ K[t] in jedem Schnitt ξ von K konstant oder streng monoton. Wir
betrachten dazu folgendes

Beispiel 5.12. Wir setzen K := R(t) mit infinitesimalem t und betrachten den
Schnitt ξ :=

√
t � K von K. Da ξ von

√
t realisiert wird und

√
t Nullstelle des

über K irreduziblen Polynoms x2 − t ∈ K[x] ist, gilt deg(ξ) = 2. Wir betrachten
nun das Polynom f(x) := x6 − 3tx4 − 2tx3 + 3t2x2 − 6t2x + t2 − t3. Es zerfällt in
folgende Linearfaktoren:

f(x) =
(
x − (

√
t +

3
√

t)
)
·
(
x − (−

√
t +

3
√

t)
)
·
(
x − (

√
t + ζ

3
√

t)
)
·

·
(
x − (−

√
t + ζ

3
√

t)
)
·
(
x − (

√
t + ζ2 3

√
t)

)
·
(
x − (−

√
t + ζ2 3

√
t)

)
.

Hierbei bezeichnet ζ die komplexe dritte Einheitswurzel ζ := e
2πi
3 . Wie wir leicht

nachprüfen, ist f über K irreduzibel. An seiner Linearfaktorzerlegung lesen wir die
beiden Nullstellen 3

√
t±

√
t von f ab, die beide ξ realisieren. Da offensichtlich f auf

[ 3
√

t −
√

t, 3
√

t +
√

t] ⊆ RealK(
√

t, 3√t)(ξ) nicht konstant, aber stetig ist, kann es nicht
streng monoton auf diesem Intervall sein.

Definition 5.13. Sei K ein angeordneter Körper mit reellem Abschluß R. Eine Ab-
bildung s : R → R heißt stückweise K-rational, wenn es eine disjunkte Zerlegung
von R = I1 ∪ . . . ∪ Ir in Intervalle mit Endpunkten in K ∪ {±∞} gibt, so daß für
jedes 1 ≤ j ≤ r ein Q ∈ K(t) ohne Pole auf Ij existiert mit s|Ij

= Q|Ij
. Insbesondere

gilt dann s(K) ⊆ K.

Lemma 5.14. Sei K ein angeordneter Körper mit reellem Abschluß R und ξ ein
Schnitt von K. Sei weiter s : R → R eine stückweise K-rationale Abbildung.

(i) Falls ξ prinzipal ist, so ist ξ in R ausgelassen. Ist η die eindeutige Erweiterung
von ξ auf R, so gilt entweder s(η) ∈ K oder s(η) � K ist ein prinzipaler Schnitt
von K.

(ii) Falls ξ frei und s streng monoton in ξ ist, so existieren ein stückweise K-
rationaler, streng monotoner Homöomorphismus t : R → R mit t(K) = K
und Elemente a < ξ < b in K, so daß s|[a,b] = t|[a,b] eine K-rationale Abbildung
auf [a, b], also gleich einem Q ∈ K(t) auf [a, b] ist.
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Beweis. (i) Wir betrachten zunächst den Fall ξ = +∞. Natürlich ist ξ dann in R
ausgelassen. Denn angenommen, es gibt ein α ∈ R mit α |= +∞K , dann ist α
unendlich groß bezüglich K. Dies kann aber nicht sein, da α in diesem Fall nicht
algebraisch über K ist. Sei also a := limt→+∞ s(t) ∈ R ∪ {±∞}. Ist a = ±∞,
so gilt s(η) = ±∞ und dieser Schnitt ist prinzipal. Aus a ∈ R folgt wegen der
K-Rationalität von s sofort auch a ∈ K, und in diesem Fall gilt s(η) = a− oder
s(η) = a+ oder s(η) = a.

Im Fall ξ = a+ mit einem a ∈ K ist ξ wieder ausgelassen in R. Wir überzeugen
uns mit einer realtiv umfangreichen, aber leichten Fallunterscheidung davon, daß
entweder s(η) ∈ K gilt oder s(η) � K prinzipal ist. Der Fall ξ = a− für ein a ∈ K
geht analog.

(ii) Wir nehmen s ohne Einschränkung als streng monoton steigend in ξ an.
Da s nach Voraussetzung stückweise K-rational ist, gibt es Elemente a, b ∈ K mit
a < ξ < b und ein Q ∈ K(t) mit s|(a,b) = Q|(a,b). Seien p1 und p2 die kleinste
und die größte Erweiterung von ξ auf R. Da s streng monoton steigend in ξ ist,
muß Q auf RealL(p1) und RealL(p2) mit einem angeordneten Oberkörper L ⊇ R
streng monoton steigen. Mit Hilfe des Monotoniesatzes 5.1 können wir Umgebungen
(c1, d1) von p1 und (c2, d2) von p2 finden, auf denen Q streng monoton steigt. Da ξ
frei ist, können wir das Intervall (a, b) so weit verkleinern, daß Q auf (a, d1)∪ (c2, b)
streng monoton steigt. Jetzt muß aber Q streng monoton steigend auf dem gesamten
Intervall (a, b)R sein, da s streng monoton steigend in ξ ist. Falls nötig, können wir
durch nochmaliges Verkleinern des Intervalls (a, b) erreichen, daß Q keine Pole auf
[a, b]R besitzt. Dann können wir Q auf (−∞, a)R durch t1 := id + (Q(a) − a) und
auf (b, +∞)R durch t2 := id + (Q(b) − b) fortsetzen und erhalten unsere gesuchte
Abbildung t : R → R.

Definition 5.15. Sei G eine angeordnete abelsche Gruppe. Ein Schnitt ξ von G
heißt dicht, wenn ξ frei ist und G(ξ) = {0} gilt.

Bemerkung 5.16. Sei R ein reell abgeschlossener Körper. Aus [T1], Korollar 3.6,
wissen wir, daß für jeden freien Schnitt p von R genau dann G(p) = {0} gilt, wenn
R für jede Realisierung α von p dicht in rcl(R(α)) liegt. Dies motiviert den Begriff

”
dicht“ aus Definition 5.15.

Korollar 5.17. Sei K ein angeordneter Körper mit reellem Abschluß R und ξ ein
Schnitt von K, der in R nicht realisiert ist. Sei η die eindeutige Erweiterung von
ξ auf R und s : R → R eine stückweise K-rationale und in ξ nicht konstante
Abbildung. Dann ist s(η) die eindeutige Erweiterung von s(η) � K und es gilt:

(i) ξ ist genau dann prinzipal, wenn s(η) � K prinzipal ist.

(ii) ξ ist genau dann dicht, wenn s(η) � K dicht ist.

Beweis. Falls ξ prinzipal ist, gelten alle Behauptungen nach Lemma 5.14 (i). Hierzu
bemerken wir noch, daß s(η) ∈ K nicht vorkommen kann, da s nicht konstant ist.
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Wir gehen also für den Rest des Beweises von einem freien Schnitt ξ aus. Da ξ
in R ausgelassen ist und s nicht konstant in ξ ist, ist s nach Lemma 5.11 streng
monoton in ξ. Sei s ohne Einschränkung streng monoton steigend. Wegen Lemma
5.14 (ii) nehmen wir s an als einen streng monoton steigenden Homöomorphismus
s : R → R mit s(K) = K. Dann folgt aber sofort s(η) =

(
s(ηL), s(ηR)

)
und

s(η) � K =
(
s(ξL), s(ξR)

)
. Damit ist s(η) die eindeutige Erweiterung von s(η) � K

und der Schnitt s(η) � K ist frei. Die letzte Aussage vervollständigt unseren Beweis
von (i).

Wir müssen noch Teil (ii) zeigen. Der freie Schnitt ξ ist genau dann dicht, wenn
es η ist, weil η̂ nach Proposition 1.32 (ii) eine Erweiterung von ξ̂ ist. Wie wir in
Bemerkung 5.16 erwähnt haben, gilt für jeden freien Schnitt p von R genau dann
G(p) = {0}, wenn R für jede Realisierung α von p dicht in rcl(R(α)) liegt. Wegen
der strengen Monotonie von s ist aber einerseits η genau dann frei, wenn s(η) frei
ist, und andererseits gilt rcl(R(α)) = rcl(R(s(α))) für alle Realisierungen α von η.
Da α |= η äquivalent ist zu s(α) |= s(η), ist η genau dann dicht, wenn s(η) dicht
ist. Wieder aufgrund von Proposition 1.32 (ii) ist s(η) genau dann dicht, wenn es
s(η) � K ist. Alles zusammen zeigt die Behauptung.

Theorem 5.18. Seien K ⊆ L angeordnete Körper und ξ ein Schnitt von K. Seien
weiter f, g ∈ K[t], g 6= 0, mit f/g /∈ K und deg(f) + deg(g) ≤ deg(ξ). Dann gilt:

(i) Falls g keine Nullstelle auf den Realisierungen von ξ in L hat, so ist f/g
streng monoton auf RealL(ξ). Andernfalls hat g höchstens eine Nullstelle
α ∈ RealL(ξ), und f/g ist jeweils streng monoton auf den zwei Intervallen
{γ ∈ RealL(ξ) | γ < α} und {γ ∈ RealL(ξ) | γ > α}.

(ii) Gilt zusätzlich deg(f), deg(g) < deg(ξ), und ist L reell abgeschlossen, so bildet
f/g die Realisierungen von ξ surjektiv auf die Realisierungen von (f/g)(ξ) in
L ab. In diesem Fall erhalten wir also die Bijektion

f/g : RealL(ξ)
∼−→ RealL((f/g)(ξ)).

Beweis. (i) Falls g keine Nullstelle auf RealL(ξ) hat, so ist f/g auf ganz RealL(ξ)
definiert. Wegen (f/g)′ = (f ′g−fg′)/g2 und deg(f ′g−fg′) ≤ deg(f)+deg(g)−1 <
deg(ξ) hat (f/g)′ keine Nullstelle auf RealL(ξ) und somit ist f/g streng monoton
auf diesem Intervall. Nehmen wir nun an, g besitzt eine Nullstelle α ∈ RealL(ξ).
Nach der Gradvoraussetzung gilt dann deg(g) = deg(ξ) und deg(f) = 0, f ist also
konstant. Da aber deg(g′) < deg(ξ) gilt, hat g′ keine Nullstelle auf RealL(ξ) und
g ist streng monoton auf diesem Intervall. Deshalb hat g nur die einzige Nullstel-
le α auf RealL(ξ) und 1/g ist jeweils streng monoton auf den beiden Intervallen
{γ ∈ RealL(ξ) | γ < α} und {γ ∈ RealL(ξ) | γ > α}. Da f konstant ungleich 0 ist,
folgt auch in diesem Fall die Behauptung.

(ii) Aufgrund der zusätzlichen Gradvoraussetzung an f und g können wir den
Ausdruck (f/g)(ξ) im Sinne von Definition 5.9 verstehen. Es gilt (f/g)(RealL(ξ)) ⊆
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RealL((f/g)(ξ)). Wegen deg(g) < deg(ξ) hat g keine Nullstellen auf den Realisie-
rungen von ξ in L. Nach Teil (i) ist deshalb f/g streng monoton auf RealL(ξ) und
somit injektiv. Zu zeigen bleibt nur die Surjektivität.

Wir nehmen zunächst an, daß L der reelle Abschluß von K ist. Falls dann ξ
in L ausgelassen ist, folgt (ii) bereits nach Korollar 5.17. Wir gehen also im weite-
ren davon aus, daß ξ in L realisiert ist, also daß ξ frei ist. Da f/g in ξ nach Teil
(i) in ξ streng monoton ist, finden wir mit Hilfe von Lemma 5.14 (ii) Elemente
a < ξ < b in K und einen stückweise K-rationalen, streng monotonen Homöomor-
phismus t : L → L mit t(K) = K, so daß (f/g)|[a,b] = t|[a,b] gilt. Damit ist jede
Realisierung von (f/g)(ξ) in L das Bild einer Realisierung von ξ in L unter f/g.

Sei nun L ein beliebiger reell abgeschlossener Körper über K und sei R der reelle
Abschluß von K in L. Seien weiter η1, η2 die kleinste und die größte Erweiterung
von ξ auf R, sowie η′

1 und η′
2 die kleinste und die größte Erweiterung von ξ auf L.

Nach dem schon Gezeigten sind (f/g)(η1) und (f/g)(η2) die kleinste und die größte
Erweiterung von (f/g)(ξ) auf R - oder andersherum. Da f/g streng monoton in ξ
ist, sind nach Lemma 5.5 auch (f/g)(η′

1) und (f/g)(η′
2) die kleinste und die größte

Erweiterung von (f/g)(ξ) auf L - oder andersherum. Das zeigt (ii).

Bemerkung 5.19. Sei K ein angeordneter Körper und ξ ein Schnitt von K. Insbe-
sondere erfüllen für alle a, b, c, d ∈ K mit (c, d) 6= (0, 0) ∈ K × K die rationalen
Funktionen at+b

ct+d
∈ K(t) die Bedingungen von Theorem 5.18, da nach Bemerkung

5.7 im allgemeinen deg(ξ) ≥ 2 gilt.

Korollar 5.20. Sei K ein angeordneter Körper mit reellem Abschluß R und ξ ein
Schnitt von K. Seien α ∈ R eine ξ-generische Realisierung von ξ und f, g ∈ K[t]\K
Polynome mit g 6= 0 und deg(f) + deg(g) ≤ deg(ξ) sowie deg(f), deg(g) < deg(ξ).
Dann werden von f/g die kleinste und die größte Erweiterung von ξ auf R auf die
kleinste und die größte Erweiterung von (f/g)(ξ) = (f/g)(α) � K abgebildet.

Beweis. Die Aussage folgt mit Theorem 5.18 (ii).
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6. Anhang: Der verallgemeinerte Potenzreihenkörper

In diesem Abschnitt wird für den Leser, der mit dem verallgemeinerten Potenzrei-
henkörper nicht vertraut ist, dieser Begriff detailliert eingeführt und erklärt. Am
Ende des Abschnitts erwähnen wir noch die standardmäßig verwendete ordnungs-
verträgliche Bewertung dieses Körpers.

Definition 6.1. Sei X eine total geordnete Menge. Dann heißt X wohlgeordnet,
wenn jede Teilmenge M ⊆ X ein kleinstes Element besitzt.

Definition 6.2 (Träger). Sei X eine Menge und G eine (additiv geschriebene)
Gruppe. Für eine Abbildung f : X → G definieren wir den Träger von f als

supp(f) := {x ∈ X | f(x) 6= 0}.

Definition 6.3. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Wir
definieren die Menge von Abbildungen

k((tΓ)) := {a : Γ → k | supp(a) wohlgeordnet}.

Für ein a ∈ k((tΓ)) verwenden wir die Schreibweise

a =
∑

γ∈Γ

a(γ)tγ.

Um für einen Körper k und eine angeordnete abelsche Gruppe Γ eine Körperstruktur
auf k((tΓ)) definieren zu können, benötigen wir folgendes

Lemma 6.4. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Für alle
a, b ∈ k((tΓ)) sind die Mengen

{γ ∈ Γ | a(γ) + b(γ) 6= 0} und {γ ∈ Γ | ∑
δ, ε∈Γ, δ+ε=γ a(δ) · b(ε) 6= 0}

wohlgeordnet.

Beweis. Der Beweis ist leicht.

Mit Hilfe dieses Lemmas erhalten wir für einen Körper k und eine angeordnete
abelsche Gruppe Γ eine wohldefinierte Addition und Multiplikation auf k((tΓ)).

Definition 6.5. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Wir
definieren eine Addition auf k((tΓ)), indem wir für zwei Elemente a, b ∈ k((tΓ))
setzen:

a + b :=
∑

γ∈Γ

(
a(γ) + b(γ)

)
tγ ∈ k((tΓ)).

Das Produkt zweier Elemente a, b ∈ k((tΓ)) definieren wir als

a · b :=
∑

γ∈Γ

{ ∑

δ, ε∈Γ, δ+ε=γ

a(δ) · b(ε)
}

tγ ∈ k((tΓ)).
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Proposition 6.6. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Dann
ist (k((tΓ)), +, ·) mit der in Definition 6.5 definierten Addition und Multiplikation
ein kommutativer Ring mit Einselement

1 : Γ → k, 1(γ) =

{
1 , für γ = 0
0 , sonst.

Beweis. Der Beweis geht straightforward.

Im folgenden werden wir zeigen, daß wir auf diese Weise tatsächlich einen Körper
erhalten. Dafür beweisen wir mehrere Lemmata.

Lemma 6.7. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Sei weiter
a ∈ k((tΓ))\{0}. Dann existieren Elemente γ0 ∈ Γ, c ∈ k∗ = k \{0} und ε ∈ k((tΓ))
mit supp(ε) > 0 und

a = c · tγ0 · (1 + ε).

Beweis. Wir setzen γ0 := min(supp(a)) und c := a(γ0) 6= 0. Weiter definieren wir

ε(γ) :=

{
0 , für γ ≤ 0

a(γ+γ0)
a(γ0)

, für γ > 0.

Offensichtlich gilt supp(ε) > 0. Außerdem berechnen wir:

tγ0 · ε =

=
∑
γ∈Γ

{ ∑
δ1,δ2∈Γ
δ1+δ2=γ

tγ0(δ1)ε(δ2)
}
tγ =

∑
γ∈Γ

{ ∑
δ>0

γ0+δ=γ

ε(δ)
}
tγ = 1

a(γ0)
· ∑

γ∈Γ
γ>γ0

a((γ−γ0)+γ0)t
γ =

= a
a(γ0)

− tγ0 .

Daraus folgt jetzt sofort c · tγ0 · (1 + ε) = a(γ0)t
γ0 + a − a(γ0)t

γ0 = a.

Lemma 6.8 (Neumann). Sei G eine angeordnete abelsche Gruppe und S ⊆ G>0

eine wohlgeordnete Teilmenge von G>0. Für jedes n ∈ N sei nS die n-fache Summe
S + . . . + S. Dann gilt:

(i) Die Menge
⋃

n∈N

nS ist wohlgeordnet.

(ii) Für jedes g ∈ G ist die Menge {n ∈ N | g ∈ nS} endlich.

Beweis. Wir verweisen auf [N], Theoreme 3.4 und 3.5.

Lemma/Definition 6.9. Sei k ein Körper, Γ eine angeordnete abelsche Gruppe
und ε ∈ k((tΓ)) mit supp(ε) > 0. Für jedes γ ∈ Γ sind dann bis auf endlich viele alle
Summanden der formalen Summe

∑∞
k=0(ε

k(γ)) gleich 0 und wir können definieren:

∞∑

k=0

εk :=
∑

γ∈Γ

( ∞∑

k=0

εk(γ)
)
tγ ∈ k((tΓ)).
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Beweis. Wir zeigen per Induktion für alle γ ∈ Γ und alle k ∈ N die Darstellung

εk(γ) =
∑

δ1,... ,δk∈Γ
δ1+...+δk=γ

ε(δ1) · . . . · ε(δk).

Sei also γ ∈ Γ beliebig. Für k = 1 ist die Behauptung trivial. Wir betrachten den
Induktionsschritt k → k + 1. Es gilt

εk+1(γ) = (εk · ε)(γ) =

=
∑

γ1+γ2=γ εk(γ1)ε(γ2) =
∑

γ1+γ2=γ

( ∑
δ1+...+δk=γ1

ε(δ1) . . . ε(δk)ε(γ2)
)

=

=
∑

δ1+...+δk+γ2=γ ε(δ1) . . . ε(δk)ε(γ2) =
∑

δ1+...+δk+1=γ ε(δ1) . . . ε(δk+1).

Anhand dieser Darstellung erkennen wir, daß supp(εk) ⊆ k · supp(ε) für alle k ∈ N
gilt. Da aber nach Voraussetzung supp(ε) ⊆ Γ>0 gilt, ist nach Lemma 6.8 (ii) für
jedes γ ∈ Γ die Menge {n ∈ N | γ ∈ n · supp(ε)} endlich. Für jedes γ ∈ Γ ist somit
εk(γ) nur für endlich viele k ∈ N ungleich 0. Damit können wir definieren:

∑∞
k=0 εk : Γ → k, (

∑∞
k=0 εk)(γ) =

∑∞
k=0(ε

k(γ)).

Dann ist supp(
∑∞

k=0 εk) ⊆ ⋃
n∈N n · supp(ε) nach Lemma 6.8 (i) wohlgeordnet. Das

zeigt
∑∞

k=0 εk ∈ k((tΓ)).

Als letztes Hilfsmittel beweisen wir noch folgendes

Lemma 6.10. Sei k ein Körper und Γ eine angeordnete abelsche Gruppe. Ist dann
ε ∈ k((tΓ)) mit supp(ε) > 0, so ist

∑∞
k=0 (−ε)k das multiplikativ Inverse zu 1 + ε in

k((tΓ)).

Beweis. Nach Lemma/Definition 6.9 gilt
∑∞

k=0 (−ε)k ∈ k((tΓ)). Wir zeigen explizit
die Gleichung

(1 + ε) · ∑∞
k=0 (−ε)k = 1.

Wir schreiben ξ := min(supp(ε)). Für ein beliebiges γ ∈ Γ gilt dann

[(1 + ε) ·
∞∑

k=0

(−ε)k](γ) =

=
∑

δ1+δ2=γ

(
(1 + ε)(δ1) · (

∞∑

k=0

(−ε)k)(δ2)
)

=
∑

δ1+δ2=γ

δ1<ξ, δ1 6=0

(
(0 + 0) · (

∞∑

k=0

(−ε)k)(δ2)
)

+

+
∑

δ1+δ2=γ

δ1=0

(
(1 + 0) · (

∞∑

k=0

(−ε)k)(δ2)
)

+
∑

δ1+δ2=γ

δ1≥ξ

(
(0 + ε(δ1)) · (

∞∑

k=0

(−ε)k)(δ2)
)

=

= (
∞∑

k=0

(−ε)k)(γ) −
∑

δ1+δ2=γ

δ1∈supp(ε)

(
− ε(δ1) · [(

∞∑

k=1

(−ε)k)(δ2) + 1(δ2)]
)

=
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= 1(γ) − ε(γ) + (
∞∑

k=2

(−ε)k)(γ) + ε(γ) −
∑

δ1∈Γ

(
− ε(δ1) · (

∞∑

k=1

(−ε)k)(γ − δ1)
)

=

= 1(γ) + (
∞∑

k=1

(−ε)k+1)(γ) − (
∞∑

k=1

(−ε)k+1)(γ) = 1(γ).

Proposition/Definition 6.11 (Verallgemeinerter Potenzreihenkörper). Sei k ein
Körper und Γ eine angeordnete abelsche Gruppe. Dann ist k((tΓ)) ein Körper. Wir
nennen ihn den verallgemeinerten Potenzreihenkörper.

Beweis. Nach Proposition 6.6 ist k((tΓ)) bereits ein Ring. Wir müssen demnach
nur noch die Existenz von multiplikativ Inversen nachweisen. Sei also ein Element
a ∈ k((tΓ)) \ {0} gegeben. Nach Lemma 6.7 existieren Elemente γ0 ∈ Γ, c ∈ k \ {0}
und ε ∈ k((tΓ)) mit supp(ε) > 0 und

a = c · tγ0 · (1 + ε).

Da 1 + ε nach Lemma 6.10 invertierbar ist, zeigen wir nur noch die Invertierbarkeit
von tγ0 . Für ein beliebiges γ ∈ Γ gilt

[tγ0 · t−γ0 ](γ) =
∑

δ1+δ2=γ

tγ0(δ1)t
−γ0(δ2) =

=

{
tγ0(γ0)t

−γ0(−γ0) = 1 , für γ = 0
tγ0(γ0)t

−γ0(γ − γ0) + tγ0(γ + γ0)t
−γ0(−γ0) = 0 , sonst

}
= 1(γ).

Definition 6.12. Sei k ein angeordneter Körper und Γ eine angeordnete abelsche
Gruppe. Dann ordnen wir den Körper k((tΓ)) an, indem wir für alle a ∈ k((tΓ))\{0}
definieren:

a > 0 :⇔ a(min(supp(a))) > 0.

Proposition 6.13. Ist k ein reell abgeschlossener Körper und Γ eine divisible an-
geordnete abelsche Gruppe, so ist k((tΓ)) reell abgeschlossen.

Beweis. Eine sogar etwas stärkere Aussage finden wir in [R], 6.10.

Wir definieren abschließend noch eine Bewertung des verallgemeinerten Potenzrei-
henkörpers. Wir verwenden die Bezeichnungen aus [KS], Kap. II, §4, S. 61. Für
eine angeordnete abelsche Gruppe Γ bezeichnen wir mit Γ ∪ ∞ die disjunkte Ver-
einigung Γ ∪ {∞} (mit einem zu Γ fremden Element ∞). Γ ∪ ∞ wird zu einer
total geordneten Halbgruppe, indem wir für alle γ ∈ Γ definieren: γ < ∞, und
γ + ∞ = ∞ + γ = ∞ + ∞ = ∞.
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Definition 6.14. Sei k ein angeordneter Körper und Γ eine angeordnete abelsche
Gruppe. Wir definieren

v : k((tΓ)) → Γ ∪∞
a 7→ v(a) := min(supp(a))

(
a ∈ k((tΓ))

)
.

Dabei verwenden wir die Konvention min(∅) := ∞.

Proposition 6.15. Sei k ein angeordneter Körper und Γ eine angeordnete abelsche
Gruppe. Dann ist v eine ordnungsverträgliche Bewertung von k((tΓ)).

Beweis. Wir zeigen zunächst, daß v eine Bewertung von k((tΓ)) ist, und weisen dafür
für beliebige Elemente a, b ∈ k((tΓ)) folgende drei Eigenschaften nach.
(1) v(a) = ∞ ⇔ a = 0. Das ist trivial.
(2) v(ab) = v(a) + v(b).

”
≥ “: Natürlich gilt (ab)(v(ab)) =

∑
δ+ε=v(ab) a(δ)b(ε) 6= 0. Deshalb existieren ein

δ ∈ supp(a) und ein ε ∈ supp(b) mit v(ab) = δ + ε. Nach Definition von v gilt
v(a) ≤ δ und v(b) ≤ ε. Es folgt v(ab) = δ + ε ≥ v(a) + v(b).

”
≤ “: Die Abschätzung v(ab) ≤ v(a) + v(b) gilt wegen

(ab)(v(a) + v(b)) =
∑

γ1+γ2=v(a)+v(b)

a(γ1)b(γ2) = a(v(a))b(v(b)) 6= 0.

(3) v(a + b) ≥ min{v(a), v(b)}. Wir nehmen an, es gilt v(a + b) < v(a), v(b). Dann
folgt (a + b)(v(a + b)) = a(v(a + b)) + b(v(a + b)) = 0 + 0 = 0. Das aber ist ein
Widerspruch zur Definition von v.

Damit bleibt uns nur noch zu zeigen, daß v auch ordnungsverträglich ist, das
heißt, daß für alle a, b ∈ k((tΓ)) mit 0 < a < b auch v(a) ≥ v(b) gilt. Seien also
Elemente a, b ∈ k((tΓ)) gegeben. Wir nehmen an, es gilt v(a) < v(b). Nach Definition
von v gilt dann v(b − a) = v(a). Mit b − a > 0 folgt also 0 < (b − a)(v(b − a)) =
(b − a)(v(a)) = b(v(a)) − a(v(a)) = 0 − a(v(a)) = −a(v(a)). Das bedeutet aber
a(v(a)) < 0, im Widerspruch zu a > 0.
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Symbolverzeichnis

|a|, 7
pL, pR, 7
Cuts(X), 7
DC(X), 7
Z−, Z+, 7
a−, a+, 7
−∞X , +∞X , 7
q � X, 8
y |= p, 8
y � X, 8
−p, 8
|p|, 8
g + p, 8
G(p), 9
p̂, 10
dh(G), 12
sign(p), 13
a · p, 18
1
p
, 18

V (G), 19
m(G), 19
V (p), 19
m(p), 19
G∗(p), 20
p̃, 21
J(p), 23
I(p), 25
CS(p), 28
MC(p), 28
sign∗(p), 29
supp(f), 31
k((tΓ)), 31
Γ ∪∞, 31
v, 31
ϕ−1(ξ), 33
ω, 37
sgn(b), 38
trunc(b), 39
(p + q)links, (p + q)rechts, 43

RealL(p), 46
ε, 46
CT(Ω), 46
GΩ(p), 47
K, 48
rcl(K), 48
G∗

Ω(p), 52
VΩ, 52
JΩ(p), 53
IΩ(p), 53
p +Ω q, 55
p ·Ω q, 56
q · ξ (q ∈ Q∗), 58
ξ ∼ η, 59
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Stichwortverzeichnis

K-rational, stückweise, 65
ξ-generisch, 64
Ω-Invarianzbewertungsring, 52
Ω-Invarianzgruppe (additive), 47

multiplikative, 52

äquivalent, 59
ausgelassen, 8

Betrag (eines Schnittes), 8

Dedekind-Komplettierung, 7
Dedekindschnitt, siehe Schnitt
Divisible Hülle, 12

Erweiterung, 8

Grad (eines Schnittes), 64
group0-cut, 28

Invarianzbewertungsring
einer Gruppe, 19
eines Schnittes, 19

Invarianzgruppe
additive, 9
multiplikative, 20

konstant (in einem Schnitt), 64
konvexe symmetrische Teilmenge, 28
kurze Hälfte (eines Schnittes), 15

lange Hälfte (eines Schnittes), 15
linke Hälfte, 7

Oberkante, 7
Ordnungstyp ω, 37

Potenzreihenkörper (verallgemeinerter),
31

realisierende Obergruppe, 46
realisierender Oberkörper, 48
realisiert, 8

Realisierung, 8
rechte Hälfte, 7

Schnitt
(verallgemeinerter), 7
äquivalenter, 59
dichter, 66
echter, 7
freier, 7
prinzipaler, 7
symmetrischer, 15
zurückgezogener, 33

Signatur (additive), 13
multiplikative, 29

Signum, 38
streng monoton steigend/fallend (in ei-

nem Schnitt), 64
stückweise K-rational, 65

Träger, 31

Unterkante, 7

verallgemeinerter Potenzreihenkörper,
31

vorderer Abschnitt, 39
abzählbarer, 39

wohlgeordnet, 69
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