
ON ALGEBRAICALLY MAXIMAL VALUED FIELDS THAT ARE
NOT DEFECTLESS
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Abstract. We use a known example of an algebraically maximal discretely val-
ued field of positive characteristic p which admits purely inseparable extensions
of degree p2 with defect p to construct algebraically maximal valued fields of
characteristic p as well as of characteristic 0 and of rank 2 which admit separable
extensions of degree p2 with defect p.

1. Introduction

The notions and notations we will use will be introduced in Section 2.

Françoise Delon gave an example that shows that algebraically maximal valued
fields are not necessarily defectless (see [2], Exemple 1.51). A corrected and ex-
panded version was presented in [7, Example 3.25]. We reproduce it in Section 3.
A further discussion of this example will be included in Section 5.

For what follows, take a prime p. Example 3.1 proves:

Theorem 1.1. There are discretely valued algebraically maximal fields (L0, v0)
of characteristic p > 0 which are not inseparably defectless and admit a purely
inseparable extension of degree p which is not an algebraically maximal field. In
particular, the property “algebraically maximal” does not imply “defectless”.

The question arises whether there are also examples of algebraically maximal
fields which admit separable (and hence simple) defect extensions. Using a trick
already employed in [7, Example 3.18], we will construct such examples in Section 4,
based on which we prove:

Theorem 1.2. There are algebraically maximal fields (L, v) of characteristic (p, p)
as well as of characteristic (0, p) admitting separable extensions of degree p2 with
defect p, and with intermediate fields of degree p over L which are not algebraically
maximal fields. In particular, the property “algebraically maximal” does not imply
“separably defectless” and is not preserved under finite separable extensions.

The valuations in the examples we give to prove this theorem have rank 2.

Open Problem: Are there algebraically maximal fields of rank 1 which admit
separable defect extensions?
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2. Preliminaries

For a valued field (K, v), we denote its value group by vK, its residue field
by Kv, and its valuation ring by OK with maximal ideal MK . By (L|K, v) we
denote an extension L|K with valuation v on L, where K is endowed with the
restriction of v. In this case, there are induced embeddings of vK in vL and of
Kv in Lv. The extension (L|K, v) is called immediate if these embeddings are
onto. A valued field (K, v) is called algebraically maximal if it does not admit
nontrivial immediate algebraic extensions, and it is called maximal if it does not
admit any nontrivial immediate extensions.

We say that (K, v) has characteristic (p, p) if charK = charKv = p, and charac-
teristic (0, p) if charK = 0 and charKv = p. If charK = p > 0 and the extension
K|Kp is finite, then there is k ≥ 0 such that [K : Kp] = pk; we then take the p-
degree of K (also called degree of inseparability) to be k. If K|Kp is infinite,
then we take the p-degree to be ∞.
A valued field (K, v) is called henselian if each algebraic extension L|K is

unibranched, that is, the extension of v to L is unique.
If (L|K, v) is a finite unibranched extension, then by the Lemma of Ostrowski

([9, Corollary to Theorem 25, Section G, p. 78]),

(1) [L : K] = p̃ν · (vL : vK)[Lv : Kv] ,

where ν is a nonnegative integer and p̃ the characteristic exponent of Kv, that
is, p̃ = charKv if it is positive and p̃ = 1 otherwise. The factor d(L|K, v) := p̃ν

is the defect of the extension (L|K, v). If d(L|K, v) = 1, then the extension
(L|K, v) is called defectless; otherwise we call it a defect extension. A henselian
field (K, v) is a separably defectless field if every finite unibranched separable
extension of (K, v) is defectless, and a defectless field if every finite unibranched
extension of (K, v) is defectless; note that this is always the case if charKv = 0.
An arbitrary valued field is called an inseparably defectless field if every finite
purely inseparable extension is defectless.

The defect is multiplicative: if (L|K, v) and (M |L, v) are finite unibranched
extensions, then

(2) d(M |K, v) = d(M |L, v) · d(L|K, v)

(see [7, Equation (4)]).
For a valued field (K, v) and a finite field extension L|K, the Fundamental

Inequality (see (17.5) of [3] or Theorem 19 on p. 55 of [9]) states that there are
finitely many extensions of v from K to L, and

(3) [L : K] ≥
g∑

i=1

(viL : vK)[Lvi : Kv] ,

where v1, . . . , vg are the distinct extensions.

Lemma 2.1. If L|K is a separable algebraic extension, then L1/p = L.K1/p, and
the p-degree of L is equal to that of K. If L|K is an arbitrary finite extension, then
again, the p-degree of L is equal to that of K.

Proof. Let B be a basis of L over K. Then L1/p = K1/p(b1/p | b ∈ B).
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Assume that L|K is separable. Then for every b ∈ B, we have K(b) = K(bp)
since otherwise, the separable extension K(b)|K would contain a nontrivial purely
inseparable extension K(b)|K(bp), which is impossible. It follows that L = K(B) =
K(bp | b ∈ B), which gives L1/p = K1/p(B) = L.K1/p. Since L and K1/p are linearly
disjoint over K, L|K being separable, it now follows that [L1/p : L] = [K1/p : K].
To prove our second assertion, assume that L|K is an arbitrary finite extension.

We have that [L1/p : K1/p][K1/p : K] = [L1/p : K] = [L1/p : L][L : K]. The
Frobenius endomorphism sends L1/p onto L andK1/p ontoK. Thus, [L1/p : K1/p] =
[L : K] < ∞. If [K1/p : K] is finite, then this yields that [K1/p : K] = [L1/p : L]. If
[K1/p : K] is infinite, then so is [L1/p : L]. □

3. A basic example

Example 3.1. We consider Fp((t)) with its t-adic valuation vt . Since Fp((t)) has
uncountable cardinality, while that of Fp(t) is countable, the extension Fp((t))|Fp(t)
has infinite transcendence degree, we can choose elements x, y ∈ Fp((t)) which are
algebraically independent over Fp(t). We set

s := xp + typ and K := Fp(t, s) .

We note that K1/p = Fp(t
1/p, s1/p) = K(t1/p, s1/p). The elements t, s are alge-

braically independent over Fp. Consequently, the p-degree of K is 2. We define

L0 to be the relative algebraic closure of K in Fp((t)). Then L
1/p
0 = L0.K

1/p =
L0(t

1/p, s1/p). Since the elements 1, t1/p, . . . , t(p−1)/p are linearly independent over
Fp((t)), the same holds over L0 . Hence, the elements 1, t, . . . , tp−1 are linearly in-
dependent over Lp

0. Now if L0 had p-degree 1, then s could be written in a unique
way as an Lp

0-linear combination of 1, t, . . . , tp−1. But this is not possible since
s = xp + typ and x, y are transcendental over L0 . Hence, the p-degree of L0 is still
2 (as it cannot increase through algebraic extensions); more precisely,

L
1/p
0 = L0(t

1/p, s1/p) with [L
1/p
0 : L0] = p2 .

On the other hand, since s1/p ∈ Fp(t
1/p, x, y) ⊂ Fp((t

1/p)), we have

(vtL
1/p
0 : vtL0) = p and [L

1/p
0 vt : L0vt] = 1

(where we extend vt to the algebraic closure of L0). As a relatively algebraically
closed subfield of the henselian field (Fp((t)), vt), also (L0, vt) is henselian. Thus

the extension (L
1/p
0 |L0, vt) is unibranched and consequently has defect p.

On the other hand, Fp((t)) is the completion of (L0, vt) since it is already the
completion of Fp(t) ⊆ L0. This shows that Fp((t)) is the unique maximal immedi-
ate extension of L0 (up to valuation preserving isomorphism over L0). If L0 would
admit a proper immediate algebraic extension L1, then a maximal immediate ex-
tension of L1 would also be a maximal immediate extension of L0 and would thus
be isomorphic over L0 to Fp((t)). But we have chosen L0 to be relatively alge-
braically closed in Fp((t)). This proves that (L0, v) must be algebraically maximal.
Hence

(L0(s
1/p|L0, vt) and (L0(t

1/p|L0, vt) ,
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being of prime degree, cannot be immediate and are therefore defectless. Thus the

defect of L
1/p
0 |L0 by multiplicativity (2) implies that both

(L
1/p
0 |L0(s

1/p, vt) and (L
1/p
0 |L0(t

1/p, vt)

must have defect p. Consequently, (L0(s
1/p, vt) and (L0(t

1/p, vt) are not alge-
braically maximal. ♢

We summarize the properties of this example, thereby adjusting the notation for
later use.

Proposition 3.2. There exists a discretely valued algebraically maximal field (L0, v0)
of characteristic p > 0 and purely inseparable defectless extensions (L0(a0)|L0, v0)
and (L0(b0)|L0, v0) of degree p such that the unibranched extension (L0(a0, b0)|L0, v0)
of degree p2 has defect p, as (v0L0(a0, b0) : v0L0) = p and [L0(a0, b0)v0 : L0v0] = 1,
and neither (L0(a0), v0) nor (L0(b0), v0) is an algebraically maximal field. □

4. Examples with composite valuations

Lemma 4.1. Take any field L0 of positive characteristic. There exist henselian
defectless discretely valued fields (L,w) with residue field L0 . They can be chosen
such that either charL = 0, or charL = charL0 .

Proof. For charL = 0: Take an extension of (Q, vp), where vp denotes the p-adic
valuation, with value group equal to vpQ and residue field L0 . For the construction
of such extensions, see [5, Theorem 2.14]. Let (L, vp) be the henselization of this
field. Since (L, vp) is henselian discretely valued of characteristic 0, it is a defectless
field by [4, Theorem 8.32]. Alternatively, one can also take the completion in place
of the henselization; as the valuation is still discrete, this field is maximal and
therefore a henselian defectless field (see the discussion at the beginning of Section
4 in [1]).

For charL = charL0 : Take an element z transcendental over L0 , the z-adic valu-
ation vz on L0(z), and (L, vz) to be the henselization of (L0(z), vz). Then (L, vz)
is henselian discretely valued, and by [6, Theorem 1.1], it is a defectless field. □

Lemma 4.2. Take (L0, v0), a0 and b0 as in Lemma 3.2, and (L,w) as in the
previous lemma. Set v := w ◦ v0 . Then (L, v) is algebraically maximal.

Proof. Suppose that (L′|L, v) is a nontrivial immediate algebraic extension. Then
vL′ = vL, which implies that wL′ = wL and that v0(L

′w) = v0(Lw). Since (L,w)
is a henselian defectless field, we have [L′w : Lw] = [L′ : L]. Since Lw = L0 is
algebraically maximal under its valuation v0 , it follows that (v0(L

′w) : v0(Lw)) > 1,
which implies (vL′ : vL) > 1, or [(L′w)v0 : (Lw)v0] > 1, which implies [L′v : Lv] >
1. This contradicts our assumption that (L′|L, v) is immediate. □

Lemma 4.3. Let (L, v) be as in the previous lemma. Then there are elements
a, b in the separable-algebraic closure of L such that [L(a) : L] = [L(b) : L] = p,
L(a)w = L0(a0), and L(b)w = L0(b0).
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Proof. Take c, d ∈ L such that cw = ap0 ∈ L0 and dc = bp0 ∈ L0. If charL = 0, then
take a to be a p-th root of c and b to be a p-th root of d. If charL = charL0 = p,
then take a to be a root of the polynomial Xp − rX − c and b to be a root of the
polynomial Xp− rX−d for some r ∈ L with wr > 0. Then in both cases, aw = a0
and bw = b0. It follows that

p ≥ [L(a) : L] ≥ [L(a)w : Lw] ≥ [L0(a0) : L0] = p .

Hence equality holds everywhere, which proves that [L(a) : L] = p and L(a)w =
L0(a0). The proof for b in place of a is similar. □

Now we are ready for the

Proof of Theorem 1.2: We shall prove that the valued field (L, v) of the previous
lemma has the properties stated in Theorem 1.2. As the extensions L(a)|L and
L(b)|L are separable, so is the extension L(a, b)|L. Since a0, b0 ∈ L(a, b)w, we have

p2 ≥ [L(a, b) : L] ≥ [L(a, b)w : Lw] ≥ [L0(a0, b0) : L0] = p2 ,

hence equality holds everywhere, showing that [L(a, b) : L] = p2 and L(a, b)w =
L0(a0, b0), so that L(a, b)v = L0(a0, b0)v0 . On the other hand, wL(a, b) = wL by
the Fundamental Equality (3) since [L(a, b) : L] = [L(a, b)w : Lw]. Further, by
Proposition 3.2, (v0L0(a0, b0) : v0L0) = p and [L0(a0, b0)v0 : L0v0] = 1. So

(vL(a, b) : vL) = (v0(L(a, b)w : v0(Lw)) = (v0L0(a0, b0) : v0L0) = p

and

[L(a, b)v : Lv] = [L0(a0, b0)v0 : L0v0] = 1 ,

hence the extension (L(a, b)|L, v) has defect p.
Finally, [L(a) : L] = p and (vL(a)v : vL) = (v0L0(a0) : v0L0) = p, showing that

the extension (L(a)|L, v) is defectless. Since the defect is multiplicative, it follows
that (L(a, b)|L(a), v) has defect p, which shows that (L(a), v) is not algebraically
maximal. The same proof works for b in place of a. □

5. Appendix

Remark 5.1. In [7, Example 3.25] it is stated that the relative algebraic closure L0

of (K, vt) in Fp((t)) is a separable extension of K and therefore is the henselization
of K. However, the proof contains a gap, so the question about the separability of
the extension remains open.

In what follows we will state results from [7, Example 3.25] that are not affected
by the gap.

We set

F := Fp(t, x, y)

and note that t1/p /∈ F . Hence F and K(t1/p) are linearly disjoint over K and
F ∩K(t1/p) = K.

Lemma 5.2. The following assertions hold:

1) K is relatively algebraically closed in F .

2) F and K1/p = K(t1/p, s1/p) are not linearly disjoint over K.
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3) While K(t1/p) is linearly disjoint from F over K, it is not relatively algebraically
closed in F (t1/p) = F.K(t1/p) since s1/p ∈ F (t1/p) \K(t1/p).

4) Since F |K is not linearly disjoint from K1/p|K, it is not a separable extension.
Although being finitely generated, it is consequently not separably generated; in
particular, it is not a rational function field.

5) If a ∈ K \ Kp (and in particular, if a = s), then F and K(a1/p) are linearly
disjoint over K, F (a1/p) = F.K1/p and K1/p is a nontrivial purely inseparable
algebraic extension of K(a1/p) in F (a1/p).

Proof. 1): Take b ∈ F algebraic over K. The element bp is algebraic over K and lies
in F p = Fp(t

p, xp, yp) and thus also in K(x) = Fp(t, x, y
p). Since trdegK|Fp = 2

while trdegFp(t, x, y
p)|Fp = 3, we see that x is transcendental over K. Therefore,

K is relatively algebraically closed in K(x) and thus, bp ∈ K. Consequently,
b ∈ K1/p = Fp(t

1/p, s1/p). Write

b = r0 + r1s
1
p + . . .+ rp−1s

p−1
p with ri ∈ Fp(t

1/p, s) = K(t1/p) .

Since s1/p = x+ t1/py, we have that

b = r0 + r1x+ . . .+ rp−1x
p−1 + . . .+ t1/pr1y + . . .+ t(p−1)/prp−1y

p−1

(in the middle, we have omitted the summands in which both x and y appear).
Since x, y are algebraically independent over Fp, the p-degree of Fp(x, y) is 2, and
the elements xiyj, 0 ≤ i < p, 0 ≤ j < p, form a basis of Fp(x, y)|Fp(x

p, yp). Since
t1/p is transcendental over Fp(x

p, yp), we know that Fp(x, y) is linearly disjoint from
Fp(t

1/p, xp, yp) and hence also from Fp(t, x
p, yp) over Fp(x

p, yp). This shows that
the elements xiyj also form a basis of F |Fp(t, x

p, yp) and are still Fp(t
1/p, xp, yp)-

linearly independent. Hence, b can also be written as a linear combination of these
elements with coefficients in Fp(t, x

p, yp), and this must coincide with the above
Fp(t

1/p, xp, yp)-linear combination which represents b. That is, all coefficients ri
and ti/pri, 1 ≤ i < p, are in Fp(t, x

p, yp). Since ti/p /∈ Fp(t, x
p, yp), this is impossible

unless they are zero. It follows that b = r0 ∈ K(t1/p), whence b ∈ F ∩K(t1/p) = K.
This proves that K is relatively algebraically closed in F .

2): We have s1/p = x+ t1/py ∈ Fp(t
1/p, x, y) = F (t1/p), which implies

[F.K1/p : F ] = [F.K(t1/p, s1/p) : F ] = [F (t1/p) : F ] = p < p2 = [K1/p : K] .

3) and 4) need no further proof.

5): We know that a1/p /∈ F since K is relatively algebraically closed in F . Hence,
F and K(a1/p) are linearly disjoint over K and [F (a1/p) : F ] = p = [F.K1/p : F ].
This shows that F (a1/p) = F.K1/p and that K(a1/p) admits the nontrivial purely
inseparable algebraic extension K1/p in F (a1/p). □
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