ON ALGEBRAICALLY MAXIMAL VALUED FIELDS THAT ARE
NOT DEFECTLESS

FRANZ-VIKTOR KUHLMANN

ABSTRACT. We use a known example of an algebraically maximal discretely val-
ued field of positive characteristic p which admits purely inseparable extensions
of degree p? with defect p to construct algebraically maximal valued fields of
characteristic p as well as of characteristic 0 and of rank 2 which admit separable
extensions of degree p? with defect p.

1. INTRODUCTION

The notions and notations we will use will be introduced in Section 2.

Francoise Delon gave an example that shows that algebraically maximal valued
fields are not necessarily defectless (see [2], Exemple 1.51). A corrected and ex-
panded version was presented in [7, Example 3.25]. We reproduce it in Section 3.
A further discussion of this example will be included in Section 5.

For what follows, take a prime p. Example 3.1 proves:

Theorem 1.1. There are discretely valued algebraically mazimal fields (Lo, vo)
of characteristic p > 0 which are not inseparably defectless and admit a purely
inseparable extension of degree p which is not an algebraically mazximal field. In
particular, the property “algebraically maximal” does not imply “defectless”.

The question arises whether there are also examples of algebraically maximal
fields which admit separable (and hence simple) defect extensions. Using a trick
already employed in [7, Example 3.18], we will construct such examples in Section 4,
based on which we prove:

Theorem 1.2. There are algebraically mazimal fields (L, v) of characteristic (p, p)
as well as of characteristic (0,p) admitting separable extensions of degree p* with
defect p, and with intermediate fields of degree p over L which are not algebraically
mazimal fields. In particular, the property “algebraically maximal” does not imply
“separably defectless” and is not preserved under finite separable extensions.

The valuations in the examples we give to prove this theorem have rank 2.

Open Problem: Are there algebraically maximal fields of rank 1 which admit
separable defect extensions?

Date: 8.1.2026.
2020 Mathematics Subject Classification. 12J10, 12J25.
Key words and phrases. valued field extension, defect, defectless valued field, algebraically
maximal valued field.
1



2 FRANZ-VIKTOR KUHLMANN

2. PRELIMINARIES

For a valued field (K,v), we denote its value group by vK, its residue field
by Kwv, and its valuation ring by O with maximal ideal Mg . By (L|K,v) we
denote an extension L|K with valuation v on L, where K is endowed with the
restriction of v. In this case, there are induced embeddings of vK in vL and of
Kv in Lv. The extension (L|K,v) is called immediate if these embeddings are
onto. A valued field (K, v) is called algebraically maximal if it does not admit
nontrivial immediate algebraic extensions, and it is called maximal if it does not
admit any nontrivial immediate extensions.

We say that (K, v) has characteristic (p, p) if char K’ = char Kv = p, and charac-
teristic (0, p) if char K = 0 and char Kv = p. If char K = p > 0 and the extension
K|KP is finite, then there is k > 0 such that [K : K?] = p*; we then take the p-
degree of K (also called degree of inseparability) to be k. If K|K? is infinite,
then we take the p-degree to be oco.

A valued field (K, v) is called henselian if each algebraic extension L|K is
unibranched, that is, the extension of v to L is unique.

If (L|K,v) is a finite unibranched extension, then by the Lemma of Ostrowski
(19, Corollary to Theorem 25, Section G, p. 78]),

(1) [L:K] =7p" (vl :vK)[Lv: Kv],

where v is a nonnegative integer and p the characteristic exponent of Kv, that
is, p = char Kv if it is positive and p = 1 otherwise. The factor d(L|K,v) := p”
is the defect of the extension (L|K,v). If d(L|K,v) = 1, then the extension
(L|K,v) is called defectless; otherwise we call it a defect extension. A henselian
field (K, v) is a separably defectless field if every finite unibranched separable
extension of (K, v) is defectless, and a defectless field if every finite unibranched
extension of (K, v) is defectless; note that this is always the case if char Kv = 0.
An arbitrary valued field is called an inseparably defectless field if every finite
purely inseparable extension is defectless.

The defect is multiplicative: if (L|K,v) and (M|L,v) are finite unibranched
extensions, then

(2) d(M|K,v) =d(M|L,v) - d(L|K,v)

(see [7, Equation (4)]).

For a valued field (K,v) and a finite field extension L|K, the Fundamental
Inequality (see (17.5) of [3] or Theorem 19 on p. 55 of [9]) states that there are
finitely many extensions of v from K to L, and

(3) L: K] > Z(viszK)[Lvi:Kv],

where vy, ..., v, are the distinct extensions.

Lemma 2.1. If L|K is a separable algebraic extension, then LY? = L.K'?, and
the p-degree of L is equal to that of K. If L|K is an arbitrary finite extension, then
again, the p-degree of L is equal to that of K.

Proof. Let B be a basis of L over K. Then L'/? = K'Y/?(bY/? | b € B).
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Assume that L|K is separable. Then for every b € B, we have K(b) = K (b?)
since otherwise, the separable extension K (b)|K would contain a nontrivial purely
inseparable extension K (b)|K (b?), which is impossible. It follows that L = K(B) =
K (W | b€ B), which gives L'/? = K'/?(B) = L.K'/?. Since L and K'/? are linearly
disjoint over K, L|K being separable, it now follows that [L'/? : L] = [K'/? : K].

To prove our second assertion, assume that L|K is an arbitrary finite extension.
We have that [LY? . KVP|[KYP : K] = [LVP : K| = [LV? : L][L : K]. The
Frobenius endomorphism sends L'/? onto L and K'/? onto K. Thus, [LY/? : K'/?] =
[L: K] < oo. If [KY?: K] is finite, then this yields that [K'/? : K] = [LY? : L]. If
[K'/P: K] is infinite, then so is [LY/? : L]. O

3. A BASIC EXAMPLE

Example 3.1. We consider F,((¢)) with its ¢-adic valuation v;. Since F,((¢)) has
uncountable cardinality, while that of F,(¢) is countable, the extension IF,((¢))|F,(t)
has infinite transcendence degree, we can choose elements =,y € F,((¢)) which are
algebraically independent over F,(t). We set

s = al +ty? and K = F,(t,s).

We note that K/ = F,(t'/? s'/P) = K(t'/7,s'/?). The elements t,s are alge-
braically independent over F,. Consequently, the p-degree of K is 2. We define

Lo to be the relative algebraic closure of K in F,((t)). Then L/” = L. K/ =
Lo(t'/?,s'/?). Since the elements 1,7 ... t®~1/P are linearly independent over
F,((t)), the same holds over Ly. Hence, the elements 1,t,...,t?~! are linearly in-
dependent over Lf. Now if Ly had p-degree 1, then s could be written in a unique
way as an Lb-linear combination of 1,¢,...,tP~'. But this is not possible since
s = aP + ty? and x,y are transcendental over Ly. Hence, the p-degree of L is still
2 (as it cannot increase through algebraic extensions); more precisely,

Ly" = Lo(tY?,s'7)  with  [Ly": Lo] = p*.
On the other hand, since s/ € F,(t'/7, z,y) C F,((t'/?)), we have
(vtLé/p s Lo) = p  and [L[l)/pvt c Lov) = 1

(where we extend v, to the algebraic closure of Ly). As a relatively algebraically
closed subfield of the henselian field (F,((t)),v:), also (Lo, v;) is henselian. Thus

the extension (L(l)/ P|Lg,v;) is unibranched and consequently has defect p.

On the other hand, F,((¢)) is the completion of (Lg,v;) since it is already the
completion of F,(t) C Ly. This shows that F,((¢)) is the unique maximal immedi-
ate extension of Ly (up to valuation preserving isomorphism over Lg). If Ly would
admit a proper immediate algebraic extension L, then a maximal immediate ex-
tension of L; would also be a maximal immediate extension of Ly and would thus
be isomorphic over Ly to F,((t)). But we have chosen Ly to be relatively alge-
braically closed in F,((¢)). This proves that (Lo, v) must be algebraically maximal.
Hence

(Lo(sYP|Lg,v) and  (Lo(tY?| Lo, vy)
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being of prime degree, cannot be immediate and are therefore defectless. Thus the
defect of L(l)/ P|Ly by multiplicativity (2) implies that both

(Lé/p|L0(sl/p,Ut) and (L(l)/p|Lo(t1/p, vt)

must have defect p. Consequently, (Lo(s*/?,v;) and (Lo(t'/?,v;) are not alge-
braically maximal. &

We summarize the properties of this example, thereby adjusting the notation for
later use.

Proposition 3.2. There exists a discretely valued algebraically maximal field (L, vo)
of characteristic p > 0 and purely inseparable defectless extensions (Lg(ao)|Lo,vo)
and (Lo(bo)| Lo, vo) of degree p such that the unibranched extension (Lo(ag, bo)| Lo, vo)
of degree p* has defect p, as (voLo(ag,bo) : voLo) = p and [Lo(ag, by)vo : Lovo] = 1,
and neither (Lo(ag),vo) nor (Lo(by), vo) is an algebraically mazimal field. O

4. EXAMPLES WITH COMPOSITE VALUATIONS

Lemma 4.1. Take any field Ly of positive characteristic. There exist henselian
defectless discretely valued fields (L, w) with residue field Ly . They can be chosen
such that either char L = 0, or char L = char L .

Proof. For char L = 0: Take an extension of (Q,v,), where v, denotes the p-adic
valuation, with value group equal to v,Q and residue field L, . For the construction
of such extensions, see [5, Theorem 2.14|. Let (L, v,) be the henselization of this
field. Since (L, v,) is henselian discretely valued of characteristic 0, it is a defectless
field by [4, Theorem 8.32]. Alternatively, one can also take the completion in place
of the henselization; as the valuation is still discrete, this field is maximal and
therefore a henselian defectless field (see the discussion at the beginning of Section
4 in [1]).

For char L = char Ly : Take an element z transcendental over Lg, the z-adic valu-
ation v, on Ly(z), and (L,v,) to be the henselization of (Ly(z),v.). Then (L,v,)
is henselian discretely valued, and by [6, Theorem 1.1], it is a defectless field. [

Lemma 4.2. Take (Lg,vg), ap and by as in Lemma 3.2, and (L,w) as in the
previous lemma. Set v :=wowvy. Then (L,v) is algebraically mazimal.

Proof. Suppose that (L'|L,v) is a nontrivial immediate algebraic extension. Then
vL' = vL, which implies that wL' = wL and that vo(L'w) = vo(Lw). Since (L, w)
is a henselian defectless field, we have [L'w : Lw] = [L' : L]. Since Lw = Ly is
algebraically maximal under its valuation vy , it follows that (vo(L'w) : vo(Lw)) > 1,
which implies (vL' : vL) > 1, or [(L'w)vg : (Lw)ve] > 1, which implies [L'v : Lv] >
1. This contradicts our assumption that (L'|L,v) is immediate. O

Lemma 4.3. Let (L,v) be as in the previous lemma. Then there are elements
a,b in the separable-algebraic closure of L such that [L(a) : L] = [L(b) : L] = p,
L(a)w = Lo(ag), and L(b)w = Ly(by).
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Proof. Take ¢,d € L such that cw = af € Ly and dc = bfj € Ly. If char L = 0, then
take a to be a p-th root of ¢ and b to be a p-th root of d. If char L = char Ly = p,
then take a to be a root of the polynomial X? —rX — ¢ and b to be a root of the
polynomial X? —rX —d for some r € L with wr > 0. Then in both cases, aw = ag
and bw = by. It follows that

p > [L(a): L] > [L(a)w: Lw] > [Lo(ap) : Lo] = p.

Hence equality holds everywhere, which proves that [L(a) : L] = p and L(a)w =
Lo(ap). The proof for b in place of a is similar. O]

Now we are ready for the

Proof of Theorem 1.2: We shall prove that the valued field (L,v) of the previous
lemma has the properties stated in Theorem 1.2. As the extensions L(a)|L and
L(b)|L are separable, so is the extension L(a, b)|L. Since ag, by € L(a,b)w, we have

p* > [L(a,b) : L] > [L(a,b)w : Lw] > [Lo(ao,bo) : Lo] = p*,
hence equality holds everywhere, showing that [L(a,b) : L] = p* and L(a,b)w =
Lo(ag, by), so that L(a,b)v = Ly(ag, by)vg. On the other hand, wL(a,b) = wL by
the Fundamental Equality (3) since [L(a,b) : L] = [L(a,b)w : Lw]. Further, by
Proposition 3.2, (voLo(ag, bo) : voLo) = p and [Lg(ag, bo)ve : Lovg] = 1. So
(vL(a,b) : vL) = (vo(L(a,b)w : vo(Lw)) = (voLo(ag,bo) : volo) =p
and
[L(a,b)v : Lv] = [Lo(ao, bo)ve : Lovg] = 1,

hence the extension (L(a,b)|L,v) has defect p.

Finally, [L(a) : L] = p and (vL(a)v : vL) = (voLo(ap) : voLo) = p, showing that
the extension (L(a)|L,v) is defectless. Since the defect is multiplicative, it follows

that (L(a,b)|L(a),v) has defect p, which shows that (L(a),v) is not algebraically
maximal. The same proof works for b in place of a. 0

5. APPENDIX

Remark 5.1. In [7, Example 3.25] it is stated that the relative algebraic closure Ly
of (K, v) in F,,((¢)) is a separable extension of K and therefore is the henselization
of K. However, the proof contains a gap, so the question about the separability of
the extension remains open.

In what follows we will state results from [7, Example 3.25] that are not affected
by the gap.

We set

F = Fy(t,z,y)

and note that t'/? ¢ F. Hence I and K(t'/?) are linearly disjoint over K and
FNK(@t'/?) =K.
Lemma 5.2. The following assertions hold:
1) K is relatively algebraically closed in F.
2) F and K'? = K(t'/7,s'/?) are not linearly disjoint over K.
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3) While K (t'/7) is linearly disjoint from F over K, it is not relatively algebraically
closed in F(t'/?) = F.K(t'/?) since s'/? € F(t'/?)\ K(t'/?).

4) Since F|K is not linearly disjoint from KY?|K, it is not a separable extension.
Although being finitely generated, it is consequently not separably generated; in
particular, it is not a rational function field.

5) If a € K\ K? (and in particular, if a = s), then F and K(a'/?) are linearly
disjoint over K, F(a'/?) = F.K'? and K'? is a nontrivial purely inseparable
algebraic estension of K(a'/?) in F(a'/P).

Proof. 1): Take b € F algebraic over K. The element b is algebraic over K and lies
in [P = F,(t?, 2P, y?) and thus also in K(z) = F,(t,z,y?). Since trdeg K|F, = 2
while trdeg F, (¢, z, y?)|F, = 3, we see that = is transcendental over K. Therefore,
K is relatively algebraically closed in K (z) and thus, " € K. Consequently,
be KYP =TF,(t/7, /7). Write
_ 5 = ; A p oy — 1/p
b=ro+rsr+...+r,qs 7 with r, e Fy(t/7,s) = K(t/7).
Since s'/? = x + t'/Py, we have that
b=r9+mrmz+...+ rp_lxp_l +... .+ tl/prly + ...+ t(p_l)/prp_lyp_l

(in the middle, we have omitted the summands in which both z and y appear).
Since z,y are algebraically independent over F,, the p-degree of F,(x,y) is 2, and
the elements x'y?, 0 < i < p, 0 < j < p, form a basis of F,(x,y)[F,(z?,y?). Since
t1/7 is transcendental over F, (27, y?), we know that F,(x, y) is linearly disjoint from
F,(t/7, 2P 4P) and hence also from F,(t, 27, y?) over F,(z?,y?). This shows that
the elements x'y’ also form a basis of F|F,(¢,2?,y?) and are still F,(t'/?, 27, y)-
linearly independent. Hence, b can also be written as a linear combination of these
elements with coeflicients in F,(¢,2?,y?), and this must coincide with the above
]Fp(tl/p,:pp,yp)-linear combination which represents b. That is, all coefficients r;
and t/Pr;, 1 < i < p, are in F,(¢, 27, y?). Since t'/P ¢ F, (¢, P, yP), this is impossible
unless they are zero. It follows that b = ry € K(t'/?), whence b € FNK (t'/?) = K.
This proves that K is relatively algebraically closed in F'.

2): We have s/ =z + t/Py € F,(t'/?, z,y) = F(t*/?), which implies

[F.KYP . F] = [FK(t'Y/?, 7). F] = [F{t'?): F] = p < p* = [K'?: K].
3) and 4) need no further proof.
5): We know that a'/? ¢ F since K is relatively algebraically closed in F. Hence,
F and K (a'/?) are linearly disjoint over K and [F(a'/?) : F] = p = [F.K'/? . F].
This shows that F(a'/?) = F.K'? and that K(a'/?) admits the nontrivial purely
inseparable algebraic extension K'/7 in F(a'/?). O
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