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Einleitung

Hensels Lemma ist historisch betrachtet zunächst eine Aussage über die p-adischen Zah-
len, deren systematisches Studium auf Kurt Hensel zurückgeht (siehe etwa [Hen97]). In
[Azu51] betrachtet Azumaya später die Klasse aller Ringe, die eine entsprechende Ver-
allgemeinerung von Hensels Lemma erfüllen. Da sich jeder Bewertung auf einem Körper
auf natürliche Weise ein spezieller Ring zuordnen lässt (siehe Abschnitt 2.2) führt dies
nicht nur zum Begriff des henselschen Rings, sondern auch zu dem der henselschen Be-
wertung.

Insbesondere in der Modelltheorie wurden seitdem eine Reihe von (schärferen) Varianten
der Aussage von Hensels Lemma betrachtet und zur Definition bestimmter Klassen von
Bewertungen verwendet: Neben henselschen Bewertungen haben sich etwa 2-henselsche
([PZ75]), p-henselsche ([Wad83, Koe95]), t-henselsche ([PZ78]), Ω-henselsche ([Brö76,
Bec78]) und n≤-henselsche ([FJ15]) Bewertungen als interessant herausgestellt.

Zwischen einigen dieser Begriffe bestehen offensichtliche Implikationen. So erfüllt je-
de henselsche Bewertung alle oben genannten Varianten von Hensels Lemma und jede
n≤-henselsche Bewertung ist auch p-henselsch für p ∈ P mit p ≤ n. Die Untersuchung
weiterer Zusammenhänge der unterschiedlichen Varianten von Hensels Lemma ist ein Ziel
der vorliegenden Arbeit. Dazu führen wir auch einen weiteren, technischen, Begriff ein,
nämlich den einer (separabel) prim-henselschen Bewertung (unterhalb einer natürlichen
Zahl n ∈ N).

Für beliebige Körper erhalten wir als Teilergebnis der Analyse der Zusammenhänge zwi-
schen diesen Begriffen das folgende Diagramm. Die vorkommenden Bezeichnungen wer-
den in Kapitel 7, bzw. bereits vorher im Laufe der Arbeit, genauer erklärt.

henselsch

z� �� ��

separabel prim-henselsch

��

?
+3

�
+3

N≤-henselsch

�
KS

ks +3
t-henselsch

�
jr

?
ks

prim-henselsch

?
KS

��
P-henselsch

?
KS

In [EE77] studieren Endler und Engler die Klasse aller henselschen Bewertungen auf
einem Körper mithilfe einer Partitionierung dieser in zwei Teilmengen, was zur Defi-
nition der kanonischen henselschen Bewertung führt. Der wichtigste Bestandteil dabei
ist eine Verallgemeinerung eines Theorems von F. K. Schmidt für spezielle (henselsche)
Bewertungen ([Sch33, Satz 1]) auf die Gesamtheit aller henselscher Bewertungen. Eine
natürliche Variante dieses Theorems gilt auch für p-henselsche Bewertungen.
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Ein wichtiger Teil der vorliegenden Arbeit befasst sich mit n≤-henselschen Bewertungen
und der entsprechenden Variante des genannten Theorems von F. K. Schmidt auf diese.

Theorem 5.10. Sei K ein Körper mit Ksep 6= K, sei n ∈ N und seien Ov,Ow ( K
zwei nicht-triviale unabhängige n≤-henselsche Bewertungsringe auf K. Dann gilt n <
m(K) · p(K).

Daraus lässt sich, ähnlich wie für henselsche bzw. p-henselsche Bewertungen, auf je-
dem Körper auch eine kanonische n≤-henselsche Bewertung definieren, wie wir im Ab-
schnitt 5.2 im Detail sehen werden. Zwei wichtige Eigenschaften dieser kanonischen
n≤-henselschen Bewertung sind die folgenden.

Proposition 5.21. Der kanonische n≤-henselsche Bewertungsring auf einem Körper K
(mit Ksep 6= K) ist, bezüglich ⊆, mit allen n≤-henselschen Bewertungsringen auf K
vergleichbar.

Proposition 5.22. Sei K ein n≤-henselscher Körper. Dann gilt (vgl. Notation 5.9):

(1) Ist n ≥ (m(K)!)2, so ist O≤n 6= K.

(2) Ist n < m(K)2, so gilt O≤n = K.

Entsprechend variierte Aussagen gelten auch für die kanonische henselsche Bewertung,
was auf die Nützlichkeit der kanonischen n≤-henselschen Bewertung hindeutet.

Anwendungen in der Theorie henselscher Bewertungen findet die kanonische n≤-hen-
selsche Bewertung etwa in Form der beiden folgenden Aussagen, die wir in Kapitel 6
beweisen.

Proposition 6.1. Sei K ein henselscher Körper mit Ksep 6= K und vK die kanoni-
sche henselsche Bewertung auf K, sowie OK der zugehörige Bewertungsring. Dann lässt
sich OK wie folgt durch die kanonischen n≤-henselschen Bewertungsringe O≤n auf K
ausdrücken.

(1) Falls der Restklassenkörper KvK separabel abgeschlossen ist, das heißt falls OK ∈
H2(K) gilt, so ist OK =

⋂
n∈NO≤n.

(2) Falls der Restklassenkörper KvK nicht separabel abgeschlossen ist, das heißt falls
OK ∈ H1(K) gilt, so ist OK =

⋃
n≥n0

O≤n für alle n0 ∈ N mit n0 ≥ (d!)2, wobei
d = min {[L : KvK ]poly |L/KvK ist Galoiserweiterung mit L 6= KvK} sei.

Auf einem Körper mit definierbarer nicht-trivialer henselscher Bewertung gibt es nicht
notwendigerweise auch eine ∅-definierbare nicht-triviale henselsche Bewertung (siehe Be-
merkung 6.12). Mithilfe der kanonischen n≤-henselschen Bewertung erhalten wir aber
zumindest die folgende Aussage.

Proposition 6.11. SeiK 6= Ksep ein Körper mit nicht-trivialer henselscher Bewertung v.
Ist der Bewertungsring Ov auf K definierbar in der Sprache Lring = {0, 1,+, ·} der Ringe,
so existiert ein ∅-definierbarer nicht-trivialer Bewertungsring Ow auf K mit Tw = Tv, das
heißt w induziert die eindeutige henselsche Topologie.
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Aufbau der Arbeit

Zum Einstieg behandeln wir in Kapitel 1 einige mathematische Grundlagen, die im rest-
lichen Teil der Arbeit Verwendung finden.

In Abschnitt 1.1 behandeln wir zunächst um inverse Systeme von Ringen und (topolo-
gischen) Gruppen, ehe wir davon ausgehend die sogenannten profiniten Gruppen einfüh-
ren.

Da Hensels Lemma eine Aussage über die Existenz von Nullstellen gewisser Polynome
ist, spielen auch Galoiserweiterungen naturgemäß eine wichtige Rolle. Über die Theorie
endlicher Galoiserweiterungen hinaus benötigen wir dabei später auch die entsprechen-
den Werkzeuge zum Umgang mit unendlichen Galoiserweiterungen, welche Abschnitt 1.2
bereitstellt.

Kapitel 2 führt in die allgemeine Theorie der bewerteten Körper ein.

Neben der Definition des Begriffs stellen wir in Abschnitt 2.1 noch eine Reihe einfacher,
aber dennoch wichtiger, allgemeiner Eigenschaften von Bewertungen vor.

Einer jeden Bewertung auf einem Körper K lässt sich auf natürliche Weise ein Unter-
ring von K zuordnen. Dies führt zum Begriff des Bewertungsrings, der in Abschnitt 2.2
thematisiert wird. Wir zeigen, dass Bewertungsringe und (Äquivalenzklassen von) Be-
wertungen sich gegenseitig entsprechen und diskutieren einige wichtige Eigenschaften
von Bewertungsringen.

Im Hinblick auf die eingangs bereits erwähnten Verallgemeinerungen des Theorems von
F. K. Schmidt, sowie auf eine topologische Beschreibung der t-henselschen Bewertungen,
stellen wir in Abschnitt 2.3 die von einem Bewertungsring induzierte Topologie kurz
vor.

Im Kapitel 3 widmen wir uns den henselschen Bewertungen.

Der Abschnitt 3.1 enthält zwei wichtige Beispiele henselsch bewerteter Körper sowie eine
Reihe äquivalenter Charakterisierungen henselscher Bewertungen.

Zu jedem bewerteten Körper gibt es eine kleinste henselsche Erweiterung, die sogenannte
Henselisierung. Diese betrachten wir im Abschnitt 3.2. Wir geben außerdem ein Beispiel
an, das später bei der Konstruktion eines n≤-henselschen Körpers, der für jede Primzahl
p > n nicht p-henselsch ist, von Bedeutung sein wird.

Schließlich gehen wir im Abschnitt 3.3 auf die Definition der kanonischen henselschen
Bewertung ein, wobei die Beweise jedoch erst im Abschnitt 5.2 zur kanonischen n≤-hen-
selschen Bewertung mithilfe der Resultate dort geführt werden.

Kapitel 4 behandelt die in [Wad83] eingeführten p-henselschen Bewertungen und orien-
tiert sich lose an [Koe95].

v



Zunächst stellen wir in Abschnitt 4.1 die Definition sowie einige äquivalente Charakteri-
sierungen p-henselscher Bewertungen vor.

In Abschnitt 4.2 zeigen wir anschließend, dass jede p-henselsche Bewertung auf einem
Körper K dieselbe Topologie induziert – vorausgesetzt, es gilt K 6= K(p) und K enthält
eine primitive p-te Einheitswurzel, falls nötig.

Im Kapitel 5 widmen wir uns den n≤-henselschen Bewertungen, die in der Literatur
bisher kaum untersucht worden sind.

Wie zuvor, für henselsche bzw. p-henselsche Bewertungen, behandelt Abschnitt 5.1 all-
gemeine Grundlagen zu n≤-henselschen Bewertungen. Die Charakterisierungen aus den
Abschnitten 3.1 und 4.1 lassen sich jedoch nicht ohne Weiteres auf den Fall n≤-hensel-
scher Bewertungen übertragen. Um entsprechende, aber etwas schwächere, Aussagen zu
erhalten, führen wir den Begriff des Polynom-Grads einer (endlichen) Galoiserweiterung
L/K ein – den kleinsten Grad eines irreduziblen Polynoms über K, dessen Zerfällungs-
körper gerade L ist. Außerdem beweisen wir das Analogon der Verallgemeinerung des
Theorems von F. K. Schmidt für n≤-henselsche Bewertungen und übertragen weitere
Aussagen vom henselschen bzw. p-henselschen Fall, mit kleineren Einschränkungen, auf
den n≤-henselschen.

Die kanonische n≤-henselsche Bewertung, die sich mithilfe der vorherigen Resultate de-
finieren lässt, und ihre wichtigsten Eigenschaften sind Inhalt des Abschnitts 5.2.

Kapitel 6 zeigt Anwendungen der Theorie n≤-henselscher Bewertungen auf.

Im Abschnitt 6.1 führen wir die (separabel) prim-henselschen Bewertungen ein und setzen
diese mit n≤-henselschen und p-henselschen Bewertungen in Beziehung, was letztlich zu
dem in der Einleitung bereits angegebenen Diagramm führt.

Schließlich befassen wir uns im Abschnitt 6.2 mit der Modelltheorie henselscher Körper
und nehmen dazu auch t-henselsche Bewertungen in den Vergleich der verschiedenen
Varianten des Begriffs henselscher Bewertungen mit auf.

In Kapitel 7 fassen wir die Ergebnisse des vorangegangen Kapitels zusammen und dis-
kutieren abschließend kurz einige offene Fragen, die sich aus der vorliegenden Arbeit
ergeben.
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Notation und Konventionen

Um die Notation möglichst unkompliziert zu halten, schreiben wir N = {1, 2, 3, . . . } für
die Menge der positiven ganzen Zahlen und N0 = N ∪ {0} für die Menge der nicht-
negativen ganzen Zahlen. Zur Vermeidung von Mehrdeutigkeiten verzichten wir auf die
Verwendung des Begriffs der “natürlichen Zahlen”. Wir schreiben P = {2, 3, 5, 7, 11, . . . }
für die Menge der Primzahlen.

Die Mächtigkeit einer Menge M notieren wir mit #M und schreiben #M =∞, falls M
unendlich ist.1

Eine partielle Ordnung auf M ist eine zweistellige Relation ≤ auf M , die reflexiv (d.h.
es gilt ∀x ∈ M : x ≤ x), transitiv (d.h. es gilt ∀x, y, z ∈ M : x ≤ y ≤ z ⇒ x ≤ z) und
anti-symmetrisch (d.h. es gilt ∀x, y ∈M : x ≤ y ≤ x⇒ x = y) ist. Statt x ≤ y schreiben
wir, der Einfachheit halber, manchmal auch y ≥ x.

Eine lineare Ordnung auf M ist eine partielle Ordnung auf M , die zusätzlich total ist
(d.h. es gilt ∀x, y ∈ M : x ≤ y ∨ y ≤ x). Ist ≤ eine partielle (bzw. lineare) Ordnung auf
M , so nennen wir das Tupel (M,≤) auch eine partiell (bzw. linear) geordnete Menge.

Sprechen wir von einem Ring, so ist stets ein kommutativer Ring mit multiplikativem
Neutralelement gemeint. Die Operationen auf einem Ring R bezeichnen wir mit + und ·,
die Neutralelemente mit 0 und 1. Um Unklarheiten vorzubeugen schreiben wir gelegent-
lich auch 0R und 1R für die Neutralelemente.

Weiter bezeichne Quot (R) =
{
x
y |x, y ∈ R, y 6= 0

}
den Quotientenkörper von R. Für

ein Primideal p ⊆ R heißt der Unterring Rp =
{
xy−1 ∈ Quot (R) |x ∈ R, y ∈ R \ p

}
des

Quotientenkörpers die Lokalisierung von R an p. Offensichtlich gilt Rp = Quot (R) genau
dann, wenn p = (0) das triviale Ideal ist.

Ist K ein Körper, so bezeichne Kalg einen (für jedes K einmalig) fest gewählten algebrai-
schen Abschluss von K und Ksep :=

{
x ∈ Kalg |x ist separabel über K

}
den separablen

Abschluss von K in Kalg.

Die Gruppe der Automorphismen eines Körpers K notieren wir als Aut(K) und für eine
Körpererweiterung L/K sei Aut(L/K) = {σ ∈ Aut(L) |σ�K = idK} die Gruppe der K-
Automorphismen von L. Ist L/K sogar eine Galoiserweiterung, das heißt algebraisch,
separabel und normal, so heißt Aut(L/K) die Galoisgruppe der Erweiterung L/K, für
die wir dann auch Gal(L/K) = Aut(L/K) schreiben.

1Die Unterscheidung der verschiedenen unendlichen Kardinalitäten ist an keiner Stelle der vorliegenden
Arbeit notwendig.
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1 Allgemeine Grundlagen

Vorausgesetzt seien grundlegende algebraische Kenntnisse sowie ein gewisses Verständnis
elementarer Grundlagen der Topologie. Eine Vertrautheit im Umgang mit Galoistheorie
ist hilfreich, jedoch nicht unerlässlich – die notwendigen Resultate stellen wir (ohne Be-
weise) später in diesem Kapitel vor.

Im Abschnitt 6.2 verwenden wir auch modelltheoretisches Vokabular, das allerdings kaum
über den Begriff der Definierbarkeit hinaus geht. Bis auf wenige Absätze ist die vorlie-
gende Arbeit auch ohne Kenntnisse der Modelltheorie verständlich; wir verweisen daher
für einen Hintergrund in Modelltheorie an dieser Stelle auf die Einführung in [TZ12].

Wir halten nun einige wichtige allgemeine Grundbegriffe fest, die im Laufe der weiteren
Kapitel dieser Arbeit Verwendung finden. Den Anfang macht der Begriff einer angeord-
neten abelschen Gruppe.

Definition 1.1. (1) Eine angeordnete abelsche Gruppe ist eine abelsche Gruppe (G,+)
mit einer linearen Ordnung ≤ der Elemente von G, sodass die Eigenschaft

x ≤ y =⇒ x+ z ≤ y + z

für alle x, y, z ∈ G erfüllt ist.

Wir sagen dann auch, die Ordnung ≤ ist mit der Gruppenoperation + verträglich.

(2) Sind (G,+,≤) und (H,+,�) zwei angeordnete abelsche Gruppen, so heißt ein
Gruppenhomomorphismus (bzw. -isomorphismus) ϕ : G→ H auch ein Homomor-
phismus (bzw. Isomorphismus) von angeordneten abelschen Gruppen, falls

g ≤ h⇐⇒ ϕ(g) � ϕ(h)

für alle g, h ∈ G gilt.

In den beiden folgenden Abschnitten 1.1 zu profiniten Gruppen und 1.2 zu unendlicher
Galoistheorie spielen topologische Gruppen eine wichtige Rolle. Im weiteren Verlauf der
Arbeit, konkret im Kapitel 6.2 zu t-henselschen Bewertungen, benötigen wir außerdem
den Begriff des topologischen Körpers.

Definition 1.2. (1) Eine topologische Gruppe ist eine Gruppe (G, ·) mit einer haus-
dorffschen Topologie, bezüglich der die Abbildungen

µ : G×G→ G und ι : G→ G

(g, h) 7→ g · h g 7→ g−1

stetig sind.

(2) Ein topologischer Körper ist ein Körper K mit einer Topologie T , bezüglich der
sowohl (K,+) als auch (K×, ·) (mit der Unterraumtopologie) topologische Gruppen
sind. Wir nennen T dann auch eine Körper-Topologie auf K.

1



1 Allgemeine Grundlagen

1.1 Inverse Systeme und profinite Gruppen

Den Begriff des inversen Limes bzw. eines inversen Systems benötigen wir hauptsäch-
lich zur gleich darauf folgenden Definition und Beschreibung profiniter Gruppen. Jedoch
verwenden wir an einer Stelle, nämlich in der Konstruktion zu Proposition 6.18 im Kapi-
tel 6.2, auch einen inversen Limes von Bewertungsringen. Wir formulieren die folgenden
Definitionen daher parallel für Ringe und topologische Gruppen.

Dabei orientieren wir uns zunächst an der Darstellung in [FJ86, Chapter 1]. Eine umfas-
sendere Behandlung profiniter Gruppen, die weit über die hier benötigten elementaren
Resultate hinaus geht, findet sich in [RZ10].

Definition 1.3. Eine partiell geordnete Menge (I,≤) heißt gerichtet, falls für je zwei
Elemente i, j ∈ I stets ein k ∈ I mit i ≤ k und j ≤ k existiert.

Definition 1.4. Ein inverses System besteht aus einer partiell geordneten gerichteten
Indexmenge (I,≤) und einer durch I indizierten Familie X̄ = (Xi)i∈I von Mengen Xi

sowie einer Familie π̄ = (πi,j)i>j von Abbildungen πi,j : Xi → Xj , sodass das Diagramm

Xi
πi,j //

πi,k   

Xj

πj,k

��
Xk

für alle i, j, k ∈ I mit i > j > k kommutieren, das heißt sodass πi,k = πj,k ◦ πi,j für alle
i, j, k ∈ I mit i > j > k gilt.

Wir notieren das inverse System bestehend aus I, X̄ und π̄ auch kurz mit (I,Xi, πi,j)
und sprechen von einem inversen System über der Indexmenge I.

Sind die Mengen Xi, für alle i ∈ I, Ringe bzw. topologische Gruppen und sind die
Abbildungen πi,j für alle i, j ∈ I mit i > j (stetige) Homomorphismen, so sprechen wir
von einem inversen System von Ringen bzw. topologischen Gruppen.

Definition 1.5. Der inverse Limes eines inversen Systems (I,Xi, πi,j) ist die Menge

lim←−
i∈I

Xi := {(xi)i∈I ∈
∏
i∈I

Xi |πi,j(xi) = xj für alle i, j ∈ I mit i > j} ⊆
∏
i∈I

Xi

zusammen mit den kanonischen Projektionen πi : X → Xi, (xi)i∈I 7→ xi für jedes i ∈ I.

Aus dieser Definition des inversen Limes als Teilmenge des kartesischen Produkts wird
sofort klar, dass der inverse Limes (eines inversen Systems) von Ringen bzw. topologi-
schen Gruppen selbst wieder ein Ring bzw. eine topologische Gruppe ist. Die jeweiligen
Verknüpfungen ergeben sich dabei als Einschränkungen der offensichtlichen Verknüpfun-
gen auf dem kartesischen Produkt auf den inversen Limes. Die kanonischen Projektionen
sind dann außerdem (stetige) Homomorphismen von Ringen bzw. Gruppen.

Diese Beobachtung führt zur folgenden Definition.
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1 Allgemeine Grundlagen

Definition 1.6. Eine profinite Gruppe ist eine topologische Gruppe G, die homöomorph
ist zum inversen Limes lim←−i∈I Gi eines inversen Systems (I,Gi, πi,j) endlicher Gruppen
(aufgefasst als topologische Gruppen mit der diskreten Topologie).

Können die Gruppen Gi dabei sogar für alle i ∈ I als auflösbar (bzw. nilpotent bzw.
p-Gruppen2) gewählt werden, so heißt G pro-auflösbar (bzw. pro-nilpotent bzw. pro-p).

Offensichtlich ist jede endliche Gruppe G insbesondere profinit, denn wir können etwa
I = {0} und G0 = G wählen und erhalten dann lim←−i∈I Gi = G.

Eine erste wichtige Eigenschaft profiniter Gruppen ist die folgende Beobachtung.

Lemma 1.7. Jede profinite Gruppe ist als topologische Gruppe kompakt.

Beweis. Siehe [FJ86, Lemma 1.2].

Insbesondere hat jede offene Untergruppe U ≤ G einer profiniten Gruppe G daher end-
lichen Index in G, denn die Menge der Nebenklassen ist eine Partition von G in offene
Teilmengen. Da jede Untergruppe U ≤ G sich außerdem als Komplement der Vereinigung
aller von U verschiedenen Nebenklassen schreiben lässt, ist jede offene Untergruppe einer
profiniten Gruppen auch abgeschlossen.

Viele Aussagen über endliche Gruppen lassen sich auf profinite Gruppen übertragen,
wenn man von den vorkommenden Untergruppen zusätzlich fordert, dass sie abgeschlos-
sen sind. Etwa gilt die folgende Aussage.

Lemma 1.8. Ist G eine profinite Gruppe und H ≤ G eine abgeschlossene Untergruppe,
so ist auch H profinit. Ist G sogar pro-auflösbar (bzw. pro-nilpotent bzw. pro-p), so ist
auch H pro-auflösbar (bzw. pro-nilpotent bzw. pro-p).

Beweis. Siehe [RZ10, Proposition 2.2.1].

Ein weiteres wichtiges Beispiel von Aussagen über endliche Gruppen, die sich auf profinite
Gruppen übertragen lassen, sind die Sylow-Sätze. Bevor wir diese formulieren können,
müssen wir noch den Begriff der Sylow-Gruppen einführen.

Definition 1.9. Sei G eine profinite Gruppe und p ∈ P eine Primzahl.

(1) Eine abgeschlossene Untergruppe H ≤ G heißt pro-p-Untergruppe von G, falls H
eine pro-p-Gruppe ist.

(2) Eine p-Sylow-Gruppe von G ist eine maximale pro-p-Untergruppe von G, das heißt
eine pro-p-Untergruppe S ≤ G, die für jede pro-p-Untergruppe H ≤ G mit S ≤ H,
bereits H = S erfüllt.

2Eine endliche p-Gruppe ist eine Gruppe, deren Ordnung eine Potenz von p ist.
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1 Allgemeine Grundlagen

Theorem 1.10 (Sylow-Sätze für profinite Gruppen). Sei G eine profinite Gruppe und
p ∈ P eine Primzahl. Dann gilt:

(1) Es gibt (mindestens) eine p-Sylow-Gruppe S ≤ G.

(2) Für jede pro-p-Untergruppe H ≤ G existiert eine p-Sylow-Gruppe S ≤ G, die H
enthält.

(3) Für je zwei p-Sylow-Gruppen S1, S2 ≤ G gibt es ein g ∈ G mit S1 = gS2g
−1.

Beweis. Siehe [RZ10, Corollary 2.3.6].

1.2 Unendliche Galoistheorie

Unendliche profinite Gruppen kommen natürlicherweise als Galoisgruppen unendlicher
Körpererweiterungen vor. Tatsächlich ist eine Gruppe genau dann profinit, wenn sie
isomorph zur Automorphismengruppe einer Körpererweiterung ist. Für unsere Zwecke
ist vor allem wichtig, dass die absolute Galoisgruppe eines Körpers stets profinit ist.

Definition 1.11. Die absolute Galoisgruppe GK von K ist die Galoisgruppe der Erwei-
terung Ksep/K, das heißt

GK := Gal(Ksep/K) = {σ ∈ Aut(Ksep) |σ�K = idK} .

Ist (Ki)i∈I die Familie aller endlichen Galoiserweiterungen von K, die in Ksep enthalten
sind, so wird I mit der durch i ≤ j :⇔ Ki ⊆ Kj definierten Relation≤ zu einer gerichteten
partiellen Ordnung und (I,Gal(Ki/K), πi,j) mit πi,j : σ 7→ σ �Kj für i > j zu einem
inversen System von topologischen Gruppen.

Da die Körpererweiterung K(α)/K für jedes α ∈ Ksep eine endliche Galoiserweiterung
von K ist, ist Ksep das Kompositum aller endlichen Galoiserweiterungen Ki/K, für die
Ki ⊆ Ksep gilt. Wir erhalten daher die folgende Aussage.

Theorem 1.12. Die absolute Galoisgruppe GK von K ist eine profinite Gruppe und es
gilt3

GK ∼= lim←−
i∈I

Gal(Ki/K)

für das oben beschriebene inverse System (I,Gal(Ki/K), πi,j) aller endlichen Galoisgrup-
pen über K.

Beweis. Siehe [RZ10, Theorem 2.11.1].

3Hier bezeichne ∼= die Isomorphie als topologische Gruppen, das heißt die Existenz eines Gruppeniso-
morphismus, der zugleich ein Homöomorphismus ist.
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1 Allgemeine Grundlagen

Die Galoiskorrespondenz als zentrales Resultat der (endlichen) Galoistheorie ist ein wei-
teres Beispiel für eine Aussage über endliche Gruppen, die sich auf profinite Gruppen
verallgemeinern lässt.

Theorem 1.13 (Galoiskorrespondenz unendlicher Galoiserweiterungen). Betrachte die
Menge G(K) = {F ⊆ Ksep |F/K ist eine Körpererweiterung} aller Zwischenkörper der
Erweiterung Ksep/K und die Menge S(GK) = {H ≤ GK |H ist abgeschlossen in GK}
aller abgeschlossenen Untergruppen der absoluten Galoisgruppe GK .

Dann sind die Abbildungen

G(K)→ S(GK)

F 7→ Gal(Ksep/F ) = {σ ∈ Aut(Ksep) |σ�F = idF }

und

S(GK)→ G(K)

H 7→ Fix(H) = {x ∈ Ksep |σ(x) = x für alle σ ∈ H}

zueinander inverse Bijektionen und es gilt F1 ⊆ F2 ⇔ Gal(F1/K) ⊇ Gal(F2/K) sowie
H1 ⊆ H2 ⇔ Fix(H1) ⊇ Fix(H2) für alle F1, F2 ∈ G(K) und alle H1, H2 ∈ S(GK).

Ist F = Fix(H) und H = Gal(Ksep/F ), so ist die Körpererweiterung F/K genau dann
normal (und damit eine Galoiserweiterung4), wenn H ≤ GK ein Normalteiler in GK ist.

Beweis. Siehe [RZ10, Theorem 2.11.3].

Dass jede Galoisgruppe profinit ist, folgt nun aus Theorem 1.13 und Lemma 1.8. Das
nächste Theorem komplettiert damit die am Anfang dieses Kapitels erwähnte Charakte-
risierung profiniter Gruppen als Automorphismengruppen von Galoiserweiterungen.

Theorem 1.14. Ist G eine profinite Gruppe, so existiert ein Körper K und eine Galoi-
serweiterung L/K, sodass G ∼= Gal(L/K) gilt.5

Beweis. Siehe [RZ10, Theorem 2.11.5].

4Jede Körpererweiterung F/K mit F ⊆ Ksep ist algebraisch und separabel, da Ksep/K es ist.
5Auch hier ist die Isomorphie von G und Gal(L/K) als topologische Gruppen gemeint.
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2 Bewertete Körper

2.1 Grundlagen

Ein zentraler Begriff der vorliegenden Arbeit ist der des bewerteten Körpers, eine Verall-
gemeinerung von Körpern mit Absolutbetrag bzw. Metrik. So lässt sich eine Bewertung
ebenfalls als ein Maß für die “Größe” von Körperelementen vorstellen – wobei die Bewer-
tung eines Elements umso größer ist, je näher das Element der 0 ist.

Definition 2.1. Sei K ein beliebiger Körper. Eine Bewertung auf K ist eine surjektive
Abbildung v : K → vK ∪{∞} für eine angeordnete abelsche Gruppe (vK,+), sodass die
drei Eigenschaften

v(x) =∞⇔ x = 0 (1)
v(x · y) = v(x) + v(y) (2)

v(x+ y) ≥ min {v(x), v(y)} (3)

für alle x, y ∈ K erfüllt sind. Dabei setzen wir γ+∞ =∞+ γ =∞ und min {γ,∞} = γ
für alle γ ∈ vK ∪ {∞}.

Wir nennen die Gruppe vK auch (die zu v gehörige) Wertegruppe. Ist vK = {0}, so heißt
die Bewertung v trivial.

Einen Körper K mit einer Bewertung v nennen wir auch einen bewerteten Körper und
schreiben dafür kurz (K, v).

Für jede Bewertung v auf einem beliebigen Körper K gilt v(1) = v(1 · 1) = v(1) + v(1),
also v(1) = 0. Weiter ist v(x−1) + v(x) = v(x−1 · x) = v(1) = 0, also v(x−1) = −v(x) für
alle x ∈ K×. Insbesondere gilt v(−1) = −v(−1) und damit v(−1) = 0: Wäre v(−1) > 0,
so wäre auch v(−1) + v(−1) > v(−1) > 0, analog für v(−1) < 0.

Es folgt v(−x) = v ((−1) · x) = v(−1) + v(x) = v(x) für alle x ∈ K. Außerdem ist
v(a) = v(|a|) = v(1 + · · · + 1) ≥ v(1) = 0 für alle a ∈ Z, wobei wir a mit seinem Bild
unter dem eindeutigen Ringhomomorphismus Z→ K identifizieren.

Da wir von diesen fundamentalen Eigenschaften im folgenden Teil der Arbeit oft still-
schweigend Gebrauch machen, fassen wir sie in der folgenden Bemerkung noch einmal
zusammen – und ergänzen eine weitere nützliche technische Eigenschaft.

Bemerkung 2.2. Ist (K, v) ein bewerteter Körper, so gelten folgende (Un-)Gleichungen.

v(1) = v(−1) = 0 (4)

v(x−1) = −v(x) für alle x ∈ K× (5)
v(−x) = v(x) für alle x ∈ K (6)

v(a) ≥ 0 für alle a ∈ im(Z→ K) (7)
v(x+ y) = min {v(x), v(y)} , falls v(x) 6= v(y) (8)
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2 Bewertete Körper

Beweis. Die Eigenschaften (4) bis (7) haben wir bereits behandelt. Um die Eigenschaft
(8) zu beweisen, seien x, y ∈ K mit v(x) 6= v(y) gegeben. Ohne Einschränkung gelte
v(x) < v(y). Wäre dann v(x+ y) = v(y) > v(x), so erhielten wir mit

v(x) = v(x+ y − y) ≥ min {v(x+ y), v(y)} > v(x)

einen Widerspruch. Es gilt dann also v(x+ y) = v(x) = min {v(x), v(y)}.

2.2 Bewertungsringe

In der Formulierung der obigen Definition ist der Begriff der Bewertung für unsere Zwecke
noch etwas zu eingrenzend. Verschiedene Bewertungen sollen als im Wesentlichen gleich
verstanden werden, falls es einen Isomorphismus (von angeordneten abelschen Gruppen)
der Wertegruppen gibt, der die Bewertungen sozusagen ineinander “übersetzt”. Präzisiert
wird diese Anschauung in der folgenden Definition.

Definition und Bemerkung 2.3. Zwei Bewertungen v und w auf einem Körper K
heißen äquivalent, falls ein Isomorphismus ϕ : vK → wK (von angeordneten abelschen
Gruppen) zwischen den Wertegruppen vK und wK existiert, sodass w�K× = ϕ◦ (v�K×)
gilt.

Dadurch wird eine Äquivalenzrelation auf der Menge der Bewertungen auf einem Körper
K definiert.

Für das Studium von Bewertungen bis auf Äquivalenz stellt sich der folgende algebraische
Begriff des Bewertungsrings als geeignet heraus. Tatsächlich entsprechen Bewertungsringe
und Äquivalenzklassen von Bewertungen auf einem Körper sich gegenseitig, wie wir nach
Einführung der Begrifflichkeiten zeigen.

Definition 2.4. Ein Bewertungsring auf einem Körper K ist ein Unterring (O,+, ·) von
(K,+, ·) mit O ∪ (O \ {0})−1 = K, das heißt ein Unterring, in dem für alle x ∈ K die
Eigenschaft x ∈ O ∨ x−1 ∈ O gilt.

Bemerkung 2.5. Ist O ⊆ K ein Bewertungsring auf K, so gilt bereits K = Quot (O),
denn für x ∈ K mit x /∈ O gilt wegen x−1 ∈ O schon x = 1

x−1 ∈ Quot (O).

Wie zuvor angekündigt, geben wir nun eine (kanonische) Eins-zu-Eins-Zuordnung von
Bewertungsringen und Äquivalenzklassen von Bewertungen auf einem Körper an. Wir
beginnen mit der einfachen Beobachtung, dass jede Bewertung auf einem Körper ein
Beispiel für einen Bewertungsring liefert.

Bemerkung und Definition 2.6. Ist (K, v) ein bewerteter Körper und 0 ∈ vK das
Neutralelement der Wertegruppe, so ist die Menge Ov = {x ∈ K | v(x) ≥ 0} ein Bewer-
tungsring auf K.

Wir nennen Ov dann auch den zu v gehörigen Bewertungsring.

7



2 Bewertete Körper

Beweis. Wegen v(xy) = v(x) + v(y) und v(x + y) ≥ min {v(x), v(y)} ist Ov unter der
Multiplikation und der Addition auf K abgeschlossen. Aus v(0K) = ∞ und v(1K) = 0
folgt auch 0K , 1K ∈ Ov.

Ist nun x ∈ K \ Ov, so gilt v(x) < 0, also v(x−1) = −v(x) > 0. Es folgt x−1 ∈ Ov, das
heißt Ov ist ein Bewertungsring auf K.

Bemerkung und Definition 2.7. Eine Bewertung v auf einem Körper K ist genau
dann trivial (das heißt, es ist vK = {0}), wenn Ov = K gilt.

Wir nennen den Bewertungsring O = K daher auch den trivialen Bewertungsring auf K.

Um andererseits aus einem Bewertungsring O eine Bewertung zu gewinnen, müssen wir
ein wenig mehr Aufwand betreiben. Insbesondere ist dazu aus dem Bewertungsring eine
angeordnete abelsche Gruppe zu konstruieren.

Proposition 2.8. Sei K ein Körper und O ein Bewertungsring auf K.

Dann ist (K×/O×, ·) mit der durch xO× ≤ yO× ⇔ yx−1 ∈ O definierten Relation ≤
eine angeordnete abelsche Gruppe und die Fortsetzung πO : K → K×/O× ∪ {∞} der
Restklassenprojektion K× → K×/O× mit πO(0K) =∞ ist eine Bewertung auf K.

Beweis. Offensichtlich ist K×/O× eine abelsche Gruppe. Für x′ ∈ xO× und y′ ∈ yO×
gilt y′x′−1 ∈ O genau dann, wenn yx−1 = yy′−1(y′x′−1)x′x−1 ∈ O ist, also ist die
Relation ≤ wohldefiniert. Reflexivität folgt sofort aus 1K ∈ O und Transitivität folgt,
da O multiplikativ abgeschlossen ist: Gilt nämlich xO× ≤ yO× und yO× ≤ zO×, so ist
zx−1 = (zy−1)(yx−1) ∈ O, also xO× ≤ zO×. Anti-Symmetrie folgt unmittelbar aus der
Definition von ≤.

Sind x, y ∈ K× mit yx−1 /∈ O, so gilt xy−1 = (yx−1)−1 ∈ O, da O ein Bewertungsring
auf K ist. Je zwei Elemente von K×/O× sind daher vergleichbar bezüglich ≤, es handelt
sich also um eine lineare Ordnung auf K×/O×.

Für x, y ∈ K× mit xO× ≥ yO× und beliebiges z ∈ K× gilt nun mit der Gleichung
(xz)(yz)−1 = xzz−1y−1 = xy−1 ∈ O nach Definition auch

xO× · zO× = xzO× ≥ yzO× = yO× · zO×,

das heißt ≤ ist mit der Gruppenverknüpfung auf K×/O× verträglich.

Zu zeigen bleibt, dass die Abbildung πO : K → K×/O×∪{∞} tatsächlich eine Bewertung
ist. Die Eigenschaft πO(x) = ∞ ⇔ x = 0 für alle x ∈ K folgt dabei sofort aus der
Definition von πO.

Seien nun x, y ∈ K beliebig. Im Fall x · y = 0 ist die Eigenschaft πO(x · y) = ∞ =
πO(x) + πO(y) klar. Andernfalls gilt sie wegen

πO(x · y) = xyO× = (xO× · yO×) = πO(x) + πO(y)

8



2 Bewertete Körper

ebenso.

Zuletzt seien x, y ∈ K mit xO× ≤ yO×, das heißt yx−1 ∈ O, gegeben. Dann gilt
(x+ y)x−1 = 1 + yx−1 ∈ O, also

πO(x+ y) = (x+ y)O× ≥ xO× = min
{
xO×, yO×

}
= min {πO(x), πO(y)} .

Insgesamt ist πO damit, wie behauptet, eine Bewertung auf K.

Der Bewertungsring Ow der Bewertung w = πO auf K stimmt dabei mit O überein,
denn es gilt xO× ≥ O× genau dann, wenn x = x · 1−1 ∈ O erfüllt ist. Das bedeutet
insbesondere, dass die Abbildung O 7→ πO aus Proposition 2.8, die einem Bewertungsring
auf K eine Bewertung auf K zuordnet, injektiv und die Zuordnung v 7→ Ov in die andere
Richtung surjektiv ist.

Sind v und w zwei äquivalente Bewertungen aufK, so gilt mit Definition 2.3 offensichtlich
v(x) ≥ 0 ⇔ w(x) ≥ 0 für alle x ∈ K. Damit stimmen die Bewertungsringe Ov und Ow
dann bereits überein.

Dass auch die Umkehrung gilt, zeigt die folgende Proposition.

Proposition 2.9. Sei (K, v) ein bewerteter Körper und Ov der zugehörige Bewertungs-
ring. Weiter sei πOv so definiert, wie in Proposition 2.8.

Dann gibt es genau einen (kanonischen) Isomorphismus ϕ : K×/Ov× → vK (von ange-
ordneten abelschen Gruppen) mit v�K× = ϕ ◦ (πOv�K

×). Insbesondere sind v und πOv

äquivalente Bewertungen.

Beweis. Zunächst stellen wir fest, dass die Eigenschaft v �K× = ϕ ◦ (πOv �K
×) die

Abbildung ϕ eindeutig festlegt, da πOv�K
× : K× → K×/O× surjektiv ist.

Wir betrachten nun den Kern des Gruppenhomomorphismus v�K× : K× → vK und ein
beliebiges Element x ∈ K×. Wegen v(x−1) = −v(x) gilt v(x) = 0 ∈ vK genau dann,
wenn sowohl v(x) ≥ 0 als auch v(x−1) ≥ 0 erfüllt sind. Dies ist genau dann der Fall,
wenn x ∈ O×v gilt. Folglich ist ker(v �K×) = {x ∈ K× | v(x) = 0} = O×v . Da v �K×

surjektiv ist, liefert der Homomorphiesatz nun den gewünschten Isomorphismus ϕ. Dass
v �K× = ϕ ◦ (πOv �K

×) erfüllt ist, folgt sofort aus der Definition von πOv �K
× als

Restklassenprojektion.

Weiter gilt v(x) ≤ v(y) für x, y ∈ K× genau dann, wenn v(yx−1) ≥ 0 bzw. yx−1 ∈ Ov
erfüllt ist. Dies ist nach Definition äquivalent zu xO×v ≤ yO×v . Da die Einschränkungen
von v und πOv auf K× beide surjektiv sind, ist ϕ damit auch ein Isomorphismus von
angeordneten abelschen Gruppen.

Die Essenz der bisherigen Diskussion von Bewertungsringen und ihrem Zusammenhang
mit Bewertungen fasst die folgende Proposition zusammen. Den Beweis haben wir im
Wesentlichen bereits geführt.
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2 Bewertete Körper

Proposition 2.10. Die Zuordnungen v 7→ Ov und O 7→ πO induzieren zueinander
inverse Abbildungen zwischen der Menge der Äquivalenzklassen von Bewertungen auf K
und der Menge der Bewertungsringe auf K.

Beweis. Die Aussage folgt sofort aus Proposition 2.8 und Proposition 2.9.

Sprechen wir im Folgenden von “Bewertungsringen Ov,Ow,Ou, . . . ”, so sind damit – der
in diesem Abschnitt eingeführten Notation und der Aussage aus Proposition 2.10 folgend
– stillschweigend stets “zu entsprechenden Bewertungen v, w, u, . . . gehörige Bewertungs-
ringe” gemeint. Die Wahl eines Repräsentanten aus der jeweiligen Äquivalenzklasse von
Bewertungen kann dabei beliebig erfolgen. Ein kanonischer Repräsentant ist die in Pro-
position 2.8 eingeführte Bewertung.

Wir sammeln nun noch einige wichtige Eigenschaften von Bewertungsringen, auf die wir
in den folgenden Kapiteln zurückgreifen werden.

Bemerkung 2.11. Ist O ein Bewertungsring auf K und R ein beliebiger Unterring von
K mit O ⊆ R, so ist R ebenfalls ein Bewertungsring: Für x ∈ K \ R gilt insbesondere
x /∈ O, also x−1 ∈ O ⊆ R.

Sind O1 und O2 zwei Bewertungsringe auf demselben Körper K, so ist daher auch
O1O2 = {

∑n
i=0 xi · yi |n ∈ N, xi ∈ O1, yi ∈ O2} – der kleinste Ring, der sowohl O1 als

auch O2 enthält – ein Bewertungsring auf K.6

Bemerkung und Definition 2.12. Für einen Bewertungsring Ov auf einem Körper K
ist die Menge mv := Ov \ O×v = {x ∈ K | v(x) > 0} das einzige maximale Ideal in Ov.
Den zugehörigen Restklassenkörper Ov/mv bezeichnen wir mit Kv.

Beweis. Mit O×v =
{
x ∈ Ov |x−1 ∈ Ov

}
= {x ∈ K× | v(x) = 0} erhalten wir sofort die

Identität mv := Ov \ O×v = {x ∈ K | v(x) > 0}.

Für x, y ∈ mv gilt dann v(x), v(y) > 0, also auch v(x + y) ≥ min {v(x), v(y)} > 0, das
heißt x+ y ∈ mv. Für x ∈ mv und a ∈ Ov gilt v(ax) = v(a) + v(x) ≥ v(x) > 0, also auch
ax ∈ mv. Wegen 1K /∈ Ov \ O×v = mv und 0K ∈ mv ist mv damit ein echtes Ideal in Ov.

Nun ist jedes echte Ideal von Ov bereits Teilmenge von Ov \ O×v = mv, denn andernfalls
enthielte es eine Einheit und stimmte dann schon mit dem gesamten Ring überein. Ins-
besondere ist mv damit maximales Ideal von Ov – und da es jedes echte Ideal enthält,
ist es auch das einzige maximale Ideal.

Bemerkung 2.13. Sind Ov und Ow zwei Bewertungsringe aufK mit maximalen Idealen
mv bzw. mw und ist Ov ⊆ Ow, so gilt mw ⊆ mv.

Insbesondere ist mw ⊆ Ov ein Primideal in Ov (da es ein Primideal in Ow ist) und die
Lokalisierung (Ov)mw von Ov an mw stimmt mit Ow überein.

6Tatsächlich gilt für zwei Bewertungsringe O1,O2 auf K sogar O1O2 = {x · y |x ∈ O1, y ∈ O2}, was
hier jedoch nicht weiter wichtig ist.
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Beweis. Offensichtlich gilt O×v ⊆ O×w . Ist nun x ∈ mw = Ow \O×w , so folgt also insbeson-
dere x /∈ O×v . Wäre dabei x /∈ Ov, so müsste x−1 ∈ Ov gelten, da Ov ein Bewertungsring
ist. Dann wäre aber auch x−1 ∈ Ow, also x ∈ O×w , im Widerspruch zur Voraussetzung.
Folglich gilt x ∈ Ov \ O×v = mv. Da x ∈ mw beliebig gewählt war, folgt mw ⊆ mv.

Sei nun (Ov)mw die Lokalisierung von Ov an mw und x ∈ (Ov)mw , das heißt x = ab−1

für geeignete a, b ∈ Ov mit b /∈ mw. Dann ist w(b) ≤ 0, also w(b−1) ≥ 0, das heißt
b−1 ∈ Ow. Wegen a ∈ Ov ⊆ Ow folgt x = ab−1 ∈ Ow, es gilt also (Ov)mw ⊆ Ow. Sei jetzt
andererseits x ∈ Ow beliebig. Ist x ∈ Ov, so gilt auch x ∈ (Ov)mw . Ist x /∈ Ov, dann ist
insbesondere x 6= 0 und mit w(x) ≥ 0 folgt w(x−1) ≤ 0, das heißt x−1 ∈ Ov \mw. Damit
ist x = 1 · (x−1)−1 ∈ (Ov)mw , also Ow ⊆ (Ov)mw . Insgesamt gilt also, wie behauptet,
(Ov)mw = Ow.

Bemerkung 2.14. Sei K ein Körper, sei Ov ein Bewertungsring auf K mit maxima-
lem Ideal mv und sei σ ∈ Aut(K) ein Automorphismus von K. Dann ist σ(Ov) ein
Bewertungsring auf K mit maximalem Ideal σ(mv).

Insbesondere folgt aus σ(Ov) = Ov auch schon σ(mv) = mv.

Beweis. Da σ ein Körperhomomorphismus ist, ist mit Ov auch σ(Ov) ein Unterring von
K. Für x ∈ K \ σ(Ov) ist σ−1(x) /∈ Ov, da Ov ein Bewertungsring ist folgt schon
σ−1(x−1) =

(
σ−1(x)

)−1 ∈ Ov, also x−1 ∈ σ(Ov). Damit ist σ(Ov) ein Bewertungsring
auf K.

Offensichtlich gilt σ(O×v ) = σ(Ov)× und es folgt

σ(mv) = {σ(x) ∈ K |x ∈ mv}
=
{
σ(x) ∈ K |x ∈ Ov \ O×v

}
=
{
σ(x) ∈ K |σ(x) ∈ σ(Ov) \ σ(O×v )

}
= σ(Ov) \ σ(Ov)×,

das heißt σ(mv) ist das maximale Ideal von σ(Ov).

Der letzte Satz der Behauptung folgt nun sofort aus der Eindeutigkeit des maximalen
Ideals in einem Bewertungsring.

Typische Beispiele bewerteter Körper sind Potenzreihenkörper und deren Teilkörper.

Beispiel 2.15. Sei K ein beliebiger Körper und K((T )) sei der Potenzreihenkörper

K((T )) :=

{∑
i∈Z

aiT
i | ai ∈ K, {i ∈ Z | ai 6= 0} ist nach unten beschränkt

}
.

Die Abbildung v : K((T )) → Z ∪ {∞} mit
∑

i∈Z aiT
i 7→ min {i ∈ Z | ai 6= 0} (mit der

Konvention min(∅) = ∞) definiert eine Bewertung auf K((T )). Der zugehörige Bewer-
tungsring ist Ov =

{∑∞
i=0 aiT

i | ai ∈ K
}
und der Restklassenkörper ist K((T ))v = K.
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2 Bewertete Körper

Beweis. Dass v eine Bewertung auf K((T )) ist, ist aus der Definition klar. Auch die
Gleichungen

Ov = {x ∈ K((T )) | v(x) ≥ 0} =

{ ∞∑
i=0

aiT
i | ai ∈ K

}
und

mv = {x ∈ K((T )) | v(x) > 0} =

{ ∞∑
i=1

aiT
i | ai ∈ K

}
ergeben sich sofort aus der Definition von v.

Betrachte nun den surjektiven Ringhomomorphismus ϕ : Ov � K mit
∑∞

i=0 aiT
i 7→ a0.

Offensichtlich gilt ker(ϕ) =
{∑∞

i=0 aiT
i | a0 = 0

}
= mv und der Homomorphiesatz für

Ringe liefert Ov/mv
∼= im(ϕ) = K.

Ist w eine Bewertung auf L und K ⊆ L ein Teilkörper, so ist die Einschränkung v = w�K
von w eine Bewertung auf K. Die zugehörige Wertegruppe vK = im(w�K) = w(K) ist
eine Untergruppe von wL und für die Bewertungsringe gilt

Ov = {x ∈ K |w(x) ≥ 0} = Ow ∩K.

Diese Eigenschaft der Bewertungsringe wird zum definierenden Kriterium, wenn wir an-
dersherum Bewertungen auf Körpererweiterungen fortsetzen wollen.

Definition 2.16. Sei L/K eine Körpererweiterung und seien Ov ⊆ K und Ow ⊆ L
Bewertungsringe auf K bzw. L. Gilt Ov = Ow ∩K, so heißt die Bewertung w (bzw. der
zugehörige Bewertungsring Ow) eine Fortsetzung von v (bzw. Ov) auf L.

Wir schreiben dann auch (L,w)/(K, v) und sprechen von einer Erweiterung von bewer-
teten Körpern.

Bei der späteren Betrachtung henselscher, p-henselscher und n≤-henselscher Bewertungen
spielen (eindeutige) Fortsetzungen von Bewertungsringen auf Körpererweiterungen eine
entscheidende Rolle. Wir führen nun noch eine Reihe weiterer allgemeiner Aussagen über
Bewertungsringe und Fortsetzungen auf, die wir vor allem im Kapitel 5 über n≤-hensel-
sche Bewertungen benötigen werden. Zu den Beweisen einiger Resultate verweisen wir
dabei auf [EP05].

Theorem 2.17. Sei L/K eine beliebige Körpererweiterung und O ⊆ K ein Bewertungs-
ring. Dann existiert eine Fortsetzung von O auf L.

Beweis. Siehe [EP05, Theorem 3.1.2].

Lemma 2.18. Sei L/K eine Körpererweiterung, Ov ein Bewertungsring auf K und Ow
eine Fortsetzung von Ov auf L. Dann gilt O×w ∩K = O×v und damit auch mw ∩K = mv.

Insbesondere erhalten wir kanonische Einbettungen vK ∼= K×/O×v ↪→ L×/O×w ∼= wL und
Kv = Ov/mv ↪→ Ow/mw = Lw der Wertegruppen bzw. Restklassenkörper.

12



2 Bewertete Körper

Beweis. Für x ∈ O×w ∩ K ist x ∈ Ow ∩ K = Ov und x−1 ∈ Ow ∩ K = Ov, also gilt
O×w ∩K ⊆ O×v . Für x ∈ O×v folgt andererseits, wegen Ov ⊆ Ow, auch x, x−1 ∈ Ow und
damit x ∈ O×w . Insgesamt ist dann O×w ∩ K = O×v gezeigt. Damit ist insbesondere die
Abbildung K×/O×v → L×/O×w mit x ·O×v 7→ x ·O×w wohldefiniert (wegen O×v ⊆ O×w ) und
injektiv (wegen O×w ∩K ⊆ O×v ). Dass sie auch ein Gruppenhomomorphismus ist, ist aus
der Definition der Abbildungsvorschrift klar.

Nun gilt für die maximalen Ideale von Ov bzw. Ow, wegen O×w ⊆ Ow, die Identität

mv = Ov \ O×v = (Ow ∩K) \ (O×w ∩K) = (Ow \ O×w ) ∩K = mw ∩K,

wie behauptet. Völlig analog zur Argumentation bei der Einbettung zwischen den Wer-
tegruppen folgt, dass die Abbildung Kv → Lw mit a + mv 7→ a + mw eine Einbettung
ist.

Lemma 2.19. Sei K ein Körper und f ∈ O[X] ein normiertes Polynom über einem
Bewertungsring O auf K. Dann gilt für jede Nullstelle a ∈ K von f bereits a ∈ O.

Beweis. Sei a ∈ K eine Nullstelle des normierten Polynoms f ∈ O[X], welches durch
f(X) = Xd + bd−1X

d−1 + · · ·+ b0 gegeben sei. Weiter sei m das maximale Ideal von O.
Wäre nun a /∈ O, so folgte schon a 6= 0 und a−1 ∈ m, also auch a−k ∈ m für 1 ≤ k ≤ d.
Aus f(a) = 0 erhielten wir dann durch Multiplikation mit a−d und Umstellung der
Gleichung sowie mit bi ∈ O für 0 ≤ i ≤ d die Aussage

−1 = bd−1a
−1 + · · ·+ b0a

−d ∈ m,

das heißt m = O. Das ist aber ein Widerspruch zur Definition von m.

Die folgenden drei Aussagen benötigen wir später für den Beweis des Theorems 5.5, das
einige Resultate zur Charakterisierung henselscher bzw. p-henselscher Bewertungen auf
n≤-henselsche Bewertungen überträgt.

Lemma 2.20. Sei K ein Körper und seien O1, . . . ,Om ⊆ K paarweise verschiedene
Bewertungsringe auf K. Setze R :=

⋂m
i=1Oi und pi = R ∩mi.

Dann gilt

(1) Oi = Rpi .

Falls Oi ( Oj für alle 1 ≤ i, j ≤ m mit i 6= j erfüllt ist, so gilt weiter

(2) pi ( pj für alle 1 ≤ i, j ≤ m mit i 6= j,

(3) die Ideale p1, . . . , pm ⊆ R sind gerade alle maximalen Ideale von R und

(4) für jedes Tupel (a1, . . . , am) ∈
∏m
i=1Oi gibt es ein α ∈ R, das simultan ai−α ∈ mi

für alle 1 ≤ i ≤ m erfüllt.

Beweis. Siehe [EP05, Lemma 3.2.6 und Theorem 3.2.7].
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2 Bewertete Körper

Lemma 2.21. Sei K ein Körper und O ein Bewertungsring auf K. Weiter sei L/K eine
algebraische Körpererweiterung und O1,O2 ⊆ L seien Fortsetzungen von O auf L. Ist
O1 ⊆ O2, so gilt bereits O1 = O2.

Beweis. Siehe [EP05, Lemma 3.2.8].

Einen wichtigen Bezug zwischen Fortsetzungen von Bewertungen und der Automorphis-
mengruppe der entsprechenden Körpererweiterung stellt das Konjugationstheorem her.

Theorem 2.22 (Konjugationstheorem). Sei K ein Körper und O ein Bewertungsring
auf K. Weiter sei L/K eine endliche normale Körpererweiterung und O1,O2 ⊆ L seien
Fortsetzungen von O auf L. Dann sind O1 und O2 konjugiert über K, das heißt es gibt
einen K-Automorphismus σ ∈ Aut(L/K) von L mit σ(O1) = O2.

Beweis. Siehe [EP05, Theorem 3.2.14].

Korollar 2.23. Sei (K, v) ein bewerteter Körper und L/K eine endliche Körpererwei-
terung. Dann gibt es nur endlich viele Fortsetzungen von v auf L.

Beweis. Wir wählen zunächst geeignete Elemente x1, . . . , xn ∈ L mit L = K(x1, . . . , xn)
und setzen f =

∏n
i=1 mipoK(xi). Es sei nun N ein Zerfällungskörper von f über K. Dann

ist N/K eine endliche normale Körpererweiterung und nach Theorem 2.22 gibt es damit
höchstens # Aut(N/K) ≤ deg(f)! viele Fortsetzungen von v auf N . Da jede Fortsetzung
von v auf L auch eine Fortsetzung auf N besitzt, folgt die Behauptung.

Ist (L,w)/(K, v) eine Erweiterung bewerteter Körper, so können wir nach Lemma 2.18
die Wertegruppe vK ∼= K×/O×v als Untergruppe von wL ∼= L×/O×w und den Restklas-
senkörper Kv als Teilkörper von Lw auffassen. Dies führt zu der folgenden Definition.

Definition 2.24. Sei (L,w)/(K, v) eine Erweiterung bewerteter Körper. Dann heißt

e(w/v) := e(Ow/Ov) := [wL : vK] ∈ N ∪ {∞}

der Verzweigungsindex der Erweiterung und

f(w/v) := f(Ow/Ov) := [Lw : Kv] ∈ N ∪ {∞}

der Trägheitsgrad der Erweiterung.

Gilt e(w/v) = f(w/v) = 1, so heißt die Erweiterung (L,w)/(K, v) unmittelbar.
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2 Bewertete Körper

Theorem 2.25 (Fundamentale Ungleichung). Sei (K, v) ein bewerteter Körper, L/K
eine endliche Körpererweiterung und w1, . . . , wm seien sämtliche Fortsetzungen von v
auf L. Dann gilt

m∑
i=1

e(wi/v) · f(wi/v) ≤ [L : K].

Falls die Wertegruppe vK isomorph zu Z ist und L/K eine endliche separable Körperer-
weiterung ist, so gilt sogar Gleichheit.

Beweis. Siehe [EP05, Theorem 3.3.4 und Theorem 3.3.5].

Lemma 2.26. Sei K ein Körper und f ∈ O[X] ein beliebiges Polynom über einem
Bewertungsring O auf K mit f = g1 . . . gm für geeignete in K[X] irreduzible Polynome
g1, . . . , gm ∈ K[X]. Dann gibt es in K[X] irreduzible Polynome h1, . . . , hm ∈ O[X] mit
f = h1 . . . hm.

Beweis. Siehe [EP05, Remark 4.1.2 (3)].

Korollar 2.27. Sei K ein Körper und f ∈ O[X] ein beliebiges Polynom über einem
Bewertungsring O auf K. Falls f in O[X] irreduzibel ist, so ist es bereits in K[X] irre-
duzibel.

Beweis. Wir zeigen die Kontraposition. Ist f reduzibel in K[X], so gibt es in K[X]
irreduzible Polynome g1, . . . , gm ∈ K[X] mit f = g1 . . . gm und m ≥ 2. Nach Lemma 2.26
gibt es dann Polynome h1, . . . , hm ∈ O[X] mit f = h1 . . . hm und wegen m ≥ 2 ist f
folglich reduzibel in O[X].

Sind Ov und Ow zwei Bewertungsringe auf demselben Körper mit Ov ⊆ Ow, so sagen
wir v (bzw. Ov) ist feiner als w (bzw. Ow) und entsprechend auch w (bzw. Ow) ist gröber
als v (bzw. Ov).

Haben wir nun zwei vergleichbare Bewertungsringe auf demselben Körper, so induziert
der feinere der beiden Bewertungsringe auf folgende Weise eine Bewertung auf dem Rest-
klassenkörper des gröberen Bewertungsrings.

Lemma 2.28. Sei K ein Körper und seien Ov,Ow zwei Bewertungsringe auf K mit
Ov ⊆ Ow. Dann wird durch Ov̄ := Ov/mw ein Bewertungsring auf dem Restklassenkörper
Kw definiert.

Dabei gilt O×v̄ = O×v /mw sowie mv̄ = mv/mw. Insbesondere sind Kv und (Kw)v̄ kano-
nisch isomorph.
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2 Bewertete Körper

Beweis. Zunächst ist mw ⊆ mv ein Ideal in Ov: Offensichtlich ist (mw,+) eine Unter-
gruppe der additiven Gruppe (Ov,+) und für a ∈ Ov, x ∈ mw gilt insbesondere a ∈ Ow,
also auch a · x ∈ mw. Daher ist Ov̄ = Ov/mw ⊆ Ow/mw ein Unterring von Kw.

Sei nun x̄ ∈ Kw \ Ov̄. Es ist dann x̄ = x+ mw für ein geeignetes x ∈ Ow \ Ov ⊆ K \ Ov.
Da Ov ein Bewertungsring auf K ist, folgt x−1 ∈ Ov und damit x̄−1 = x−1 + mw ∈ Ov̄.
Also ist Ov̄ ein Bewertungsring auf Kw.

Für beliebiges a+mw ∈ O×v /mw mit a ∈ O×v ist (a+mw)−1 = a−1 +mw ∈ O×v /mw ⊆ Ov̄,
also a+ mw ∈ O×v̄ , das heißt insgesamt O×v /mw ⊆ O×v̄ .

Sei jetzt α ∈ O×v̄ beliebig. Es ist dann α = a + mw und α−1 = b + mw für geeignete
a, b ∈ Ov \mw mit 1−ab ∈ mw ⊆ mv. Folglich gilt ab /∈ mv, denn sonst wäre 1 ∈ mv, und
damit ist wegen b ∈ Ov insbesondere a /∈ mv. Also gilt a ∈ Ov \mv = O×v und daher ist
α = a+mw ∈ O×v /mw. Da α ∈ O×v̄ beliebig gewählt war, folgt damit auch O×v̄ ⊆ O×v /mw.
Insgesamt ist O×v̄ = O×v /mw gezeigt.

Weiter ist (O×v /mw)∪(mv/mw) = Ov/mw = Ov̄ und für a ∈ O×v und b ∈ mv ist a−b /∈ mv,
also (O×v /mw) ∩ (mv/mw) = ∅. Das maximale Ideal von Ov̄ erfüllt daher Identität

mv̄ = Ov̄ \ O×v̄ = Ov̄ \ (O×v /mw) = mv/mw,

und nach dem zweiten Isomorphiesatz für Moduln über dem Ring Ov folgt

Kv = Ov/mv
∼= (Ov/mw)/(mv/mw) = Ov̄/mv̄ = (Kw)v̄,

wobei der Isomorphismus kanonisch durch a+ mv 7→ (a+ mw) + mv̄ gegeben ist.

Dieser Prozess lässt sich auch umkehren, wie die folgenden beiden Bemerkungen zeigen.

Bemerkung und Definition 2.29. Sei (K, v) ein bewerteter Körper und w eine Be-
wertung auf dem Restklassenkörper Kv = Ov/mv. Dann ist die Menge

Ow◦v := {x ∈ K |x+ mv ∈ Ow} ⊆ Ov

ein Bewertungsring auf K mit maximalem Ideal mw◦v = {x ∈ K |x+ mv ∈ mw} und
Restklassenkörper Ow◦v/mw◦v ∼= (Kv)w.

Die zu Ow◦v gehörige Bewertung w ◦ v : K → K×/O×w◦v ∪ {∞} auf K heißt dann
Komposition von w und v.

Beweis. Für x, y ∈ Ow◦v gilt

(x+ y) + mv = (x+ mv) + (y + mv) ∈ Ow und
(x · y) + mv = (x+ mv) · (y + mv) ∈ Ow.

Weiter ist 0 + mv ∈ Ow und 1 + mv ∈ Ow, also ist Ow◦v insgesamt ein Unterring von K.
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2 Bewertete Körper

Für x ∈ K \ Ow◦v ist nun x+ mv /∈ Ow, also x−1 + mv = (x+ mv)
−1 ∈ Ow◦v, das heißt

Ow◦v ist ein Bewertungsring.

Es gilt O×w◦v = {x ∈ K |x+ mv ∈ O×w} und damit

mw◦v = Ow◦v \ O×w◦v =
{
x ∈ K |x+ mv ∈ Ow \ O×w

}
= {x ∈ K |x+ mv ∈ mw} .

Betrachte nun die Epimorphismen

α : Ow◦v → Ow und π : Ow → Ow/mw = (Kv)w

x 7→ x+ mv x̄ 7→ x̄+ mw

und den Kern der Hintereinanderausführung π ◦ α dieser Abbildungen. Es gilt

ker(π ◦ α) = {x ∈ K | (x+ mv) + mw = mw} = {x ∈ K |x+ mv ∈ mw} = mw◦v

und damit Ow◦v/mw◦v ∼= (Kv)w.

Bemerkung 2.30. Sind K, Ov und Ow sowie Ov̄ wie in Lemma 2.28, so gilt nach
Definition 2.29 die Identität

Ov̄◦w = {x ∈ K |x+ mw ∈ Ov̄} = {x ∈ K |x+ mw ∈ Ov/mw} = Ov,

das heißt v und v̄ ◦ w sind äquivalent.

Andererseits ist für beliebige Bewertungen v auf K und w auf Kv auch die Gleichung

Ow◦v = Ow◦v/mv = {x ∈ K |x+ mv ∈ Ow} /mv

= {x+ mv |x ∈ K,x+ mv ∈ Ow}
= Ow

erfüllt.

Zum Abschluss der allgemeinen Einführung in das Thema der bewerteten Körper betrach-
ten wir noch die Fortsetzung der Restklassenprojektion zu einer Abbildung zwischen den
Polynomringen Ov[X] und Kv[X].

Notation 2.31. Für einen bewerteten Körper (K, v) sei

resKv : Ov[X]→ Kv[X]∑
aiX

i 7→
∑

(ai + mv)X
i

die natürliche Fortsetzung der Restklassenprojektion Ov → Ov/mv zu einem Ringhomo-
morphismus zwischen den Polynomringen Ov[X] und Kv[X].
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2 Bewertete Körper

Bemerkung 2.32. Sei K ein Körper mit einer Bewertung v und sei f ∈ Ov[X] ein
Polynom über dem Bewertungsring. Für g = resKv(f) ∈ Kv[X] gilt dann

g′(X) =
∑

i(ai + mv)X
i−1 =

∑
(iai + mv)X

i−1 = resKv

(∑
iaiX

i−1
)

=
(
resKv(f

′)
)

(X)

und für jedes a ∈ Ov ist

g(a+ mv) =
∑

(ai + mv)(a+ mv)
i =

∑
(ai + mv)(a

i + mv) =
∑

aia
i + mv

= f(a) + mv.

Bemerkung 2.33. Falls f ∈ Ov[X] ein normiertes Polynom ist, für das resKv(f) ∈
Kv[X] irreduzibel in Kv[X] ist, so ist f bereits irreduzibel in Ov[X]. Nach Lemma 2.19
ist f dann auch in K[X] irreduzibel.

Beweis. Ist f = g·h für zwei Polynome g, h ∈ Ov[X], so ist resKv(f) = resKv(g)·resKv(h).
Da f normiert ist können wir ohne Einschränkung annehmen, dass dabei auch g und h
normiert sind. Dann ist aber deg(g) = deg (resKv(g)) und deg(h) = deg (resKv(h)), das
heißt eines der Polynome g, h ist konstant.

2.3 Bewertungen und Topologie

Die eingangs erwähnte Vorstellung von bewerteten Körpern als einer Verallgemeinerung
von Körpern mit Absolutbetrag bzw. Metrik spiegelt sich auch in der von einem Bewer-
tungsring induzierten Topologie wieder.

Begreifen wir die Bewertung v auf einem Körper K als Maß für die Größe von Elementen
von K, so liegt es nahe, die Menge {x ∈ K | v(x− x0) > γ} für x0 ∈ K und γ ∈ vK als
offenen Ball um x0 mit Radius γ zu bezeichnen.

Tatsächlich erzeugt die Menge aller dieser Bälle eine (mit den Körperoperationen ver-
trägliche) Topologie auf K, die einige weitere schöne und nützliche Eigenschaften hat.

Dies zeigt, unter Beachtung der Identität

a ·mv + x0 = {az + x0 ∈ K | z ∈ mv}
=
{
x ∈ K |x− x0 ∈ a−1mv

}
=
{
x ∈ K | v(x− x0) > v(a−1)

}
,

das Lemma 2.36. Die von diesen Bällen erzeugte Topologie ist – überraschenderweise –
dieselbe wie die von “abgeschlossenen Bällen” {x ∈ K | v(x− x0) ≥ γ} erzeugte.

Bemerkung und Definition 2.34. Sei K ein Körper und Ov ein Bewertungsring auf
K. Dann ist die Menge B = {a · Ov + x | a ∈ K×, x ∈ K} die Basis einer Topologie Tv
auf K, genannt die von v (bzw. Ov) induzierte Topologie.
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2 Bewertete Körper

Beweis. Offensichtlich gilt K =
⋃
x∈K Ov + x mit Ov + x ∈ B für alle x ∈ K.

Wir müssen nun noch zeigen, dass der Schnitt zweier Mengen aus B wieder in B liegt.
Seien dazu a, b ∈ K× und x, y ∈ K beliebig. Ohne Einschränkung sei v(a) ≥ v(b). Weiter
nehmen wir an, dass (aOv + x) ∩ (bOv + y) 6= ∅ gilt. Für z ∈ (aOv + x) ∩ (bOv + y) gilt
dann z−x ∈ aOv und da aOv additiv abgeschlossen ist, folgt aOv+(z−x) ⊆ aOv. Wegen
−1 ∈ Ov ist auch x− z = −1(z−x) ∈ aOv und es gilt daher sogar aOv + (z−x) = aOv,
also aOv + z = aOv + x. Völlig analog folgt bOv + y = bOv + z.

Für jedes e ∈ aOv gibt es ein e0 ∈ Ov mit e = a · e0, das heißt es gilt

v(e) = v(a · e0) = v(a) + v(e0) ≥ v(a) ≥ v(b),

also v(eb−1) ≥ 0. Damit ist nun e = b · eb−1 ∈ b · Ov. Es gilt also aOv ⊆ bOv und daher
auch aOv + z ⊆ bOv + z.

Insgesamt erhalten wir die Beziehung aOv + x = aOv + z ⊆ bOv + z = bOv + y, also gilt
(aOv + x) ∩ (bOv + y) = aOv + x ∈ B.

Bemerkung 2.35. Die Abbildungen µa : K → K mit x 7→ a · x und td : K → K mit
x 7→ x+d sind für alle a, b ∈ K stetig bezüglich Tv. Mit Ausnahme von µ0 sind alle diese
Abbildungen Homöomorphismen mit den stetigen Umkehrabbildungen (µa)

−1 = µa−1

und (td)
−1 = t−d.

Lemma 2.36. Die Menge Bm = {a ·mv + x | a ∈ K×, x ∈ K} bildet ebenfalls eine Basis
von Tv.

Beweis. Seien a ∈ mv und b ∈ Ov. Dann gilt v(a · b) = v(a) + v(b) ≥ v(a) > 0 und damit
a · b ∈ mv, also insgesamt mv · Ov ⊆ mv. Wegen 1 ∈ Ov folgt auch mv ⊆ mv · Ov. Wir
erhalten also

mv = mv · Ov =
⋃
z∈mv

z · Ov ∈ Tv

und mit der Stetigkeit von µa−1 und t−d folgt auch a · mv + d = (td ◦ µa)(mv) ∈ Tv für
alle a ∈ K× und alle d ∈ K, das heißt Bm ⊆ Tv.

Für x ∈ K und U ∈ Tv mit x ∈ U gibt es nun ein a ∈ K× mit a ·mv+x ⊆ a ·Ov+x ⊆ U ,
also ist Bm sogar eine Basis für Tv.

Für x, y ∈ K mit x 6= y ist a := (x− y) ∈ K× und y ∈ a ·mv + y. Wegen v(x− y) = v(a)
ist weiter x− y /∈ a ·mv, also x /∈ a ·mv + y, das heißt die Topologie Tv auf K erfüllt das
erste Trennungsaxiom.

Da zwei Mengen aus B, wie im Beweis von Bemerkung 2.34 gesehen, entweder disjunkt
sind oder eine von ihnen bereits Teilmenge der anderen ist, ist die Topologie Tv damit
sogar hausdorffsch.

Darüber hinaus ist sie sogar eine Körper-Topologie auf dem zugrunde liegenden Körper.
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2 Bewertete Körper

Proposition 2.37. Sei K ein Körper und Ov ein Bewertungsring auf K, sowie Tv die
von Ov induzierte Topologie. Dann ist (K, Tv) ein topologischer Körper.

Beweis. Für den gesamten Beweis seien a ∈ K× und d ∈ K, das heißt a · Ov + d ∈ B
beliebig.

Seien nun zunächst x, y ∈ K so, dass µ(x, y) = x · y ∈ a · Ov + d erfüllt ist. Wähle ein
Element b ∈ K× mit

v(b) ≥ max {v(a), v(a)− v(x), v(a)− v(y), 0} .

Dann gilt v(b2) ≥ v(b) ≥ v(a) sowie v(bx) = v(b) + v(x) ≥ v(a) und analog v(by) ≥ v(a).
Nun ist die Menge U = (b · Ov + x) × (b · Ov + y) eine offene Umgebung von (x, y) in
K ×K, für die

µ(U) = b2 · Ov + bx · Ov + by · Ov + x · y
⊆ a · Ov + a · Ov + a · Ov + x · y
= a · Ov + x · y = a · Ov + d

gilt. Die Gleichheit in der letzten Zeile folgt dabei wie im Beweis von Bemerkung 2.34
aus x · y ∈ a · Ov + d. Zusammengefasst erhalten wir eine offene Menge U ⊆ K ×K mit
(x, y) ∈ U ⊆ µ−1(a · Ov + d), das heißt µ ist stetig.

Seien jetzt x, y ∈ K so, dass α(x, y) = x+ y ∈ a · Ov + d erfüllt ist. Dann ist die Menge
U = (a · Ov + x)× (a · Ov + y) eine offene Umgebung von (x, y) in K ×K mit

α(U) = a · Ov + a · Ov + (x+ y) = a · Ov + (x+ y) = a · Ov + d.

Es gilt also (x, y) ∈ U ⊆ α−1(a · Ov + d), das heißt α ist stetig.

Abschließend sei nun x ∈ K× so, dass ι(x) = x−1 ∈ a · Ov + d erfüllt ist. Wähle b ∈ K×
mit v(b) ≥ max

{
v(x), v(ax2)

}
. Dann ist U = (b · mv + x) ∩K× nach Lemma 2.36 eine

offene Umgebung von x in K× und für y ∈ U \x gilt y−x ∈ (b ·mv), also v(y−x) > v(b).
Wegen

v(b) ≥ v(x) = v (y + (x− y)) ≥ min {v(y), v(y − x)}

folgt min {v(y), v(y − x)} 6= v(y − x), also v(x) ≥ v(y). Wir erhalten damit die Unglei-
chung v(axy) ≤ v(ax2) ≤ v(b) ≤ v(y − x), das heißt v(axy) ≤ v(y − x), womit

v(a) ≤ v
(
x−1y−1(y − x)

)
= v(y−1 − x−1)

gilt. Es folgt y−1 − x−1 ∈ a · Ov, also ι(y) = y−1 ∈ a · Ov + x−1 = a · Ov + d. Insgesamt
erhalten wir x ∈ U ⊆ ι−1 ((a · Ov + d) ∩K×), das heißt ι ist stetig.

Später werden wir sehen, dass alle nicht-trivialen henselschen (bzw. p-henselschen bzw.
n≤-henselschen) Bewertungen auf einem Körper dieselbe Topologie induzieren. Wir füh-
ren dafür jetzt schon den Begriff der Unabhängigkeit zweier Bewertungsringe ein.
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2 Bewertete Körper

Definition 2.38. Zwei Bewertungsringe Ov und Ow auf einem Körper K heißen unab-
hängig, falls sie unterschiedliche Topologien induzieren.

Eine rein algebraische Charakterisierung der Unabhängigkeit zweier Bewertungsringe lie-
fert das folgende Lemma.

Lemma 2.39. Sei K ein Körper und v, w seien zwei Bewertungen auf K. Die Bewer-
tungsringe Ov und Ow sind genau dann unabhängig, wenn OvOw = K gilt.

Beweis. Siehe [EP05, Theorem 2.3.4].
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3 Henselsche Bewertungen

3.1 Grundlagen

Es gibt eine Reihe von Charakterisierungen henselscher Bewertungen, die alle als Defini-
tion des Begriffs in Frage kämen (siehe Theorem 3.4). Obwohl der Name eigentlich daher
stammt, dass diese Bewertungen die Aussage von Hensels Lemma erfüllen, hat sich die
folgende Eigenschaft in der Literatur als Standarddefinition etabliert.

Definition und Bemerkung 3.1. Eine Bewertung v auf einem Körper K (bzw. der
bewertete Körper (K, v)) heißt henselsch, falls der zugehörige Bewertungsring Ov eine
eindeutige Fortsetzung auf den (einmalig a priori festgelegten) algebraischen Abschluss
Kalg von K hat.

Da je zwei algebraische Abschlüsse von K isomorph zueinander sind, hat Ov dann sogar
eine eindeutige Fortsetzung auf jeden algebraischen Abschluss von K.

Bemerkung 3.2. Ein bewerteter Körper (K, v) ist genau dann henselsch, wenn Ov eine
eindeutige Fortsetzung auf jede algebraische Körpererweiterung L/K hat.

Beweis. Sei (K, v) ein henselsch bewerteter Körper und L/K eine algebraische Körperer-
weiterung. Ohne Einschränkung sei L ⊂ Kalg. Weiter seien Ow und Ow′ zwei Fortset-
zungen von Ov auf L und Oŵ bzw. Oŵ′ seien Fortsetzungen von Ow bzw. Ow′ auf Kalg.

Dann sind Oŵ und Oŵ′ auch Fortsetzungen von Ov. Da (K, v) henselsch ist gilt daher
bereits Oŵ = Oŵ′ und es folgt

Ow = Oŵ ∩ L = Oŵ′ ∩ L = Ow′ ,

also hat Ov genau eine Fortsetzung auf L.

Die Umkehrung ist klar, da Kalg/K eine algebraische Körpererweiterung ist.

Beispiel 3.3. Die triviale Bewertung auf einem beliebigen Körper ist henselsch.

Beweis. Sei L/K eine algebraische Körpererweiterung von K und Ov ⊆ L ein Bewer-
tungsring auf L mit Ov ∩K = K, das heißt Ov ⊇ K sei eine Fortsetzung des trivialen
Bewertungsrings auf K. Wir zeigen, dass v(x) ≤ 0 für alle x ∈ L \ {0L} gilt. Damit folgt
dann sofort v(x) ≥ 0 für alle x ∈ L, also Ov = L.

Sei also x ∈ L \ {0} beliebig. Da L/K algebraisch ist, existieren dann d ∈ N und Koef-
fizienten ai ∈ K für 0 ≤ i ≤ d mit ad 6= 0 und adxd + · · · + a0 = 0. Multiplizieren wir
diese Gleichung für m = min {i | ai 6= 0} ∈ N0 mit x−m, so ergibt sich

adx
d−m + ad−1x

d−1−m + · · ·+ am+1x+ am = 0,
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3 Henselsche Bewertungen

also am = −
∑d

i=m+1 aix
i−m = −

∑
i∈I aix

i−m für I = {i ∈ N |m+ 1 ≤ i ≤ d, ai 6= 0}.
Dabei ist I 6= ∅, denn sonst wäre amxm = 0 und damit x = 0.

Wegen ai ∈ K \ {0} für alle i ∈ I ∪ {m} und K ⊆ Ov folgt v(
∑

i∈I aix
i−m) = v(am) = 0

sowie

v

(∑
i∈I

aix
i−m

)
≥ max

{
v(aix

i−m) | i ∈ I
}

= max {v(ai) + (i−m) · v(x) | i ∈ I}
= max {(i−m) · v(x) | i ∈ I}
= k · v(x)

für ein k ∈ N. Insgesamt ergibt sich k · v(x) ≤ 0 und damit v(x) ≤ 0. Da x ∈ L \ {0}
beliebig gewählt war, folgt die Behauptung.

Wir listen nun einige der erwähnten Charakterisierungen henselscher Bewertungen auf.

Theorem 3.4. Sei (K, v) ein bewerteter Körper. Dann sind äquivalent:

(1) Die Bewertung v ist henselsch.

(2) Der Bewertungsring Ov hat eine eindeutige Fortsetzung auf den separablen Ab-
schluss Ksep von K.

(3) Für jede Galoiserweiterung L/K hat Ov eine eindeutige Fortsetzung auf L.

(4) Es gilt die Aussage von Hensels Lemma: Jedes Polynom f ∈ Ov[X], für das
resKv(f) ∈ Kv[X] eine einfache Nullstelle α ∈ Kv im Restklassenkörper besitzt,
hat eine Nullstelle a ∈ Ov mit a+ mv = α.

(5) Jedes Polynom f ∈ Ov[X] der Form

f(X) = Xd +Xd−1 + ad−2X
d−2 + · · ·+ a0

mit d = deg(f) ≥ 1 und ad−2, . . . , a0 ∈ mv besitzt eine Nullstelle in K (äquivalent7:
in Ov).

Beweis. Siehe [EP05, Lemma 4.1.1 und Theorem 4.1.3].

Bemerkung 3.5. Die Nullstelle a ∈ Ov in Kriterium (4) aus Theorem 3.4 ist durch
a+ mv = α bereits eindeutig bestimmt.

Wäre nämlich b ∈ Ov eine weitere Nullstelle von f mit b + mv = α, so gäbe es ein
Polynom g ∈ Ov[X] mit

f(X) = (X − a) · (X − b) · g(X) und daher
resKv(f)(X) = (X − α) · (X − α) · resKv(g)(X),

7Nach Lemma 2.19 liegt jede Nullstelle von f in K bereits in Ov.
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3 Henselsche Bewertungen

das heißt α wäre entgegen der Voraussetzungen keine einfache Nullstelle von resKv(f) in
Kv.

Ein Beispiel für eine nicht-triviale henselsche Bewertung ist der Potenzreihenkörper
K((T )) mit der zuvor diskutierten Bewertung.

Beispiel 3.6. Die Bewertung v(
∑

i∈Z aiT
i) = min {i ∈ Z | ai 6= 0} auf dem Potenzreihen-

Körper

K((T )) :=

{∑
i∈Z

aiT
i | ai ∈ K, {i ∈ Z | ai 6= 0} ist nach unten beschränkt

}

aus Beispiel 2.15 ist henselsch.

Beweisskizze. Wir verwenden die Charakterisierung (5) aus Theorem 3.4. Betrachte also
ein Polynom f(X) ∈ Ov[X] der Form

f(X) = Xd +Xd−1 + αd−2X
d−2 + · · ·+ α0

mit d = deg(f) ≥ 1 und αd−2, . . . , α0 ∈ mv. Dabei seien geeignete Koeffizienten ak,i ∈ K
für 0 ≤ k ≤ d− 2 und i ∈ N so gewählt, dass αk =

∑∞
i=1 ak,iT

i für 0 ≤ k ≤ d− 2 gilt.

Induktiv lässt sich zeigen, dass für β ∈ K((T )) mit β =
∑∞

i=0 biT
i die Gleichung

βk =
∞∑
i=0

 k∑
(ij)=i

k∏
j=1

bij

T i

gilt, wobei die Summe
∑k

(ij)=i über alle Tupel (i1, . . . , ik) ∈ Nk mit
∑k

j=1 ij = i läuft.
Das Element f(β) lässt sich dann schreiben als f(β) =

∑∞
i=0 fiT

i mit

f0 =
d∑

(ij)=0

bi1 · · · bid +
d−1∑

(ij)=0

bi1 · · · bid−1
= bd0 + bd−1

0

und

fi =
d∑

(ij)=i

bi1 · · · bid +
d−1∑

(ij)=i

bi1 · · · bid−1

+

d−1∑
(ij)=i

bi1 · · · bid−2
· ad−2,id−1

+ · · ·+
2∑

(ij)=i

bi1 · a1,i2 + a0,i

für i > 0. Zum Term fi tragen insbesondere nur die bj mit j ≤ i bei. Daher lässt sich die
Folge (bi)i∈N rekursiv so wählen, dass fi = 0 für alle i ∈ N und damit f(β) = 0 gilt.

24



3 Henselsche Bewertungen

3.2 Die Henselisierung eines bewerteten Körpers

Ähnlich wie jeder Körper mit einem Absolutbetrag bzw. einer Metrik eine Vervollständi-
gung besitzt, hat auch jeder bewertete Körper eine (minimale) henselsche Erweiterung.
Die charakteristischen Eigenschaften dieser sogenannten Henselisierung eines bewerteten
Körpers (K, v), die bis auf eindeutigen K-Isomorphismus eindeutig ist, sind Inhalt dieses
Kapitels.

Lemma 3.7. Sei (K, v) ein bewerteter Körper und w eine Fortsetzung von v auf Ksep.
Dann ist Dw,v := {σ ∈ GK |σ(Ov) = Ov} eine abgeschlossene Untergruppe der absoluten
Galoisgruppe GK und ihr Fixkörper Kh(w) = Fix(Dw,v) zusammen mit der Bewertung
w�Kh(w) ist henselsch. Außerdem sind Dw,v und Dw′,v für zwei Fortsetzungen w,w′ von
v auf Ksep zueinander konjugiert, das heißt Kh(w) und Kh(w′) isomorph.

Beweis. Siehe [EP05, Lemma 5.2.1].

Definition 3.8. Seien K, v und w sowie Kh(w) wie in Lemma 3.7. Dann heißt der
bewertete Körper

(
Kh(w), w�Kh(w)

)
eine Henselisierung von (K, v).

Eine universelle Eigenschaft für Henselisierungen liefert das folgende Theorem, aus dem
außerdem die Eindeutigkeit bis auf (eindeutigen) K-Isomorphismus folgt.

Theorem 3.9. Sei (K, v) ein bewerteter Körper, Kh/K eine Körpererweiterung und vh

eine Fortsetzung von v auf Kh.

Dann ist (Kh, vh) genau dann eine Henselisierung von (K, v), wenn die beiden folgenden
Bedingungen erfüllt sind:

(1) (Kh, vh) ist henselsch und

(2) für jede Erweiterung von bewerteten Körpern (L,w) ⊇ (K, v) für die (L,w) hen-
selsch ist, existiert ein eindeutig bestimmter Körperhomomorphismus ι : Kh ↪→ L
mit ι(Ovh) = Ow ∩ ι(Kh) und ι�K = idK .

Beweis. Siehe [EP05, Theorem 5.2.2].

Insbesondere ist ein bewerteter Körper genau dann henselsch, wenn er seine eigene Hen-
selisierung ist.

Korollar 3.10. Sei (L,w) ⊇ (K, v) eine Erweiterung bewerteter Körper und (Kh, vh)
eine Henselisierung von (K, v) mit (Kh, vh) ⊇ (L,w). Dann ist (Kh, vh) auch eine Hen-
selisierung von (L,w).
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3 Henselsche Bewertungen

Beweis. Sei (Lh, wh) eine Henselisierung von (L,w). Dann ist (Lh, wh) insbesondere hen-
selsch und eine Erweiterung von (K, v). Nach Theorem 3.9 für (K, v) und (Kh, vh) gibt
es also genau einen Körperhomomorphismus ι : Kh ↪→ Lh mit ι(Ovh) = Owh ∩ ι(Kh)
und ι�K = idK .

Außerdem ist auch (Kh, vh) henselsch und nach Voraussetzung eine Erweiterung von
(L,w). Nach Theorem 3.9 für (L,w) und (Lh, wh) gibt es damit genau einen Körperho-
momorphismus κ : Lh ↪→ Kh mit κ(Owh) = Ovh ∩ κ(Lh) und κ�L = idL.

Dann ist κ ◦ ι : Kh ↪→ Kh ein Körperhomomorphismus mit

(κ ◦ ι)(Ovh) = κ
(
Owh ∩ ι(Kh)

)
= κ(Owh) ∩ (κ ◦ ι)(Kh)

= Ovh ∩ κ(Lh) ∩ (κ ◦ ι)(Kh) = Ovh ∩ (κ ◦ ι)(Kh),

da κ injektiv ist und da (κ ◦ ι)(Kh) ⊆ κ(Lh) gilt. Wegen ι�K = κ�K = idK ist außerdem
auch (κ ◦ ι)�K = idK erfüllt. Wieder nach Theorem 3.9 für (K, v) und (Kh, vh) gibt es
jedoch nur genau einen Körperhomomorphismus, der diese Eigenschaften hat. Sie gelten
aber offensichtlich auch für idKh , also folgt bereits κ ◦ ι = idKh .

Damit ist κ surjektiv und insgesamt ein Isomorphismus zwischen Lh und Kh, der die
Eigenschaft κ(Owh) = Ovh ∩ κ(Lh) = Ovh erfüllt. Also ist (Kh, vh) wie behauptet auch
eine Henselisierung von (L,w).

Eine wichtige Eigenschaft der Henselisierung ist, dass sie stets eine unmittelbare Er-
weiterung des zugrunde liegenden bewerteten Körpers ist, das heißt Wertegruppe und
Restklassenkörper verändern sich beim Übergang zur Henselisierung nicht.

Theorem 3.11. Ist (K, v) ein bewerteter Körper und (Kh, vh) eine Henselisierung von
(K, v), so ist die Erweiterung (Kh, vh)/(K, v) unmittelbar.

Beweis. Siehe [EP05, Theorem 5.2.5].

Beispiel 3.12. Betrachte nun den Quotientenkörper K(T ) des Polynomrings über K,
das heißt

K(T ) :=

{∑
i∈Z

aiT
i | ai ∈ K, {i ∈ Z | ai 6= 0} ist endlich

}
⊆ K((T )),

sowie für v wie in Beispiel 3.6 die Bewertung v �K(T ) auf K(T ). Die Wertegruppe
im(v�K(T )) dieser Bewertung ist nach Definition von v die Gruppe Z und der Restklas-
senkörper K(T ) (v�K(T )) ist K.

Ist (K(T ))sep ein separabler Abschluss von K(T ), so ist L = (K(T ))sep∩K((T )) mit der
Bewertung v�L eine Henselisierung von (K(T ), v�K(T )).

Um zu zeigen, dass (L, v�L) henselsch ist, benötigen wir noch die folgende Aussage.
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3 Henselsche Bewertungen

Lemma 3.13. Sei (L,w)/(K, v) eine Erweiterung bewerteter Körper und K sei relativ
separabel abgeschlossen in L, das heißt jedes über K separable Element von L liege bereits
in K. Dann ist (K, v) henselsch, falls (L,w) henselsch ist.

Beweis. Siehe [EP05, Korollar 4.1.5].

Beweis von Beispiel 3.12. Die Aussagen über Wertegruppe und Restklassenkörper folgen
genau wie in Beispiel 2.15.

Wegen K(T ) ⊆ L ⊆ (K(T ))sep ist (K(T ))sep ein separabler Abschluss von L, das heißt
L ist relativ separabel abgeschlossen in K((T )). Nach Beispiel 3.6 ist K((T )) außerdem
henselsch, also folgt mit Lemma 3.13, dass auch (L, v�L) henselsch ist.

Damit lässt sich, nach Theorem 3.9, jede Henselisierung von K(T ) in L einbetten. Ins-
besondere existiert auch eine Henselisierung F von K(T ) mit F ⊆ L und der Bewertung
v�F auf F .

Sei nun α ∈ L ein beliebiges Element. Da die Wertegruppe und der Restklassenkör-
per der Bewertung v � K(T ) mit vK bzw. Kv übereinstimmen, ist die Erweiterung
K((T )), v)/K(T ), v �K(T ) unmittelbar. Damit ist auch (F (α), v �F (α)) eine unmittel-
bare Erweiterung von (F, v�F ). Weiter ist α ∈ L separabel über K(T ), also auch über
F , das heißt F (α)/F ist eine endliche separable unmittelbare Körpererweiterung. We-
gen im(v �F ) = Z und da (F, v �F ) henselsch ist, folgt mit Theorem 2.25 nun bereits
[F (α) : F ] = e(v�F (α)/v�F ) · f(v�F (α)/v�F ) = 1, also α ∈ F . Da α ∈ L beliebig gewählt
war, erhalten wir L ⊆ F ⊆ L. Wie behauptet ist (L, v�L) also eine Henselisierung von
(K(T ), v�K(T )).

3.3 Die kanonische henselsche Bewertung

Die Beweise der folgenden Aussagen führen wir im Kapitel 5 allgemeiner für n≤-hen-
selsche Bewertungen. Die entsprechenden Aussagen für henselsche Bewertungen, die wir
nun formulieren wollen, folgen dann als einfache Korollare, da jede henselsche Bewertung
für jedes n ∈ N auch n≤-henselsch ist. Alternativ finden sich sämtliche Beweise dieses
Abschnitts auch in [EP05, Section 4.4].

Theorem 3.14. Sei K ein Körper und seien Ov,Ow ( K zwei nicht-triviale unabhängige
henselsche Bewertungsringe auf K. Dann ist K = Ksep.

Beweis. Siehe Korollar 5.11 oder [EP05, Theorem 4.4.1].
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3 Henselsche Bewertungen

Wir partitionieren nun die Menge H(K) der henselschen Bewertungsringe auf K in die
beiden Teilmengen

H1(K) = {Ov ∈ H(K) | (Kv)sep 6= Kv} und
H2(K) = {Ov ∈ H(K) | (Kv)sep = Kv}

Behauptung 3.15. Die Menge H1(K) ist durch ⊆ linear geordnet und für alle Ov ∈
H2(K) und Ow ∈ H1(K) gilt Ov ⊆ Ow.

Beweis. Siehe Korollar 5.15 oder [EP05, Theorem 4.4.2].

Behauptung 3.16. Durch Ov∗ :=
⋂
H1(K) wird ein henselscher Bewertungsring auf K

definiert.

Beweis. Der Beweis funktioniert genau wie der von Behauptung 5.16. Siehe alternativ
auch [EP05, Theorem 4.4.2].

Behauptung 3.17. Falls H2(K) 6= ∅ ist, so gibt es ein eindeutiges bezüglich ⊆ maxi-
males Element in H2(K).

Beweis. Der Beweis funktioniert genau wie der von Behauptung 5.19. Siehe alternativ
auch [EP05, Theorem 4.4.2].

Diese Aussagen erlauben uns, die kanonische henselsche Bewertung auf einem Körper K
wie folgt zu definieren.

Definition 3.18. Sei K ein beliebiger Körper und sei

H1(K) = {Ov ∈ H(K) | (Kv)sep 6= Kv} und
H2(K) = {Ov ∈ H(K) | (Kv)sep = Kv} .

Falls H2(K) 6= ∅ ist, sei OK das maximale Element von H2(K). Andernfalls setzen wir
OK := Ov∗ =

⋂
H1(K). Die zu OK gehörige Bewertung auf K sei mit vK bezeichnet.

Die Bewertung vK heißt dann die kanonische henselsche Bewertung auf K, der zugehörige
Bewertungsring OK heißt der kanonische henselsche Bewertungsring auf K.

Gilt Ksep = K, so liegt jeder henselsche Bewertungsring auf K in H2(K), die kanonische
henselsche Bewertung ist dann die gröbste henselsche Bewertung auf K – das heißt die
triviale.

Ist K andererseits ein henselscher Körper, das heißt existiert überhaupt eine nicht-
triviale henselsche Bewertung auf K, mit K 6= Ksep, so ist auch die kanonische hen-
selsche Bewertung nicht trivial: Im Fall H2(K) = ∅ ist dann nämlich #H1(K) ≥ 2 und
OK =

⋂
H1(K) 6= K und andernfalls kann das maximale Element von H2(K), wegen

Ksep 6= K, nicht mit K übereinstimmen.
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4 p-henselsche Bewertungen

Für das gesamte Kapitel halten wir eine beliebige Primzahl p ∈ P fest.

4.1 Grundlagen

Notation 4.1. Wir schreiben K(p) für das Kompositum aller Galoiserweiterungen L/K,
für die ein k ∈ N mit [L : K] = pk existiert.

Bemerkung 4.2. Ist α ∈ K(p), so gibt es insbesondere eine endliche Galoiserweiterung
L/K mit α ∈ L ⊆ K(p), das heißt α ist algebraisch und separabel über K und das
Minimalpolynom mipoK(α) von α über K zerfällt über L in Linearfaktoren. Die Kör-
pererweiterung K(p)/K ist daher algebraisch, normal und separabel, also bereits eine
Galoiserweiterung.

Bemerkung 4.3. Ist K 6= K(p), das heißt besitzt K eine Galoiserweiterung L vom
Grad pk für ein k ∈ N, so besitzt K bereits eine Galoiserweiterung vom Grad p:

Die Galoisgruppe G = Gal(L/K) ist dann nämlich eine p-Gruppe und damit auflösbar.
Insbesondere gibt es einen Normalteiler G1EG, für den der Quotient G/G1 zyklisch von
Ordnung p ist. Deren Fixkörper F = FixK(G1) ist dann eine Galoiserweiterung von K
mit [F : K] = #G/G1 = p.

Ersetzen wir nun in der Definition 3.1 der henselschen Bewertung die Körpererweiterung
Kalg von K durch das Kompositum K(p) aller endlichen Galoiserweiterungen, deren
Grad eine Potenz von p ist, so erhalten wir den Begriff der p-henselschen Bewertung.

Definition 4.4. Sei (K, v) ein bewerteter Körper.

(1) Die Bewertung v (bzw. der Bewertungsring Ov) heißt p-henselsch, falls Ov eine
eindeutige Fortsetzung auf K(p) hat.

(2) Der Körper K heißt p-henselsch, falls es eine nicht-triviale p-henselsche Bewertung
auf K gibt.

Ähnlich wie für henselsche Bewertungen gibt es eine Reihe verschiedener Charakterisie-
rungen dieses Begriffs. Wir erwähnen hier nur die für uns wichtigsten.

Theorem 4.5. Sei (K, v) ein bewerteter Körper. Dann sind äquivalent:

(1) Die Bewertung v ist p-henselsch.

(2) Für jede Galoiserweiterung L/K mit [L : K] = p hat Ov eine eindeutige Fortsetzung
auf L.
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4 p-henselsche Bewertungen

(3) Jedes Polynom f ∈ Ov[X], das über K(p) in Linearfaktoren zerfällt und für das
resKv(f) ∈ Kv[X] eine einfache Nullstelle α ∈ Kv im Restklassenkörper besitzt,
hat eine Nullstelle a ∈ Ov mit a+ mv = α.

(4) Ist f ∈ Ov[X] ein Polynom, das über K(p) in Linearfaktoren zerfällt und ist a ∈ Ov
mit v(f(a)) > 2v(f ′(a)), so hat f eine Nullstelle in K (äquivalent: in Ov) mit
v(b− a) > v(f ′(a)).

(5) Es gilt K = Kh ∩K(p) für jede Henselisierung (Kh, vh) von (K, v).

Beweis. Für die Äquivalenzen (1) ⇔ (2) ⇔ (3) siehe [EP05, Theorem 4.2.2 und Theo-
rem 4.2.3].

Für die Implikation (4) ⇒ (5) siehe [Koe95, Proposition 1.2 (iii) ⇒ (iv)].

Wir zeigen nun zunächst (5) ⇒ (3) und anschließend (3) ⇒ (4).

Sei dazu (Kh, vh) eine Henselisierung von (K, v) und f ∈ Ov[X] sei ein Polynom, das
über K(p) in Linearfaktoren zerfällt und für das resKv(f) eine einfache Nullstelle α ∈
Kv im Restklassenkörper besitzt. Wegen Ov ⊆ Ovh gilt dann auch f ∈ Ovh [X] und
da die Erweiterung (Kh, vh)/(K, v) unmittelbar ist, ist α eine einfache Nullstelle von
resKhvh(f) = resKv(f) im Restklassenkörper Khvh = Kv.

Nun ist (Kh, vh) henselsch, also hat f eine Nullstelle a ∈ Ovh ⊆ Kh mit a + mvh = α.
Da das Polynom f über K(p) in Linearfaktoren zerfällt, gilt schon a ∈ Kh ∩K(p) = K
und mit Lemma 2.19 folgt a ∈ Ov. Wegen a+ mvh = α folgt, da die Henselisierung eine
unmittelbare Erweiterung ist, auch a+ mv = α.

Um zu zeigen, dass auch (3) ⇒ (4) gilt, sei nun f ∈ Ov[X] ein Polynom, das über K(p)
in Linearfaktoren zerfällt und a ∈ Ov sei so, dass v(f(a)) > 2v(f ′(a)) gilt. Wir passen
den Beweis von [EP05, Theorem 4.1.3, (4) ⇒ (5)] geeignet an. Die Taylor-Entwicklung
von f nach a liefert uns ein Polynom g ∈ Ov[X] mit

f(a− x) = f(a)− f ′(a)x+ x2g(x)

für jedes x ∈ K. Mit g ist auch die Abbildung h : K → K, die durch h(x) := g(f ′(a) · x)
definiert wird, ein Polynom über dem Bewertungsring Ov, da aus f ′ ∈ Ov[X] und a ∈ Ov
auch f ′(a) ∈ Ov folgt. Für beliebiges y ∈ K und x = f ′(a) · y erhalten wir dann

f(a− f ′(a)y) = f(a)− f ′(a)2y + f ′(a)2y2h(y).

Nun ist v(f ′(a)2) < v(f(a)) ≤ ∞, also f ′(a)2 6= 0. Damit ergibt sich

f(a− f ′(a)y)

f ′(a)2
=

f(a)

f ′(a)2
− y + y2h(y) =: f1(y),

und wir erhalten ein weiteres Polynom f1 ∈ K[X], welches nach der Voraussetzung
v(f(a)) > v(f ′(a)2) ebenfalls in Ov[X] liegt. Wieder wegen v(f(a)) > v(f ′(a)2) folgt nun
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resKv(f1)(X) = −X+X2h(X) = X · (−1 +X ·h(X)), das heißt 0 ∈ Kv ist eine einfache
Nullstelle des Polynoms resKv(f1).

Weiter ist die Vorschrift y 7→ a − f ′(a) · y nach Definition von f1 offensichtlich eine
bijektive Abbildung zwischen den Nullstellenmengen von f1 bzw. von f , das heißt mit
f zerfällt auch f1 über K(p) in Linearfaktoren. Nach Voraussetzung hat f1 dann eine
Nullstelle y ∈ K mit y + mv = 0, also y ∈ mv. Für diese ist dann b = a − f ′(a) · y eine
Nullstelle von f und es gilt v(b− a) = v(−f ′(a) · y) > v(f ′(a)).

4.2 Die eindeutige p-henselsche Topologie

Ähnlich wie im Fall henselscher (bzw. n≤-henselscher) Bewertungen induzieren alle p-hen-
selschen Bewertungen auf einem Körper – unter gewissen Voraussetzungen – dieselbe To-
pologie. Genauer gilt die folgende Aussage, deren Beweis die nächsten Seiten in Anspruch
nimmt.

Theorem 4.6 ([Koe95, Theorem 2.1]). Sei K ein Körper, der eine primitive p-te Ein-
heitswurzel ζp ∈ K enthält, falls char(K) 6= p ist. Sind Ov,Ow ⊆ K zwei unabhängige
nicht-triviale p-henselsche Bewertungsringe auf K, so ist K = K(p).

Aus Gründen der Übersichtlichkeit teilen wir den Beweis in zwei Lemmata auf, die ge-
trennt die Fälle char(K) 6= p und char(K) = p behandeln. Wir zeigen jeweils, dass
alle nicht-trivialen p-henselschen Bewertungen auf K dieselbe Topologie induzieren, falls
K 6= K(p) gilt. Die Behauptung aus Theorem 4.6 folgt dann sofort durch Einnahme der
Kontraposition.

Zuerst behandeln wir den Fall char(K) 6= p (und ζp ∈ K für eine p-te Einheitswurzel ζp).
Es bezeichne Kp = {xp |x ∈ K} die Menge der p-ten Potenzen in K.

Lemma 4.7. Sei K ein Körper und v eine nicht-triviale p-henselsche Bewertung auf K.
Weiter gelte K 6= K(p), das heißt K habe eine Galoiserweiterung vom Grad p.

Ist char(K) 6= p und ζp ∈ K eine p-te Einheitswurzel, so ist die Menge

S =
{
a · (Kp)× + b | a ∈ K×, b ∈ K

}
eine Subbasis der von v induzierten Topologie Tv.

Beweis. Wir zeigen zunächst, dass jedes Element von S eine bezüglich Tv offene Menge
ist. Betrachte dazu für b ∈ mv das Polynom f(X) = Xp − (p2b+ 1) ∈ Ov[X]. Dann gilt

v(f(1)) = v(−p2b) = v(p2) + v(b) = 2v(p) + v(b) und
v(f ′(1)) = v(p · 1) = v(p),

also ist v(f(1)) − 2v(f ′(1)) = v(b) > 0. Wegen ζp ∈ K ⊆ K(p) zerfällt das Polynom f
außerdem über K(p) in Linearfaktoren. Nach dem Kriterium (4) aus Theorem 4.5 hat f
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damit eine Nullstelle a ∈ K und wir erhalten p2b + 1 = ap ∈ Kp. Da b ∈ mv beliebig
gewählt war, folgt p2mv + 1 ⊆ Kp. Wegen v(p) ≥ 0, also v(−p−2) = −2v(p) ≤ 0 ist
−p−2 /∈ mv, das heißt 0 /∈ p2mv + 1. Es folgt (Kp)× ⊆ (Kp)× · (p2mv + 1) ⊆ (Kp)× und
damit

(Kp)× = (Kp)× · (p2mv + 1) =
⋃

a∈K×
ap2mv + ap ∈ Tv.

Nach Bemerkung 2.35 gilt dann bereits S ⊆ Tv und es folgt TS ⊆ Tv für die von S
erzeugte Topologie TS .

Es bleibt zu zeigen, dass mv bezüglich der von S erzeugten Topologie offen ist. Beachte,
dass die Menge p2mv \ Kp nicht leer ist: Für a ∈ K \ {0} wähle b ∈ K× mit ab ∈ mv

und a2b ∈ mv. Dann ist (p2a2b)(p2ab)−1 = a. Wäre nun p2mv ⊆ Kp, so hätten wir
a ∈ (p2mv) · (p2mv)

−1 ⊆ Kp für alle a ∈ K, also K = Kp.

Nun gibt es nach Bemerkung 4.3 eine zyklische Galoiserweiterung L/K vom Grad p, etwa
L = K(α) mit αp ∈ K. Aus K = Kp folgt dann aber L = K, ein Widerspruch!

Wir können daher ein a ∈ p2mv\Kp wählen. Dann ist U := (a−a·(Kp)×)∩(a2−a2·(Kp)×)
der Schnitt zweier Mengen aus S. Wir zeigen nun 0 ∈ U ⊆ mv, woraus mv ⊆ U+mv ⊆ mv

und damit mv = U + mv =
⋃
b∈mv

(U + b) folgt. Dass 0 ∈ U gilt, ist wegen 1 ∈ (Kp)×

klar. Für x ∈ U existieren nun nach Definition y, z ∈ K× mit x = a− ayp = a2 − a2zp.

Wir zeigen nun x ∈ mv. Dabei können wir annehmen, dass min {v(a), v(a− x)} = v(a−x)
gilt – denn wegen v(x) ≥ min {v(a), v(a− x)} und v(a) > 0 folgt andernfalls bereits
v(x) > 0, also x ∈ mv. Damit gilt insbesondere v(x) ≥ min {v(a), v(a− x)} = v(a− x).

Wäre jetzt x /∈ mv, so hätten wir

v(a2 − a) ≥ min {2v(a), v(a)} = v(a) > v(p2) ≥ v(xp2).

und es ergäbe sich v(a2−a) > v(xp2) ≥ v((a−x)p2), also a2−a ∈ (a−x)p2 ·mv. Folglich
wäre

a2 − x = (a2 − a) + (a− x) ∈ (a− x)p2 ·mv + (a− x)

= (a− x)(p2 ·mv + 1)

und aus a−x = ayp ∈ a · (Kp)× und p2 ·mv +1 ⊆ (Kp)× folgte a2−x ∈ a · (Kp)×. Damit
wäre a2zp = a2 − x ∈ a · (Kp)× ∩ a2 · (Kp)×, es gäbe also ein w ∈ K× mit a2zp = awp.
Dies führt nun mit a = a2zp(a2wp)−1 = (zw−1)p ∈ Kp zum Widerspruch zur Wahl von
a /∈ Kp.

Es ist also 0 ∈ U ⊆ mv und damit ist mv = U + mv offen bezüglich der von S erzeugten
Topologie TS auf K. Da die Abbildungen x 7→ a · x und x 7→ x+ b für alle a ∈ K× und
alle b ∈ K bezüglich TS offensichtlich stetig sind, folgt Tv ⊆ TS .

Für den Fall char(K) = p setze nun K(p) := {xp − x |x ∈ K}.
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Lemma 4.8. Sei K ein Körper und v eine nicht-triviale p-henselsche Bewertung auf K.
Weiter gelte K 6= K(p), das heißt K habe eine Galoiserweiterung vom Grad p.

Ist char(K) = p, so ist die Menge

B =
{
Ma,b
c,d | a, b, c, d ∈ K, ad− bc 6= 0

}
für Ma,b

c,d :=
{
ax+b
cx+d |x ∈ K

(p), cx+ d 6= 0
}
eine Basis der von v induzierten Topologie Tv.

Beweis. Fixiere zunächst beliebige Elemente a, b, c, d ∈ K mit ad − bc 6= 0. Wir zeigen
dann, dass Ma,b

c,d bezüglich der von v induzierten Topologie Tv offen ist.

Für x ∈ K mit cx+ d 6= 0 und c 6= 0 gilt

ax+ b

cx+ d
=

bc− ad
c2x+ cd

+
acx+ ad

c2x+ cd
=

bc− ad
c2x+ cd

+
a

c
=

1

x+ d
c

· bc− ad
c2

+
a

c

=

(
x+

d

c

)−1

· bc− ad
c2

+
a

c
,

das heißt die Abbildung f : x 7→ ax+b
cx+d ist als Komposition von Translationen, Inver-

sion und einer Dilatation bezüglich der Topologie Tv stetig und offen auf der Menge
{x ∈ K | cx+ d 6= 0}. Für c = 0 und d 6= 0 ist f(x) = a

dx + b
d ebenfalls stetig und offen

(auf {x ∈ K | cx+ d 6= 0} = K).

WegenMa,b
c,d = f(K(p)∩{x ∈ K | cx+ d 6= 0}) genügt es daher, zu zeigen, dass die Menge

K(p) ∩ {x ∈ K | cx+ d 6= 0} bezüglich Tv offen ist. Es gilt

{x ∈ K | cx+ d 6= 0} =


∅, c = d = 0

K, c = 0, d 6= 0

K \
{
−d
c

}
, c, d 6= 0

∈ Tv,

also genügt es sogar, K(p) ∈ Tv zu zeigen.

Betrachte dazu für beliebiges b ∈ mv das Polynom q(X) = Xp − X − b ∈ Ov[X]. Für
eine Nullstelle α von q sind, wegen char(K) = p, auch α + 1, . . . , α + (p − 1) ∈ K(α)
Nullstellen von q, das heißt q zerfällt über K(α) und damit auch über K(p) ⊇ K(α)
in Linearfaktoren. Weiter ist resKv(q) = Xp −X separabel über Kv und hat daher die
einfache Nullstelle 1 + mv ∈ Kv. Da (K, v) nach Voraussetzung p-henselsch ist, hat q
damit eine Nullstelle a ∈ K. Folglich ist b = ap − a ∈ K(p) und da b ∈ mv beliebig war,
erhalten wir mv ⊆ K(p).

Weil die Menge K(p), wegen (xp − x) + (yp − y) = (x + y)p − (x + y), für alle x, y ∈ K
additiv abgeschlossen ist, folgt

K(p) =
⋃

x∈K(p)

mv + x ∈ Tv
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und damit, wie zuvor im Beweis von Lemma 4.7 argumentiert, B ⊆ Tv.

Wir müssen nun noch zeigen, dass B sogar eine Basis der von v induzierten Topologie
Tv auf K ist. Wegen λ ·Ma,b

c,d = Mλa,λb
c,d und Ma,b

c,d + t = Ma+tc,b+td
c,d sind die Abbildungen

x 7→ λx und x→ x+ t für alle λ, t ∈ K stetig (und offen) bezüglich der von B erzeugten
Topologie TB. Daher genügt es, mv ∈ TB zu zeigen.

Da v nach Voraussetzung nicht-trivial ist, gibt es ein Element a ∈ mv \ {0}. Setzen wir
q(X) := aXp − aX − 1 ∈ Ov[X], so hat das Polynom resKv(q) = −1 6= 0 dann keine
Nullstelle in Kv, also hat auch q keine Nullstelle in K. Damit ist a−1 6= xp − x für alle
x ∈ K, also a−1 /∈ K(p). Insbesondere gilt K(p) ∩

{
x ∈ K | 1 · x− a−1 6= 0

}
= K(p). Setze

nun

U := Ma2,0
1,−a−1 =

{
a2x

x− a−1
|x ∈ K(p)

}
.

Wir zeigen 0 ∈ U ⊆ mv, woraus – genau wie zuvor im Fall char(K) 6= p – mit der
Identität mv = U + mv =

⋃
b∈mv

U + b ∈ TB die Behauptung folgt.

Dass 0 ∈ U gilt, ist wegen 0 ∈ K(p) klar. Um U ⊆ mv zu zeigen, sei y ∈ U beliebig und
x ∈ K(p) so, dass y = a2x

x−a−1 gilt. Wir unterscheiden drei Fälle.

Fall 1. v(x) = v(a−1) = −v(a).

Wegen x ∈ K(p) und a−1 /∈ K(p) gilt dann x − a−1 /∈ K(p) ⊇ mv, das heißt
v(x− a−1) ≤ 0. Es folgt v(a2) + v(x)− v(x− a−1) ≥ v(a2) + v(x) = v(a) > 0.

Fall 2. v(x) > v(a−1).

Dann ist v(x−a−1) = min
{
v(x), v(a−1)

}
= v(a−1) und daher v(x)− v(x−a−1) =

v(x)− v(a−1) > 0. Es folgt v(a2) + v(x)− v(x+ a−1) > v(a2) > 0.

Fall 3. v(x) < v(a−1).

Dann ist v(x−a−1) = min
{
v(x), v(a−1)

}
= v(x) und es folgt sofort die Ungleichung

v(a2) + v(x)− v(x− a−1) = v(a2) > 0.

In allen drei Fällen gilt v(y) = v
(

a2x
x−a−1

)
= v(a2) + v(x) − v(x − a−1) > 0, das heißt

y ∈ mv. Da y ∈ U beliebig gewählt war, erhalten wir – wie behauptet – nun U ⊆ mv.
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5.1 Grundlagen

Am Beispiel der p-henselschen Bewertung haben wir gesehen, wie sich aus der Definiti-
on 3.1 eine Verallgemeinerung des Begriffs der henselschen Bewertung durch das Ersetzen
von Kalg durch andere Körpererweiterungen von K ergibt.

Legen wir dagegen etwa Hensels Lemma als definierende Eigenschaft henselscher Bewer-
tungen zugrunde, so ergibt sich eine andere natürliche Verallgemeinerung des Begriffs:
Wir fordern nicht mehr die uneingeschränkte Gültigkeit der Aussage von Hensels Lemma,
sondern beschränken uns dabei auf bestimmte Polynome. Im Fall p-henselscher Bewer-
tung waren dies genau die Polynome, die in K(p) in Linearfaktoren zerfallen.

In [FJ15, Definition 6.1] führen Fehm und Jahnke den Begriff der n≤-henselschen Bewer-
tung ein, indem sie die Forderung in der Aussage von Hensels Lemma auf Polynome vom
Grad ≤ n beschränken.

Wir wählen hier eine etwas schwächere Definition, die uns später die Einführung der
kanonischen n≤-henselschen Bewertung, analog zur kanonischen henselschen Bewertung,
erlaubt. Dazu beschränken wir uns in der Forderung nach der Existenz von Nullstellen
auf doppelt-normierte Polynome vom Grad ≤ n, deren Koeffizienten (bis auf die ersten
beiden) im maximalen Ideal liegen (vgl. Kriterium (5) aus Theorem 3.4).

Definition 5.1. Sei (K, v) ein bewerteter Körper.

(1) Die Bewertung v (bzw. der Bewertungsring Ov) heißt n≤-henselsch, falls jedes
Polynom f ∈ Ov[X] der Form

f(X) = Xd +Xd−1 + ad−2X
d−2 + · · ·+ a0

mit ad−2, . . . , a0 ∈ mv und 1 ≤ d = deg(f) ≤ n eine Nullstelle in K (äquivalent: in
Ov) besitzt.

(2) Der Körper K heißt n≤-henselsch, falls es eine nicht-triviale n≤-henselsche Bewer-
tung auf K gibt.

Erlauben wir einen von 1 verschiedenen (d− 1)-ten Koeffizienten, der allerdings nicht im
maximalen Ideal liegen darf, so erhalten wir denselben Begriff.

Lemma 5.2. Sei K ein Körper und v eine Bewertung auf K, sei Ov der zugehörige
Bewertungsring. Dann ist v genau dann n≤-henselsch, wenn jedes Polynom f ∈ Ov[X]
der Form

f(X) = Xd + ad−1X
d−1 + ad−2X

d−2 + · · ·+ a0

mit ad−1 /∈ mv sowie ad−2, . . . , a0 ∈ mv und d = deg(f) ≤ n eine Nullstelle in K
(äquivalent: in Ov) besitzt.
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Beweis. Da 1 /∈ mv für jede Bewertung v aufK gilt, ist jede Bewertung, die das Kriterium
in Lemma 5.2 erfüllt, n≤-henselsch.

Um zu zeigen, dass dieses Kriterium umgekehrt bereits für jede n≤-henselsche Bewertung
v erfüllt ist, reproduzieren wir den Beweis von (7) ⇒ (6) in [EP05, Theorem 4.1.3].

Sei dazu ein Polynom f(X) = Xd + ad−1X
d−1 + · · · + a0 ∈ Ov[X] mit ad−1 /∈ mv und

ad−2, . . . , a0 ∈ mv sowie d ≤ n gegeben. Insbesondere ist dann ad−1 ∈ Ov \ mv = O×v ,
also auch a−1

d−1 ∈ O
×
v . Wir setzen bd−i := ad−i · a−id−1 für 2 ≤ i ≤ d und erhalten mit

g(Y ) := a−dd−1 · f(ad−1Y ) = Y d + Y d−1 + bd−2Y
d−2 + · · ·+ b0

ein Polynom g ∈ Ov[Y ] dessen Koeffizienten bd−i = ad−i · a−id−1 ∈ mv · Ov ⊆ mv im
maximalen Ideal von Ov liegen. Da v nach Voraussetzung n≤-henselsch ist, hat g daher
eine Nullstelle b ∈ K. Für diese ist dann a = ad−1b ∈ K eine Nullstelle von f .

Für n≤-henselsche Bewertungen erhalten wir eine eingeschränkte Variante des Theo-
rems 3.4 über die Charakterisierung henselscher Bewertungen. Um die entsprechenden
Aussagen zu formulieren, führen wir den folgenden Begriff ein.

Notation 5.3. Für eine endliche Galoiserweiterung L/K bezeichne

[L : K]poly := min{deg(f) |L ist Zerfällungskörper des
irreduziblen Polynoms f ∈ K[X]}

den Polynom-Grad der Erweiterung.

Wir schreiben K≤(d) für das Kompositum aller Galoiserweiterungen L/K vom Polynom-
Grad [L : K]poly ≤ d.

Bemerkung 5.4. Die Galoisgruppe Gal(L/K) einer endlichen Galoiserweiterung L/K
ist stets eine Untergruppe der symmetrischen Gruppe Sd für d = [L : K]poly. Damit ist
[L : K] = # Gal(L/K) immer ein Teiler von #Sd = [L : K]poly!, insbesondere gilt für
jede endliche Galoiserweiterung L/K die Ungleichung [L : K] ≤ [L : K]poly!.

Theorem 5.5. Sei (K, v) ein bewerteter Körper. Dann gilt (1) ⇒ (2) ⇒ (3) ⇒ (4) für
die folgenden Aussagen.

(1) Der Bewertungsring Ov hat eine eindeutige Fortsetzung auf jede Galoiserweiterung
von K vom Polynom-Grad ≤ n.

(2) Jedes Polynom f ∈ Ov[X] mit deg(f) ≤ n, für das resKv(f) ∈ Kv[X] im Rest-
klassenkörper eine einfache Nullstelle α ∈ Kv besitzt, besitzt auch eine Nullstelle
a ∈ Ov mit a+ mv = α.

(3) Die Bewertung v ist n≤-henselsch.

(4) Der Bewertungsring Ov hat eine eindeutige Fortsetzung auf jede Galoiserweiterung
von K vom Grad ≤ n.
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Beweis. Wir orientieren uns an den Beweisen von [EP05, Theorem 4.1.3] und [FJ15,
Lemma 6.3].

(1) ⇒ (2): Es sei vorausgesetzt, dass Ov eine eindeutige Fortsetzung auf jede Galoi-
serweiterung vom Polynom-Grad ≤ n hat. Zu zeigen ist, dass dann jedes Polynom
über Ov vom Grad ≤ n, das eine einfache Nullstelle α ∈ Kv im Restklassenkörper
besitzt, auch eine Nullstelle a ∈ Ov mit a+ mv = α hat.

Sei dazu f̄ ∈ Kv[X] ein Polynom mit 1 ≤ deg(f̄) =: d ≤ n, das im Restklassen-
körper Kv eine einfache Nullstelle α besitzt. Ohne Einschränkung sei f̄ normiert
und irreduzibel in Kv[X]. Dann gibt es ein normiertes Polynom f ∈ Ov[X] mit
deg(f) = deg(f̄) und resKv(f) = f̄ . Da f̄ in Kv[X] irreduzibel ist, ist f nach
Bemerkung 2.33 irreduzibel in K[X]. Für den Zerfällungskörper L von f gilt da-
mit [L : K]poly ≤ d ≤ n, also gibt es nach der Voraussetzung (1) eine eindeutige
Fortsetzung Ow von Ov auf L. Alle Nullstellen a1, . . . , ad ∈ L von f liegen nach
Lemma 2.19 bereits in Ow. Außerdem sind sämtliche Nullstellen von resLw(f) in
Lw durch a1 +mw, . . . , ad+mw gegeben und eine davon muss bereits α ∈ Kv ⊆ Lw
sein. Wir können ohne Einschränkung annehmen, dass a1 + mw = α gilt.

Wir zeigen nun durch einen Widerspruchsbeweis, dass deg(f) = d = 1 gilt. Ange-
nommen also, es wäre d > 1. Dann gäbe es ein σ ∈ Gal(L/K) mit σ(a1) = a2. Mit
Ow ist dabei auch σ(Ow) ⊆ L wieder ein Bewertungsring auf L, der Ov fortsetzt.
Da es aber nur eine Fortsetzung von Ov auf L gibt, folgt σ(Ow) = Ow und damit
auch σ(mw) = mw.

Die Abbildung

σ̄ : Lw → Lw

a+ mw 7→ σ(a) + mw

ist daher ein Kv-Automorphismus von Lw, und wegen α ∈ Kv folgt

a2 + mw = σ(a1) + mw = σ̄(a1 + mw) = σ̄(α) = α.

Dann kann aber α = a1 + mw = a2 + mw entgegen der Voraussetzungen keine
einfache Nullstelle von f̄ sein, ein Widerspruch. Folglich muss schon deg(f) = 1
gelten, womit f insbesondere eine Nullstelle in K besitzt.

(2) ⇒ (3): Angenommen, jedes Polynom über Ov vom Grad ≤ n, das im Restklassen-
körper Kv eine einfache Nullstelle besitzt, habe auch eine Nullstelle in Ov ⊆ K.
Wir zeigen, dass Ov dann n≤-henselsch ist.

Sei dazu f(X) = Xd + Xd−1 + · · · + a0 ∈ Ov[X] mit ad−2, . . . , a0 ∈ mv sowie
d ≤ n gegeben. Dann ist resKv(f) = Xd +Xd−1 = (X + (1 + mv)) ·Xd−1, also ist
−1+mv 6= mv eine einfache Nullstelle von resKv(f) in Kv. Nach der Voraussetzung
(2) hat das Polynom f damit eine Nullstelle inOv ⊆ K, das heißt v ist n≤-henselsch.
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(3) ⇒ (4): Zu zeigen ist, dass jeder n≤-henselscher Bewertungsring Ov auf K sich
eindeutig auf jede Galoiserweiterung von K vom Grad ≤ n fortsetzt.

Wir zeigen die Kontraposition. Sei also N/K eine Galoiserweiterung vom Grad
≤ n, für die es mindestens zwei Fortsetzungen von Ov auf N gibt. Sämtliche dieser
Fortsetzungen seien mit OvN1 , . . . ,OvNm ⊆ N benannt. Sei

H = {σ ∈ Gal(N/K) |σ(Ov1) = (Ov1)} ≤ Gal(N/K),

wobei Gal(N/K) die Galoisgruppe der Erweiterung N/K bezeichne, und betrachte
den Fixkörper

L = Fix(H) = {x ∈ N |σ(x) = x für alle σ ∈ H}

der Gruppe H. Wegen m > 1 ist H 6= Gal(N/K) und damit auch L 6= K. Weiter
sei OvLi = OvNi ∩L für 1 ≤ i ≤ m und R =

⋂m
i=1OvLi sowie pi = R∩mvLi

für alle i.

Ohne Einschränkung sind die OvLi so nummeriert, dass{
OvL1 , . . . ,OvLk

}
=
{
OvL1 , . . . ,OvLm

}
für ein k ≤ m gilt, für welches die OvL1 , . . . ,OvLk paarweise verschieden sind.

Nach Lemma 2.21 gilt dann sogar OvLi ( OvLj für alle i, j ∈ {1, . . . , k} mit i 6= j, so
dass wir die Aussage (3) aus Lemma 2.20 anwenden können. Die pi für 1 ≤ i ≤ k
sind demnach genau die maximalen Ideale von R.

Außerdem ist p1 6= pi für 2 ≤ i ≤ m, denn für p1 = pi gilt

OvN1 ∩ L = OvL1 = Rp1 = Rpi = OvLi = OvNi ∩ L,

also gibt es nach dem Konjugationstheorem 2.22 ein σ ∈ Gal(N/L) = H mit
OvNi = σ(OvN1 ). Dann gilt aber nach Definition von H schon OvNi = OvN1 , das heißt
i = 1.

Insbesondere gilt OvL1 6= OvL2 und damit k ≥ 2.

Nun können wir Aussage (4) aus Lemma 2.20 auf das Tupel (1, 0, . . . , 0) ∈
∏k
i=1OvLi

anwenden und erhalten ein β ∈ R mit 1 − β ∈ mvL1
und β ∈ mvLj

für 2 ≤ j ≤ k.
Wegen k ≥ 2 kann β also nicht in K liegen, denn sonst wäre

1 = (1− β) + β ∈ (mvL1
∩K) + (mvLj

∩K) = mv + mv = mv.

Wir betrachten jetzt das Minimalpolynom f(X) = Xd + ad−1X
d−1 + · · ·+ a0 von

β über K. Dann ist K(β) ⊇ K eine Erweiterung vom Grad d > 1, die zwischen
K und N liegt. Es ist also d ≤ [N : K] ≤ n. Wir zeigen nun, dass ad−1 /∈ mv
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und ad−2, . . . , a0 ∈ mv gilt. Nach Lemma 5.2 müsste f dann eine Nullstelle in K
besitzen, falls (3) erfüllt wäre – ein Widerspruch.

Wegen f(X) =
∏d
i=1(X − βi) für die Konjugierten β1, . . . , βd ∈ L von β gilt

ad−1 = −(β1 + · · · + βd). Ohne Einschränkung sei β = β1, so dass 1 − β1 ∈ mvL1
gilt. Für 2 ≤ i ≤ d gibt es jeweils ein σi ∈ Gal(N/K) mit σi(βi) = β. Wegen
βi 6= β ∈ L = Fix(H) ist σi /∈ H und damit σi(OvN1 ) = OvNj für ein j ≥ 2. Aus

β ∈ mvLj
⊆ mvNj

= σi(mvN1
) folgt dann βi = σ−1

i (β) ∈ mvN1
. Insgesamt ist also

1 + ad−1 = (1− β)− β2 − · · · − βd ∈ mvN1
∩K = mv, das heißt ad−1 /∈ mv.

Alle anderen Koeffizienten von f , das heißt die ai mit i < d− 1, sind von der Form

ai = β1 · γi + τi,

wobei γi, τi ∈ N Summen von Produkten der βj für j > 1 sind und damit in mvN1
liegen. Es folgt ai ∈ mvN1

∩K = mv.

Als Minimalpolynom des Elements β /∈ K ist f ein irreduzibles Polynom vom Grad
deg(f) = d ≥ 2 und hat damit insbesondere keine Nullstelle in K. Folglich kann
die Bewertung v nach Lemma 5.2 nicht n≤-henselsch sein, das heißt die Aussage
(3) ist nicht erfüllt.

Um von Aussage (4) aus dem vorangegangenen Theorem 5.5 wieder auf Aussage (1) zu
schließen, erhöhen wir die Schranke in (4) von n auf n!.

Bemerkung 5.6. Sei (K, v) ein bewerteter Körper und v eine Bewertung aufK. Falls der
Bewertungsring Ov eine eindeutige Fortsetzung auf jede Galoiserweiterung L vom Grad
[L : K] ≤ n! besitzt, so hat Ov eine eindeutige Fortsetzung auf jede Galoiserweiterung
vom Polynom-Grad ≤ n.

Insbesondere ist v dann eine n≤-henselsche Bewertung und für jede n!≤-henselsche Be-
wertung gilt bereits Aussage (1) aus Theorem 5.5.

Beweis. Sei L/K eine beliebige Galoiserweiterung vom Polynom-Grad [L : K]poly ≤ n.
Dann ist [L : K] ≤ [L : K]poly! ≤ n!, also besitzt Ov nach Voraussetzung eine eindeutige
Fortsetzung auf L. Damit ist die Aussage (1) aus Theorem 5.5 erfüllt – was genau die
Behauptung war.

Offensichtlich ist jede henselsche Bewertung auch n≤-henselsch; genauer ist eine Bewer-
tung genau dann henselsch, wenn sie für jedes n ∈ N eine n≤-henselsche Bewertung
ist.

Sei nun n ∈ N eine beliebige positive ganze Zahl. Wir konstruieren im Folgenden einen
bewerteten Körper (L,w), der zwar n≤-henselsch, aber nicht p≤-henselsch ist für jede
Primzahl p > n.
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Die Aussage sowie ihr konstruktiver Beweis sind im Wesentlichen aus [FJ15, Lemma 6.4]
entnommen.

Proposition 5.7. Sei n ∈ N eine positive ganze Zahl, p > n prim und K ein Körper
mit charK = 0, der sämtliche p-ten Einheitswurzeln enthält. Dann existiert ein Körper
L ⊇ K mit einer Bewertung w, die n≤-henselsch, aber nicht p≤-henselsch ist.

Dabei kann L so gewählt werden, dass Lw = K gilt.

Beweis. Sei F = K(X) ⊆ K((X)) und die Bewertung v : K((X))× → Z auf K((X)) sei
durch v(

∑
i∈Z aiX

i) = min {i ∈ Z | ai 6= 0} definiert. Für jeden Zwischenkörper F ⊆ k ⊆
K((X)) setze vk := v�k. Wie in Beispiel 3.12 gesehen ist F h := F alg ∩K((X)) mit der
Bewertung vFh dann eine Henselisierung von (F, vF ).

Betrachte nun das Polynom f(T ) := T p−(X+1) ∈ F [T ] ⊆ K((X))[T ] sowie das zugehö-
rige reduzierte Polynom f̄ = resK((X))v(f) ∈ K[T ] im Restklassenkörper (K((X))) v =
K. Wegen v(X) = 1, also X ∈ mv, gilt dann f̄(T ) = T p − 1. Da K nach Voraussetzung
charK = 0 erfüllt und alle p-ten Einheitswurzeln enthält, ist f̄ über K separabel und
zerfällt in Linearfaktoren. Weiter ist, wie in Beispiel 3.6 gesehen, v eine henselsche Bewer-
tung auf K((X)), das heißt f besitzt eine Nullstelle α ∈ K((X)). Nun ist f ∈ F [T ] ein
Polynom über F , die Nullstelle α liegt also bereits in F alg ∩K((X)) = F h. Beachte, dass
X + 1 ∈ K[X] ein Primelement ist, sowie dass F = Quot (K[X]) gerade der Quotienten-
körper von K[X] ist. Nach dem Eisenstein-Kriterium ist f(T ) = T p − (X + 1) ∈ F [T ]
damit irreduzibel über F , also stimmt f schon mit dem Minimalpolynom mipoF (α) von
α über F überein. Insbesondere folgt [F (α) : F ] = deg(f) = p, das heißt die Galoisgruppe
Gal(F (α)/F ) ist zyklisch von Ordnung p.

Sei nun S ≤ GF eine p-Sylowgruppe der absoluten Galoisgruppe GF von F , sodass S
eine Fortsetzung σ̂ ∈ S eines nicht-trivialen Elements σ ∈ Gal(F (α)/F ) auf F sep enthält.
Wir bezeichnen den Fixkörper von S mit E := Fix(S) und setzen L := E ∩ F h sowie
w := vL. Wegen F ⊆ L ⊆ F h ist (L,w) eine unmittelbare Erweiterung von (F, v�F ), also
gilt Lw = F (v�F ) = K. Weiter ist α /∈ Fix(S) = E, denn es gilt σ̂(α) = σ(α) 6= α. Da
die Erweiterung F (α)/F wegen [F (α) : F ] = p keine echten Zwischenkörper besitzt und
α /∈ L ∩ F (α) sowie F ⊆ F (α) ∩ L ⊆ F (α) gilt, folgt bereits F (α) ∩ L = F . Weiter ist
[L : F ] teilerfremd zu p, da [E : L] · [L : F ] = [E : F ], wegen E = Fix(P ), teilerfremd zu
p ist. Aus L(α) = F (α)L und F = F (α) ∩ L folgt damit schon [L(α) : L] = p, also ist
auch Gal(L(α)/L) zyklisch von Ordnung p.

Unter Beachtung des Kriteriums (5) aus Theorem 4.5 und mit Korollar 3.10 sehen wir,
dass (L,w) nicht p-henselsch sein kann: Andernfalls wäre L = Lh ∩ L(p) für jede Hen-
selisierung Lh von L, also auch für Lh = F h, das heißt α ∈ F (α) ⊆ F h ∩ L(p) = L.
Damit kann (L,w) auch nicht p≤-henselsch sein, denn sonst hätte Ow eine eindeutige
Fortsetzung auf jede Galoiserweiterung von L vom Grad ≤ p, insbesondere also auf jede
Galoiserweiterung vom Grad p, und wäre folglich p-henselsch.
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Es bleibt zu zeigen, dass (L,w) dennoch n≤-henselsch ist. Sei dazu 1 ≤ d ≤ n beliebig
und g(T ) = T d + T d−1 + ad−2T

d−2 + · · · + a0 ∈ L[T ] ein Polynom mit Koeffizienten
ai ∈ mw = L∩mv für 0 ≤ i ≤ d−2. Es gilt dann auch g ∈ F h[T ] und ai ∈ F h∩mv = mv

Fh

für 0 ≤ i ≤ d − 2. Da (F h, vFh) henselsch (und damit insbesondere n≤-henselsch) ist,
besitzt g folglich eine Nullstelle β ∈ F h. Betrachte jetzt den Zerfällungskörper Z des
Minimalpolynoms mipoE(β) von β über E. Da die absolute Galoisgruppe GE = S von E
eine p-Sylowgruppe in GF und damit insbesondere eine pro-p-Gruppe ist, ist Gal(Z/E)
dann eine p-Gruppe.

Weiter gilt E(β) ⊆ Z sowie

[E(β) : E] = deg(mipoE(β)) ≤ deg(g) = d ≤ n < p,

mit pm = [Z : E] = [Z : E(β)] · [E(β) : E] für geeignetes m ∈ N folgt dann bereits
β ∈ E ∩ F h = L. Das Polynom g besitzt also insbesondere eine Nullstelle in L. Damit
ist (L,w) wie behauptet n≤-henselsch.

Korollar 5.8. Für jedes n ∈ N mit n ≥ 2 existiert ein Körper K, der n≤-henselsch, aber
nicht n!≤-henselsch ist.

Beweis. Für beliebiges n ∈ N mit n ≥ 2 lässt die Zahl n! − 1 beim Teilen durch jede
Primzahl q ≤ n offensichtlich den Rest −1. Jeder Primteiler p von n! − 1 erfüllt daher
die Ungleichung n < p ≤ n!. Mit Proposition 5.7 folgt dann die Behauptung.

Auch alle nicht-trivialen n≤-henselschen Bewertungen auf einem Körper K induzieren
– falls n in Abhängigkeit von K groß genug ist und falls Ksep 6= K gilt – dieselbe
Topologie.

Notation 5.9. Sei K ein Körper mit Ksep 6= K. Wir bezeichnen mit

m(K) := min {[L : K] |L/K ist Galoiserweiterung mit L 6= K}

den Grad der kleinsten echten Galoiserweiterung von K und mit

p(K) := min {p ∈ P | p teilt m(K)}

den kleinsten Primteiler von m(K).

Es gilt die folgende Verallgemeinerung von Theorem 3.14 für henselsche Bewertungen. In
der Tat folgt das genannte Theorem aus der folgenden Aussage als einfaches Korollar.

Theorem 5.10. Sei K ein Körper mit Ksep 6= K, sei n ∈ N und seien Ov,Ow ( K
zwei nicht-triviale unabhängige n≤-henselsche Bewertungsringe auf K. Dann gilt n <
m(K) · p(K).

Bevor wir den Beweis führen, halten wir die entsprechende Aussage für henselsche Be-
wertungen als Korollar fest, das wir zuvor bereits in Theorem 3.14 formuliert haben.
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Korollar 5.11. Sei K ein Körper und seien Ov,Ow ( K zwei nicht-triviale unabhängige
henselsche Bewertungsringe auf K. Dann ist K = Ksep.

Beweis. Wäre Ksep 6= K, so wäre die Bewertungsringe Ov und Ow insbesondere n≤-hen-
selsch für n := m(K) · p(K) ∈ N. Dies führt mit Theorem 5.10 sofort zum Wider-
spruch.

Im Beweis nutzen wir die eindeutige p-henselsche Topologie aus Theorem 4.6.

Beweis von Theorem 5.10. Betrachte eine Galoiserweiterung N/K mit minimalem Grad
[N : K] = m(K) und setze p = p(K). Falls char(K) = char(N) 6= p gilt, so ist K(ζp)
für eine beliebige primitive p-te Einheitswurzel ζp ∈ Kalg eine Galoiserweiterung von K
vom Grad m = [K(ζp) : K] ∈ {1, p− 1}. Insbesondere ist m < m(K), also muss schon
K = K(ζp) und damit ζp ∈ K gelten.

Sei nun L = Fix(S) der Fixkörper einer p-Sylowgruppe S ≤ Gal(N/K) der Galoisgruppe
von N/K. Dann ist [N : L] = #S = pk für ein geeignetes k ∈ N mit k ≥ 1, das heißt
insbesondere gilt L 6= L(p). Weiter ist ζp ∈ L, falls char(L) 6= p gilt.

Seien OvL und OwL Fortsetzungen von Ov bzw. Ow auf L. Dann gilt OvLOwL ⊇ OvOw =
K, nach Beispiel 3.3 folgt also OvLOwL = L.
Zwischenbehauptung. Falls n ≥ m(K) · p(K) gilt, so sind die Bewertungen vL und wL
auf L beide p-henselsch.

Beweis. Wir zeigen die Aussage nur für vL, der Beweis für wL ist identisch. Sei also L′ eine
Galoiserweiterung von L mit [L′ : L] = p. Dann ist L′N ⊇ N ⊇ L ⊇ K ein Körperturm
mit [L′N : K] = [L′N : N ] · [N : K] ≤ [L′ : L] · [N : K] ≤ p ·m(K) = m(K) · p(K) ≤ n.

Seien nun Ov1 ,Ov2 ⊆ L′ zwei Fortsetzungen von OvL auf L′, und Ov′1 ,Ov′2 ⊆ L′N
Fortsetzungen von Ov1 bzw. von Ov2 auf L′N . Dann sind Ov′1 und Ov′2 insbesonde-
re Fortsetzungen von Ov auf L′N und da L′N/K eine Galoiserweiterung vom Grad
[L′N : K] ≤ m(K) · p(K) ≤ n ist, folgt mit Aussage (4) aus Theorem 5.5 bereits
Ov′1 = Ov′2 . Insbesondere gilt dann

Ov1 = Ov′1 ∩ L
′ = Ov′2 ∩ L

′ = Ov2 .

Da Ov1 und Ov2 beliebige Fortsetzungen von OvL auf L′ waren, haben wir damit ge-
zeigt, dass nur eine solche Fortsetzung existiert. Folglich ist OvL nach Kriterium (2) aus
Theorem 4.5 ein p-henselscher Bewertungsring auf L. �

Wäre nun n ≥ m(K) · p(K), so wären nach der Zwischenbehauptung alle Bedingungen
in Theorem 4.6, angewandt auf den Körper L mit den Bewertungsringen OvL und OwL ,
erfüllt. Es würde also L = L(p) folgen, ein Widerspruch!
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Für zwei beliebige vergleichbare Bewertungsringe Ov ⊆ Ow auf K erhalten wir, wie in
Lemma 2.28 gesehen, einen Bewertungsring Ov̄ := Ov/mw auf dem Restklassenkörper
Kw.

Die Bewertung v ist dabei genau dann henselsch (bzw. p-henselsch), wenn sowohl w als
auch v̄ henselsch (bzw. p-henselsch) sind. Die n≤-henselsche Variante dieser Aussage ist
etwas schwächer.

Lemma 5.12. Seien v und w zwei Bewertungen auf einem Körper K mit Ov ⊆ Ow.
Dann gelten die folgenden Aussagen.

(1) Falls v eine n≤-henselsche Bewertung ist, so sind w und v̄ beide n≤-henselsch.

(2) Falls w und v̄ beide n!≤-henselsch sind, so ist v eine n≤-henselsche Bewertung.

Beweis. (1) Sei zunächst f(X) = Xd + Xd−1 + ad−2X
d−2 + · · · + a0 ∈ Ow[X] mit

ad−2, . . . , a0 ∈ mw. Wegen mw ⊆ mv sind dann schon die Bedingungen f ∈ Ov[X]
und ad−2, . . . , a0 ∈ mv erfüllt. Da v nach Voraussetzung n≤-henselsch ist, besitzt
das Polynom f also eine Nullstelle inK. Folglich ist mit v auch w eine n≤-henselsche
Bewertung.

Betrachte jetzt ein beliebiges Polynom f̄ ∈ Ov̄[X] der Form f̄(X) = Xd +Xd−1 +
αd−2X

d−2 + · · ·+ α0 mit αd−2, . . . , α0 ∈ mv̄ und d ≤ n. Dann gibt es ein Polynom
f ∈ K[X] mit f(X) = Xd + Xd−1 + ad−2X

d−2 + · · · + a0 und ai + mw = αi für
0 ≤ i ≤ d− 2, das heißt resKw(f) = f̄ . Wegen ai +mw = αi ∈ mv̄ = Ov̄ \ (O×v /mw)
gilt dabei ai ∈ mv für 0 ≤ i ≤ d − 2. Da die Bewertung v nach Voraussetzung
n≤-henselsch ist, besitzt das Polynom f also eine Nullstelle a ∈ Ov. Für diese ist
a+mw ∈ Ov̄ dann eine Nullstelle von f̄ . Da f̄ beliebig gewählt war, ist damit auch
v̄ eine n≤-henselsche Bewertung.

(2) Seien nun w und v̄ beide n!≤-henselsch. Sei f(X) =
∑
aiX

i ∈ Ov[X] ein Polynom
mit Grad deg(f) ≤ n und einfacher Nullstelle a+ mv ∈ Kv im Restklassenkörper,
d.h. es gelte f(a) ∈ mv und f ′(a) /∈ mv. Wir zeigen, dass f eine Nullstelle a′ in Ov
mit a′+mv = a+mv besitzt. Insbesondere ist v dann n≤-henselsch nach (2)⇒ (3)
aus Theorem 5.5.

Betrachte dazu das Polynom g = resKw(f) ∈ Kw[X]. Dann liegen sowohl α :=
a + mw als auch die Koeffizienten ai + mw von g in Ov/mw = Ov̄, das heißt es ist
g ∈ Ov̄[X]. Wegen mv̄ = mv/mw gilt nach Bemerkung 2.32 auch

g(α) = f(a) + mw ∈ mv/mw = mv̄ sowie
g′(α) = f ′(a) + mw ∈ O×v /mw = O×v̄ = Ov̄ \mv̄,

das heißt α+ mv̄ ist einfache Nullstelle von res(Kw)v̄(g) =: h ∈ (Kw)v̄[X].

Bemerkung 5.6 erlaubt uns nun, die Aussage (2) aus Theorem 5.5 auf das Poly-
nom g mit deg(g) ≤ n und Koeffizienten im n!≤-henselschen Bewertungsring Ov̄
anzuwenden. Es existiert also eine Nullstelle β ∈ Ov̄ von g mit β + mv̄ = α + mv̄.
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Für h = res(Kw)v̄(g) ∈ (Kw)v̄[X] erhalten wir dann mit Bemerkung 2.32 die Glei-
chungskette

g′(β) + mv̄ = h′(β + mv̄) = h′(α+ mv̄) = g′(α) + mv̄.

Damit folgt aus g′(α) /∈ mv̄ auch g′(β) /∈ mv̄ und insbesondere g′(β) 6= 0. Also ist
β eine einfache Nullstelle von g.

Aussage (2) aus Theorem 5.5 für das Polynom f mit deg(f) ≤ n und Koeffizien-
ten im n!≤-henselschen Bewertungsring Ow liefert dann, wegen resKw(f) = g, die
Existenz einer Nullstelle a′ ∈ Ow von f mit a′ + mw = β ∈ Ov̄. Es gibt also ein
b ∈ Ov mit a′ − b ∈ mw ⊆ Ov, insbesondere folgt a′ = (a′ − b) + b ∈ Ov.

Um uns im nächsten Abschnitt der kanonischen n≤-henselschen Bewertung widmen zu
können, fehlt nun noch ein wichtiges Lemma.

Lemma 5.13. Sei (K,Ov) ein bewerteter Körper und n ∈ N. Falls Kv eine echte Ga-
loiserweiterung vom Polynom-Grad ≤ n hat, so auch K.

Beweis. Sei L ) Kv eine echte Galoiserweiterung vom Polynom-Grad [L : Kv]poly ≤ n
und sei f̄ ∈ Kv[X] ein normiertes, irreduzibles und separables Polynom mit 2 ≤ deg(f̄) ≤
n, dessen Zerfällungskörper gerade L ist.8 Dann können wir ein normiertes f ∈ Ov[X]
mit deg(f) = deg(f̄) wählen, für das resKv(f) = f̄ gilt.

Da f̄ in Kv[X] irreduzibel ist, ist f nach Bemerkung 2.33 irreduzibel in K[X]. Außerdem
ist f separabel über K, denn eine mehrfache Nullstelle a ∈ K von f ∈ Ov[X] läge nach
Lemma 2.19 schon in Ov und würde daher eine Nullstelle a+mv von f̄ mit f̄ ′(a+mv) =
f ′(a) + mv = 0 induzieren.

Der Zerfällungskörper L′ von f ist dann eine echte Galoiserweiterung von K, welche die
Ungleichung [L′ : K]poly ≤ deg(f) = n erfüllt.

5.2 Die kanonische n≤-henselsche Bewertung

Wir halten für diesen Abschnitt ein beliebiges n ∈ N fest. Es bezeichne dann dn =
max {d ∈ N | d! ≤

√
n} die größte positive ganze Zahl, deren Fakultät zum Quadrat höchs-

tens so groß wie n ist. Weiter fixieren wir einen beliebigen Körper K.

Ähnlich wie zur Definition der kanonischen henselschen Bewertung partitionieren wir die
Menge H≤n(K) der n≤-henselschen Bewertungsringe auf K in die beiden Teilmengen

H≤n1 (K) =
{
Ov ∈ H≤n(K) |Kv≤(dn) 6= Kv

}
und

H≤n2 (K) =
{
Ov ∈ H≤n(K) |Kv≤(dn) = Kv

}
8Etwa erfüllt f = mipoK(a) für ein primitives Element a ∈ L der Erweiterung L/Kv diese Bedingungen.

44



5 n≤-henselsche Bewertungen

Behauptung 5.14. Die Menge H≤n1 (K) ist durch ⊆ linear geordnet und für alle Ov ∈
H≤n2 (K) und Ow ∈ H≤n1 (K) gilt Ov ⊆ Ow.

Wir halten zunächst wieder das folgende Korollar fest, das wir schon in Abschnitt 3.3 als
Behauptung 3.15 formuliert, aber noch nicht bewiesen, haben.

Korollar 5.15. Die Menge H1(K) ist durch ⊆ linear geordnet und für alle Ov ∈ H2(K)
und Ow ∈ H1(K) gilt Ov ⊆ Ow.

Beweis. Für Ou ∈ H1(K) gilt nach Definition (Ku)sep 6= Ku, das heißt der Restklas-
senkörper Ku hat eine echte endliche Galoiserweiterung. Wegen limn→∞ dn =∞ gibt es
dann ein n ∈ N mit Ou ∈ H≤n1 (K). Sind also Ov,Ow ∈ H1(K), so gibt es ein n ∈ N mit
Ov,Ow ∈ H≤n1 (K) und nach Behauptung 5.14 folgt Ov ⊆ Ow oder Ow ⊆ Ov.

Für Ou ∈ H2(K) ist Ku separabel abgeschlossen, also gilt insbesondere Ku≤(dn) = Ku
und damit Ou ∈ H≤n2 (K) für jedes n ∈ N. Ist nun Ov ∈ H2(K) und Ow ∈ H1(K), so
gibt es daher ein n ∈ N mit Ov ∈ H≤n2 (K) und Ow ∈ H≤n1 (K). Nach Behauptung 5.14
folgt also Ov ⊆ Ow.

Beweis von Behauptung 5.14. Seien Ov,Ow ∈ H≤n(K) zwei n≤-henselsche Bewertungs-
ringe auf K mit Ov ( Ow und Ow ( Ov. Dann ist Ou := Ov ·Ow wieder ein Bewertungs-
ring auf K mit Ov ⊆ Ou und Ow ⊆ Ou. Im Restklassenkörper Ku sind Ov̄ und Ow̄ zwei
nicht-triviale Bewertungsringe. Beide sind nach Lemma 5.12 (1) ebenfalls n≤-henselsch.
Weiter ist Ov̄ · Ow̄ = Ou/mu = Ku erfüllt, das heißt Ov̄ und Ow̄ sind unabhängig.

Wir zeigen nun in einer Fallunterscheidung, dass Ku keine echte Galoiserweiterung vom
Polynom-Grad ≤ dn hat.

Fall 1. (Ku)sep 6= Ku.

Nach Theorem 5.10 ist dann n < m(Ku) · p(Ku) ≤ m(Ku)2, also dn! ≤
√
n <

m(Ku), das heißt Ku hat keine echte Galoiserweiterung vom Grad ≤ dn!. Insbe-
sondere hat Ku keine echte Galoiserweiterung vom Polynom-Grad ≤ dn.

Fall 2. (Ku)sep = Ku.

Dann hat Ku gar keine endlichen echten Galoiserweiterungen, insbesondere also
auch keine vom Polynom-Grad ≤ dn.

Nach Lemma 5.13 haben damit auch Kv = (Ku)v̄ und Kw = (Ku)w̄ keine echten
Galoiserweiterungen vom Polynom-Grad ≤ dn, es gilt also Ov,Ow ∈ H≤n2 (K).

Für Ov ∈ H≤n1 (K) oder Ow ∈ H≤n1 (K) folgt damit schon Ov ⊆ Ow oder Ow ⊆ Ov.
Insbesondere ist H≤n1 (K) linear geordnet.

Seien abschließend Ov ∈ H≤n2 (K) und Ow ∈ H≤n1 (K). Dann gilt, wie zuvor gezeigt, Ov ⊆
Ow oder Ow ⊆ Ov. Wäre Ow ⊆ Ov, so würde allerdings, wieder nach Lemma 5.13, aus
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5 n≤-henselsche Bewertungen

Ow ∈ H≤n1 (K) auch Ov ∈ H≤n1 (K) folgen, ein Widerspruch. Folglich gilt, wie behauptet,
Ov ⊆ Ow.

Behauptung 5.16. Durch Ov∗ :=
⋂
H≤n1 (K) wird ein n≤-henselscher Bewertungsring

auf K definiert.

Beweis. Zunächst ist Ov∗ als Schnitt von Unterringen von K wieder ein Unterring von
K. Sei nun x ∈ K \Ov∗ und Ov0 ∈ H

≤n
1 (K) so, dass x /∈ Ov0 ist. Für jedes Ov ∈ H≤n1 (K)

gilt nach Behauptung 5.14, dass Ov ⊆ Ov0 oder Ov ⊇ Ov0 erfüllt ist. Im ersten Fall ist
x /∈ Ov, also x−1 ∈ Ov, im zweiten Fall ist x−1 ∈ Ov0 ⊆ Ov. Also ist x−1 ∈ Ov für jedes
Ov ∈ H≤n1 (K), das heißt x−1 ∈ Ov∗ . Damit ist Ov∗ ein Bewertungsring auf K.

Weiter ist O×v∗ =
⋂
{O×v | Ov ∈ H

≤n
1 (K)}, denn es gilt

x ∈ O×v∗ ⇐⇒ x ∈ Ov∗ und x−1 ∈ Ov∗
⇐⇒ x ∈ Ov und x−1 ∈ Ov für alle Ov ∈ H≤n1 (K)

⇐⇒ x ∈ O×v für alle Ov ∈ H≤n1 (K).

Wir zeigen nun, dass für das maximale Ideal die Identität mv∗ =
⋃
{mv | Ov ∈ H≤n1 (K)}

gilt. Daraus lässt sich dann leicht folgern, dass Ov∗ wie behauptet n≤-henselsch ist.

Sei dazu zunächst x ∈ mv∗ = Ov∗ \ O×v∗ und sei Ov ∈ H≤n1 (K) so, dass x /∈ O×v . Dann
ist x ∈ Ov \ O×v = mv. Ist andererseits x ∈ mv0 für ein Ov0 ∈ H

≤n
1 (K), so folgt x ∈ Ov

für alle Ov ⊇ Ov0 und x ∈ mv0 ⊆ mw ⊆ Ow für alle Ow ⊆ Ov0 , also x ∈ Ov∗ . Wegen
x /∈ O×v0 ⊇ O

×
v∗ ist dann schon x ∈ Ov∗ \ O×v∗ = mv∗ .

Sei nun abschließend f(X) = Xd+Xd−1+ad−2X
d−2+· · ·+a0 ∈ Ov∗ [X] ein Polynom mit

d ≤ n und ad−2, . . . , a0 ∈ mv∗ . Dann gibt es, nach der zuvor gezeigten Identität mv∗ =⋃
{mv | Ov ∈ H≤n2 (K)}, für jedes i = 0, . . . , d − 2 ein Ovi ∈ H

≤n
1 (K) mit ai ∈ mvi . Da

H≤n1 (K) linear geordnet ist, gibt es ein j ∈ {0, . . . , d− 2}mit
⋂d−2
i=0 Ovi = Ovj ∈ H

≤n
1 (K)

und für dieses gilt f ∈ Ovj [X] sowie ad−2, . . . , a0 ∈
⋃d−2
i=0 mvi = mvj . Weil Ovj ∈ H

≤n
1 (K)

insbesondere n≤-henselsch ist, hat f daher eine Nullstelle in K und damit ist auch Ov∗
ein n≤-henselscher Bewertungsring.

Falls H≤n2 (K) = ∅ ist, so haben wir mit Ov∗ ∈ H
≤n
1 (K) einen n≤-henselschen Bewer-

tungsring auf K gefunden, der mit allen n≤-henselschen Bewertungsringen auf K ver-
gleichbar ist. Dieser heißt dann der kanonische n≤-henselsche Bewertungsring und die
dazugehörige Bewertung v∗ heißt die kanonische n≤-henselsche Bewertung auf K.

Jedoch liegt Ov∗ nicht zwingend selbst in H≤n1 (K). Der Fall H≤n2 (K) 6= ∅ erfordert daher
noch etwas mehr Aufwand.

An einer Stelle benötigen wir dazu die Diskriminante eines Polynoms, deren für uns
wichtigste Eigenschaften die folgende Bemerkung beschreibt.
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Bemerkung und Definition 5.17. Sei K ein Körper und f ∈ K[X] ein Polynom.
Dann ist f genau dann separabel, wenn es keine Polynome p, q ∈ K[X] mit {p, q} 6= {0}
sowie deg(p) < deg(f ′) und deg(q) < deg(f) gibt, die p · f = q · f ′ erfüllen.

Setze d := deg(f). Seien p(X) = pd−2X
d−2 + · · · + p0 und q(X) = qd−1X

d−1 + · · · + q0

Polynome in den Unbekannten pd−2, . . . , p0, qd−1, . . . , q0. Die Gleichung pf−qf ′ = 0 lässt
sich als lineares Gleichungssystem in den 2d−1 vielen Koeffizienten von p und q schreiben.
Dieses System hat deg(pf − qf ′) = max {deg(pf),deg(qf ′)} = 2d− 1 viele Gleichungen
und wird daher durch eine quadratische Matrix M ∈ K(2d−1)×(2d−1) beschrieben. Das
Polynom f ist, nach der Äquivalenz im ersten Absatz, genau dann separabel, wenn dieses
Gleichungssystem keine nicht-triviale Lösung hat.

Wir definieren die Diskriminante δ(f) von f als die Determinante dieser Matrix, δ(f) :=
det(M) ∈ K. Dann ist δ(f) polynomiell in den Koeffizienten von f und das Polynom f
ist genau dann separabel, wenn δ(f) 6= 0 gilt.

Beweis. Zu zeigen ist die im ersten Absatz beschriebene Äquivalenz:

“Das Polynom ist f genau dann separabel, wenn es keine Polynome p, q ∈
K[X] mit {p, q} 6= {0} sowie deg(p) < deg(f ′) und deg(q) < deg(f) gibt, die
p · f = q · f ′ erfüllen.”

Sei f zunächst inseparabel, das heißt jeder größte gemeinsame Teiler g von f und f ′

hat Grad deg(g) > 0. Es existieren dann Polynome p, q ∈ K[X] mit {p, q} 6= {0} sowie
qg = f und pg = f ′. Für diese gilt, wie behauptet, p · f = pqg = qpg = q · f ′ sowie

deg(p) = deg(f ′)− deg(g) < deg(f ′) und
deg(q) = deg(f)− deg(g) < deg(f).

Seien jetzt andererseits Polynome p, q ∈ K[X] mit {p, q} 6= {0} sowie pf = qf ′ und
deg(p) < deg(f ′) gegeben. Dann gilt f ′|(pf) und aus deg(p) < deg(f ′) folgt die Existenz
eines Polynoms g ∈ K[X] mit g|f ′ und g|f sowie deg(g) > 0. Insbesondere muss jeder
größte gemeinsame Teiler von f und f ′ bereits in K[X] \ K liegen, das heißt f ist
inseparabel.

Es ist also f genau dann separabel, wenn das GleichungssystemM ·x = 0 nur die triviale
Lösung besitzt. Das ist genau dann der Fall, wenn δ(f) = det(M) 6= 0 ist. Außerdem ist
δ(f) = det(M) ein Polynom in den Einträgen von M . Diese sind Linearkombinationen
der Koeffizienten von f , also ist δ(f) auch polynomiell in den Koeffizienten von f .

Korollar 5.18. Für jedes Polynom f ∈ Ov[X] gilt resKv (δ(f)) = δ (resKv(f)).

Beweis. Nach Bemerkung 5.17 ist δ polynomiell in den Koeffizienten von f und nach
Definition von resKv als Fortsetzung des Ringhomomorphismus Ov → Kv folgt die Be-
hauptung.
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Behauptung 5.19. Falls H≤n2 (K) 6= ∅ ist, so gibt es ein eindeutiges bezüglich ⊆ maxi-
males Element in H≤n2 (K).

Beweis. Wir zeigen zunächst die Existenz eines maximalen Elements unter Verwendung
des Zornschen Lemmas. Sei dazu ∅ 6= S ⊆ H≤n2 (K) eine nicht-leere, linear geordnete
Teilmenge. Zu zeigen ist, dassOv∗ :=

⋃
S einen n≤-henselschen Bewertungsring definiert,

der selbst in H≤n2 (K) liegt.

Zunächst ist Ov∗ als Supremum der linear geordneten Menge S von Unterringen von K
jedenfalls ein Unterring von K. Ist nun x ∈ K \ Ov∗ , das heißt x /∈ Ov für alle Ov ∈ S,
so folgt x−1 ∈ Ov für alle Ov ∈ S, und damit wegen S 6= ∅ insbesondere x−1 ∈ Ov∗ . Der
Ring Ov∗ ist also ein Bewertungsring auf K.

Für jedes Ov ∈ S ist Ov ⊆ Ov∗ und wegen S 6= ∅ ist Ov∗ damit nach Lemma 5.12 bereits
n≤-henselsch.

Zur Verwendung des Zornschen Lemmas müssen wir noch Ov∗ ∈ H≤n2 (K) nachweisen.
Zu zeigen ist dafür nur noch, dass (Kv∗)≤(dn) = Kv∗ gilt.

Sei dazu L ⊇ Kv∗ eine Galoiserweiterung vom Polynom-Grad ≤ dn und sei f̄ ∈ Kv∗[X]
ein normiertes, irreduzibles und separables Polynom mit deg(f̄) ≤ dn dessen Zerfäl-
lungskörper gerade L ist. Wie im Beweis von Lemma 5.13 können wir dann ein nor-
miertes, irreduzibles Polynom f ∈ Ov∗ [X] mit deg(f) = deg(f̄) und resKv∗(f) = f̄
finden. Da die Diskriminante δ(·) eines Polynoms polynomiell in den Koeffizienten ist,
gilt resKv∗ (δ(f)) = δ (resKv∗(f)) = δ(f̄) 6= 0Kv∗ = mv∗ , das heißt δ(f) ∈ O×v∗ .

Wir können daher Ov ∈ S so wählen, dass δ(f) ∈ O×v gilt und außerdem alle Koeffizienten
des Polynoms f in Ov liegen. Insbesondere ist resKv(f) dann separabel über Kv. Nun ist
Ov̄ = Ov/mv∗ ein n≤-henselscher Bewertungsring auf Kv∗ und res(Kv∗)v̄(f̄) = resKv(f)

hat eine – einfache – Nullstelle inKv = (Kv∗)v̄, daKv≤(dn) = Kv und deg (resKv(f)) ≤
dn ist. Die Aussage 2 aus Theorem 5.5 (für dn statt n) liefert uns dann, wegen dn! ≤ n, die
Existenz einer Nullstelle von f̄ in Ov̄ ⊆ Kv∗. Da f̄ nach Annahme irreduzibel ist, folgt
schon deg(f̄) = 1 und damit L = Kv∗. Der Restklassenkörper Kv∗ hat also keine echten
Galoiserweiterungen vom Polynom-Grad ≤ dn, das heißt es ist Ov∗ ∈ H≤n2 (K). Nach
dem Zornschen Lemma existiert also mindestens ein maximales Element in H≤n2 (K).

Abschließend ist noch die Eindeutigkeit des maximalen Elements von H≤n2 (K) zu zeigen.
Seien dazu Ov,Ow ∈ H≤n2 (K) beide maximal. Dann ist, nach Lemma 5.12 (1), auch Ou =
Ov · Ow ein n≤-henselscher Bewertungsring auf K. Falls Ov und Ow nicht vergleichbar
wären, so würde – wie im Beweis von Behauptung 5.14 – bereits Ou ∈ H≤n2 (K) folgen.
Dann wäre aber Ou ) Ov und insbesondere wäre Ov nicht maximal. Also müssen Ov
und Ow vergleichbar sein. Da beide maximal sind folgt daraus bereits Ov = Ow.

Nun haben wir alle nötigen Resultate, um die kanonische n≤-henselsche Bewertung auf
einem Körper K im allgemeinen Fall definieren zu können.
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Definition 5.20. Sei K ein beliebiger Körper und sei, wie zu Beginn des Abschnitts 5.2,
dn = max {d ∈ N | d! ≤

√
n} sowie

H≤n1 (K) =
{
Ov ∈ H≤n(K) |Kv≤(dn) 6= Kv

}
und

H≤n2 (K) =
{
Ov ∈ H≤n(K) |Kv≤(dn) = Kv

}
.

Falls H≤n2 (K) 6= ∅ ist, sei O≤ das maximale Element von H≤n2 (K). Andernfalls sei
O≤ := Ov∗ =

⋂
H≤n1 (K). Die zu O≤ gehörige Bewertung auf K sei mit v≤nK bezeichnet.

Die Bewertung v≤nK heißt dann die kanonische n≤-henselsche Bewertung auf K, der zu-
gehörige Bewertungsring O≤n heißt der kanonische n≤-henselsche Bewertungsring auf
K.

Zum Abschluss dieses Kapitels halten wir noch zwei Eigenschaften der kanonischen
n≤-henselschen Bewertung fest. Ihre wichtigste Eigenschaft ist die Vergleichbarkeit mit
allen n≤-henselschen Bewertungen auf dem zugrunde liegenden Körper.

Proposition 5.21. Der kanonische n≤-henselsche Bewertungsring auf einem Körper K
(mit Ksep 6= K) ist, bezüglich ⊆, mit allen n≤-henselschen Bewertungsringen auf K
vergleichbar.

Beweis. Im Fall H≤n2 (K) = ∅ ist die Aussage klar, denn H≤n1 (K) ist durch ⊆ linear
geordnet. Andernfalls ist O≤n maximales Element von H≤n2 (K) und daher mit allen Be-
wertungsringen aus H≤n2 (K) vergleichbar. Da die Bewertungsringe aus H≤n1 (K) ohnehin
mit allen n≤-henselschen Bewertungsringen vergleichbar sind, folgt die Behauptung.

Ist n ∈ N groß genug (und besitzt der Körper K dann überhaupt eine nicht-triviale
n≤-henselsche Bewertung), so ist O≤n 6= K. Genauer gilt die folgende Proposition.

Proposition 5.22. Sei K ein n≤-henselscher Körper. Dann gilt (vgl. Notation 5.9):

(1) Ist n ≥ (m(K)!)2, so ist O≤n 6= K.

(2) Ist n < m(K)2, so gilt O≤n = K.

Beweis. (1) Ist n ≥ (m(K)!)2, so gilt K≤(dn) 6= K, also K ∈ H≤n1 (K) 6= ∅. Für
H≤n2 (K) 6= ∅ liegt der kanonische n≤-henselsche Bewertungsring O≤n ohnehin
nicht in H≤n1 (K) und kann damit insbesondere nicht mit K übereinstimmen. Für
H≤n2 (K) = ∅ sei v eine nicht-triviale n≤-henselsche Bewertung auf K. Dann ist
Ov ∈ H≤n1 (K) und es folgt O≤n =

⋂
H≤n1 (K) ⊆ Ov ( K.

(2) Ist n < m(K)2, das heißt m(K) > dn!, so hat K keine echte endliche Galoi-
serweiterung vom Grad ≤ dn!, also auch keine vom Polynom-Grad ≤ dn. Nach
Lemma 5.13 gilt dann Kv≤(dn) = Kv für jede Bewertung v auf K, also folgt
∈ H≤n2 (K) = H≤n(K). Der kanonische n≤-henselsche Bewertungsring O≤n ist
dann das maximale Element von H≤n(K), das heißt O≤n = K.
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6 Zusammenhang der verschiedenen
Begriffe

6.1 Henselsche, n≤-henselsche und p-henselsche
Bewertungen

Eine erste Rechtfertigung der Untersuchung (kanonischer) n≤-henselscher Bewertungsrin-
ge liefert die folgende Proposition, die einen Zusammenhang zur kanonischen henselschen
Bewertung herstellt.

Proposition 6.1. Sei K ein henselscher Körper mit Ksep 6= K und vK die kanoni-
sche henselsche Bewertung auf K, sowie OK der zugehörige Bewertungsring. Dann lässt
sich OK wie folgt durch die kanonischen n≤-henselschen Bewertungsringe O≤n auf K
ausdrücken.

(1) Falls der Restklassenkörper KvK separabel abgeschlossen ist, das heißt falls OK ∈
H2(K) gilt, so ist OK =

⋂
n∈NO≤n.

(2) Falls der Restklassenkörper KvK nicht separabel abgeschlossen ist, das heißt falls
OK ∈ H1(K) gilt, so ist OK =

⋃
n≥n0

O≤n für alle n0 ∈ N mit n0 ≥ (d!)2, wobei
d = min {[L : KvK ]poly |L/KvK ist Galoiserweiterung mit L 6= KvK} sei.

Im Beweis benutzen wir die folgende Beobachtung.

Bemerkung 6.2. Sind n,m ∈ Nmit n ≤ m gegeben, so ist O≤m auch ein n≤-henselscher
Bewertungsring auf K, also nach Proposition 5.21 mit O≤n vergleichbar. Insbesondere
ist die Menge {O≤n |n ∈ N} der kanonischen n≤-henselschen Bewertungsringe auf K für
variierendes n ∈ N daher durch ⊆ linear geordnet.

Beweis von Proposition 6.1. Wie in Abschnitt 5.2 sei dn = max {d ∈ N | d! ≤
√
n} für

n ∈ N. Außerdem schreiben wir der Übersicht halber kurz v = vK für die kanonische
henselsche und vn = v≤nK für die kanonische n≤-henselsche Bewertung auf K.

(1) Ist Kv separabel abgeschlossen, so gilt insbesondere Kv≤(dn) = Kv für alle n ∈ N.
Für jedes n ∈ N ist damit OK ∈ H≤n2 (K) und insbesondere ist H≤n2 (K) dann nicht
leer. Daher ist O≤n, nach Definition, maximales Element von H≤n2 (K). Folglich
ist OK ⊆ O≤n für alle n ∈ N, also auch OK ⊆

⋂
n∈NO≤n =: O. Als Schnitt

von Unterringen von K, der mit OK einen henselschen Bewertungsring enthält, ist
O ⊆ K selbst ein henselscher Bewertungsring auf K. Es bezeichne w die Bewertung
aufK mit O = Ow. Für jedes n ∈ N induziert w, wegen Ow ⊆ O≤n, eine Bewertung
wn auf dem Restklassenkörper Kvn mit (Kvn)wn = Kw.
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Hätte Kw nun eine echte endliche Galoiserweiterung, etwa vom Polynom-Grad d,
so hätte nach Lemma 5.13 auch Kvn eine Galoiserweiterung desselben Polynom-
Grades. Für n ≥ (d!)2, das heißt dn ≥ d, führt dies, wegen O≤n ∈ H≤n2 (K),
also Kvn≤(dn) = Kvn, aber zum Widerspruch. Demnach ist Kw separabel abge-
schlossen, also gilt Ow ∈ H2(K). Da OK maximales Element von H2(K) ist, folgt
O = Ow ⊆ OK und insgesamt OK = O =

⋂
n∈NO≤n.

(2) Ist Kv nicht separabel abgeschlossen, so gibt es eine endliche Galoiserweiterung
L/Kv vom Polynom-Grad [L : Kv]poly = d > 1. Fixiere nun ein beliebiges n0 ∈ N
mit n0 ≥ (d!)2. Für n ≥ n0 ist dann dn ≥ dn0 ≥ d, das heißt (Kv)≤(dn) 6= Kv.
Es folgt OK ∈ H≤n1 (K) und damit OK ⊇ O≤n für alle n ≥ n0, das heißt OK ⊇⋃
n≥n0

O≤n. Da die Menge {O≤n |n ∈ N} nicht-leer und nach Bemerkung 6.2 linear
geordnet ist, ist O :=

⋃
n≥n0

O≤n als deren Supremum selbst wieder ein Bewer-
tungsring auf K. Außerdem ist O nach Lemma 5.12 (1) mit O≤n ⊆ O ebenfalls
n≤-henselsch für alle n ≥ n0.

Insgesamt ist O folglich ein henselscher Bewertungsring auf K. Weiter ist H2(K) =
∅, denn sonst lägeOK , nach Definition, in der MengeH2(K). Damit giltO ∈ H1(K)
und aus OK =

⋂
H1(K) folgt O ⊇ OK , also insgesamt OK = O =

⋃
n≥n0

O≤n.

Wir führen nun noch zwei weitere Begriffe ein, die mit dem der n≤-henselschen Bewertung
in Verbindung stehen.

Definition 6.3. Sei (K, v) ein bewerteter Körper und n ∈ N eine positive ganze Zahl.

(1) Die Bewertung v (bzw. der bewertete Körper (K, v)) heißt prim-henselsch unterhalb
von n, falls für alle Primzahlen p ≤ n und jede Galoiserweiterung L/K mit L(p) 6= L
und [L : K] · p ≤ n jede Fortsetzung w von v auf L eine p-henselsche Bewertung
ist.

(2) Die Bewertung v (bzw. der bewertete Körper (K, v)) heißt separabel prim-henselsch
unterhalb von n, falls für alle Primzahlen p ≤ n und jede separable Körpererwei-
terung L/K mit L(p) 6= L und [L : K] · p ≤ n jede Fortsetzung w auf L eine
p-henselsche Bewertung ist.

(3) Der Körper K heißt prim-henselsch unterhalb von n, falls es eine nicht-triviale
Bewertung v auf K gibt, die prim-henselsch unterhalb von n ist.

(4) Der Körper K heißt separabel prim-henselsch unterhalb von n, falls es eine nicht-
triviale Bewertung v auf K gibt, die separabel prim-henselsch unterhalb von n
ist.

Offensichtlich ist jede Bewertung, die separabel prim-henselsch unterhalb von n ist auch
prim-henselsch unterhalb von n.

Außerdem ist jede Bewertung, die prim-henselsch unterhalb von n ist auch p-henselsch für
alle Primzahlen p ≤ n, was die Bezeichnung “prim-henselsch unterhalb von n” erklärt.
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Bemerkung 6.4. Ist (K, v) (separabel) prim-henselsch unterhalb von n, so ist v bereits
p-henselsch für jede Primzahl p ≤ n: Falls K(p) = K ist, ist die Aussage trivialerweise
erfüllt, andernfalls folgt sie sofort aus der Definition 6.3.

Den Zusammenhang zu n≤-henselschen Bewertungen stellt nun die folgende Proposition
her.

Proposition 6.5. Ist (K, v) ein n!≤-henselsch bewerteter Körper, so ist (K, v) (separa-
bel) prim-henselsch unterhalb von n.

Beweis. Sei p ≤ n eine Primzahl und L/K eine separable Erweiterung mit L(p) 6= L und
[L : K] · p ≤ n. Weiter sei w eine beliebige Fortsetzung von v auf L.

Wir halten nun eine beliebige Galoiserweiterung L′/L vom Grad p fest. Dann ist L′/K
endlich und separabel und damit, nach dem Satz vom primitiven Element, insbesondere
eine einfache Körpererweiterung. Betrachte für α ∈ L′ mit L′ = K(α) das Minimalpo-
lynom f = mipoK(α) ∈ K[X] und den Zerfällungskörper N von f . Dann ist N/K eine
Galoiserweiterung, für deren Polynom-Grad die Ungleichung

[N : K]poly ≤ deg(f) = [K(α) : K] = [L′ : L] · [L : K] = p · [L : K] ≤ n

gilt, das heißt es ist [N : K] ≤ n!. Da (K, v) nach Voraussetzung n≤-henselsch ist, hat v
damit eine eindeutige Fortsetzung auf N . Jede Fortsetzung von w auf L′ liefert auch eine
Fortsetzung von w auf N , die dann auch Fortsetzung von v auf N ist. Folglich besitzt w
auch nur genau eine Fortsetzung auf L′. Da L′/L von Grad p beliebig gewählt war, ist
(L,w) demnach p-henselsch.

Insgesamt ist (K, v) dann wie behauptet separabel prim-henselsch unterhalb von n (und
damit auch prim-henselsch unterhalb von n).

Korollar 6.6. Sei K ein Körper, der n≤-henselsch ist für jedes n ∈ N. Dann ist K
bereits separabel prim-henselsch unterhalb von n für jedes n ∈ N.

Um die Umkehrung zu zeigen, verlangen wir eine zusätzliche Bedingung an die abso-
lute Galoisgruppe. Für allgemeine prim-henselsche Bewertungen fällt diese Bedingung
noch etwas stärker aus, als für separabel prim-henselsche Bewertungen: Im ersten Fall
benötigen wir, dass GK pro-nilpotent ist, im zweiten genügt es, wenn GK pro-auflösbar
ist.

Proposition 6.7. Sei (K, v) prim-henselsch unterhalb von n! und die absolute Galois-
gruppe GK = Gal(Ksep/K) von K sei pro-nilpotent. Dann ist v bereits n≤-henselsch.

Beweis. Wir zeigen die Kontraposition. Sei also (K, v) nicht n≤-henselsch und sei GK
pro-nilpotent. Zu zeigen ist, dass (K, v) nicht prim-henselsch unterhalb von n! ist. Da
für n = 1 jede Bewertung auf jedem Körper trivialerweise n≤-henselsch ist, gilt nach
Voraussetzung n ≥ 2.
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6 Zusammenhang der verschiedenen Begriffe

Sei nun N/K eine Galoiserweiterung mit

[N : K] = min
{

[N ′ : K] | v hat keine eindeutige Fortsetzung auf N ′
}
> 1,

sodass v mehr als eine Fortsetzung auf N besitzt.

Nach Bemerkung 5.6 gibt es eine Galoiserweiterung vom Grad höchstens n!, auf die
v keine eindeutige Fortsetzung hat, also ist 1 < [N : K] ≤ n!. Sei nun p|[N : K]
ein Primteiler und S eine p-Sylowgruppe in G = Gal(N/K), sowie L = Fix(S) die
entsprechende Körpererweiterung von K. Da GK pro-nilpotent und G damit nilpotent
ist, ist S insbesondere ein Normalteiler von G. Die Erweiterung L/K ist daher eine
Galoiserweiterung. Außerdem ist [N : L] = #S = pk für geeignetes k ≥ 1, das heißt
L(p) 6= L und [L : K] · p ≤ [N : L] · [L : K] = [N : K] ≤ n!. Weiter gibt es, wegen
[L : K] < [N : K] und nach Wahl von N , eine eindeutige Fortsetzung w von v auf L. Da
v (und damit auch w) mehr als eine Fortsetzung auf N besitzt, kann (L,w) dann nicht
p-henselsch sein.

Insgesamt ist (K, v) also nicht prim-henselsch unterhalb von n!.

Korollar 6.8. Sei K ein Körper, der prim-henselsch unterhalb von n ist für jedes n ∈ N.
Ist GK pro-nilpotent, so ist K bereits n≤-henselsch für jedes n ∈ N.

Proposition 6.9. Sei (K, v) separabel prim-henselsch unterhalb von n! und die absolute
Galoisgruppe GK von K sei pro-auflösbar. Dann ist v bereits n≤-henselsch.

Beweis. Wie im Beweis von Proposition 6.7 zeigen wir die Kontraposition. Sei also wieder
(K, v) nicht n≤-henselsch (mit n ≥ 2) und GK diesmal pro-auflösbar.

Wähle, genau wie im Beweis von Proposition 6.7, eine Galoiserweiterung N/K mit

[N : K] = min
{

[N ′ : K] | v hat keine eindeutige Fortsetzung auf N ′
}
,

sodass v mehr als eine Fortsetzung auf N besitzt. Dann ist 1 < [N : K] ≤ n!, wie oben
bereits gesehen.

Wir können nun ohne Einschränkung annehmen, dass n > 2 gilt: Für n = 2 folgt schon
[N : K] = 2, womit L = K eine separable Körpererweiterung von K mit [L : K] · 2 =
2 ≤ n! ist. Für p = 2 ist dann weiter L(2) 6= L und (L, v) ist – nach Wahl von N – nicht
p-henselsch. Also ist (K, v) in diesem Fall nicht separabel prim-henselsch unterhalb von
n! – auch falls GK nicht pro-auflösbar ist.

Nun ist G = Gal(N/K) 6= {id} auflösbar, da GK pro-auflösbar ist. Für ein geeignetes
m ∈ N existieren also Untergruppen Gi ≤ G sowie Primzahlen pi für 0 ≤ i ≤ m mit

G = G0 DG1 D . . . DGm DGm+1 = {id}

sodass Gi/Gi+1 zyklisch von Ordnung pi ist.
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6 Zusammenhang der verschiedenen Begriffe

Wir betrachten für 0 ≤ i ≤ m + 1 die zugehörigen Körpererweiterungen Li := Fix(Gi)
von K. Für 0 ≤ i ≤ m ist Li/K dann eine separable Körpererweiterung mit

[Li : K] · pi = [Li+1 : K] ≤ [N : K] ≤ n!,

das heißt insbesondere gilt pi ≤ n!. Weiter ist Li(pi) 6= Li, denn es ist [Li+1 : Li] =
#Gi/Gi+1 = pi.

Finden wir nun ein j ∈ {0, . . . ,m} =: M und eine Fortsetzung vj von v auf Lj , die sich
nicht eindeutig auf Lj+1 fortsetzen lässt, so bezeugen L = Lj und p = pj , dass (K, v)
nicht separabel prim-henselsch unterhalb von n! ist.

Betrachte dazu die Menge J := {i ∈M | v hat eine eindeutige Fortsetzung auf Li}. Diese
Menge ist endlich und nicht-leer (denn trivialerweise gilt 0 ∈ J), also enthält sie ein
größtes Element j ∈ J . Nach Definition hat v eine eindeutige Fortsetzung vj auf Lj .
Jedoch lässt v sich nicht eindeutig auf Lj+1 fortsetzen – für j < m folgt dies sofort
nach Definition, für j = m folgt es nach Wahl von N = Lm+1. Damit ist (Lj , vj) nicht
pj-henselsch, aber es gilt [Lj : K] · pj ≤ n! sowie Lj(pj) 6= Lj .

Insgesamt ist (K, v) also nicht separabel prim-henselsch unterhalb von n.

Korollar 6.10. Sei K ein Körper, der separabel prim-henselsch unterhalb von n ist für
jedes n ∈ N. Ist GK pro-auflösbar, so ist K bereits n≤-henselsch für jedes n ∈ N.

6.2 Bezug zur Modelltheorie: t-henselsche
Bewertungen

Bewertete Körper – und insbesondere Körper mit Bewertungen, die unterschiedliche Va-
rianten von Hensels Lemma erfüllen – haben eine schöne und ergiebige Modelltheorie
(siehe etwa [PZ78,JK15b,JK15a]).

So ist zwar die Eigenschaft eines Körpers, eine nicht-triviale henselsche Bewertung zu
tragen, keine im modelltheoretischen Sinn elementare Eigenschaft, jedoch lassen sich die
Körper, die elementar äquivalent zu einem henselschen Körper sind, ebenfalls durch eine
(topologische) Variante von Hensels Lemma beschreiben, wie Theorem 6.16 zeigt.

Eine erste modelltheoretische Anwendung der kanonischen n≤-henselschen Bewertung ist
die folgende.

Proposition 6.11. Sei K 6= Ksep ein Körper mit nicht-trivialer henselscher Bewertung
v. Ist der Bewertungsring Ov auf K definierbar in der Sprache Lring = {0, 1,+, ·} der
Ringe, so existiert ein ∅-definierbarer nicht-trivialer Bewertungsring Ow auf K mit Tw =
Tv, das heißt w induziert die eindeutige henselsche Topologie.
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Bevor wir den Beweis führen, halten wir zur Einordnung der Aussage von Proposition 6.11
fest, dass aus der Existenz einer definierbaren nicht-trivialen henselschen Bewertung auf
einem Körper im Allgemeinen nicht die Existenz einer ∅-definierbaren nicht-trivialen
henselschen Bewertung folgt.

Bemerkung 6.12. Es existiert ein Körper L mit L 6= Lsep, auf dem es eine definierbare
nicht-triviale henselsche Bewertung, aber keine ∅-definierbare nicht-triviale henselsche
Bewertung gibt.

Beweis. In [JK15c, Example 6.3] konstruieren Jahnke und Koenigsmann einen Körper L
mit L 6= Lsep, auf dem es eine definierbare nicht-triviale henselsche Bewertung gibt, und
einen zu L elementar äquivalenten Körper K, der nicht henselsch ist.

Insbesondere kann es in dieser Situation keine ∅-definierbare nicht-triviale henselsche
Bewertung auf L geben, denn die Definition einer solchen würde auch auf K eine nicht-
triviale henselsche Bewertung definieren.

Beweis von Proposition 6.11. Sei φ(x, t) eine Lring-Formel, die den Bewertungsring Ov
definiert, das heißt mit φ(K, t) = {x ∈ K |φ(x, t)} = Ov. Wir können ohne Einschrän-
kung annehmen, dass der Restklassenkörper Kv nicht separabel abgeschlossen ist – denn
andernfalls gäbe es nach [JK15b, Theorem 3.10] sogar eine ∅-definierbare henselsche Be-
wertung auf K.

Es gibt dann also ein n ≥ 2, sodass Kv eine echte Galoiserweiterung L vom Grad
[L : Kv] = n besitzt. Für m = (n!)2 ist nun [L : Kv]poly ≤ [L : Kv] ≤ n = dm, das
heißt insbesondere gilt Kv≤(dm) 6= Kv und damit Ov ∈ H≤m1 (K). Nach Definition des
kanonischen m≤-henselschen Bewertungsrings O≤m auf K folgt Ov ⊇ O≤m.

Betrachte nun die Menge S := {s ∈ K |φ(K, s) ∈ H≤m1 (K)} der Parameter s ∈ K, für
die φ(K, s) = Ou ein m≤-henselscher Bewertungsring auf K mit Ku≤(dm) 6= Ku ist.
Dann ist O :=

⋂
s∈S φ(K, s) offensichtlich ∅-definierbar, da die Bedingung

φ(K, s) ∈ H≤m1 (K)⇔ φ(K, s) = Ou ist m≤-henselsch mit Ku≤(dm) 6= Ku

an s sich als parameterfreie Lring-Formel ausdrücken lässt. Als Schnitt von Unterringen
von K ist O selbst wieder ein Unterring von K und, wegen O≤m ⊆ O, sogar ein Bewer-
tungsring auf K. Wegen φ(K, t) = Ov ∈ H≤m1 (K) gilt t ∈ S, also Ov ∈ {φ(K, s) | s ∈ S}
und daher O ⊆ Ov 6= K. Die zum Bewertungsring O gehörige Bewertung w auf K
ist folglich nicht-trivial und erfüllt OvOw 6= K, das heißt v und w induzieren dieselbe
Topologie.

Im Zusammenhang mit der Modelltheorie (henselsch) bewerteter Körper fehlt uns noch
ein weiterer wichtiger Begriff.

Definition 6.13. Ein Körper K heißt t-henselsch, falls es einen henselschen Körper L
gibt, der als Lring-Struktur elementar äquivalent zu K ist.
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Dass jeder henselsche Körper bereits t-henselsch ist, folgt sofort aus der Definition. Die
Umkehrung gilt im Allgemeinen nicht, wie Proposition 6.18 später zeigt. Unter gewissen
Voraussetzungen sind die beiden Begriffe jedoch äquivalent. Genauer gilt die folgende
Aussage.

Lemma 6.14 (Koenigsmann). Sei K ein t-henselscher Körper, der weder separabel abge-
schlossen noch reell abgeschlossen ist und dessen absolute Galoisgruppe GK pro-auflösbar
ist. Dann ist K henselsch.

Beweis. Siehe [Koe04, Lemma 3.5].

Bewertete t-henselsche Körper lassen sich durch eine topologische Variante der Aussage
von Hensels Lemma charakterisieren, die eine direkte Verbindung zu n≤-henselschen
Bewertungen herstellt: Ein Körper, der für jedes n ∈ N eine nicht-triviale n≤-henselsche
Bewertung besitzt, ist bereits t-henselsch.

Topologisch können wir t-henselsche Körper dabei mithilfe sogenannter V -Topologien
beschrieben.

Definition 6.15. (1) Sei (K, T ) ein topologischer Körper. Eine Teilmenge S ⊆ K
heißt beschränkt, falls es für jedes U ∈ T mit 0 ∈ U ein V ∈ T gibt mit 0 ∈ V und
V · S ⊆ U (das heißt für alle x ∈ V und y ∈ S gilt x · y ∈ U).

(2) Eine V -Topologie auf einem Körper K ist eine Körper-Topologie T auf K bezüglich
der Menge (K \ U)−1 für jede offene Umgebung U der 0 in K, das heißt für jedes
U ∈ T mit 0 ∈ U , beschränkt ist.

Wir können jetzt das zuvor erwähnte Theorem formulieren, das t-henselsche Körper durch
eine Variante der Aussage von Hensels Lemma charakterisiert.

Theorem 6.16 (Prestel-Ziegler). Ein Körper K mit einer V -Topologie T ist genau dann
t-henselsch, wenn für jedes n ≥ 1 ein U ∈ T \ {∅} existiert, sodass jedes Polynom der
Form Xn+1 +Xn + an−1X

n−1 + · · ·+ a0 mit ai ∈ U für 0 ≤ i ≤ n− 1 eine Nullstelle in
K besitzt.

Beweis. Siehe [PZ78, Theorem 7.2 (i)].

Diese topologische Beschreibung liefert den erwähnten Zusammenhang zwischen n≤-hen-
selschen und t-henselschen Körpern.

Korollar 6.17. Jeder Körper K, auf dem es für jedes n ∈ N einen nicht-trivialen
n≤-henselschen Bewertungsring gibt, ist t-henselsch.
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Beweis. Für n ∈ N sei O≤n 6= K der kanonische n≤-henselscher Bewertungsring und Tn
die von diesem induzierte Topologie auf K. Wir betrachten nun die Topologie T := Tn0

auf K für n0 = m(K) ·p(K). Diese ist, nach Proposition 2.37, eine Körper-Topologie und
nach Theorem 5.10 gilt Tn = T für alle n ∈ N mit n ≥ m(K) · p(K).

Wir setzen ν(n) := max {n+ 1, n0} und wählen Un := m≤ν(n) ∈ T . Jedes Polynom der
Form Xn+1 +Xn + an−1X

n−1 + · · ·+ a0 ∈ K[X] mit ai ∈ Un für 0 ≤ i ≤ n− 1 besitzt
dann eine Nullstelle in K, da der Bewertungsring O≤ν(n), wegen ν(n) ≥ n + 1, stets
(n+ 1)≤-henselsch ist.

Es bleibt noch zu zeigen, dass T eine V -Topologie auf K ist. Wir müssen also für U ∈ T
mit 0 ∈ U zeigen, dass (K \ U)−1 beschränkt ist. Seien dazu U,W ∈ T mit 0 ∈ U
und 0 ∈ W gegeben. Weiter sei v = v≤n0

K die kanonische n0≤-henselsche Bewertung auf
K. Dann gibt es a, b ∈ K× mit 0 ∈ aOv ⊆ W und 0 ∈ bOv ⊆ U . Insbesondere ist
(K \ U)−1 ⊆ (K \ bOv)−1, das heißt für z ∈ (K \ U)−1 gilt v(z−1) < v(b) und damit
v(bz) > 0. Wir betrachten jetzt die offene Menge V = abOv. Für jedes x ∈ Ov und jedes
z ∈ (K \ U)−1 gilt

v(ab · x · z) = v(ax) + v(bz) > v(ax) ≥ v(a),

also ist V · (K \ U)−1 ⊆ aOv ⊆ W . Da W ∈ T mit 0 ∈ W beliebig (und insbesondere
unabhängig von U) gewählt war, ist die Menge (K \ U)−1 für jedes U ∈ T mit 0 ∈ U
beschränkt.

Wir zeigen nun noch, dass es auch Körper gibt, die zwar n≤-henselsch für jedes n ∈ N,
aber nicht henselsch sind. Insbesondere ist jeder solche Körper dann t-henselsch, aber
nicht henselsch – Lemma 6.14 gilt also nicht ohne die Bedingungen an K.

Proposition 6.18. Es existiert ein Körper K, auf dem es für jedes n ∈ N eine nicht-
triviale n≤-henselsche Bewertung v?n, aber keine nicht-triviale henselsche Bewertung gibt.

Für den Beweis, der sich an [FJ15, Construction 6.5] orientiert, benötigen wir die folgende
Aussage über den inversen Limes eines inversen Systems von Bewertungsringen.

Lemma 6.19. Sei (I,≤) eine partiell geordnete Menge und (I,Oi, πi,j) ein inverses
System von Bewertungsringen Oi auf den Körpern Ki = Quot (Oi). Dann ist der inverse
Limes O = lim←−i∈I Oi ein Bewertungsring auf K = Quot (O).

Beweis. Siehe [FP11, Lemma 2.5].

Beweis von Proposition 6.18. Sei (pn)n∈N eine Folge von Primzahlen mit pn > n für alle
n ∈ N und sei K0 = C. Für n, k ∈ N definieren wir rekursiv n!(1) = n! und n!(k+1) :=(
n!(k)

)
! und wählen nun rekursiv für jedes n ∈ N mithilfe von Proposition 5.7 einen

bewerteten Körper (Kn, vn), der (n!n)≤-henselsch, aber nicht pn-henselsch ist und für
den Knvn = Kn−1 gilt.
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Für jedes m ∈ N setzen wir vm+1,m = vm+1 und für n > m+1 definieren wir rekursiv die
Bewertungen vn,m := vn−1,m ◦ vn = vm+1 ◦ · · · ◦ vn auf Kn. Dann gilt Knvn,m = Km für
n > m: Für n = m+1 folgt dies sofort aus der Wahl von (Km, vm) und für n+1 > m+1
induktiv mit Kn+1vn+1,m = (Kn+1vn+1)vn,m = Knvn,m.
Zwischenbehauptung. Die Bewertungsringe Ovn,0 zusammen mit den Abbildungen

πn,m : Ovn,0 → Ovm,0

x 7→ x+ mvn,m

für n > m bilden ein inverses System (indiziert durch N mit der Standardordnung ≤).

Beweis. Fixiere zunächst n,m ∈ N mit n > m. Wegen vn,0 = vm,0 ◦ vn,m gilt dann
Ovn,0/mvn,m = Ovm,0 und damit πn,m(x) = x + mvn,m ∈ Ovm,0 für alle x ∈ Ovn,0 , das
heißt πn,m ist wohldefiniert.

Seien nun n,m, k ∈ N mit n > m > k. Dann gilt vn,k = vm,k ◦ vn,m und damit Ovm,k
=

Ovn,k
/mvn,m , also auch mvm,k

= mvn,k
/mvn,m . Es folgt

(πm,k ◦ πn,m)(x) = (x+ mvn,m) + mvm,k
= x+ mvn,k

= πn,k(x)

für alle x ∈ Ovn,0 . �

Nach Lemma 6.19 ist der inverse Limes O = lim←−n∈NOvn,0 ein Bewertungsring auf seinem
Quotientenkörper K = Quot (O). Für jedes n ∈ N sei pn := ker(O → Ovn,0) der Kern
der kanonischen Projektion. Die Lokalisierung Opn von O an dem Ideal pn ist dann ein
Unterring von K, der O enthält, also selbst ein Bewertungsring ist. Das maximale Ideal
von Opn ist mn := pnOpn .

Für beliebige m,n ∈ N mit m ≥ n gilt nun pm ⊆ pn und damit Opm ⊇ Opn , die Familie
{Opm |m ∈ N} wird also durch ⊆ linear geordnet. Weiter gilt

⋃
n∈NOpn = O⋂

n∈N pn =
O(0) = K und für die maximalen Ideale folgt

⋂
n∈Nmn = {0}.

Wir wählen nun für jedes n ∈ N eine Bewertung v?n auf K mit Ov?n = Opn und zeigen,
dass v?n dann n≤-henselsch ist.

Sei dazu g(X) = Xd+Xd−1 +ad−2X
d−2 +· · ·+a0 ∈ K[X] ein Polynom mit 1 ≤ deg(g) =

d ≤ n und ai ∈ mv?n für 0 ≤ i ≤ d− 2. Für jedes m ∈ N setzt die kanonische Projektion
πm : O → Ovm,0 sich zu einem Epimorphismus π̂m : Ov?m = Opm → Quot

(
Ovm,0

)
= Km

mit π̂m(xy−1) = πm(x) · (πm(y))−1 fort und wir erhalten, wegen mv?m = pmOv?m =
ker(π̂m), den kanonischen Isomorphismus

ϕm : Kv?m = Ov?m/mv?m → Quot
(
Ovm,0

)
= Km

xy−1 + mv?m 7→ πm(x) · (πm(y))−1

für x ∈ O und y ∈ O \ pm = {z ∈ O |πm(z) 6= 0}. Mittels dieses Isomorphismus können
wir den Restklassenkörper Kv?m also mit dem Körper Km identifizieren.
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Wir setzen nun gm := resKv?m(g) für alle m ∈ N. Mit der obigen Identifizierung gilt dann
gm ∈ Ovm,0 [X], da alle Koeffizienten von g in pn ⊆ O und die Koeffizienten von gm damit
in πm(O) = Ovm,0 liegen. Es folgt resKmvm,n(gm) = gn = resKv?n(g) für m ≥ n. Da die
Koeffizienten von g alle im maximalen Ideal mv?n von v?n liegen, hat gn(X) = Xd+Xd−1 =
Xd−1·(X+1) die einfache Nullstelle−1 ∈ Kv?n. Da die Bewertung vm nach Voraussetzung
(m!(m))≤-henselsch ist, folgt mit Lemma 5.12 (2) induktiv, dass vm−k ◦ · · · ◦ vm für
jedes k ∈ N eine

(
(m− k)!(m−k−1)

)
≤-henselsche Bewertung ist. Insbesondere ist vm,n =

vn+1◦· · ·◦vm dann
(
(n+ 1)!(n)

)
≤-henselsch, also auch n≤-henselsch. Das Polynom gk hat

daher eine Nullstelle xk ∈ Ovk,0 , die wie in Bemerkung 3.5 gesehen eindeutig bestimmt
ist. Die Folge x = (xk)k∈N ist daher ein Element von lim←−k∈NOvk,0 = O und es gilt
g(x) = (gk(xk)) = 0, das heißt g hat eine Nullstelle im Bewertungsring Ov?n , welcher
damit wie behauptet n≤-henselsch ist.

Wir zeigen nun durch einen Widerspruchsbeweis, dass K nicht henselsch ist. Ange-
nommen also, w wäre eine nicht-triviale henselsche Bewertung auf K. Dann wäre w
insbesondere n≤-henselsch und nach Theorem 5.10 induzierten w und v?n somit für
alle n ≥ n0 := m(K) · p(K) dieselbe Topologie Tw = Tv?n0

auf K. Da die Menge
{a · mv?n0

| a ∈ K×} eine Umgebungsbasis der 0 für die Topologie Tv?n0
ist, gäbe es

dann ein a ∈ K× mit a · mv?n0
⊆ mw. Für a /∈ mv?n0

, das heißt v?n0
(a) ≤ 0, wäre dann

mv?n0
⊆ a · mv?n0

⊆ mw. Für a ∈ mv?n0
könnten wir wegen

⋂
k∈Nmv?k

= {0} ein m > n0

mit a /∈ mv?m finden und erhielten mv?m ⊆ a · mv?m ⊆ a · mv?n ⊆ mw. Insgesamt gäbe es
also in jedem Fall ein m ≥ n0 mit mv?m ⊆ mw, das heißt der Bewertungsring Ov?m ⊇ Ow
wäre henselsch. Damit wäre auch die von v?n induzierte Bewertung v̄?n auf Kv?n+1 = Kn+1

henselsch.

Für das Bild des Bewertungsrings Ov̄?n = Ov?n/pn+1 ⊆ Kv?n+1 unter der Identifizierung
ϕn+1 von Kv?n+1 mit Kn+1 gilt jedoch

ϕn+1

(
Ov̄?n

)
=
{
πn+1(x) · (πn+1(y))−1 |x, y ∈ O, πn(y) 6= 0

}
= Ovn,0 ·

{
z−1 ∈ Ovn,0 |πn+1,n(z) 6= 0

}
= Ovn,0 ·

{
z−1 ∈ Ovn,0 | z /∈ ker(πn+1,n)

}
= Ovn,0 ·

{
z−1 ∈ Ovn,0 | z /∈ mvn+1

}
= Ovn,0 · (Ovn,0)mvn+1

= (Ovn,0)mvn+1
= Ovn+1 ,

da die Abbildung πn+1,n : Ovn+1,0 → Ovn,0 durch x 7→ x + mvn+1,n gegeben ist und da
vn+1,n = vn+1 gilt. Also wäre mit v̄?n auch die Bewertung vn+1 auf Kn+1 henselsch. Wir
hatten die Bewertung vn+1 jedoch so gewählt, dass sie nicht pn-henselsch und damit
insbesondere nicht henselsch ist – ein Widerspruch!
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7 Zusammenfassung der Ergebnisse
und Ausblick

Die Resultate aus dem vorherigen Kapitel wollen wir nun in Diagrammform noch einmal
zusammenfassen. Wir schreiben dabei kurz “(separabel) prim-henselsch” statt “(separa-
bel) prim-henselsch unterhalb von n für alle n ∈ N” sowie “N≤-henselsch” bzw. “P-hen-
selsch” statt “n≤-henselsch für alle n ∈ N” bzw. “p-henselsch für alle p ∈ P”.

Für beliebige Körper K haben wir dann die folgenden Zusammenhänge, wobei “ 6⇐=”
meint, dass die jeweilige Implikation nicht ohne zusätzliche Voraussetzungen gilt.

K beliebiger Körper henselsch

z�
Def.
��

Def.

��

separabel prim-henselsch

Def.
��

?
+3

�
+3

N≤-henselsch

�
KS
6.18

6.6ks 6.17 +3
t-henselsch

�
jr

?
ks

prim-henselsch

?
KS

6.4
��

P-henselsch

?
KS

Aus dem obigen Diagramm ergeben sich natürlicherweise eine Reihe offener Fragen.

Frage 7.1. (Unter welchen Bedingungen) ist jeder t-henselsche Körper bereits n≤-hen-
selsch für jedes n ∈ N?

Frage 7.2. (Unter welchen Bedingungen) ist jeder Körper, der für alle n ∈ N separabel
prim-henselsch unterhalb von n ist, bereits n≤-henselsch für alle n ∈ N?

Teilantworten auf die Fragen 7.1 und 7.2 können wir bereits geben: Nach Koenigsmanns
Lemma 6.14 und unserem Korollar 6.10 lautet die Antwort auf beide Fragen jedenfalls
“Ja” für alle Körper mit pro-auflösbarer absoluter Galoisgruppe, die weder separabel
abgeschlossen noch reell abgeschlossen sind.

Offen bleibt, ob alle diese Bedingungen auch notwendig sind oder ob die entsprechenden
Implikationen sogar ganz ohne zusätzliche Voraussetzungen gelten. Letzteres ist vermut-
lich nicht der Fall, eine genauere Untersuchung hätte jedoch den Rahmen der vorliegenden
Arbeit gesprengt und war leider nicht möglich.

Frage 7.3. (Unter welchen Bedingungen) ist jeder Körper, auf dem es für alle p ∈ P eine
nicht-triviale p-henselsche Bewertung gibt, bereits n≤-henselsch bzw. (separabel) prim-
henselsch unterhalb von n für alle n ∈ N?
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7 Zusammenfassung der Ergebnisse und Ausblick

Die Untersuchung dieser Frage fand, sowie die der folgenden modelltheoretischen Frage,
ebenfalls keinen Platz mehr in der vorliegenden Arbeit. Beide bleiben einer zukünftigen
Bearbeitung überlassen.

Frage 7.4. Ist die Eigenschaft eines Körpers, n≤-henselsch zu sein, das heißt eine nicht-
triviale n≤-henselsche Bewertung zu tragen, eine elementare Eigenschaft?

Die genannten Teilantworten auf die Fragen 7.1 und 7.2 lassen sich wie folgt grafisch
zusammenfassen. Alle Implikationen ohne Verweise folgen dabei sofort aus denen mit
Verweisen zusammen mit den Implikationen aus dem vorherigen Diagramm.

K weder separabel
noch reell abgeschlossen
und GK pro-auflösbar

henselsch+3

x�

KS

��

iq
6.14

��
separabel prim-henselsch

��

N≤-henselsch+36.10ks ks +3 t-henselsch

prim-henselsch

��

?
KS

P-henselsch

?
KS

Ist GK sogar pro-nilpotent, so sind, mit Korollar 6.8, fast alle in den beiden obigen
Diagrammen aufgeführten Eigenschaften äquivalent.

K weder separabel
noch reell abgeschlossen
und GK pro-nilpotent

henselsch+3

z�

KS

��

jr

��
separabel prim-henselschKS

6.8
��

N≤-henselsch+3ks ks +3 t-henselsch

prim-henselsch

��
P-henselsch

?
KS
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