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EINLEITUNG

Hensels Lemma ist historisch betrachtet zunéchst eine Aussage iiber die p-adischen Zah-
len, deren systematisches Studium auf Kurt Hensel zuriickgeht (siehe etwa | ). In
[ | betrachtet Azumaya spéter die Klasse aller Ringe, die eine entsprechende Ver-
allgemeinerung von Hensels Lemma erfiillen. Da sich jeder Bewertung auf einem Korper
auf natiirliche Weise ein spezieller Ring zuordnen lasst (siehe Abschnitt 2.2) fiihrt dies
nicht nur zum Begriff des henselschen Rings, sondern auch zu dem der henselschen Be-
wertung.

Insbesondere in der Modelltheorie wurden seitdem eine Reihe von (schérferen) Varianten

der Aussage von Hensels Lemma betrachtet und zur Definition bestimmter Klassen von

Bewertungen verwendet: Neben henselschen Bewertungen haben sich etwa 2-henselsche

(| |), p-henselsche (| ) |), t-henselsche (| ), Q-henselsche (| ,
|) und n<-henselsche (| |) Bewertungen als interessant herausgestellt.

Zwischen einigen dieser Begriffe bestehen offensichtliche Implikationen. So erfiillt je-
de henselsche Bewertung alle oben genannten Varianten von Hensels Lemma und jede
n<-henselsche Bewertung ist auch p-henselsch fiir p € P mit p < n. Die Untersuchung
weiterer Zusammenhénge der unterschiedlichen Varianten von Hensels Lemma ist ein Ziel
der vorliegenden Arbeit. Dazu fiihren wir auch einen weiteren, technischen, Begriff ein,
namlich den einer (separabel) prim-henselschen Bewertung (unterhalb einer natiirlichen
Zahl n € N).

Fiir beliebige Korper erhalten wir als Teilergebnis der Analyse der Zusammenhénge zwi-
schen diesen Begriffen das folgende Diagramm. Die vorkommenden Bezeichnungen wer-
den in Kapitel 7, bzw. bereits vorher im Laufe der Arbeit, genauer erklart.

K henﬁmh \

separabel prini-henselsch 5 >N§—henselsch P ~ t-henselsch

A ? ?
?

prim-henselsch

"

P-henselsch

In | | studieren Endler und Engler die Klasse aller henselschen Bewertungen auf
einem Korper mithilfe einer Partitionierung dieser in zwei Teilmengen, was zur Defi-
nition der kanonischen henselschen Bewertung fithrt. Der wichtigste Bestandteil dabei
ist eine Verallgemeinerung eines Theorems von F. K. Schmidt fiir spezielle (henselsche)
Bewertungen (| , Satz 1]|) auf die Gesamtheit aller henselscher Bewertungen. Eine
natiirliche Variante dieses Theorems gilt auch fiir p-henselsche Bewertungen.
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Ein wichtiger Teil der vorliegenden Arbeit befasst sich mit n<-henselschen Bewertungen
und der entsprechenden Variante des genannten Theorems von F. K. Schmidt auf diese.

Theorem 5.10. Sei K ein Kérper mit K*P # K, sei n € N und seien 0,,0, C K
zwei nicht-triviale unabhéngige n<-henselsche Bewertungsringe auf K. Dann gilt n <
m(K) - p(K).

Daraus léasst sich, dhnlich wie fiir henselsche bzw. p-henselsche Bewertungen, auf je-
dem Korper auch eine kanonische n<-henselsche Bewertung definieren, wie wir im Ab-
schnitt 5.2 im Detail sehen werden. Zwei wichtige Eigenschaften dieser kanonischen
n<-henselschen Bewertung sind die folgenden.

Proposition 5.21. Der kanonische n<-henselsche Bewertungsring auf einem Korper K
(mit K*P # K) ist, beziiglich C, mit allen n<-henselschen Bewertungsringen auf K
vergleichbar.

Proposition 5.22. Sei K ein n<-henselscher Kérper. Dann gilt (vgl. Notation 5.9):
(1) Ist n > (m(K)!)?, so ist O<,, # K.
(2) Ist n < m(K)?, so gilt O<,, = K.

Entsprechend variierte Aussagen gelten auch fiir die kanonische henselsche Bewertung,
was auf die Niitzlichkeit der kanonischen n<-henselschen Bewertung hindeutet.

Anwendungen in der Theorie henselscher Bewertungen findet die kanonische n<-hen-
selsche Bewertung etwa in Form der beiden folgenden Aussagen, die wir in Kapitel 6
beweisen.

Proposition 6.1. Sei K ein henselscher Kérper mit K*P # K und vk die kanoni-
sche henselsche Bewertung auf K, sowie Ok der zugehorige Bewertungsring. Dann 1ésst
sich Ox wie folgt durch die kanonischen n<-henselschen Bewertungsringe O<,, auf K
ausdriicken.

(1) Falls der Restklassenkorper Kvg separabel abgeschlossen ist, das heift falls O €
Hy(K) gilt, so ist O = [,cny O<n-

(2) Falls der Restklassenkorper Kvg nicht separabel abgeschlossen ist, das heift falls
Ok € Hi(K) gilt, so ist Ok = U,,>,,, O<n filr alle ng € N mit ng > (d!)?, wobei
d =min {[L : Kvglpoly | L/ Kvg ist Galoiserweiterung mit L # Kvg} sei.

Auf einem Korper mit definierbarer nicht-trivialer henselscher Bewertung gibt es nicht
notwendigerweise auch eine (-definierbare nicht-triviale henselsche Bewertung (siehe Be-
merkung 6.12). Mithilfe der kanonischen n<-henselschen Bewertung erhalten wir aber
zumindest die folgende Aussage.

Proposition 6.11. Sei K # K5 ein Kérper mit nicht-trivialer henselscher Bewertung v.
Ist der Bewertungsring O,, auf K definierbar in der Sprache Lying = {0, 1, +, -} der Ringe,
so existiert ein (-definierbarer nicht-trivialer Bewertungsring O,, auf K mit 7, = T,, das
heiftt w induziert die eindeutige henselsche Topologie.
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Aufbau der Arbeit

Zum Einstieg behandeln wir in Kapitel 1 einige mathematische Grundlagen, die im rest-
lichen Teil der Arbeit Verwendung finden.

In Abschnitt 1.1 behandeln wir zunéchst um inverse Systeme von Ringen und (topolo-
gischen) Gruppen, ehe wir davon ausgehend die sogenannten profiniten Gruppen einfiih-
ren.

Da Hensels Lemma eine Aussage iiber die Existenz von Nullstellen gewisser Polynome
ist, spielen auch Galoiserweiterungen naturgemif eine wichtige Rolle. Uber die Theorie
endlicher Galoiserweiterungen hinaus bendtigen wir dabei spéter auch die entsprechen-
den Werkzeuge zum Umgang mit unendlichen Galoiserweiterungen, welche Abschnitt 1.2
bereitstellt.

Kapitel 2 fithrt in die allgemeine Theorie der bewerteten Korper ein.

Neben der Definition des Begriffs stellen wir in Abschnitt 2.1 noch eine Reihe einfacher,
aber dennoch wichtiger, allgemeiner Eigenschaften von Bewertungen vor.

Einer jeden Bewertung auf einem Korper K ldsst sich auf natiirliche Weise ein Unter-
ring von K zuordnen. Dies fiihrt zum Begriff des Bewertungsrings, der in Abschnitt 2.2
thematisiert wird. Wir zeigen, dass Bewertungsringe und (Aquivalenzklassen von) Be-
wertungen sich gegenseitig entsprechen und diskutieren einige wichtige Eigenschaften
von Bewertungsringen.

Im Hinblick auf die eingangs bereits erwidhnten Verallgemeinerungen des Theorems von
F. K. Schmidt, sowie auf eine topologische Beschreibung der t-henselschen Bewertungen,
stellen wir in Abschnitt 2.3 die von einem Bewertungsring induzierte Topologie kurz
Vor.

Im Kapitel 3 widmen wir uns den henselschen Bewertungen.

Der Abschnitt 3.1 enthélt zwei wichtige Beispiele henselsch bewerteter Kérper sowie eine
Reihe dquivalenter Charakterisierungen henselscher Bewertungen.

Zu jedem bewerteten Korper gibt es eine kleinste henselsche Erweiterung, die sogenannte
Henselisierung. Diese betrachten wir im Abschnitt 3.2. Wir geben aufserdem ein Beispiel
an, das spéter bei der Konstruktion eines n<-henselschen Korpers, der fiir jede Primzahl
p > n nicht p-henselsch ist, von Bedeutung sein wird.

Schlieflich gehen wir im Abschnitt 3.3 auf die Definition der kanonischen henselschen
Bewertung ein, wobei die Beweise jedoch erst im Abschnitt 5.2 zur kanonischen n<-hen-
selschen Bewertung mithilfe der Resultate dort gefiihrt werden.

Kapitel 4 behandelt die in | | eingefiithrten p-henselschen Bewertungen und orien-
tiert sich lose an | |.



Zunéachst stellen wir in Abschnitt 4.1 die Definition sowie einige dquivalente Charakteri-
sierungen p-henselscher Bewertungen vor.

In Abschnitt 4.2 zeigen wir anschliefsend, dass jede p-henselsche Bewertung auf einem
Korper K dieselbe Topologie induziert — vorausgesetzt, es gilt K # K (p) und K enthalt
eine primitive p-te Einheitswurzel, falls nétig.

Im Kapitel 5 widmen wir uns den n<-henselschen Bewertungen, die in der Literatur
bisher kaum untersucht worden sind.

Wie zuvor, fiir henselsche bzw. p-henselsche Bewertungen, behandelt Abschnitt 5.1 all-
gemeine Grundlagen zu n<-henselschen Bewertungen. Die Charakterisierungen aus den
Abschnitten 3.1 und 4.1 lassen sich jedoch nicht ohne Weiteres auf den Fall n<-hensel-
scher Bewertungen iibertragen. Um entsprechende, aber etwas schwéchere, Aussagen zu
erhalten, fiihren wir den Begriff des Polynom-Grads einer (endlichen) Galoiserweiterung
L/K ein — den kleinsten Grad eines irreduziblen Polynoms iiber K, dessen Zerfallungs-
korper gerade L ist. Aufserdem beweisen wir das Analogon der Verallgemeinerung des
Theorems von F. K. Schmidt fiir n<-henselsche Bewertungen und iibertragen weitere
Aussagen vom henselschen bzw. p-henselschen Fall, mit kleineren Einschrankungen, auf
den n<-henselschen.

Die kanonische n<-henselsche Bewertung, die sich mithilfe der vorherigen Resultate de-
finieren lésst, und ihre wichtigsten Eigenschaften sind Inhalt des Abschnitts 5.2.

Kapitel 6 zeigt Anwendungen der Theorie n<-henselscher Bewertungen auf.

Im Abschnitt 6.1 fiihren wir die (separabel) prim-henselschen Bewertungen ein und setzen
diese mit n<-henselschen und p-henselschen Bewertungen in Beziehung, was letztlich zu
dem in der Einleitung bereits angegebenen Diagramm fiihrt.

Schlieflich befassen wir uns im Abschnitt 6.2 mit der Modelltheorie henselscher Kérper
und nehmen dazu auch t-henselsche Bewertungen in den Vergleich der verschiedenen
Varianten des Begriffs henselscher Bewertungen mit auf.

In Kapitel 7 fassen wir die Ergebnisse des vorangegangen Kapitels zusammen und dis-
kutieren abschlieffend kurz einige offene Fragen, die sich aus der vorliegenden Arbeit
ergeben.
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Notation und Konventionen

Um die Notation moglichst unkompliziert zu halten, schreiben wir N = {1,2,3,...} fiir
die Menge der positiven ganzen Zahlen und Nyo = N U {0} fir die Menge der nicht-
negativen ganzen Zahlen. Zur Vermeidung von Mehrdeutigkeiten verzichten wir auf die
Verwendung des Begriffs der “natiirlichen Zahlen”. Wir schreiben P = {2,3,5,7,11,...}
fir die Menge der Primzahlen.

Die Machtigkeit einer Menge M notieren wir mit #M und schreiben #M = oo, falls M
unendlich ist.!

Eine partielle Ordnung auf M ist eine zweistellige Relation < auf M, die reflexiv (d.h.
es gilt Ve € M : z < x), transitiv (d.h. es gilt Va,y,z € M : 2 <y <z= 2 < z) und
anti-symmetrisch (d.h. es gilt Vz,y € M : 2 <y < x = x = y) ist. Statt x < y schreiben
wir, der Einfachheit halber, manchmal auch y > .

Eine lineare Ordnung auf M ist eine partielle Ordnung auf M, die zusétzlich total ist
(d.h. es gilt Ve,y € M : x <y Vy < x). Ist < eine partielle (bzw. lineare) Ordnung auf
M, so nennen wir das Tupel (M, <) auch eine partiell (bzw. linear) geordnete Menge.

Sprechen wir von einem Ring, so ist stets ein kommutativer Ring mit multiplikativem
Neutralelement gemeint. Die Operationen auf einem Ring R bezeichnen wir mit + und -,
die Neutralelemente mit 0 und 1. Um Unklarheiten vorzubeugen schreiben wir gelegent-
lich auch Og und 1p fiir die Neutralelemente.

Weiter bezeichne Quot (R) = {% |z,y € R,y # 0} den Quotientenkdérper von R. Fir

ein Primideal p C R heiRt der Unterring R, = {2y~ € Quot (R) |z € R,y € R\ p} des
Quotientenkorpers die Lokalisierung von R an p. Offensichtlich gilt R, = Quot (R) genau
dann, wenn p = (0) das triviale Ideal ist.

Ist K ein Korper, so bezeichne K218 einen (fiir jedes K einmalig) fest gewéhlten algebrai-
schen Abschluss von K und K3°P := {x € K?ls | 2 ist separabel iiber K } den separablen
Abschluss von K in K8,

Die Gruppe der Automorphismen eines Korpers K notieren wir als Aut(K) und fiir eine
Korpererweiterung L/K sei Aut(L/K) = {0 € Aut(L) | o|K = idk} die Gruppe der K-
Automorphismen von L. Ist L/K sogar eine Galoiserweiterung, das heifst algebraisch,
separabel und normal, so heift Aut(L/K) die Galoisgruppe der Erweiterung L/K, fiir
die wir dann auch Gal(L/K) = Aut(L/K) schreiben.

! Die Unterscheidung der verschiedenen unendlichen Kardinalitéiten ist an keiner Stelle der vorliegenden
Arbeit notwendig.
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1 ALLGEMEINE GRUNDLAGEN

Vorausgesetzt seien grundlegende algebraische Kenntnisse sowie ein gewisses Verstéandnis
elementarer Grundlagen der Topologie. Eine Vertrautheit im Umgang mit Galoistheorie
ist hilfreich, jedoch nicht unerlésslich — die notwendigen Resultate stellen wir (ohne Be-
weise) spéter in diesem Kapitel vor.

Im Abschnitt 6.2 verwenden wir auch modelltheoretisches Vokabular, das allerdings kaum
iiber den Begriff der Definierbarkeit hinaus geht. Bis auf wenige Absétze ist die vorlie-
gende Arbeit auch ohne Kenntnisse der Modelltheorie verstandlich; wir verweisen daher
fiir einen Hintergrund in Modelltheorie an dieser Stelle auf die Einfiihrung in | |.

Wir halten nun einige wichtige allgemeine Grundbegriffe fest, die im Laufe der weiteren
Kapitel dieser Arbeit Verwendung finden. Den Anfang macht der Begriff einer angeord-
neten abelschen Gruppe.

Definition 1.1. (1) Eine angeordnete abelsche Gruppe ist eine abelsche Gruppe (G, +)
mit einer linearen Ordnung < der Elemente von G, sodass die Eigenschaft

r<y=z+z<y+z
fiir alle z,y, z € G erfiillt ist.
Wir sagen dann auch, die Ordnung < ist mit der Gruppenoperation + wertrdglich.

(2) Sind (G,+,<) und (H,+,=) zwei angeordnete abelsche Gruppen, so heifst ein
Gruppenhomomorphismus (bzw. -isomorphismus) ¢ : G — H auch ein Homomor-
phismus (bzw. Isomorphismus) von angeordneten abelschen Gruppen, falls

g <h<=¢(g) 2 ¢(h)
fiir alle g, h € G gilt.
In den beiden folgenden Abschnitten 1.1 zu profiniten Gruppen und 1.2 zu unendlicher
Galoistheorie spielen topologische Gruppen eine wichtige Rolle. Im weiteren Verlauf der

Arbeit, konkret im Kapitel 6.2 zu t-henselschen Bewertungen, bendtigen wir auferdem
den Begriff des topologischen Korpers.

Definition 1.2. (1) Eine topologische Gruppe ist eine Gruppe (G, -) mit einer haus-
dorffschen Topologie, beziiglich der die Abbildungen

p:GxGE—G und t:G—=>G
(9;h) = g-h grr gt
stetig sind.

(2) Ein topologischer Kérper ist ein Korper K mit einer Topologie 7, beziiglich der
sowohl (K, +) als auch (K*,-) (mit der Unterraumtopologie) topologische Gruppen
sind. Wir nennen 7 dann auch eine Kdrper-Topologie auf K.



1 Allgemeine Grundlagen

1.1 Inverse Systeme und profinite Gruppen

Den Begriff des inversen Limes bzw. eines inversen Systems bendtigen wir hauptséch-
lich zur gleich darauf folgenden Definition und Beschreibung profiniter Gruppen. Jedoch
verwenden wir an einer Stelle, ndmlich in der Konstruktion zu Proposition 6.18 im Kapi-
tel 6.2, auch einen inversen Limes von Bewertungsringen. Wir formulieren die folgenden
Definitionen daher parallel fiir Ringe und topologische Gruppen.

Dabei orientieren wir uns zunéchst an der Darstellung in | , Chapter 1]. Eine umfas-
sendere Behandlung profiniter Gruppen, die weit iiber die hier benétigten elementaren
Resultate hinaus geht, findet sich in | |.

Definition 1.3. Eine partiell geordnete Menge (I, <) heifst gerichtet, falls fiir je zwei
Elemente i,j € I stets ein k € I mit ¢ < k und j < k existiert.

Definition 1.4. Ein inverses System besteht aus einer partiell geordneten gerichteten
Indexmenge (I, <) und einer durch I indizierten Familie X = (X;);c; von Mengen X;
sowie einer Familie 7 = (7, j)i~; von Abbildungen ; ; : X; — X, sodass das Diagramm

Ti,j
Xi—Xj

ik
J»

X

fiir alle ¢, 7,k € I mit 4 > j > k kommutieren, das heifst sodass m; , = m; o m; ; fiir alle
1,7,k € I mit i > j > k gilt.

Wir notieren das inverse System bestehend aus I, X und 7 auch kurz mit (I , X, i)
und sprechen von einem inversen System {iber der Indexmenge I.

Sind die Mengen X;, fiir alle ¢ € I, Ringe bzw. topologische Gruppen und sind die
Abbildungen 7 ; fiir alle 4, j € I mit ¢ > j (stetige) Homomorphismen, so sprechen wir
von einem inversen System von Ringen bzw. topologischen Gruppen.

Definition 1.5. Der inverse Limes eines inversen Systems (I, X;,m; ;) ist die Menge

lim X; == {(zi)ier € [ [ Xi|mij(a:) = a; fiir alle 4,5 € I mit i > 5} € [[ X
el el el

zusammen mit den kanonischen Projektionen m; : X — X, (x;);er — x; fir jedes i € 1.

Aus dieser Definition des inversen Limes als Teilmenge des kartesischen Produkts wird
sofort klar, dass der inverse Limes (eines inversen Systems) von Ringen bzw. topologi-
schen Gruppen selbst wieder ein Ring bzw. eine topologische Gruppe ist. Die jeweiligen
Verkniipfungen ergeben sich dabei als Einschrankungen der offensichtlichen Verkniipfun-
gen auf dem kartesischen Produkt auf den inversen Limes. Die kanonischen Projektionen
sind dann aufserdem (stetige) Homomorphismen von Ringen bzw. Gruppen.

Diese Beobachtung fiihrt zur folgenden Definition.



1 Allgemeine Grundlagen

Definition 1.6. Eine profinite Gruppe ist eine topologische Gruppe G, die homdomorph
ist zum inversen Limes @ie s G eines inversen Systems (I, G, m; ;) endlicher Gruppen
(aufgefasst als topologische Gruppen mit der diskreten Topologie).

Ko6nnen die Gruppen G; dabei sogar fiir alle i € I als auflosbar (bzw. nilpotent bzw.
p-Gruppen?) gewihlt werden, so heift G pro-auflésbar (bzw. pro-nilpotent bzw. pro-p).

Offensichtlich ist jede endliche Gruppe G insbesondere profinit, denn wir kénnen etwa
I = {0} und Gy = G wéhlen und erhalten dann m, G =G.

Eine erste wichtige Eigenschaft profiniter Gruppen ist die folgende Beobachtung.

Lemma 1.7. Jede profinite Gruppe ist als topologische Gruppe kompakt.
Beweis. Siehe | , Lemma 1.2]. O

Insbesondere hat jede offene Untergruppe U < G einer profiniten Gruppe G daher end-
lichen Index in G, denn die Menge der Nebenklassen ist eine Partition von G in offene
Teilmengen. Da jede Untergruppe U < G sich aufterdem als Komplement der Vereinigung
aller von U verschiedenen Nebenklassen schreiben lasst, ist jede offene Untergruppe einer
profiniten Gruppen auch abgeschlossen.

Viele Aussagen iiber endliche Gruppen lassen sich auf profinite Gruppen iibertragen,
wenn man von den vorkommenden Untergruppen zusétzlich fordert, dass sie abgeschlos-
sen sind. Etwa gilt die folgende Aussage.

Lemma 1.8. Ist G eine profinite Gruppe und H < G eine abgeschlossene Untergruppe,
so ist auch H profinit. Ist G sogar pro-auflosbar (bzw. pro-nilpotent bzw. pro-p), so ist
auch H pro-auflosbar (bzw. pro-nilpotent bzw. pro-p).

Beweis. Siehe | , Proposition 2.2.1]. O

Ein weiteres wichtiges Beispiel von Aussagen iiber endliche Gruppen, die sich auf profinite
Gruppen iibertragen lassen, sind die Sylow-Sétze. Bevor wir diese formulieren konnen,
miissen wir noch den Begriff der Sylow-Gruppen einfithren.

Definition 1.9. Sei G eine profinite Gruppe und p € P eine Primzahl.

(1) Eine abgeschlossene Untergruppe H < G heit pro-p-Untergruppe von G, falls H
eine pro-p-Gruppe ist.

(2) Eine p-Sylow-Gruppe von G ist eine maximale pro-p-Untergruppe von G, das heifit
eine pro-p-Untergruppe S < G, die fiir jede pro-p-Untergruppe H < G mit S < H,
bereits H = S erfiillt.

2Eine endliche p-Gruppe ist eine Gruppe, deren Ordnung eine Potenz von p ist.
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Theorem 1.10 (Sylow-Sétze fiir profinite Gruppen). Sei G eine profinite Gruppe und
p € P eine Primzahl. Dann gilt:
(1) Es gibt (mindestens) eine p-Sylow-Gruppe S < G.
(2) Fir jede pro-p-Untergruppe H < G existiert eine p-Sylow-Gruppe S < G, die H
enthdlt.
(3) Fiir je zwei p-Sylow-Gruppen S1,S2 < G gibt es ein g € G mit S; = gS2g~ L.

Beweis. Siehe | , Corollary 2.3.6]. O

1.2 Unendliche Galoistheorie

Unendliche profinite Gruppen kommen natiirlicherweise als Galoisgruppen unendlicher
Korpererweiterungen vor. Tatséchlich ist eine Gruppe genau dann profinit, wenn sie
isomorph zur Automorphismengruppe einer Korpererweiterung ist. Fiir unsere Zwecke
ist vor allem wichtig, dass die absolute Galoisgruppe eines Korpers stets profinit ist.

Definition 1.11. Die absolute Galoisgruppe G von K ist die Galoisgruppe der Erwei-
terung K*P /K, das heifst

Gx = Gal(K*P /K) = {0 € Aut(K*P) |o]K = idg}.

Ist (K;);er die Familie aller endlichen Galoiserweiterungen von K, die in K%P enthalten
sind, so wird I mit der durch ¢ < j :¢> K; C K definierten Relation < zu einer gerichteten
partiellen Ordnung und (I, Gal(K;/K),m; ;) mit m;; : 0 +— o[K; fiir ¢ > j zu einem
inversen System von topologischen Gruppen.

Da die Korpererweiterung K («)/K fiir jedes a € K*P eine endliche Galoiserweiterung
von K ist, ist K®P das Kompositum aller endlichen Galoiserweiterungen K;/K, fiir die
K; C K5 gilt. Wir erhalten daher die folgende Aussage.

Theorem 1.12. Die absolute Galoisgruppe G von K ist eine profinite Gruppe und es
qilt’

G = lim Gal(K;/K)
el

fiir das oben beschriebene inverse System (I, Gal(K;/K),m; ;) aller endlichen Galoisgrup-
pen tber K.

Beweis. Siehe | , Theorem 2.11.1]. O

3Hier bezeichne = die Isomorphie als topologische Gruppen, das heifit die Existenz eines Gruppeniso-
morphismus, der zugleich ein Hom6omorphismus ist.
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Die Galoiskorrespondenz als zentrales Resultat der (endlichen) Galoistheorie ist ein wei-
teres Beispiel fiir eine Aussage iiber endliche Gruppen, die sich auf profinite Gruppen
verallgemeinern lasst.

Theorem 1.13 (Galoiskorrespondenz unendlicher Galoiserweiterungen). Betrachte die
Menge G(K) = {F C KP | F/K ist eine Korpererweiterung} aller Zwischenkdrper der
Erweiterung K5 /K und die Menge S(Gg) = {H < Gg | H ist abgeschlossen in Gk}
aller abgeschlossenen Untergruppen der absoluten Galoisgruppe G .

Dann sind die Abbildungen

§(K)— S(Gk)
F— Gal(K®*P/F) = {0 € Aut(K®*P) |o|F =idp}

und
S(Gk) = G(K)
Hw— Fix(H) ={x € K*P|o(x) =z fiir allec € H}

zueinander inverse Bijektionen und es gilt 1 C Fy < Gal(F1/K) DO Gal(Fy/K) sowie
Hy, C Hy & Fix(H,) 2 Fix(Hs) fir alle Fy, Fy € G(K) und alle Hy,Hs € S(Gg).

Ist F = Fix(H) und H = Gal(K*P/F), so ist die Korpererweiterung F/K genau dann
normal (und damit eine Galoiserweiterung’), wenn H < G ein Normalteiler in G ist.

Beweis. Siehe | , Theorem 2.11.3|. O

Dass jede Galoisgruppe profinit ist, folgt nun aus Theorem 1.13 und Lemma 1.8. Das
néchste Theorem komplettiert damit die am Anfang dieses Kapitels erwéhnte Charakte-
risierung profiniter Gruppen als Automorphismengruppen von Galoiserweiterungen.

Theorem 1.14. Ist G eine profinite Gruppe, so existiert ein Korper K und eine Galoi-
serweiterung L/ K, sodass G = Gal(L/K) gilt.”

Beweis. Siehe | , Theorem 2.11.5]. O

*Jede Korpererweiterung F/K mit F' C K ist algebraisch und separabel, da K% /K es ist.
5 Auch hier ist die Isomorphie von G und Gal(L/K) als topologische Gruppen gemeint.



2 BEWERTETE KORPER

2.1 Grundlagen

Ein zentraler Begriff der vorliegenden Arbeit ist der des bewerteten Korpers, eine Verall-
gemeinerung von Korpern mit Absolutbetrag bzw. Metrik. So ldsst sich eine Bewertung
ebenfalls als ein Mafs fiir die “Grofe” von Korperelementen vorstellen — wobei die Bewer-
tung eines Elements umso grofier ist, je ndher das Element der 0 ist.

Definition 2.1. Sei K ein beliebiger Korper. Eine Bewertung auf K ist eine surjektive
Abbildung v : K — vK U{oo} fiir eine angeordnete abelsche Gruppe (vK, +), sodass die
drei Eigenschaften

vz) =0 =0 (1)
v(@-y) = v(z) +o(y) (2)
v(z +y) = min{ov(z),v(y)} (3)

fiir alle z,y € K erfiillt sind. Dabei setzen wir v+ 0o = 0o+ = oo und min {v, 00} =~
fiir alle v € vK U {o0}.

Wir nennen die Gruppe vK auch (die zu v gehdrige) Wertegruppe. Ist vIKK = {0}, so heifst
die Bewertung v trivial.

Einen Koérper K mit einer Bewertung v nennen wir auch einen bewerteten Kérper und
schreiben dafiir kurz (K, v).

Fiir jede Bewertung v auf einem beliebigen Korper K gilt v(1) = v(1-1) = v(1) + v(1),
also v(1) = 0. Weiter ist v(z~!) +v(z) = v(z~! - 2) = v(1) =0, also v(x 1) = —v(z) fiir
alle x € K*. Insbesondere gilt v(—1) = —v(—1) und damit v(—1) = 0: Ware v(—1) > 0,
so wére auch v(—1) + v(—1) > v(—1) > 0, analog fiir v(—1) < 0.

Es folgt v(—z) = v((—1)-z) = v(—=1) + v(z) = v(z) fir alle z € K. Auferdem ist
v(a) =v(ja|]) =v(l+---+1) > v(l) = 0 fiir alle a € Z, wobei wir a mit seinem Bild
unter dem eindeutigen Ringhomomorphismus Z — K identifizieren.

Da wir von diesen fundamentalen Eigenschaften im folgenden Teil der Arbeit oft still-

schweigend Gebrauch machen, fassen wir sie in der folgenden Bemerkung noch einmal
zusammen — und ergénzen eine weitere niitzliche technische Eigenschaft.

Bemerkung 2.2. Ist (K, v) ein bewerteter Korper, so gelten folgende (Un-)Gleichungen.
v(l)=v(-1)=0 (4
v(z™h) = —u(z) filr alle z € K
v(—z) =v(z) fir alle z € K
v(a) > 0 fiir alle a € im(Z — K)
v(z 4+ y) =min{v(z),v(y)}, falls v(x) # v(y)
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Beweis. Die Eigenschaften (4) bis (7) haben wir bereits behandelt. Um die Eigenschaft
(8) zu beweisen, seien x,y € K mit v(z) # v(y) gegeben. Ohne Einschrankung gelte
v(x) < v(y). Wire dann v(x + y) = v(y) > v(z), so erhielten wir mit

v(z) =v(z +y—y) > min{v(z +y),v(y)} > v(z)

einen Widerspruch. Es gilt dann also v(z + y) = v(z) = min {v(z),v(y)}. O

2.2 Bewertungsringe

In der Formulierung der obigen Definition ist der Begriff der Bewertung fiir unsere Zwecke
noch etwas zu eingrenzend. Verschiedene Bewertungen sollen als im Wesentlichen gleich
verstanden werden, falls es einen Isomorphismus (von angeordneten abelschen Gruppen)
der Wertegruppen gibt, der die Bewertungen sozusagen ineinander “libersetzt”. Prazisiert
wird diese Anschauung in der folgenden Definition.

Definition und Bemerkung 2.3. Zwei Bewertungen v und w auf einem Koérper K
heiflen dquivalent, falls ein Isomorphismus ¢ : vK — wK (von angeordneten abelschen
Gruppen) zwischen den Wertegruppen vK und wkK existiert, sodass w][K* = po (v[K*)
gilt.

Dadurch wird eine Aquivalenzrelation auf der Menge der Bewertungen auf einem Korper
K definiert.

Fiir das Studium von Bewertungen bis auf Aquivalenz stellt sich der folgende algebraische
Begriff des Bewertungsrings als geeignet heraus. Tatséchlich entsprechen Bewertungsringe
und Aquivalenzklassen von Bewertungen auf einem Korper sich gegenseitig, wie wir nach
Einfiihrung der Begrifflichkeiten zeigen.

Definition 2.4. Ein Bewertungsring auf einem Korper K ist ein Unterring (O, +, -) von
(K,+,-) mit OU (O \ {0})~! = K, das heikt ein Unterring, in dem fiir alle x € K die
Eigenschaft x € O v z~! € O gilt.

Bemerkung 2.5. Ist O C K ein Bewertungsring auf K, so gilt bereits K = Quot (O),
denn fiir € K mit x ¢ O gilt wegen 27 € O schon z = —L; € Quot (0).

Wie zuvor angekiindigt, geben wir nun eine (kanonische) Eins-zu-Eins-Zuordnung von
Bewertungsringen und Aquivalenzklassen von Bewertungen auf einem Korper an. Wir
beginnen mit der einfachen Beobachtung, dass jede Bewertung auf einem Korper ein
Beispiel fiir einen Bewertungsring liefert.

Bemerkung und Definition 2.6. Ist (K, v) ein bewerteter Kérper und 0 € vK das
Neutralelement der Wertegruppe, so ist die Menge O, = {x € K |v(x) > 0} ein Bewer-
tungsring auf K.

Wir nennen O, dann auch den zu v gehdorigen Bewertungsring.
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Beweis. Wegen v(zy) = v(z) + v(y) und v(z + y) > min{v(z),v(y)} ist O, unter der
Multiplikation und der Addition auf K abgeschlossen. Aus v(0g) = oo und v(lg) = 0
folgt auch O, 1x € O,.

Ist nun z € K \ O,, so gilt v(x) < 0, also v(z~!) = —v(x) > 0. Es folgt 27! € O,, das
heifit O, ist ein Bewertungsring auf K. O

Bemerkung und Definition 2.7. Eine Bewertung v auf einem Korper K ist genau
dann trivial (das heift, es ist vK = {0}), wenn O, = K gilt.

Wir nennen den Bewertungsring O = K daher auch den trivialen Bewertungsring auf K.

Um andererseits aus einem Bewertungsring O eine Bewertung zu gewinnen, miissen wir
ein wenig mehr Aufwand betreiben. Insbesondere ist dazu aus dem Bewertungsring eine
angeordnete abelsche Gruppe zu konstruieren.

Proposition 2.8. Sei K ein Kérper und O ein Bewertungsring auf K.

Dann ist (K*/O*,-) mit der durch 1O* < yO* < yx~! € O definierten Relation <
eine angeordnete abelsche Gruppe und die Fortsetzung mo : K — K*/O* U {co} der
Restklassenprojektion K* — K> /O* mit 71o(0k) = oo ist eine Bewertung auf K.

Beweis. Offensichtlich ist K*/O* eine abelsche Gruppe. Fiir 2/ € zO* und y' € yO*
gilt y/2’~1 € O genau dann, wenn yz~! = yy'~(y2'")a'z™! € O ist, also ist die
Relation < wohldefiniert. Reflexivitét folgt sofort aus 1x € O und Transitivitéit folgt,
da O multiplikativ abgeschlossen ist: Gilt namlich zO* < yO* und yO* < z0*, so ist
zo7t = (zy Y (yz~!) € O, also zO* < 20X, Anti-Symmetrie folgt unmittelbar aus der

Definition von <.

Sind z,y € K* mit yz~! ¢ O, so gilt zy~! = (yz~1)~! € O, da O ein Bewertungsring
auf K ist. Je zwei Elemente von K*/O* sind daher vergleichbar beziiglich <, es handelt
sich also um eine lineare Ordnung auf K*/O*.

Fir z,y € K* mit zO* > yO* und beliebiges z € K* gilt nun mit der Gleichung
(22)(yz) ™' = 22271y~ = 2y~! € O nach Definition auch
0% - 20 = 220 > yz0* = yO* - z0%,

das heift < ist mit der Gruppenverkniipfung auf K*/O* vertriglich.

Zu zeigen bleibt, dass die Abbildung 7o : K — K> /O*U{oco} tatséchlich eine Bewertung
ist. Die Eigenschaft mp(z) = co < = = 0 fiir alle x € K folgt dabei sofort aus der
Definition von mp.

Seien nun z,y € K beliebig. Im Fall -y = 0 ist die Eigenschaft mp(x - y) = 0o =
mo(x) + mo(y) klar. Andernfalls gilt sie wegen

ro(z-y) = zyO0* = (xO* - yO*) = wo(z) + 7o (y)
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ebenso.

Zuletzt seien z,y € K mit zO* < yOX, das heift yz=' € O, gegeben. Dann gilt
(r+y)rt=1+yr e, also

To(x +y) = (x +y)O* > xO0* = min {xOX,yOX} = min {mo(z), 70(y)} .
Insgesamt ist mo damit, wie behauptet, eine Bewertung auf K. ]

Der Bewertungsring O,, der Bewertung w = mp auf K stimmt dabei mit O iiberein,
denn es gilt zO* > O* genau dann, wenn = = = - 171 € O erfiillt ist. Das bedeutet
insbesondere, dass die Abbildung O — 7» aus Proposition 2.8, die einem Bewertungsring
auf K eine Bewertung auf K zuordnet, injektiv und die Zuordnung v — O, in die andere
Richtung surjektiv ist.

Sind v und w zwei dquivalente Bewertungen auf K, so gilt mit Definition 2.3 offensichtlich
v(z) > 0 < w(z) > 0 fir alle z € K. Damit stimmen die Bewertungsringe O, und O,
dann bereits iiberein.

Dass auch die Umkehrung gilt, zeigt die folgende Proposition.

Proposition 2.9. Sei (K,v) ein bewerteter Korper und O, der zugehdrige Bewertungs-
ring. Weiter sei mp, so definiert, wie in Proposition 2.8.

Dann gibt es genau einen (kanonischen) Isomorphismus ¢ : K* /O, — vK (von ange-
ordneten abelschen Gruppen) mit v|K* = ¢ o (mp,[K*). Insbesondere sind v und mp,
dquivalente Bewertungen.

Beweis. Zunéchst stellen wir fest, dass die Eigenschaft v [ K* = ¢ o (1o, | K*) die
Abbildung ¢ eindeutig festlegt, da 7o, [K* : K* — K*/O* surjektiv ist.

Wir betrachten nun den Kern des Gruppenhomomorphismus v[K* : K* — vK und ein
beliebiges Element z € K*. Wegen v(z~!) = —v(z) gilt v(z) = 0 € vK genau dann,
wenn sowohl v(z) > 0 als auch v(z~!) > 0 erfiillt sind. Dies ist genau dann der Fall,
wenn x € O gilt. Folglich ist ker(v [ K*) = {z € K* |v(z) =0} = O). Da v | K*
surjektiv ist, liefert der Homomorphiesatz nun den gewiinschten Isomorphismus ¢. Dass
v K* = @o (mp, | K*) erfiillt ist, folgt sofort aus der Definition von 7o, [ K* als
Restklassenprojektion.

Weiter gilt v(z) < v(y) fiir z,y € K* genau dann, wenn v(yz~—!) > 0 bzw. yz~! € O,
erfiillt ist. Dies ist nach Definition dquivalent zu O, < yO,’. Da die Einschrénkungen
von v und mp, auf K* beide surjektiv sind, ist ¢ damit auch ein Isomorphismus von
angeordneten abelschen Gruppen. O

Die Essenz der bisherigen Diskussion von Bewertungsringen und ihrem Zusammenhang
mit Bewertungen fasst die folgende Proposition zusammen. Den Beweis haben wir im
Wesentlichen bereits gefiihrt.
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Proposition 2.10. Die Zuordnungen v — O, und O — wo induzieren zueinander
inverse Abbildungen zwischen der Menge der Aquivalenzklassen von Bewertungen auf K
und der Menge der Bewertungsringe auf K.

Beweis. Die Aussage folgt sofort aus Proposition 2.8 und Proposition 2.9. O

Sprechen wir im Folgenden von “Bewertungsringen O, Oy, Oy, ...”, so sind damit — der
in diesem Abschnitt eingefiithrten Notation und der Aussage aus Proposition 2.10 folgend
— stillschweigend stets “zu entsprechenden Bewertungen v, w, u, ... gehorige Bewertungs-
ringe” gemeint. Die Wahl eines Repriisentanten aus der jeweiligen Aquivalenzklasse von
Bewertungen kann dabei beliebig erfolgen. Ein kanonischer Reprasentant ist die in Pro-
position 2.8 eingefiihrte Bewertung.

Wir sammeln nun noch einige wichtige Eigenschaften von Bewertungsringen, auf die wir
in den folgenden Kapiteln zuriickgreifen werden.

Bemerkung 2.11. Ist O ein Bewertungsring auf K und R ein beliebiger Unterring von
K mit O C R, so ist R ebenfalls ein Bewertungsring: Fiir x € K \ R gilt insbesondere
r¢ O, alsor € OCR.

Sind O1 und Oy zwei Bewertungsringe auf demselben Korper K, so ist daher auch
010y = {d 1" gzi-yi|neN,z; € O1,y; € Oz} — der kleinste Ring, der sowohl O; als
auch Oy enthilt — ein Bewertungsring auf K.°

Bemerkung und Definition 2.12. Fiir einen Bewertungsring O, auf einem Kérper K
ist die Menge m, := O, \ Of = {z € K |v(z) > 0} das einzige maximale Ideal in O,.
Den zugehorigen Restklassenkorper O, /m, bezeichnen wir mit Kv.

Beweis. Mit O = {z € Oy |z7! € O,} = {x € K*|v(z) = 0} erhalten wir sofort die
Identitdt m, := O, \ O = {z € K |v(z) > 0}.

Fiir z,y € m, gilt dann v(x),v(y) > 0, also auch v(z + y) > min{v(x),v(y)} > 0, das
heifst x +y € m,,. Fir z € my, und a € O, gilt v(az) = v(a) +v(x) > v(z) > 0, also auch
ax € m,. Wegen 1 ¢ O, \ O = m, und Ox € m, ist m, damit ein echtes Ideal in O,.

Nun ist jedes echte Ideal von O, bereits Teilmenge von O, \ O, = m,,, denn andernfalls
enthielte es eine Einheit und stimmte dann schon mit dem gesamten Ring iiberein. Ins-
besondere ist m, damit maximales Ideal von O, — und da es jedes echte Ideal enthélt,
ist es auch das einzige maximale Ideal. O

Bemerkung 2.13. Sind O, und O,, zwei Bewertungsringe auf K mit maximalen Idealen
m, bzw. m,, und ist O, C Oy, so gilt m,, C m,,.

Insbesondere ist my,, C O, ein Primideal in O, (da es ein Primideal in O,, ist) und die
Lokalisierung (Oy)m,, von O, an m,, stimmt mit O,, iiberein.

STatséchlich gilt fiir zwei Bewertungsringe O1, Qs auf K sogar 010y = {z-y|lz € O1,y € O}, was
hier jedoch nicht weiter wichtig ist.

10



2 Bewertete Korper

Beweis. Offensichtlich gilt O C OF. Ist nun = € my, = O, \ O, so folgt also insbeson-
dere z ¢ 0. Wire dabei x ¢ O, so miisste z~% € O, gelten, da O, ein Bewertungsring

ist. Dann wiire aber auch z=! € O, also x € O, im Widerspruch zur Voraussetzung.

Folglich gilt x € O, \ O = m,. Da x € m,, beliebig gewéhlt war, folgt m,, C m,.

Sei nun (O )m,, die Lokalisierung von O, an my, und z € (Oy)m,,, das heift x = ab™*
fiir geeignete a,b € O, mit b ¢ m,,. Dann ist w(b) < 0, also w(b™!) > 0, das heiRt
b=l € O, Wegen a € O, C O, folgt x = ab~! € Oy, es gilt also (Oy)m, C Ow. Sei jetzt
andererseits z € O,, beliebig. Ist x € O,, so gilt auch x € (Oy)m,, - Ist x ¢ O,, dann ist
insbesondere z # 0 und mit w(x) > 0 folgt w(x~!) < 0, das heift 27! € O, \ m,,. Damit
ist z = 1-(z71)7! € (Op)my, also Oy C (Oy)m, - Insgesamt gilt also, wie behauptet,
(Ov)m,, = Oy O

Bemerkung 2.14. Sei K ein Korper, sei O, ein Bewertungsring auf K mit maxima-
lem Ideal m, und sei 0 € Aut(K) ein Automorphismus von K. Dann ist ¢(O,) ein
Bewertungsring auf K mit maximalem Ideal o(m,).

Insbesondere folgt aus o(O,) = O, auch schon o(m,) = m,,.

Beweis. Da o ein Kérperhomomorphismus ist, ist mit O, auch ¢(O,) ein Unterring von
K. Fir z € K\ 0(0,) ist o7 1(z) ¢ O,, da O, ein Bewertungsring ist folgt schon
ozt = (0_1(x))_1 € Oy, also 27! € 0(0,). Damit ist ¢(O,) ein Bewertungsring
auf K.

Offensichtlich gilt o(O)) = o(O,)* und es folgt
{

o(m,) ={o(z) € K|z € my}

{o(z) e K|z € 0,\Of}

= {O‘(.’E) € Klo(x) € o(Oy) \O‘(O;j)}
2(0.)

das heift o(m,) ist das maximale Ideal von o(O,).
Der letzte Satz der Behauptung folgt nun sofort aus der Eindeutigkeit des maximalen

Ideals in einem Bewertungsring. O

Typische Beispiele bewerteter Koérper sind Potenzreihenkorper und deren Teilkorper.

Beispiel 2.15. Sei K ein beliebiger Korper und K ((T")) sei der Potenzreihenkorper

K(T)) := {Z a;T"|a; € K,{i € Z|a; # 0} ist nach unten beschrénkt} .
1E€EL

Die Abbildung v : K((T')) — Z U {oco} mit Y ;e a;T" — min{i € Z|a; # 0} (mit der
Konvention min(f)) = oo) definiert eine Bewertung auf K((T)). Der zugehorige Bewer-
tungsring ist O, = {37 a;T" |a; € K} und der Restklassenkdrper ist K ((T))v = K.

11
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Beweis. Dass v eine Bewertung auf K ((T)) ist, ist aus der Definition klar. Auch die
Gleichungen

O, ={ze K(T))|v(z) >0} = {ZaiTi|ai € K} und
=0

m, = {z € K((T)) |v(z) > 0} = {Zam la; € K}

=1
ergeben sich sofort aus der Definition von v.

Betrachte nun den surjektiven Ringhomomorphismus ¢ : O, — K mit > 2, a;T" — ag.
Offensichtlich gilt ker(p) = {375 a;T"|ap =0} = m, und der Homomorphiesatz fiir
Ringe liefert O, /m, = im(y) = K. O

Ist w eine Bewertung auf L und K C L ein Teilkdrper, so ist die Einschrankung v = w[K
von w eine Bewertung auf K. Die zugehorige Wertegruppe vK = im(w[K) = w(K) ist
eine Untergruppe von wL und fiir die Bewertungsringe gilt

Oy={zre K|wx)>0}=0,NK.

Diese Eigenschaft der Bewertungsringe wird zum definierenden Kriterium, wenn wir an-
dersherum Bewertungen auf Koérpererweiterungen fortsetzen wollen.

Definition 2.16. Sei L/K eine Korpererweiterung und seien O, € K und O, C L
Bewertungsringe auf K bzw. L. Gilt O, = O,, N K, so heifit die Bewertung w (bzw. der
zugehorige Bewertungsring O,,) eine Fortsetzung von v (bzw. O, ) auf L.

Wir schreiben dann auch (L, w)/(K,v) und sprechen von einer Erweiterung von bewer-
teten Koérpern.

Bei der spateren Betrachtung henselscher, p-henselscher und n<-henselscher Bewertungen
spielen (eindeutige) Fortsetzungen von Bewertungsringen auf Korpererweiterungen eine
entscheidende Rolle. Wir fithren nun noch eine Reihe weiterer allgemeiner Aussagen iiber
Bewertungsringe und Fortsetzungen auf, die wir vor allem im Kapitel 5 iiber n<-hensel-
sche Bewertungen bendtigen werden. Zu den Beweisen einiger Resultate verweisen wir
dabei auf | ].

Theorem 2.17. Sei L/K eine beliebige Korpererweiterung und O C K ein Bewertungs-
ring. Dann ezistiert eine Fortsetzung von O auf L.

Beweis. Siehe | , Theorem 3.1.2]. O

Lemma 2.18. Sei L/K eine Korpererweiterung, O, ein Bewertungsring auf K und Oy,
eine Fortsetzung von O, auf L. Dann gilt O N K = O.° und damit auch m,, N K = m,,.

Insbesondere erhalten wir kanonische Einbettungen vK = K* /O — L* /O = wL und
Kv=0,/my = Oy/my, = Lw der Wertegruppen bzw. Restklassenkérper.
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2 Bewertete Korper

Beweis. Fir v € O NK ist 2 € O, NK = Oy und 27! € O, N K = O,, also gilt
OXNK COX. Fiir x € OF folgt andererseits, wegen O, C O,,, auch z,x~ € O, und
damit x € O.. Insgesamt ist dann O N K = O gezeigt. Damit ist insbesondere die
Abbildung K* /O, — L* /O mit z- O} +— x- O wohldefiniert (wegen O, C Oy) und
injektiv (wegen O N K C OF). Dass sie auch ein Gruppenhomomorphismus ist, ist aus
der Definition der Abbildungsvorschrift klar.

Nun gilt fiir die maximalen Ideale von O, bzw. O,,, wegen O,5 C O,,, die Identitét
m, =0,\0,; = (O, NK)\ (O NK)=(0y\Op)NK =my,, N K,

wie behauptet. Vollig analog zur Argumentation bei der Einbettung zwischen den Wer-
tegruppen folgt, dass die Abbildung Kv — Lw mit a + m, — a + m,, eine Einbettung
ist. O

Lemma 2.19. Sei K ein Korper und f € O[X] ein normiertes Polynom tber einem
Bewertungsring O auf K. Dann gilt fiir jede Nullstelle a € K von f bereits a € O.

Beweis. Sei a € K eine Nullstelle des normierten Polynoms f € O[X], welches durch
F(X) = X9 4 bg_1 X9 .. + by gegeben sei. Weiter sei m das maximale Ideal von O.
Wiire nun a ¢ O, so folgte schon a # 0 und a~! € m, also auch a™* € m fiir 1 < k < d.
Aus f(a) = 0 erhielten wir dann durch Multiplikation mit ¢~¢ und Umstellung der
Gleichung sowie mit b; € O fiir 0 < i < d die Aussage

—1=bg1a '+ 4ba?em,
das heiflst m = O. Das ist aber ein Widerspruch zur Definition von m. O
Die folgenden drei Aussagen bendtigen wir spéter fiir den Beweis des Theorems 5.5, das

einige Resultate zur Charakterisierung henselscher bzw. p-henselscher Bewertungen auf
n<-henselsche Bewertungen tibertrégt.

Lemma 2.20. Sei K ein Kérper und seien Oq,...,On C K paarweise verschiedene
Bewertungsringe auf K. Setze R := (), O; und p; = RNm,.

Dann gilt
(1) O; = Ry,.
Falls O; € Oj fiir alle 1 <14, <m mit i # j erfillt ist, so gilt weiter
(2) pi Cp; firallel <i,5 <m miti# j,
(8) die Ideale pi,...,pm C R sind gerade alle mazximalen Ideale von R und
(4) fiir jedes Tupel (ai,...,an) € [[12 Oi gibt es ein a € R, das simultan a; —a € m;

fiir alle 1 <1 < m erfiillt.

Beweis. Siehe | , Lemma 3.2.6 und Theorem 3.2.7]. O

13



2 Bewertete Korper

Lemma 2.21. Sei K ein Korper und O ein Bewertungsring auf K. Weiter sei L/ K eine
algebraische Korpererweiterung und O1,O2 C L seien Fortsetzungen von O auf L. Ist
01 C 0o, so gilt bereits O1 = Os.

Beweis. Siehe | , Lemma 3.2.8]. O

Einen wichtigen Bezug zwischen Fortsetzungen von Bewertungen und der Automorphis-
mengruppe der entsprechenden Korpererweiterung stellt das Konjugationstheorem her.

Theorem 2.22 (Konjugationstheorem). Sei K ein Kéorper und O ein Bewertungsring
auf K. Weiter sei L/K eine endliche normale Kéorpererweiterung und O1, Oy C L seien
Fortsetzungen von O auf L. Dann sind O1 und Oz konjugiert iber K, das heifit es gibt
einen K-Automorphismus o € Aut(L/K) von L mit o(O1) = Os.

Beweis. Siehe | , Theorem 3.2.14]. O

Korollar 2.23. Sei (K,v) ein bewerteter Korper und L/K eine endliche Korpererwei-
terung. Dann gibt es nur endlich viele Fortsetzungen von v auf L.

Beweis. Wir wihlen zunéchst geeignete Elemente x1,...,z, € L mit L = K(x1,...,2,)
und setzen f =[]}, mipog (z;). Es sei nun N ein Zerfallungskorper von f iiber K. Dann
ist N/K eine endliche normale Kérpererweiterung und nach Theorem 2.22 gibt es damit
hochstens # Aut(N/K) < deg(f)! viele Fortsetzungen von v auf N. Da jede Fortsetzung
von v auf L auch eine Fortsetzung auf N besitzt, folgt die Behauptung. O

Ist (L,w)/(K,v) eine Erweiterung bewerteter Korper, so konnen wir nach Lemma 2.18
die Wertegruppe vK = K* /O als Untergruppe von wL = L* /O und den Restklas-
senkorper Kv als Teilkérper von Lw auffassen. Dies fiihrt zu der folgenden Definition.

Definition 2.24. Sei (L,w)/(K,v) eine Erweiterung bewerteter Korper. Dann heifst
e(w/v) == e(Oy/0y) = [wL : vK] € NU {oo}

der Verzweigungsindex der Erweiterung und
flw/v) = f(Ouw/Oy) := [Lw : Kv] € NU {oo}

der Tragheitsgrad der Erweiterung.

Gilt e(w/v) = f(w/v) =1, so heift die Erweiterung (L,w)/(K,v) unmittelbar.

14



2 Bewertete Korper

Theorem 2.25 (Fundamentale Ungleichung). Sei (K,v) ein bewerteter Kérper, L/K
eine endliche Koérpererweiterung und wi, ..., w,, Seien simtliche Fortsetzungen von v
auf L. Dann gilt

m

> e(wifv) - f(wifv) < [L:K].

=1

Falls die Wertegruppe vK isomorph zu Z ist und L/K eine endliche separable Korperer-
weiterung ist, so gilt sogar Gleichheit.

Beweis. Siehe | , Theorem 3.3.4 und Theorem 3.3.5]. O

Lemma 2.26. Sei K ein Korper und f € O[X] ein beliebiges Polynom tber einem
Bewertungsring O auf K mit f = g1 ...gm fir geeignete in K[X] irreduzible Polynome
91y 9m € K[X]. Dann gibt es in K[X] irreduzible Polynome hy, ..., hy € O[X] mit
f=hi...hn.

Beweis. Siehe | , Remark 4.1.2 (3)]. O

Korollar 2.27. Sei K ein Kéorper und f € O[X] ein beliebiges Polynom iber einem
Bewertungsring O auf K. Falls f in O[X] wrreduzibel ist, so ist es bereits in K[X] irre-
duzibel.

Beweis. Wir zeigen die Kontraposition. Ist f reduzibel in K[X], so gibt es in K[X]
irreduzible Polynome g1, ..., gm € K[X] mit f = g1 ...¢gm und m > 2. Nach Lemma 2.26
gibt es dann Polynome hi,...,h, € O[X] mit f = hy...h, und wegen m > 2 ist f
folglich reduzibel in O[X]. O

Sind O, und O,, zwei Bewertungsringe auf demselben Kérper mit O, C O,, so sagen
wir v (bzw. O, ) ist feiner als w (bzw. O ) und entsprechend auch w (bzw. O,,) ist grober
als v (bzw. Oy).

Haben wir nun zwei vergleichbare Bewertungsringe auf demselben Koérper, so induziert
der feinere der beiden Bewertungsringe auf folgende Weise eine Bewertung auf dem Rest-
klassenkorper des groberen Bewertungsrings.

Lemma 2.28. Sei K ein Kérper und seien O,, O, zwei Bewertungsringe auf K mit
O, C Oy. Dann wird durch Oy := O, /my, ein Bewertungsring auf dem Restklassenkorper
Kuw definiert.

Dabei gilt OF = O)f /my, sowie mz = my,/my,. Insbesondere sind Kv und (Kw)v kano-
nisch isomorph.
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2 Bewertete Korper

Beweis. Zunéchst ist my,, C m, ein Ideal in O,: Offensichtlich ist (m,,,+) eine Unter-
gruppe der additiven Gruppe (O,,+) und fiir a € O,,, x € m,, gilt insbesondere a € O,,,
also auch a - € my,. Daher ist O; = O, /m,, C O,,/m,, ein Unterring von Kw.

Sei nun Z € Kw \ Oy. Es ist dann & = = + m,, fiir ein geeignetes x € O, \ O, C K \ O,.
Da O, ein Bewertungsring auf K ist, folgt 2= € O, und damit 27! = 2~ + m,, € Op.
Also ist Oy ein Bewertungsring auf Kw.

Fiir beliebiges a+m,, € OX /m, mit a € O ist (a+my) "t =a 1 4+m, € O /my C Oy,
also a +m,, € OF, das heikt insgesamt 0. /m,, C OF.

Sei jetzt a € O beliebig. Es ist dann a = a + m, und a~! = b + m,, fiir geeignete
a,b e O, \my mit 1 —ab € m,, C m,. Folglich gilt ab ¢ m,, denn sonst wire 1 € m,,, und
damit ist wegen b € O, insbesondere a ¢ m,. Also gilt a € O, \ m;, = O; und daher ist
a=a+my € O /my,. Daa € OF beliebig gewihlt war, folgt damit auch O C O /my,.
Insgesamt ist O = O, /m,, gezeigt.

Weiter ist (O;f /m,,)U(m, /my,) = O, /my, = Op und fiir a € Of und b € m,, ist a—b ¢ m,,,
also (O /my,) N (m,/my,) = 0. Das maximale Ideal von Oy erfiillt daher Identitét

m; = O3\ OF = O3\ (O /my,) = m,/my,
und nach dem zweiten Isomorphiesatz fiir Moduln iiber dem Ring O, folgt
Kv=0,/m, = (0,/my)/(m,/my) = Oz/mz = (Kw)v,

wobei der Isomorphismus kanonisch durch a + m, — (a + my,) + myz gegeben ist. O

Dieser Prozess liasst sich auch umkehren, wie die folgenden beiden Bemerkungen zeigen.

Bemerkung und Definition 2.29. Sei (K, v) ein bewerteter Kérper und w eine Be-
wertung auf dem Restklassenkorper Kv = O, /m,. Dann ist die Menge

Owor ={z€K|xz+m, € Oy} CO,

ein Bewertungsring auf K mit maximalem Ideal myo, = {z € K |z +m, € m,,} und
Restklassenkorper Oyop /Moy = (Kv)w.

Die zu Oyop gehorige Bewertung wowv : K — K*/OJ,, U{oo} auf K heifit dann
Komposition von w und v.

Beweis. Fir x,y € Oyop gilt

(z+y)+m, = (z+my,) + (y+m,) € O und
(x-y)+my =(z+my)  (y+my) € Oy.

Weiter ist 0 +m, € O, und 1+ m, € O, also ist Oy, insgesamt ein Unterring von K.
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2 Bewertete Korper

Fiir 7 € K \ Oyop ist nun z +m, ¢ Oy, also 271 +m, = (z +m,) ! € Oyoy, das heikt
Owov ist ein Bewertungsring.

Es gilt O, = {z € K|z +m, € O} und damit

wov
Myov :Owov\oqjoy = {l‘ € K’I-i-mv € Ow\oé}
={zeK|x+m, €my}.
Betrachte nun die Epimorphismen

o : Opor = O und 7 Oy — Oy/my, = (Kv)w

T T +my, T — T+ my,
und den Kern der Hintereinanderausfithrung 7= o o dieser Abbildungen. Es gilt
ker(moa)={z e K|(z+my) +my =my}={z € K|z +m, € my} =My,
und damit Oyop/Myoy = (Kv)w. d

Bemerkung 2.30. Sind K, O, und O, sowie Oy wie in Lemma 2.28, so gilt nach
Definition 2.29 die Identitét

Oﬁow:{$€K|x+mwGO@}:{x€K|x+mweov/mw}:Om

das heiftt v und ¥ o w sind dquivalent.

Andererseits ist fiir beliebige Bewertungen v auf K und w auf Kv auch die Gleichung

Owor = Owov/my ={z € K|z +m, € Oy} /m,
={z+mylze K,z+m, € Oy}

erfullt.

Zum Abschluss der allgemeinen Einfiihrung in das Thema der bewerteten Koérper betrach-
ten wir noch die Fortsetzung der Restklassenprojektion zu einer Abbildung zwischen den
Polynomringen O,[X] und Kv[X].

Notation 2.31. Fiir einen bewerteten Korper (K, v) sei
resgy, : Oy[X] — Kv[X]

> aX =) (ai+my) X

die natiirliche Fortsetzung der Restklassenprojektion O, — O, /m, zu einem Ringhomo-
morphismus zwischen den Polynomringen O,[X] und Kv[X].

17



2 Bewertete Korper

Bemerkung 2.32. Sei K ein Korper mit einer Bewertung v und sei f € O,[X] ein
Polynom iiber dem Bewertungsring. Fiir g = resg,(f) € Kv[X] gilt dann

J(X)= Z i(a; + mv)Xi_1 = Z(iai + me)X’A_1 = resky <Z iaiXi_l)
= (resgo(f")) (X)

und fiir jedes a € O, ist

gla+m,) = Z(ai +my)(a+m,) = Z(ai +my)(a’ +my) = Z aa’ +my,
= f(a) +m,.
Bemerkung 2.33. Falls f € O,[X] ein normiertes Polynom ist, fiir das resg,(f) €

Kv[X] irreduzibel in Kv[X] ist, so ist f bereits irreduzibel in O,[X]. Nach Lemma 2.19
ist f dann auch in K[X] irreduzibel.

Beweis. Ist f = g-h fiir zwei Polynome g, h € O,[X], soist resg, (f) = resxy(g)-resiy(h).
Da f normiert ist kénnen wir ohne Einschrénkung annehmen, dass dabei auch g und h
normiert sind. Dann ist aber deg(g) = deg (resx,(g)) und deg(h) = deg (resg,(h)), das
heifst eines der Polynome g, h ist konstant. O

2.3 Bewertungen und Topologie

Die eingangs erwiéhnte Vorstellung von bewerteten Korpern als einer Verallgemeinerung
von Korpern mit Absolutbetrag bzw. Metrik spiegelt sich auch in der von einem Bewer-
tungsring induzierten Topologie wieder.

Begreifen wir die Bewertung v auf einem Korper K als Maf fiir die Grofe von Elementen
von K, so liegt es nahe, die Menge {z € K |v(x — x0) > v} fiir 9 € K und v € vK als
offenen Ball um xoy mit Radius v zu bezeichnen.

Tatsédchlich erzeugt die Menge aller dieser Bélle eine (mit den Korperoperationen ver-
tragliche) Topologie auf K, die einige weitere schone und niitzliche Eigenschaften hat.

Dies zeigt, unter Beachtung der Identitét
a-my+xg={az+z0€ K|zeEm}
= {xeK\x—xo € ailmv}
={z e K|v(z—zo) > ’U(a_l)} ,

das Lemma 2.36. Die von diesen Béllen erzeugte Topologie ist — iiberraschenderweise —
dieselbe wie die von “abgeschlossenen Béllen” {x € K |v(x — o) > 7} erzeugte.

Bemerkung und Definition 2.34. Sei K ein Kérper und O, ein Bewertungsring auf
K. Dann ist die Menge B = {a- O, +z|a € K*,z € K} die Basis einer Topologie 7,
auf K, genannt die von v (bzw. O, ) induzierte Topologie.
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Beweis. Offensichtlich gilt K = J ¢ O +x mit O, + 2 € B fiir alle z € K.

Wir miissen nun noch zeigen, dass der Schnitt zweier Mengen aus B wieder in B liegt.
Seien dazu a,b € K* und z,y € K beliebig. Ohne Einschrankung sei v(a) > v(b). Weiter
nehmen wir an, dass (aO, + ) N (bO, +y) # 0 gilt. Fur z € (a0, 4+ x) N (bO, + y) gilt
dann z—z € a0, und da aO, additiv abgeschlossen ist, folgt a0, +(z—x) C aO,,. Wegen
—1€ O, ist auch z — 2z = —1(z — x) € aO, und es gilt daher sogar a0, + (z — ) = aO,,
also aO, + z = a0, + x. Vollig analog folgt b0, + y = bO,, + z.

Fiir jedes e € aO, gibt es ein ¢y € O, mit e = a - eg, das heilst es gilt
v(e) =v(a-eg) =v(a)+v(eg) > v(a) > v(b),

also v(eb™!) > 0. Damit ist nun e = b-eb~! € b- O,. Es gilt also a0, C bO, und daher
auch aO, + z C bO, + z.

Insgesamt erhalten wir die Beziehung aO, + z = aO, + z C b0, + z = bO,, + y, also gilt
(aOy + z) N (bO, +y) = a0y +x € B. O

Bemerkung 2.35. Die Abbildungen p, : K — K mit  +— a -z und t5 : K — K mit
x +— x+d sind fiir alle a,b € K stetig beziiglich 7,,. Mit Ausnahme von pg sind alle diese
Abbildungen Homdomorphismen mit den stetigen Umkehrabbildungen (pe)™' = pg-1

und (tg)~ ' =t_q4.

Lemma 2.36. Die Menge By = {a-m, +z|a € K*,x € K} bildet ebenfalls eine Basis
von Ty.

Beweis. Seien a € m, und b € O,.. Dann gilt v(a-b) = v(a) +v(b) > v(a) > 0 und damit
a-b € m,, also insgesamt m,, - O, C m,. Wegen 1 € O, folgt auch m, C m, - O,. Wir
erhalten also

my,=my,- -0, = U z-0, €T,

zEMy,

und mit der Stetigkeit von p,-1 und ¢_g4 folgt auch a - m, +d = (t4 0 pg)(my) € T, fiir
alle a € K* und alle d € K, das heilt B, C 7.

Firz € Kund U € T, mit x € U gibt esnun eina € K* mita-my,+x Ca-O,+x C U,

also ist By, sogar eine Basis fir 7. O

Firz,ye Kmitx #yist a:=(x—y) € K* und y € a-m, +y. Wegen v(z —y) = v(a)
ist weiter x —y ¢ a-m,, also x ¢ a-m, +y, das heiflt die Topologie T, auf K erfiillt das
erste Trennungsaxiom.

Da zwei Mengen aus B, wie im Beweis von Bemerkung 2.34 gesehen, entweder disjunkt
sind oder eine von ihnen bereits Teilmenge der anderen ist, ist die Topologie 7, damit
sogar hausdorffsch.

Dariiber hinaus ist sie sogar eine Kérper-Topologie auf dem zugrunde liegenden Kérper.
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Proposition 2.37. Sei K ein Kérper und O, ein Bewertungsring auf K, sowie T, die
von O, induzierte Topologie. Dann ist (K,T,) ein topologischer Korper.

Beweis. Fiir den gesamten Beweis seien ¢ € K* und d € K, das heilt a - O, +d € B
beliebig.

Seien nun zunichst z,y € K so, dass u(z,y) = -y € a- O, + d erfiillt ist. Wiahle ein
Element b € K* mit

v(b) = max {v(a),v(a) - v(z),v(a) — v(y),0} .

Dann gilt v(b?) > v(b) > v(a) sowie v(bx) = v(b) +v(z) > v(a) und analog v(by) > v(a).
Nun ist die Menge U = (b- O, + z) X (b- O, + y) eine offene Umgebung von (x,y) in
K x K, fiir die

p(U) =02 Oy +bx-Op+by-Op+ -y
ga'0v+a'0v+a'ov+x'y
=a-Opy+2x-y=a-0,+d

gilt. Die Gleichheit in der letzten Zeile folgt dabei wie im Beweis von Bemerkung 2.34

aus -y € a- O, + d. Zusammengefasst erhalten wir eine offene Menge U C K x K mit
(z,) €U C p~Ha- O, +d), das heilt pu ist stetig.

Seien jetzt x,y € K so, dass a(z,y) =z +y € a- O, + d erfiillt ist. Dann ist die Menge
U=(a-Oy+x) % (a-Oy+y) eine offene Umgebung von (z,y) in K x K mit

alU)=a-0py+a-Opy+(z+y)=a-Oy+(x+y)=a-0,+d.
Es gilt also (x,y) € U C a™(a- O, + d), das heiflt « ist stetig.

Abschliefend sei nun x € K* so, dass t(z) = 27! € a- O, + d erfiillt ist. Wihle b € K*
mit v(b) > max {v(z),v(az?)}. Dann ist U = (b m, + ) N K* nach Lemma 2.36 eine
offene Umgebung von z in K* und firy € U\z gilt y—z € (b-m,), also v(y —z) > v(b).
Wegen

v(b) > v(z) =v(y + (v — y)) > min {v(y),v(y — v)}

folgt min {v(y),v(y — )} # v(y — x), also v(x) > v(y). Wir erhalten damit die Unglei-
chung v(azy) < v(az?) < v(b) < v(y — x), das heift v(ary) < v(y — z), womit

v(a) <v (@ ly Ny —2) =v(y " —ah)
gilt. Es folgt y ™' —27 ' €a-0,, also t(y) =y ' €a-0, + 27! =a- O, + d. Insgesamt
erhalten wir z € U C 17! ((a- O, +d) N K*), das heifit ¢ ist stetig. O

Spéter werden wir sehen, dass alle nicht-trivialen henselschen (bzw. p-henselschen bzw.
n<-henselschen) Bewertungen auf einem Korper dieselbe Topologie induzieren. Wir fiih-
ren dafiir jetzt schon den Begriff der Unabhéngigkeit zweier Bewertungsringe ein.
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Definition 2.38. Zwei Bewertungsringe O, und O,, auf einem Korper K heifsen unab-
hdngig, falls sie unterschiedliche Topologien induzieren.

Eine rein algebraische Charakterisierung der Unabhéngigkeit zweier Bewertungsringe lie-
fert das folgende Lemma.

Lemma 2.39. Sei K ein Korper und v, w seien zwei Bewertungen auf K. Die Bewer-
tungsringe O, und Oy, sind genau dann unabhdngig, wenn 0,0, = K gilt.

Beweis. Siehe | , Theorem 2.3.4]. O
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3 HENSELSCHE BEWERTUNGEN

3.1 Grundlagen

Es gibt eine Reihe von Charakterisierungen henselscher Bewertungen, die alle als Defini-
tion des Begriffs in Frage kdimen (siehe Theorem 3.4). Obwohl der Name eigentlich daher
stammt, dass diese Bewertungen die Aussage von Hensels Lemma erfiillen, hat sich die
folgende Eigenschaft in der Literatur als Standarddefinition etabliert.

Definition und Bemerkung 3.1. Eine Bewertung v auf einem Koérper K (bzw. der
bewertete Korper (K, v)) heifst henselsch, falls der zugehorige Bewertungsring O, eine
eindeutige Fortsetzung auf den (einmalig a priori festgelegten) algebraischen Abschluss
K®# von K hat.

Da je zwei algebraische Abschliisse von K isomorph zueinander sind, hat O, dann sogar
eine eindeutige Fortsetzung auf jeden algebraischen Abschluss von K.

Bemerkung 3.2. Ein bewerteter Korper (K, v) ist genau dann henselsch, wenn O, eine
eindeutige Fortsetzung auf jede algebraische Korpererweiterung L/K hat.

Beweis. Sei (K, v) ein henselsch bewerteter Korper und L/ K eine algebraische Korperer-
weiterung. Ohne Einschrinkung sei I C K28, Weiter seien O,, und O, zwei Fortset-
zungen von O, auf L und Oy bzw. Oy seien Fortsetzungen von O, bzw. O, auf K8

Dann sind Oy und Oy auch Fortsetzungen von O,. Da (K, v) henselsch ist gilt daher
bereits Oy = Oy und es folgt

Ow=0sNL=0yNL=0,,

also hat O, genau eine Fortsetzung auf L.

Die Umkehrung ist klar, da K8 /K eine algebraische Korpererweiterung ist. O

Beispiel 3.3. Die triviale Bewertung auf einem beliebigen Korper ist henselsch.

Beweis. Sei L/K eine algebraische Korpererweiterung von K und O, C L ein Bewer-
tungsring auf L mit O, N K = K, das heifft O, O K sei eine Fortsetzung des trivialen
Bewertungsrings auf K. Wir zeigen, dass v(z) < 0 fiir alle z € L\ {01} gilt. Damit folgt
dann sofort v(z) > 0 fiir alle x € L, also O, = L.

Sei also z € L\ {0} beliebig. Da L/K algebraisch ist, existieren dann d € N und Koef-
fizienten a; € K fiir 0 < i < d mit ag # 0 und agz® + - -- + ap = 0. Multiplizieren wir
diese Gleichung fiir m = min {i|a; # 0} € Ny mit 7™, so ergibt sich

d—1—m +

agr®™™ + ag_qx ot A1 T+ @ = 0,
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3 Henselsche Bewertungen

also a,, = —Zf:mﬂ @z = =3 ez fir I = {i e N|m+1<i<da; #0}.
Dabei ist I # (), denn sonst wére a,,z™ = 0 und damit x = 0.

Wegen a; € K \ {0} fiir alle i € U {m} und K C O, folgt v(}_;c; a;z"™™) = v(am) =0

v (Z aixim> > max {v(a;z" ™) |i € I}

iel
= max {v(a;) + (i —m) -v(x)|i e I}
=max{(i—m)-v(x)|i € I}
=k-v(x)

fir ein k£ € N. Insgesamt ergibt sich k- v(z) < 0 und damit v(z) < 0. Da z € L\ {0}
beliebig gewéhlt war, folgt die Behauptung. O

Wir listen nun einige der erwahnten Charakterisierungen henselscher Bewertungen auf.
Theorem 3.4. Sei (K,v) ein bewerteter Korper. Dann sind dquivalent:
(1) Die Bewertung v ist henselsch.

(2) Der Bewertungsring O, hat eine eindeutige Fortsetzung auf den separablen Ab-
schluss K3 von K.

(8) Fiir jede Galoiserweiterung L/K hat O, eine eindeutige Fortsetzung auf L.

(4) Es gilt die Aussage von Hensels Lemma: Jedes Polynom f € O,[X], fir das
resiy(f) € Kv[X]| eine einfache Nullstelle o € Kv im Restklassenkorper besitzt,
hat eine Nullstelle a € O, mit a +m, = «.

(5) Jedes Polynom f € O,[X] der Form
FX) =X+ X pay o X2 4 ag
mit d = deg(f) > 1 und ag_s, .. .,aq € m, besitzt eine Nullstelle in K (dquivalent”:

in O,).

Beweis. Siehe | , Lemma 4.1.1 und Theorem 4.1.3]. O

Bemerkung 3.5. Die Nullstelle a € O, in Kriterium (4) aus Theorem 3.4 ist durch
a + m, = « bereits eindeutig bestimmt.

Wire namlich b € O, eine weitere Nullstelle von f mit b + m, = «, so gibe es ein
Polynom g € O,[X] mit
f(X)=(X —a) - (X —0b) g(X) und daher
resgy(f)(X) = (X —a) - (X —a) - resgy(9)(X),

"Nach Lemma 2.19 liegt jede Nullstelle von f in K bereits in O,.
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3 Henselsche Bewertungen

das heiflt o wéire entgegen der Voraussetzungen keine einfache Nullstelle von resg, (f) in
Kv.

Ein Beispiel fiir eine nicht-triviale henselsche Bewertung ist der Potenzreihenkorper
K((T)) mit der zuvor diskutierten Bewertung.

Beispiel 3.6. Die Bewertung v(}",.; ;T") = min {i € Z | a; # 0} auf dem Potenzreihen-
Korper

K(T)) := {Z a;T"|a; € K,{i € Z|a; # 0} ist nach unten beschrétnkt}
€L

aus Beispiel 2.15 ist henselsch.

Beweisskizze. Wir verwenden die Charakterisierung (5) aus Theorem 3.4. Betrachte also
ein Polynom f(X) € O,[X] der Form

FX) =X+ X pay o X2 4 ag

mit d = deg(f) > 1 und ag_2, ..., € m,. Dabei seien geeignete Koeffizienten aj; € K
flir 0 <k <d—2und i € N so gewahlt, dass ai = Efil ak,iTi fiir 0 <k <d-— 2 gilt.

Induktiv ldsst sich zeigen, dass fiir 8 € K((T)) mit 8 = Y22, b;T" die Gleichung
(3] k k 4
o3 (3 1)

gilt, wobei die Summe Z'&j):i iiber alle Tupel (i1, ...,i;) € N* mit E?:l i; = i lauft.
Das Element f(f3) lisst sich dann schreiben als f(8) = > o2, fiT" mit

d d—1
fo= Zbil"'bid‘f‘ Z biy - by, , = bl 4+ bi7!
(

(i)=0 i;)=0
und
d d—1
fl = Z b’Ll : bid + Z bil : bid71
(i5)=i (ij)=i
d—1

+ biy «+big_y * Qd—2,ig_y + - F biy - a1y + a0,

(i5)=i (i5)=i

fiir ¢ > 0. Zum Term f; tragen insbesondere nur die b; mit j < ¢ bei. Daher lésst sich die
Folge (b;)ien rekursiv so wahlen, dass f; = 0 fiir alle ¢ € N und damit f(8) =0 gilt. O
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3 Henselsche Bewertungen

3.2 Die Henselisierung eines bewerteten Korpers

Ahnlich wie jeder Kérper mit einem Absolutbetrag bzw. einer Metrik eine Vervollstindi-
gung besitzt, hat auch jeder bewertete Korper eine (minimale) henselsche Erweiterung.
Die charakteristischen Eigenschaften dieser sogenannten Henselisierung eines bewerteten
Korpers (K, v), die bis auf eindeutigen K-Isomorphismus eindeutig ist, sind Inhalt dieses
Kapitels.

Lemma 3.7. Sei (K, v) ein bewerteter Korper und w eine Fortsetzung von v auf K5P.
Dann ist Dy, = {0 € Gg |0(Oy) = Oy} eine abgeschlossene Untergruppe der absoluten
Galoisgruppe G und ihr Fizkérper K" (w) = Fix(Dy,,) zusammen mit der Bewertung
w[Kh(w) ist henselsch. AufSerdem sind Dy, und D,y ,, fir zwei Fortsetzungen w,w’ von
v auf K zueinander konjugiert, das heift K"(w) und K"(w') isomorph.

Beweis. Siehe | , Lemma 5.2.1]. O

Definition 3.8. Seien K, v und w sowie K”(w) wie in Lemma 3.7. Dann heift der
bewertete Kérper (K" (w), w|K"(w)) eine Henselisierung von (K, v).

Eine universelle Eigenschaft fiir Henselisierungen liefert das folgende Theorem, aus dem
aufierdem die Eindeutigkeit bis auf (eindeutigen) K-Isomorphismus folgt.

Theorem 3.9. Sei (K, v) ein bewerteter Korper, Kh/K eine Korpererweiterung und v"
eine Fortsetzung von v auf K".

Dann ist (K", v") genau dann eine Henselisierung von (K, v), wenn die beiden folgenden
Bedingungen erfillt sind:

(1) (K" vh) ist henselsch und

(2) fiir jede Erweiterung von bewerteten Kérpern (L,w) 2 (K,v) fir die (L,w) hen-
selsch ist, existiert ein eindeutig bestimmter Korperhomomorphismus v @ K" < L
mit L(Oyn) = O NL(K") und 1||K = idg-.

Beweis. Siehe | , Theorem 5.2.2]. O

Insbesondere ist ein bewerteter Kérper genau dann henselsch, wenn er seine eigene Hen-
selisierung ist.

Korollar 3.10. Sei (L,w) 2 (K,v) eine Erweiterung bewerteter Kérper und (K" vh)
eine Henselisierung von (K,v) mit (K" v") D (L,w). Dann ist (K", v") auch eine Hen-
selisierung von (L, w).
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3 Henselsche Bewertungen

Beweis. Sei (L", w") eine Henselisierung von (L, w). Dann ist (L", w") insbesondere hen-
selsch und eine Erweiterung von (K, v). Nach Theorem 3.9 fiir (K,v) und (K" v") gibt
es also genau einen Korperhomomorphismus ¢ : K" < L" mit 1(Oyn) = Oyn N 1(KH)
und (JK = idg.

Auferdem ist auch (K", v") henselsch und nach Voraussetzung eine Erweiterung von
(L,w). Nach Theorem 3.9 fiir (L, w) und (L", w") gibt es damit genau einen Kérperho-
momorphismus x : L < K" mit x(O,n) = Opn N k(L") und s[L = idy.

Dann ist kot : K* < K" ein Kérperhomomorphismus mit

(Kot)(Oupn) =k (Owh N L(Kh)) = k(Oyn) N (ko) (KM
= O DKL) N (ko t)(K™) = Opn N (ko )(K™),
da r injektiv ist und da (ko ¢)(K") C k(L") gilt. Wegen ([K = k[K = idx ist aukerdem
auch (ko t)[K = idg erfiillt. Wieder nach Theorem 3.9 fiir (K,v) und (K", ") gibt es

jedoch nur genau einen Kérperhomomorphismus, der diese Eigenschaften hat. Sie gelten
aber offensichtlich auch fiir idn, also folgt bereits ko ¢ = idgn.

Damit ist & surjektiv und insgesamt ein Isomorphismus zwischen L" und K", der die
Eigenschaft (O n) = Oy N K(LY) = O erfiillt. Also ist (K", v") wie behauptet auch
eine Henselisierung von (L, w). O

Eine wichtige Eigenschaft der Henselisierung ist, dass sie stets eine unmittelbare Er-
weiterung des zugrunde liegenden bewerteten Korpers ist, das heifst Wertegruppe und
Restklassenkorper verdndern sich beim Ubergang zur Henselisierung nicht.

Theorem 3.11. Ist (K,v) ein bewerteter Kéorper und (K", v") eine Henselisierung von

(K,v), so ist die Erweiterung (K", v")/(K,v) unmittelbar.

Beweis. Siehe | , Theorem 5.2.5]. O

Beispiel 3.12. Betrachte nun den Quotientenkorper K(7T') des Polynomrings iiber K,
das heifst

K(T) := {Z a;T"|a; € K,{i € Z|a; # 0} ist endlich} C K((T)),
1€Z

sowie fiir v wie in Beispiel 3.6 die Bewertung v [ K(7T') auf K(7T'). Die Wertegruppe
im(v[K(T)) dieser Bewertung ist nach Definition von v die Gruppe Z und der Restklas-
senkorper K (T') (v[K(T)) ist K.

Ist (K(T))*P ein separabler Abschluss von K(T'), soist L = (K(T))** N K ((T')) mit der
Bewertung v[L eine Henselisierung von (K (7T),v[K(T)).

Um zu zeigen, dass (L, v[L) henselsch ist, benotigen wir noch die folgende Aussage.
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3 Henselsche Bewertungen

Lemma 3.13. Sei (L,w)/(K,v) eine Erweiterung bewerteter Korper und K sei relativ
separabel abgeschlossen in L, das heif§t jedes tiber K separable Element von L liege bereits

in K. Dann ist (K,v) henselsch, falls (L,w) henselsch ist.
Beweis. Siehe | , Korollar 4.1.5]. O

Beweis von Beispiel 5.12. Die Aussagen tiiber Wertegruppe und Restklassenkorper folgen
genau wie in Beispiel 2.15.

Wegen K(T) C L C (K(T))*" ist (K(T))*" ein separabler Abschluss von L, das heift
L ist relativ separabel abgeschlossen in K ((7')). Nach Beispiel 3.6 ist K ((7)) auferdem
henselsch, also folgt mit Lemma 3.13, dass auch (L, v[L) henselsch ist.

Damit lésst sich, nach Theorem 3.9, jede Henselisierung von K(7T') in L einbetten. Ins-
besondere existiert auch eine Henselisierung F' von K (7') mit F' C L und der Bewertung
v[F auf F.

Sei nun « € L ein beliebiges Element. Da die Wertegruppe und der Restklassenkor-
per der Bewertung v | K(T) mit vK bzw. Kv {ibereinstimmen, ist die Erweiterung
K(T)),v)/K(T),v | K(T) unmittelbar. Damit ist auch (F(«),v[F(«)) eine unmittel-
bare Erweiterung von (F,v[F). Weiter ist o € L separabel iiber K(T'), also auch iiber
F, das heifst F'(a)/F ist eine endliche separable unmittelbare Korpererweiterung. We-
gen im(v [ F) = Z und da (F,v|F) henselsch ist, folgt mit Theorem 2.25 nun bereits
[F(a): F] = e(wF(a)/vIF)- f(v[F(a)/v[F) =1, also a € F. Da a € L beliebig gewéhlt
war, erhalten wir L C F C L. Wie behauptet ist (L,v[L) also eine Henselisierung von
(K(T),v|K(T)). O

3.3 Die kanonische henselsche Bewertung

Die Beweise der folgenden Aussagen fiihren wir im Kapitel 5 allgemeiner fiir n<-hen-
selsche Bewertungen. Die entsprechenden Aussagen fiir henselsche Bewertungen, die wir
nun formulieren wollen, folgen dann als einfache Korollare, da jede henselsche Bewertung
fiir jedes n € N auch n<-henselsch ist. Alternativ finden sich sémtliche Beweise dieses
Abschnitts auch in [ , Section 4.4].

Theorem 3.14. Sei K ein Korper und seien O,, O, C K zwei nicht-triviale unabhdngige
henselsche Bewertungsringe auf K. Dann ist K = K.

Beweis. Siehe Korollar 5.11 oder | , Theorem 4.4.1]. O
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3 Henselsche Bewertungen

Wir partitionieren nun die Menge H(K) der henselschen Bewertungsringe auf K in die
beiden Teilmengen

H(K)={0, € HK)|(Kv)** # Kv} und
Hy(K)={0, € HK)|(Kv)*? = Kv}

Behauptung 3.15. Die Menge Hy(K) ist durch C linear geordnet und fir alle O, €
Hy(K) und Oy € Hi(K) gilt Oy C Oy.

Beweis. Siehe Korollar 5.15 oder | , Theorem 4.4.2]. O

Behauptung 3.16. Durch O, := (| H1(K) wird ein henselscher Bewertungsring auf K
definiert.

Beweis. Der Beweis funktioniert genau wie der von Behauptung 5.16. Siehe alternativ
auch | , Theorem 4.4.2]. O

Behauptung 3.17. Fulls Ho(K) # 0 ist, so gibt es ein eindeutiges beziiglich C mazi-
males Element in Ho(K).

Beweis. Der Beweis funktioniert genau wie der von Behauptung 5.19. Siehe alternativ
auch | , Theorem 4.4.2]. O

Diese Aussagen erlauben uns, die kanonische henselsche Bewertung auf einem Korper K
wie folgt zu definieren.

Definition 3.18. Sei K ein beliebiger Korper und sei

H{(K)={0, € HK)|(Kv)*® # Kv} und
Hy(K)={0, € HK)|(Kv)*P = Kv}.

Falls Ho(K) # ) ist, sei Ok das maximale Element von Hs(K). Andernfalls setzen wir
Ok =0, =(Hi(K). Die zu Ok gehorige Bewertung auf K sei mit vx bezeichnet.

Die Bewertung vg heiftt dann die kanonische henselsche Bewertung auf K, der zugehorige
Bewertungsring O heifst der kanonische henselsche Bewertungsring auf K.

Gilt K5°P = K, so liegt jeder henselsche Bewertungsring auf K in Hy(K), die kanonische
henselsche Bewertung ist dann die grobste henselsche Bewertung auf K — das heifit die
triviale.

Ist K andererseits ein henselscher Korper, das heiftt existiert {iberhaupt eine nicht-
triviale henselsche Bewertung auf K, mit K # KPP so ist auch die kanonische hen-
selsche Bewertung nicht trivial: Im Fall Hy(K) = @) ist dann ndmlich #H;(K) > 2 und
Ok = (VHi1(K) # K und andernfalls kann das maximale Element von Hs(K), wegen
K®°P 2 K| nicht mit K iibereinstimmen.
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4 p-HENSELSCHE BEWERTUNGEN

Fiir das gesamte Kapitel halten wir eine beliebige Primzahl p € P fest.

4.1 Grundlagen

Notation 4.1. Wir schreiben K (p) fiir das Kompositum aller Galoiserweiterungen L/ K,
fiir die ein k € N mit [L : K] = p¥ existiert.

Bemerkung 4.2. Ist « € K(p), so gibt es insbesondere eine endliche Galoiserweiterung
L/K mit « € L C K(p), das heifst « ist algebraisch und separabel iiber K und das
Minimalpolynom mipog () von « tiber K zerfallt iiber L in Linearfaktoren. Die Kor-
pererweiterung K (p)/K ist daher algebraisch, normal und separabel, also bereits eine
Galoiserweiterung.

Bemerkung 4.3. Ist K # K(p), das heifst besitzt K eine Galoiserweiterung L vom
Grad pF fiir ein k € N, so besitzt K bereits eine Galoiserweiterung vom Grad p:

Die Galoisgruppe G = Gal(L/K) ist dann némlich eine p-Gruppe und damit auflgsbar.
Insbesondere gibt es einen Normalteiler G; <G, fiir den der Quotient G/G1 zyklisch von
Ordnung p ist. Deren Fixkorper F' = Fixg(G1) ist dann eine Galoiserweiterung von K
mit [F: K] = #G/G1 = p.

Ersetzen wir nun in der Definition 3.1 der henselschen Bewertung die Koérpererweiterung
K®#& von K durch das Kompositum K (p) aller endlichen Galoiserweiterungen, deren
Grad eine Potenz von p ist, so erhalten wir den Begriff der p-henselschen Bewertung.

Definition 4.4. Sei (K, v) ein bewerteter Korper.

(1) Die Bewertung v (bzw. der Bewertungsring O,) heifit p-henselsch, falls O, eine
eindeutige Fortsetzung auf K (p) hat.

(2) Der Korper K heifst p-henselsch, falls es eine nicht-triviale p-henselsche Bewertung
auf K gibt.

Ahnlich wie fiir henselsche Bewertungen gibt es eine Reihe verschiedener Charakterisie-
rungen dieses Begriffs. Wir erwdhnen hier nur die fiir uns wichtigsten.

Theorem 4.5. Sei (K,v) ein bewerteter Korper. Dann sind dquivalent:
(1) Die Bewertung v ist p-henselsch.

(2) Fir jede Galoiserweiterung L/ K mit [L : K| = p hat O, eine eindeutige Fortsetzung
auf L.
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4 p-henselsche Bewertungen

(3) Jedes Polynom f € O,[X], das iber K(p) in Linearfaktoren zerfallt und fir das
resiy(f) € Kv[X]| eine einfache Nullstelle « € Kv im Restklassenkorper besitzt,
hat eine Nullstelle a € O, mit a +m, = «.

(4) Ist f € O,[X] ein Polynom, das iber K(p) in Linearfaktoren zerfallt und ist a € O,
mit v(f(a)) > 2v(f'(a)), so hat f eine Nullstelle in K (dquivalent: in O,) mit
v(b—a)>v(f(a)).

(5) Bs gilt K = K" N K(p) fiir jede Henselisierung (K", v") von (K,v).

Beweis. Fiir die Aquivalenzen (1) < (2) < (3) siehe | , Theorem 4.2.2 und Theo-
rem 4.2.3].
Fiir die Implikation (4) = (5) siehe | , Proposition 1.2 (iii) = (iv)].

Wir zeigen nun zunéchst (5) = (3) und anschliefend (3) = (4).

Sei dazu (K", v") eine Henselisierung von (K,v) und f € O,[X] sei ein Polynom, das
tiber K(p) in Linearfaktoren zerféllt und fiir das resg,(f) eine einfache Nullstelle a €
Kv im Restklassenkorper besitzt. Wegen O, C O, gilt dann auch f € O,n[X] und
da die Erweiterung (K", v")/(IK,v) unmittelbar ist, ist « eine einfache Nullstelle von
resnyn (f) = resg, (f) im Restklassenkorper K" = Kwv.

Nun ist (K", v") henselsch, also hat f eine Nullstelle ¢ € O,n € K mit a + myn = a.
Da das Polynom f iiber K(p) in Linearfaktoren zerfillt, gilt schon a € K" N K(p) = K
und mit Lemma 2.19 folgt a € O,. Wegen a + m,» = « folgt, da die Henselisierung eine
unmittelbare Erweiterung ist, auch a + m, = a.

Um zu zeigen, dass auch (3) = (4) gilt, sei nun f € O,[X] ein Polynom, das iiber K(p)
in Linearfaktoren zerfillt und a € O, sei so, dass v(f(a)) > 2v(f'(a)) gilt. Wir passen
den Beweis von | , Theorem 4.1.3, (4) = (5)] geeignet an. Die Taylor-Entwicklung
von f nach a liefert uns ein Polynom g € O,[X] mit

fla—=) = f(a) = f'(a)z +2?g(x)

fiir jedes x € K. Mit g ist auch die Abbildung h : K — K, die durch h(z) := g(f'(a) - x)
definiert wird, ein Polynom iiber dem Bewertungsring O,,, da aus f' € O,[X] und a € O,
auch f'(a) € O, folgt. Fiir beliebiges y € K und x = f/(a) - y erhalten wir dann

fla—f'(a)y) = f(a) = f'(@)*y + f'(@)*y*h(y).
Nun ist v(f'(a)?) < v(f(a)) < 0o, also f/(a)? # 0. Damit ergibt sich

fla— @y _ 1@

f'(a)? f'(a)?
und wir erhalten ein weiteres Polynom f; € KJ[X], welches nach der Voraussetzung
v(f(a)) > v(f'(a)?) ebenfalls in O,[X] liegt. Wieder wegen v(f(a)) > v(f’(a)?) folgt nun

—y+y°h(y) = f(y),
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4 p-henselsche Bewertungen

resiy(f1)(X) = =X + X2h(X) = X - (=14 X - h(X)), das heiRt 0 € Kv ist eine einfache
Nullstelle des Polynoms resg,(f1).

Weiter ist die Vorschrift y — a — f’(a) - y nach Definition von f; offensichtlich eine
bijektive Abbildung zwischen den Nullstellenmengen von f; bzw. von f, das heifst mit
f zerfallt auch f; iiber K(p) in Linearfaktoren. Nach Voraussetzung hat f; dann eine
Nullstelle y € K mit y +m, = 0, also y € m,,. Fiir diese ist dann b = a — f'(a) - y eine
Nullstelle von f und es gilt v(b —a) = v(—f'(a) - y) > v(f'(a)). O

4.2 Die eindeutige p-henselsche Topologie

Ahnlich wie im Fall henselscher (bzw. n<-henselscher) Bewertungen induzieren alle p-hen-
selschen Bewertungen auf einem Korper — unter gewissen Voraussetzungen — dieselbe To-
pologie. Genauer gilt die folgende Aussage, deren Beweis die nédchsten Seiten in Anspruch
nimmt.

Theorem 4.6 (| , Theorem 2.1]). Sei K ein Korper, der eine primitive p-te Ein-
heitswurzel ¢, € K enthdlt, falls char(K) # p ist. Sind O,, O, C K zwei unabhingige
nicht-triviale p-henselsche Bewertungsringe auf K, so ist K = K(p).

Aus Griinden der Ubersichtlichkeit teilen wir den Beweis in zwei Lemmata auf, die ge-
trennt die Fille char(K) # p und char(K) = p behandeln. Wir zeigen jeweils, dass
alle nicht-trivialen p-henselschen Bewertungen auf K dieselbe Topologie induzieren, falls
K # K(p) gilt. Die Behauptung aus Theorem 4.6 folgt dann sofort durch Einnahme der
Kontraposition.

Zuerst behandeln wir den Fall char(K) # p (und ¢, € K fiir eine p-te Einheitswurzel ().
Es bezeichne K? = {2P |z € K} die Menge der p-ten Potenzen in K.

Lemma 4.7. Sei K ein Korper und v eine nicht-triviale p-henselsche Bewertung auf K.
Weiter gelte K # K(p), das heiffit K habe eine Galoiserweiterung vom Grad p.

Ist char(K') # p und ¢, € K eine p-te Einheitswurzel, so ist die Menge
S={a (K")*+blac K*,be K}

eine Subbasis der von v induzierten Topologie T,.

Beweis. Wir zeigen zunéchst, dass jedes Element von § eine beziiglich T, offene Menge
ist. Betrachte dazu fiir b € m, das Polynom f(X) = X? — (p?b+ 1) € O,[X]. Dann gilt

(—p?b) = v(p*) + v(b) = 2v(p) + v(b) und
(p-1) =v(p),

also ist v(f(1)) — 2v(f'(1)) = v(b) > 0. Wegen ¢, € K C K(p) zerfillt das Polynom f
aukerdem iiber K (p) in Linearfaktoren. Nach dem Kriterium (4) aus Theorem 4.5 hat f

v
v
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4 p-henselsche Bewertungen

damit eine Nullstelle ¢ € K und wir erhalten p?b +1 = a? € KP. Da b € m, beliebig
gewihlt war, folgt p?m, + 1 C KP. Wegen v(p) > 0, also v(—p~2) = —2v(p) < 0 ist
—p~2 ¢ m,, das heifit 0 ¢ p*m, + 1. Es folgt (KP)* C (KP)* - (p*’m, + 1) C (KP)* und
damit

(KP)* = (KP)* - (p°m, + 1) = U ap’m, +a? € Ty,
ac KX

Nach Bemerkung 2.35 gilt dann bereits S C 7, und es folgt 7s C 7, fiir die von S
erzeugte Topologie Tg.

Es bleibt zu zeigen, dass m, beziiglich der von S erzeugten Topologie offen ist. Beachte,
dass die Menge p?m, \ K? nicht leer ist: Fiir a € K \ {0} wihle b € K* mit ab € m,
und a?b € m,. Dann ist (p?a®b)(p?ab)~! = a. Wire nun p’m, C KP, so hitten wir
a € (p*m,) - (p*m,) "t C KP fiir alle a € K, also K = KP.

Nun gibt es nach Bemerkung 4.3 eine zyklische Galoiserweiterung L /K vom Grad p, etwa
L = K(a) mit o € K. Aus K = KP folgt dann aber L = K, ein Widerspruch!

Wir kénnen daher ein a € p?m,,\ K? wihlen. Dann ist U := (a—a-(K?)*)N(a®—a?-(KP)*)
der Schnitt zweier Mengen aus S. Wir zeigen nun 0 € U C m,,, woraus m,, C U +m, C m,
und damit m, = U +my, = Uyc,, (U +b) folgt. Dass 0 € U gilt, ist wegen 1 € (KP)*

klar. Fiir 2 € U existieren nun nach Definition y, z € K* mit x = a — ay? = a® — a?2P.

Wir zeigen nun = € m,. Dabei kénnen wir annehmen, dass min {v(a),v(a — x)} = v(a—x)
gilt — denn wegen v(xz) > min{v(a),v(a — )} und v(a) > 0 folgt andernfalls bereits
v(z) > 0, also = € m,,. Damit gilt insbesondere v(z) > min {v(a),v(a —x)} = v(a — x).

Wire jetzt x ¢ m,, so hitten wir

v(a® — a) > min {2v(a),v(a)} = v(a) > v(p?) > v(xp?).

2

und es ergibe sich v(a? —a) > v(zp?) > v((a—x)p?), also a® —a € (a—z)p*-m,. Folglich

ware

> —x=(a®>—a)+ (a—2) € (a —x)p* - my + (a — 2)

= (a—x)(p* -my +1)
und aus a —x = ay? € a-(KP?)* und p? -m,+1 C (KP)* folgte a®> —x € a- (KP)*. Damit
wiire a?2P = a? —z € a- (KP)* Na? - (KP)*, es giibe also ein w € K* mit a?2P = aw?.

Dies fiihrt nun mit a = a?2P(a?w?)~! = (z2w™!)? € K? zum Widerspruch zur Wahl von
a¢ KP.

Es ist also 0 € U C m,, und damit ist m, = U + m,, offen beziiglich der von S erzeugten
Topologie Ts auf K. Da die Abbildungen z + a -z und x — x + b fiir alle a € K* und
alle b € K beziiglich Ts offensichtlich stetig sind, folgt 7, C Ts. O

Fiir den Fall char(K) = p setze nun K® := {2P — x|z € K}.
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4 p-henselsche Bewertungen

Lemma 4.8. Sei K ein Korper und v eine nicht-triviale p-henselsche Bewertung auf K.
Weiter gelte K # K (p), das heiffit K habe eine Galoiserweiterung vom Grad p.

Ist char(K) = p, so ist die Menge

B= {Mc‘f’; a,b,c,deK,ad—bc;«éO}

fiir MZ’CI; = {% |z e KW@ cx+4d+# 0} eine Basis der von v induzierten Topologie T, .

Beweis. Fixiere zunéchst beliebige Elemente a,b,c,d € K mit ad — bc # 0. Wir zeigen
dann, dass Mgf beziiglich der von v induzierten Topologie T, offen ist.

Fir x € K mit cx + d # 0 und ¢ # 0 gilt
ar+b  bc—ad acx +ad _ bc—ad a 1 bc—ad+a

cx+d Ex+tecd  Er+ed rted ¢ x—i—% c2 c

d\" bc—ad a
g x+7 . 5 +7’
c c c

das heifft die Abbildung f : = — % ist als Komposition von Translationen, Inver-
sion und einer Dilatation beziiglich der Topologie T, stetig und offen auf der Menge
{r € K|cx+d+#0}. Fiir c=0und d # 0 ist f(z) = %z + 2 ebenfalls stetig und offen

(auf {x € K|cx +d # 0} = K).

Wegen Mgf = f(K®N{z € K |cx+d+# 0}) geniigt es daher, zu zeigen, dass die Menge
K® n{z € K|cx+d# 0} beziiglich T, offen ist. Es gilt

0, c=d=0
{reK|cx+d#0} =( K, c=0,d#0
K\{-4}, ¢,d#0
€ To,

also geniigt es sogar, K®) € T, zu zeigen.

Betrachte dazu fiir beliebiges b € m, das Polynom ¢(X) = X? — X — b € O,[X]. Fiir
eine Nullstelle @ von ¢ sind, wegen char(K) = p, auch a4+ 1,...,a+ (p— 1) € K(«)
Nullstellen von ¢, das heift g zerfillt tiber K(a) und damit auch tiber K(p) 2 K(«)
in Linearfaktoren. Weiter ist resg,(q) = X? — X separabel tiber Kv und hat daher die
einfache Nullstelle 1 + m, € Kv. Da (K, v) nach Voraussetzung p-henselsch ist, hat ¢
damit eine Nullstelle @ € K. Folglich ist b = a”? — a € K® und da b € m, beliebig war,
erhalten wir m, C K (®),

Weil die Menge K®)| wegen (2P — z) 4+ (4P —y) = (x + y)? — (x + y), fir alle z,y € K
additiv abgeschlossen ist, folgt

KW= |J myteeT,
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4 p-henselsche Bewertungen

und damit, wie zuvor im Beweis von Lemma 4.7 argumentiert, B C 7T,,.

Wir miissen nun noch zeigen, dass B sogar eine Basis der von v induzierten Topologie
T, auf K ist. Wegen A+ M%) = M5 und M%7 +t = MJ5"“**'? sind die Abbildungen
x+— Az und x — x + ¢t fir alle A, t €K stetig (und offen) bezughch der von B erzeugten
Topologie 7. Daher geniigt es, m,, € Tp zu zeigen.

Da v nach Voraussetzung nicht-trivial ist, gibt es ein Element a € m, \ {0}. Setzen wir
¢(X) := aXP —aX — 1 € O,[X], so hat das Polynom resg,(q) = —1 # 0 dann keine
Nullstelle in Kw, also hat auch ¢ keine Nullstelle in K. Damit ist a=! # 2P — « fiir alle
x € K, alsoa ! ¢ KP. Insbesondere gilt K® N {zeK|l.z—at#0} =K (1), Setze

nun

2
U:i=M0 = { T ze K<p>}.

Wir zeigen 0 € U C m,, woraus — genau wie zuvor im Fall char(K) # p — mit der
Identitit m, = U +my = Uy, U + b € T die Behauptung folgt.

Dass 0 € U gilt, ist wegen 0 € K® klar. Um U C m, zu zeigen, sei y € U beliebig und
2
z e KV so, dass y = i

Fall 1. v(z) = v(a™!) = —v(a).

Wegen z € K® und o' ¢ K® gilt dann z —a™' ¢ K® D m,, das heift
v(z —a1) < 0. Es folgt v(a?) + v(z) —v(z —a™t) > v(a®) +v(x) = v(a) > 0.

Fall 2. v(z) > v(a™1).

Dann ist v(z —a™!) = min {v(z),v(a™!)} = v(a™!) und daher v(z) —v(z —a™t) =
v(x) —v(at) > 0. Es folgt v(a?) + v(z) — v(z +a~t) > v(a?) > 0.

Fall 3. v(z) < v(a™1).

Dann ist v(z—a~!) = min {v(z),v(a™")} = v(z) und es folgt sofort die Ungleichung
v(a?) +v(x) —v(r —at) = v(a?) > 0.

In allen drei Fallen gilt v(y) = v ( o’z ) = v(a®) + v(z) —v(z —a~t) > 0, das heifit

rz—a~1

y € my,. Da y € U beliebig gewéhlt war, erhalten wir — wie behauptet - nun U C m,,. [
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5 NM<-HENSELSCHE BEWERTUNGEN

5.1 Grundlagen

Am Beispiel der p-henselschen Bewertung haben wir gesehen, wie sich aus der Definiti-
on 3.1 eine Verallgemeinerung des Begriffs der henselschen Bewertung durch das Ersetzen
von K8 durch andere Kérpererweiterungen von K ergibt.

Legen wir dagegen etwa Hensels Lemma als definierende Eigenschaft henselscher Bewer-
tungen zugrunde, so ergibt sich eine andere natiirliche Verallgemeinerung des Begriffs:
Wir fordern nicht mehr die uneingeschrénkte Giiltigkeit der Aussage von Hensels Lemma,
sondern beschréanken uns dabei auf bestimmte Polynome. Im Fall p-henselscher Bewer-
tung waren dies genau die Polynome, die in K (p) in Linearfaktoren zerfallen.

In | , Definition 6.1] fiihren Fehm und Jahnke den Begriff der n<-henselschen Bewer-
tung ein, indem sie die Forderung in der Aussage von Hensels Lemma auf Polynome vom
Grad < n beschranken.

Wir wéhlen hier eine etwas schwéchere Definition, die uns spéter die Einfithrung der
kanonischen n<-henselschen Bewertung, analog zur kanonischen henselschen Bewertung,
erlaubt. Dazu beschrinken wir uns in der Forderung nach der Existenz von Nullstellen
auf doppelt-normierte Polynome vom Grad < n, deren Koeffizienten (bis auf die ersten
beiden) im maximalen Ideal liegen (vgl. Kriterium (5) aus Theorem 3.4).

Definition 5.1. Sei (K, v) ein bewerteter Korper.

(1) Die Bewertung v (bzw. der Bewertungsring O,) heifit n<-henselsch, falls jedes
Polynom f € O,[X] der Form

FX) =X+ X pay o X2 4 ag

mit ag_o,...,a9 € my, und 1 < d = deg(f) < n eine Nullstelle in K (dquivalent: in
O,) besitzt.

(2) Der Kérper K heifit n<-henselsch, falls es eine nicht-triviale n<-henselsche Bewer-
tung auf K gibt.
Erlauben wir einen von 1 verschiedenen (d — 1)-ten Koeffizienten, der allerdings nicht im

maximalen Ideal liegen darf, so erhalten wir denselben Begriff.

Lemma 5.2. Sei K ein Korper und v eine Bewertung auf K, set O, der zugehorige
Bewertungsring. Dann ist v genau dann n<-henselsch, wenn jedes Polynom f € Oy[X]
der Form

f(X) = Xd + ad—le_l + ad_QXd_Q 4ot ao

mit ag_1 ¢ m, sowie ag_s,...,a0 € my, und d = deg(f) < n eine Nullstelle in K
(Gquivalent: in O, ) besitzt.
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5 n<-henselsche Bewertungen

Beweis. Da 1l ¢ m, fiir jede Bewertung v auf K gilt, ist jede Bewertung, die das Kriterium
in Lemma 5.2 erfiillt, n<-henselsch.

Um zu zeigen, dass dieses Kriterium umgekehrt bereits fiir jede n<-henselsche Bewertung
v erfiillt ist, reproduzieren wir den Beweis von (7) = (6) in | , Theorem 4.1.3].
Sei dazu ein Polynom f(X) = X% + ag_1 X1 4+ .-+ + ap € Oy[X] mit ag_; ¢ m, und
ad—2,---,a0 € My sowie d < n gegeben. Insbesondere ist dann a4—; € Oy \m, = OF,
also auch acﬁl € Oy . Wir setzen by_; := aq—; - ay’, fiir 2 <4 < d und erhalten mit

g(V) = ay? - flag 1Y) =Y+ Y 4 by oV92 4 by

ein Polynom g € O,[Y] dessen Koeffizienten by_; = aq—; - a;ﬁl em,- -0, C m, im
maximalen Ideal von O, liegen. Da v nach Voraussetzung n<-henselsch ist, hat g daher
eine Nullstelle b € K. Fiir diese ist dann a = a4_1b € K eine Nullstelle von f. O

Fiir n<-henselsche Bewertungen erhalten wir eine eingeschrankte Variante des Theo-
rems 3.4 iiber die Charakterisierung henselscher Bewertungen. Um die entsprechenden
Aussagen zu formulieren, fithren wir den folgenden Begriff ein.

Notation 5.3. Fiir eine endliche Galoiserweiterung L/K bezeichne
(L : Klpoly := min{deg(f) | L ist Zerfallungskorper des
irreduziblen Polynoms f € K[X]}
den Polynom-Grad der Erweiterung.

Wir schreiben K <(d) fiir das Kompositum aller Galoiserweiterungen L/K vom Polynom-

Grad [L : K]poly < d.

Bemerkung 5.4. Die Galoisgruppe Gal(L/K) einer endlichen Galoiserweiterung L/K
ist stets eine Untergruppe der symmetrischen Gruppe Sy fiir d = [L : K]poly. Damit ist
[L : K] = #Gal(L/K) immer ein Teiler von #S; = [L : K],oly!, insbesondere gilt fiir
jede endliche Galoiserweiterung L/K die Ungleichung [L : K] < [L : K]po1y!.

Theorem 5.5. Sei (K, v) ein bewerteter Korper. Dann gilt (1) = (2) = (3) = (4) fir
die folgenden Aussagen.

(1) Der Bewertungsring O, hat eine eindeutige Fortsetzung auf jede Galoiserweiterung
von K vom Polynom-Grad < n.

(2) Jedes Polynom f € O,[X] mit deg(f) < n, fir das resg,(f) € Kv[X] im Rest-
klassenkérper eine einfache Nullstelle « € Kuv besitzt, besitzt auch eine Nullstelle
a€ O, mita+m, = .

(3) Die Bewertung v ist n<-henselsch.

(4) Der Bewertungsring O, hat eine eindeutige Fortsetzung auf jede Galoiserweiterung
von K vom Grad < n.
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5 n<-henselsche Bewertungen

Beweis. Wir orientieren uns an den Beweisen von | , Theorem 4.1.3] und | ,
Lemma 6.3].

(1)

= (2): Es sei vorausgesetzt, dass O, eine eindeutige Fortsetzung auf jede Galoi-
serweiterung vom Polynom-Grad < n hat. Zu zeigen ist, dass dann jedes Polynom
iber O, vom Grad < n, das eine einfache Nullstelle @« € Kv im Restklassenkorper
besitzt, auch eine Nullstelle a € O, mit a + m, = « hat.

Sei dazu f € Kv[X] ein Polynom mit 1 < deg(f) =: d < n, das im Restklassen-
korper Kv eine einfache Nullstelle a besitzt. Ohne Einschrinkung sei f normiert
und irreduzibel in Kv[X]. Dann gibt es ein normiertes Polynom f € O,[X] mit
deg(f) = deg(f) und resg,(f) = f. Da f in Kv[X] irreduzibel ist, ist f nach
Bemerkung 2.33 irreduzibel in K[X]. Fiir den Zerfallungskorper L von f gilt da-
mit [L : Klpoly < d < n, also gibt es nach der Voraussetzung (1) eine eindeutige
Fortsetzung O, von O, auf L. Alle Nullstellen a1,...,aq € L von f liegen nach
Lemma 2.19 bereits in O,,. Auferdem sind sédmtliche Nullstellen von resz,,(f) in
Lw durch a1 +my, ..., aq+m, gegeben und eine davon muss bereits a« € Kv C Lw
sein. Wir konnen ohne Einschrankung annehmen, dass a1 + m,, = « gilt.

Wir zeigen nun durch einen Widerspruchsbeweis, dass deg(f) = d = 1 gilt. Ange-
nommen also, es wire d > 1. Dann gébe es ein 0 € Gal(L/K) mit o(a1) = ag. Mit
O, ist dabei auch o(0O,,) C L wieder ein Bewertungsring auf L, der O, fortsetzt.
Da es aber nur eine Fortsetzung von O, auf L gibt, folgt 0(O,,) = O, und damit
auch o(m,,) = my,.

Die Abbildung

o:Lw— Lw
a+my — o(a) +my,

ist daher ein Kv-Automorphismus von Lw, und wegen o € Kv folgt
as +my, =o(ar) +my =ad(a +my) =o(a) = a.

Dann kann aber a = a1 + my,, = a2 + my, entgegen der Voraussetzungen keine
einfache Nullstelle von f sein, ein Widerspruch. Folglich muss schon deg(f) = 1
gelten, womit f insbesondere eine Nullstelle in K besitzt.

= (3): Angenommen, jedes Polynom tiber O, vom Grad < n, das im Restklassen-
kérper Kv eine einfache Nullstelle besitzt, habe auch eine Nullstelle in O, C K.
Wir zeigen, dass O, dann n<-henselsch ist.

Sei dazu f(X) = X% + X941 4 ... 4 a9 € Oy[X] mit ag_s,...,a0 € m, sowie
d < n gegeben. Dann ist resg, (f) = X4+ X4 = (X + (1 +m,)) - X971, also ist
—1+m, # m, eine einfache Nullstelle von resg, (f) in Kv. Nach der Voraussetzung
(2) hat das Polynom f damit eine Nullstelle in O, C K, das heifst v ist n<-henselsch.
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5 n<-henselsche Bewertungen

(3) = (4): Zu zeigen ist, dass jeder n<-henselscher Bewertungsring O, auf K sich
eindeutig auf jede Galoiserweiterung von K vom Grad < n fortsetzt.

Wir zeigen die Kontraposition. Sei also N/K eine Galoiserweiterung vom Grad
< n, fiir die es mindestens zwei Fortsetzungen von O, auf N gibt. Samtliche dieser
Fortsetzungen seien mit OU{V, . ,(’)U% C N benannt. Sei

H = {0 € Gal(N/K) |0(0y,) = (Oy,)} < Cal(N/K),

wobei Gal(N/K) die Galoisgruppe der Erweiterung N/K bezeichne, und betrachte
den Fixkorper

L=Fix(H)={z € N|o(zx) =z fir alleoc € H}

der Gruppe H. Wegen m > 1 ist H # Gal(N/K) und damit auch L # K. Weiter
sei Opr = O,nNLfir 1 <i<mund R =, O, sowie p; = RNm,r fiir alle 7.

Ohne Einschrankung sind die O, so nummeriert, dass
1

{OUIL,...,OUIE} - {ovf,...,o%}

fiir ein k < m gilt, fiir welches die OUIL, . ’Ov;f paarweise verschieden sind.

Nach Lemma 2.21 gilt dann sogar O, C O, fiir alle 4,5 € {1,...,k} mit i # j, so
i J

dass wir die Aussage (3) aus Lemma 2.20 anwenden kénnen. Die p; fir 1 <i <k
sind demnach genau die maximalen Ideale von R.

Aufserdem ist p; # p; fiir 2 < ¢ < m, denn fiir p; = p; gilt
Ov{v ﬁL:OUf =Ry, =Ry, =0, =0,~nNL,

also gibt es nach dem Konjugationstheorem 2.22 ein o € Gal(N/L) = H mit

O,~ = 0(0O,~). Dann gilt aber nach Definition von H schon O,y = O,n, das heifst
i 1 % 1

1= 1.

Insbesondere gilt OUIL #* OUQL und damit k > 2.

Nun kénnen wir Aussage (4) aus Lemma 2.20 auf das Tupel (1,0,...,0) € Hle O,z
anwenden und erhalten ein § € R mit 1 — 3 € m,r und 8 € m o fiir 2 < j < k.
J

Wegen k > 2 kann 3 also nicht in K liegen, denn sonst wére

1:(1_5)""56(mvme)‘f‘(mv.LﬂK)va+myzmv.
J

Wir betrachten jetzt das Minimalpolynom f(X) = X%+ ag_1 X% 1 4 - 4 a¢ von
B iiber K. Dann ist K(8) 2 K eine Erweiterung vom Grad d > 1, die zwischen
K und N liegt. Es ist also d < [N : K| < n. Wir zeigen nun, dass ag—1 ¢ m,
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5 n<-henselsche Bewertungen

und ag_o,...,a9 € m, gilt. Nach Lemma 5.2 miisste f dann eine Nullstelle in K
besitzen, falls (3) erfiillt wire — ein Widerspruch.
Wegen f(X) = H?:1(X — p;) fiir die Konjugierten f1,...,84 € L von 8 gilt

ag—1 = —(B1 + -+ + Bq). Ohne Einschrankung sei 5 = (1, so dass 1 — 1 € m,r
gilt. Fir 2 < i < d gibt es jeweils ein 0; € Gal(/N/K) mit 0;(8;) = B. Wegen
Bi # 8 € L = Fix(H) ist 0; ¢ H und damit ai(Ov{v) = OUJN fiir ein j > 2. Aus
RS m, - m,N = O'Z‘(mv{v) folgt dann 3; = 0;1(6) € myy. Insgesamt ist also
1+ag-—1 :(1—ﬁ)—52—---—Bd€mv{vﬂK:mv, das heifit ag_1 ¢ m,.

Alle anderen Koeffizienten von f, das heifft die a; mit ¢ < d — 1, sind von der Form
a; = P17+ 7,

wobei 7;, 7 € N Summen von Produkten der ; fiir 7 > 1 sind und damit in m,n
liegen. Es folgt a; € m,y N K=m,.

Als Minimalpolynom des Elements § ¢ K ist f ein irreduzibles Polynom vom Grad
deg(f) = d > 2 und hat damit insbesondere keine Nullstelle in K. Folglich kann
die Bewertung v nach Lemma 5.2 nicht n<-henselsch sein, das heifst die Aussage
(3) ist nicht erfiillt. O

Um von Aussage (4) aus dem vorangegangenen Theorem 5.5 wieder auf Aussage (1) zu
schliefen, erhdhen wir die Schranke in (4) von n auf nl.

Bemerkung 5.6. Sei (K, v) ein bewerteter Kérper und v eine Bewertung auf K. Falls der
Bewertungsring O, eine eindeutige Fortsetzung auf jede Galoiserweiterung L vom Grad
[L : K] < n! besitzt, so hat O, eine eindeutige Fortsetzung auf jede Galoiserweiterung
vom Polynom-Grad < n.

Insbesondere ist v dann eine n<-henselsche Bewertung und fiir jede n!<-henselsche Be-
wertung gilt bereits Aussage (1) aus Theorem 5.5.

Beweis. Sei L/K eine beliebige Galoiserweiterung vom Polynom-Grad [L : Klpoly < n.
Dann ist [L : K] < [L : K]poly! < n!, also besitzt O, nach Voraussetzung eine eindeutige
Fortsetzung auf L. Damit ist die Aussage (1) aus Theorem 5.5 erfiillt — was genau die
Behauptung war. O

Offensichtlich ist jede henselsche Bewertung auch n<-henselsch; genauer ist eine Bewer-
tung genau dann henselsch, wenn sie fiir jedes n € N eine n<-henselsche Bewertung
ist.

Sei nun n € N eine beliebige positive ganze Zahl. Wir konstruieren im Folgenden einen
bewerteten Korper (L,w), der zwar n<-henselsch, aber nicht p<-henselsch ist fiir jede
Primzahl p > n.
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Die Aussage sowie ihr konstruktiver Beweis sind im Wesentlichen aus | , Lemma 6.4]
entnommen.

Proposition 5.7. Sein € N eine positive ganze Zahl, p > n prim und K ein Korper
mit char K = 0, der sdmtliche p-ten Finheitswurzeln enthdlt. Dann existiert ein Korper
L O K mit einer Bewertung w, die n<-henselsch, aber nicht p<-henselsch ist.

Daber kann L so gewdhlt werden, dass Lw = K gilt.

Beweis. Sei F'= K(X) C K((X)) und die Bewertung v : K((X))* — Z auf K((X)) sei
durch v(}";c; @;X") = min {i € Z|a; # 0} definiert. Fiir jeden Zwischenkorper F C k C
K((X)) setze vy, := v[k. Wie in Beispiel 3.12 gesehen ist F" := F2le 0 K((X)) mit der
Bewertung vpr dann eine Henselisierung von (F,vr).

Betrachte nun das Polynom f(T) := TP — (X +1) € F[T] C K((X))[T] sowie das zugeho-
rige reduzierte Polynom f = resy (x)(f) € K[T] im Restklassenkérper (K ((X)))v =
K. Wegen v(X) =1, also X € m,, gilt dann f(T)) = TP — 1. Da K nach Voraussetzung
char K = 0 erfiillt und alle p-ten Einheitswurzeln enthilt, ist f iiber K separabel und
zerfallt in Linearfaktoren. Weiter ist, wie in Beispiel 3.6 gesehen, v eine henselsche Bewer-
tung auf K((X)), das heift f besitzt eine Nullstelle « € K((X)). Nun ist f € F[T] ein
Polynom iiber F, die Nullstelle a liegt also bereits in F28 N K ((X)) = F". Beachte, dass
X +1 € K[X] ein Primelement ist, sowie dass F' = Quot (K[X]) gerade der Quotienten-
korper von K[X] ist. Nach dem Eisenstein-Kriterium ist f(7) = TP — (X + 1) € F[T)
damit irreduzibel iiber F, also stimmt f schon mit dem Minimalpolynom mipo(«) von
a tiber F iiberein. Insbesondere folgt [F'(«) : F] = deg(f) = p, das heifst die Galoisgruppe
Gal(F(«)/F) ist zyklisch von Ordnung p.

Sei nun S < Gp eine p-Sylowgruppe der absoluten Galoisgruppe G g von F', sodass S
eine Fortsetzung ¢ € S eines nicht-trivialen Elements o € Gal(F(«)/F) auf F*°P enthalt.
Wir bezeichnen den Fixkorper von S mit £ := Fix(S) und setzen L := E N F" sowie
w :=vy. Wegen F C L C F" ist (L, w) eine unmittelbare Erweiterung von (F,v[F), also
gilt Lw = F(v[F) = K. Weiter ist o ¢ Fix(S) = E, denn es gilt 6(a) = o(a) # a. Da
die Erweiterung F'(«)/F wegen [F(«) : F] = p keine echten Zwischenkorper besitzt und
a ¢ LNF(a)sowie F C F(a)NL C F(a) gilt, folgt bereits F(a) N L = F. Weiter ist
[L: F] teilerfremd zu p, da [E': L] - [L : F| = [E : F], wegen E = Fix(P), teilerfremd zu
p ist. Aus L(a) = F(a)L und F = F(«a) N L folgt damit schon [L(«) : L] = p, also ist
auch Gal(L(«)/L) zyklisch von Ordnung p.

Unter Beachtung des Kriteriums (5) aus Theorem 4.5 und mit Korollar 3.10 sehen wir,
dass (L,w) nicht p-henselsch sein kann: Andernfalls wire L = L" N L(p) fiir jede Hen-
selisierung L" von L, also auch fiir L = F" das heift o € F(a) € F" N L(p) = L.
Damit kann (L, w) auch nicht p<-henselsch sein, denn sonst hétte O,, eine eindeutige
Fortsetzung auf jede Galoiserweiterung von L vom Grad < p, insbesondere also auf jede
Galoiserweiterung vom Grad p, und wére folglich p-henselsch.
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Es bleibt zu zeigen, dass (L,w) dennoch n<-henselsch ist. Sei dazu 1 < d < n beliebig
und g(T) = T4+ T4 + aq 9T42 + --- + ay € L[T] ein Polynom mit Koeffizienten
a; € my, = LNm, fiir 0 < i < d—2. Es gilt dann auch g € F*[T] und a; € F"'Nm, = my
fiir 0 < 4 < d — 2. Da (F" vps) henselsch (und damit insbesondere n<-henselsch) ist,
besitzt g folglich eine Nullstelle 3 € F". Betrachte jetzt den Zerfallungskorper Z des
Minimalpolynoms mipog(3) von 3 iiber E. Da die absolute Galoisgruppe Gg = S von E
eine p-Sylowgruppe in Gp und damit insbesondere eine pro-p-Gruppe ist, ist Gal(Z/FE)
dann eine p-Gruppe.

Weiter gilt E(8) C Z sowie

[E(B) : E] = deg(mipog(B)) < deg(g) =d < n <p,

mit p™ = [Z : E] = [Z : E(B)] - [E(B) : E] fir geeignetes m € N folgt dann bereits
B € ENF" = L. Das Polynom ¢ besitzt also insbesondere eine Nullstelle in L. Damit
ist (L, w) wie behauptet n<-henselsch. O

Korollar 5.8. Fiir jedes n € N mit n > 2 existiert ein Kérper K, der n<-henselsch, aber
nicht nl<-henselsch ist.

Beweis. Fiir beliebiges n € N mit n > 2 ldsst die Zahl n! — 1 beim Teilen durch jede
Primzahl ¢ < n offensichtlich den Rest —1. Jeder Primteiler p von n! — 1 erfiillt daher
die Ungleichung n < p < n!. Mit Proposition 5.7 folgt dann die Behauptung. O

Auch alle nicht-trivialen n<-henselschen Bewertungen auf einem Koérper K induzieren
— falls n in Abhéngigkeit von K grofs genug ist und falls K°P # K gilt — dieselbe
Topologie.

Notation 5.9. Sei K ein Koérper mit K5 # K. Wir bezeichnen mit
m(K) :=min{[L : K]| L/K ist Galoiserweiterung mit L # K}
den Grad der kleinsten echten Galoiserweiterung von K und mit
p(K) :=min{p € P|p teilt m(K)}
den kleinsten Primteiler von m(K).
Es gilt die folgende Verallgemeinerung von Theorem 3.14 fiir henselsche Bewertungen. In
der Tat folgt das genannte Theorem aus der folgenden Aussage als einfaches Korollar.

Theorem 5.10. Sei K ein Kiorper mit K5 # K, sei n € N und seien O,,0, C K
zwei nicht-triviale unabhdingige n<-henselsche Bewertungsringe auf K. Dann gilt n <
m(K) - p(K).

Bevor wir den Beweis fiihren, halten wir die entsprechende Aussage fiir henselsche Be-
wertungen als Korollar fest, das wir zuvor bereits in Theorem 3.14 formuliert haben.
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Korollar 5.11. Sei K ein Korper und seien O,, O, C K zwei nicht-triviale unabhdingige
henselsche Bewertungsringe auf K. Dann ist K = K5,

Beweis. Wire K*P # K, so wire die Bewertungsringe O, und O,, insbesondere n<-hen-
selsch fir n := m(K) - p(K) € N. Dies fiihrt mit Theorem 5.10 sofort zum Wider-
spruch. O

Im Beweis nutzen wir die eindeutige p-henselsche Topologie aus Theorem 4.6.

Beweis von Theorem 5.10. Betrachte eine Galoiserweiterung N/K mit minimalem Grad
[N : K] = m(K) und setze p = p(K). Falls char(K) = char(N) # p gilt, so ist K((p)
fiir eine beliebige primitive p-te Einheitswurzel ¢, € K alg eine Galoiserweiterung von K
vom Grad m = [K((p) : K] € {1,p — 1}. Insbesondere ist m < m(K), also muss schon
K = K((p) und damit ¢, € K gelten.

Sei nun L = Fix(S) der Fixkorper einer p-Sylowgruppe S < Gal(/N/K) der Galoisgruppe
von N/K. Dann ist [N : L] = #S = p* fiir ein geeignetes k¥ € N mit k& > 1, das heifit
insbesondere gilt L # L(p). Weiter ist (, € L, falls char(L) # p gilt.

Seien O,, und O,,, Fortsetzungen von O, bzw. O,, auf L. Dann gilt O,, O,,, 2 0,0, =
K, nach Beispiel 3.3 folgt also O,, O,,, = L.

Zwischenbehauptung. Falls n > m(K) - p(K) gilt, so sind die Bewertungen vz, und wg,
auf L beide p-henselsch.

Beweis. Wir zeigen die Aussage nur fiir vy, der Beweis fiir wy, ist identisch. Sei also L’ eine
Galoiserweiterung von L mit [L': L] = p. Dann ist L'N 2 N O L 2 K ein Korperturm
mit [[/N: K] =[L'N:N]-[N:K|<[L':L]-[N:K|<p-m(K)=m(K) p(K) <n.

Seien nun Oy,, 0y, C L' zwei Fortsetzungen von Oy, auf L', und O,,0, C L'N
Fortsetzungen von O,, bzw. von O,, auf L'N. Dann sind Oy und O, insbesonde-
re Fortsetzungen von O, auf L'N und da L'N/K eine Galoiserweiterung vom Grad
[L'N : K] < m(K) - p(K) < n ist, folgt mit Aussage (4) aus Theorem 5.5 bereits
Ov'l = (’)Ué. Insbesondere gilt dann

Oy, = val NL = ng NL = Oy,.

Da O,, und O,, beliebige Fortsetzungen von O,, auf L' waren, haben wir damit ge-
zeigt, dass nur eine solche Fortsetzung existiert. Folglich ist O,, nach Kriterium (2) aus
Theorem 4.5 ein p-henselscher Bewertungsring auf L. X

Wire nun n > m(K) - p(K), so wéiren nach der Zwischenbehauptung alle Bedingungen
in Theorem 4.6, angewandt auf den Koérper L mit den Bewertungsringen O,, und O, ,
erfillt. Es wiirde also L = L(p) folgen, ein Widerspruch! O
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Fiir zwei beliebige vergleichbare Bewertungsringe O, C O, auf K erhalten wir, wie in
Lemma 2.28 gesehen, einen Bewertungsring O; := O, /m,, auf dem Restklassenkorper
Kuw.

Die Bewertung v ist dabei genau dann henselsch (bzw. p-henselsch), wenn sowohl w als
auch v henselsch (bzw. p-henselsch) sind. Die n<-henselsche Variante dieser Aussage ist
etwas schwécher.

Lemma 5.12. Seien v und w zwei Bewertungen auf einem Korper K mit O, C O.
Dann gelten die folgenden Aussagen.

(1) Falls v eine n<-henselsche Bewertung ist, so sind w und v beide n<-henselsch.

(2) Falls w und v beide n!<-henselsch sind, so ist v eine n<-henselsche Bewertung.

Beweis. (1) Sei zunichst f(X) = X%+ X4 + a4 9X4 2+ 4+ a9 € Oyp[X] mit
ag—2,...,a9 € my,. Wegen m,, C m,, sind dann schon die Bedingungen f € O,[X]
und ag—2,...,a9 € m, erfiillt. Da v nach Voraussetzung n<-henselsch ist, besitzt
das Polynom f also eine Nullstelle in K. Folglich ist mit v auch w eine n<-henselsche
Bewertung.

Betrachte jetzt ein beliebiges Polynom f € O3[X] der Form f(X) = X9+ X491 4
Qg_o X2+ .-+ ap mit ag_s,...,ap € my und d < n. Dann gibt es ein Polynom
fe K[X]mit f(X) =X+ X4 +aq5X92 4. +ag und a; +my, = o; fiir
0 <i<d-—2,das heifit resg,(f) = f. Wegen a; +my, = o; € my = O3\ (O /my,)
gilt dabei a; € m, fiir 0 < i < d — 2. Da die Bewertung v nach Voraussetzung
n<-henselsch ist, besitzt das Polynom f also eine Nullstelle a € O,. Fiir diese ist
a+m, € Oy dann eine Nullstelle von f. Da f beliebig gewihlt war, ist damit auch
v eine n<-henselsche Bewertung.

(2) Seien nun w und ¥ beide n!<-henselsch. Sei f(X) =" a; X" € O,[X] ein Polynom
mit Grad deg(f) < n und einfacher Nullstelle a + m, € Kv im Restklassenkorper,
d.h. es gelte f(a) € my, und f'(a) ¢ m,. Wir zeigen, dass f eine Nullstelle ¢’ in O,
mit @’ +m, = a+ m, besitzt. Insbesondere ist v dann n<-henselsch nach (2) = (3)
aus Theorem 5.5.

Betrachte dazu das Polynom ¢ = resg,(f) € Kw[X]. Dann liegen sowohl a :=
a + my, als auch die Koeffizienten a; + m,, von g in O,/m,, = Oy, das heift es ist
g € Oz X]. Wegen mz = m,/m,, gilt nach Bemerkung 2.32 auch

f(a) + my, € my,/m,, = my sowie
f(a) +my € OF /my, = OF = O \ my,

U
N
[SRe)
N—
N1

das heifit o + my ist einfache Nullstelle von res g )5(9) =: h € (Kw)v[X].

Bemerkung 5.6 erlaubt uns nun, die Aussage (2) aus Theorem 5.5 auf das Poly-
nom g mit deg(g) < n und Koeffizienten im n!<-henselschen Bewertungsring Oy
anzuwenden. Es existiert also eine Nullstelle § € Oz von g mit £ 4+ mz = a + mg.
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Fiir h = res(gyu)5(9) € (Kw)v[X] erhalten wir dann mit Bemerkung 2.32 die Glei-
chungskette

g(B) +mg =h (8 +mg) =h'(a+mg) = g'(a) + mg.

Damit folgt aus ¢'(«) ¢ my auch ¢'(8) ¢ my und insbesondere ¢'(8) # 0. Also ist
[ eine einfache Nullstelle von g.

Aussage (2) aus Theorem 5.5 fiir das Polynom f mit deg(f) < n und Koeffizien-
ten im n!<-henselschen Bewertungsring O,, liefert dann, wegen resg,,(f) = g, die
Existenz einer Nullstelle ' € O, von f mit a’ +m, = 8 € O;. Es gibt also ein
be Oy mit ' —b € my, C O,, insbesondere folgt @’ = ('’ —b) +b € O,. O

Um uns im néchsten Abschnitt der kanonischen n<-henselschen Bewertung widmen zu
kénnen, fehlt nun noch ein wichtiges Lemma.

Lemma 5.13. Sei (K,O,) ein bewerteter Korper und n € N. Falls Kv eine echte Ga-
loiserweiterung vom Polynom-Grad < n hat, so auch K.

Beweis. Sei L D Kv eine echte Galoiserweiterung vom Polynom-Grad [L : Kvlpey < 1
und sei f € Kv[X] ein normiertes, irreduzibles und separables Polynom mit 2 < deg(f) <
n, dessen Zerfillungskorper gerade L ist.® Dann koénnen wir ein normiertes f € O,[X]

mit deg(f) = deg(f) wéhlen, fir das resg,(f) = f gilt.

Da f in Kv[X] irreduzibel ist, ist f nach Bemerkung 2.33 irreduzibel in K[X]. Aukerdem
ist f separabel iiber K, denn eine mehrfache Nullstelle a € K von f € O,[X] lage nach
Lemma 2.19 schon in O, und wiirde daher eine Nullstelle a +m, von f mit f’(a+m,) =
f'(a) + m, = 0 induzieren.

Der Zerfallungskorper L’ von f ist dann eine echte Galoiserweiterung von K, welche die
Ungleichung [L' : Klpoly < deg(f) = n erfiillt. O

5.2 Die kanonische n<-henselsche Bewertung

Wir halten fiir diesen Abschnitt ein beliebiges n € N fest. Es bezeichne dann d,, =
max {d € N|d! < /n} die grofte positive ganze Zahl, deren Fakultit zum Quadrat hochs-
tens so grok wie n ist. Weiter fixieren wir einen beliebigen Koérper K.

Ahnlich wie zur Definition der kanonischen henselschen Bewertung partitionieren wir die
Menge H="(K) der n<-henselschen Bewertungsringe auf K in die beiden Teilmengen

Hi"(K) = {0, € HS"(K) | KvS(d,) # Kv} und
Hy"(K) = {0, € HS"(K) | Kv<(d,) = Kv}

8Etwa erfiillt f = mipo (a) fiir ein primitives Element a € L der Erweiterung L/Kv diese Bedingungen.
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Behauptung 5.14. Die Menge Hf"(K) ist durch C linear geordnet und fiir alle O, €
Hy™(K) und Oy, € HE"(K) gilt O, C O,,.

Wir halten zunéchst wieder das folgende Korollar fest, das wir schon in Abschnitt 3.3 als
Behauptung 3.15 formuliert, aber noch nicht bewiesen, haben.

Korollar 5.15. Die Menge H1(K) ist durch C linear geordnet und fir alle O, € Hy(K)
und Oy, € H1(K) gilt Oy C Oy.

Beweis. Fir O, € Hi(K) gilt nach Definition (Ku)*P # Ku, das heifit der Restklas-
senkorper Ku hat eine echte endliche Galoiserweiterung. Wegen lim,, . d,, = oo gibt es
dann ein n € N mit O, € H="(K). Sind also O,, 0, € H;(K), so gibt es ein n € N mit
Oy, 0, € Hf”(K) und nach Behauptung 5.14 folgt O, C O, oder O,, C O,,.

Fiir O, € Hy(K) ist Ku separabel abgeschlossen, also gilt insbesondere Ku=(d,) = Ku
und damit O, € H;”(K) fir jedes n € N. Ist nun O, € Hy(K) und O, € H;i(K), so

gibt es daher ein n € N mit O, € Hy"(K) und O,, € H="(K). Nach Behauptung 5.14
folgt also O, C O,,. L]

Beweis von Behauptung 5.1/. Seien O, Oy, € HS"(K) zwei n<-henselsche Bewertungs-
ringe auf K mit O, € O, und O,, € O,. Dann ist O, := O,,- O,, wieder ein Bewertungs-
ring auf K mit O, € O, und O,, C O,. Im Restklassenkoérper Ku sind Oz und Oy zwei
nicht-triviale Bewertungsringe. Beide sind nach Lemma 5.12 (1) ebenfalls n<-henselsch.
Weiter ist Op - O = O, /m,, = Ku erfiillt, das heift O und Oy sind unabhéngig.

Wir zeigen nun in einer Fallunterscheidung, dass Ku keine echte Galoiserweiterung vom
Polynom-Grad < d,, hat.

Fall 1. (Ku)*P # Ku.

Nach Theorem 5.10 ist dann n < m(Ku) - p(Ku) < m(Ku)?, also d,! < /n <
m(Ku), das heift Ku hat keine echte Galoiserweiterung vom Grad < d,,!. Insbe-
sondere hat Ku keine echte Galoiserweiterung vom Polynom-Grad < d,.

Fall 2. (Ku)*P = Ku.

Dann hat Ku gar keine endlichen echten Galoiserweiterungen, insbesondere also
auch keine vom Polynom-Grad < d,,.

Nach Lemma 5.13 haben damit auch Kv = (Ku)v und Kw = (Ku)w keine echten
Galoiserweiterungen vom Polynom-Grad < d,, es gilt also O,, O, € HQS"(K ).

Fir O, € H-"(K) oder O,, € H="(K) folgt damit schon O, C O, oder O, C O,.
Insbesondere ist H 13" (K) linear geordnet.

Seien abschliekend O, € Hy"(K) und O,, € H="(K). Dann gilt, wie zuvor gezeigt, O, C
O, oder O, C O,. Ware O,, C O,, so wiirde allerdings, wieder nach Lemma 5.13, aus
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Oy, €H f”(K ) auch O, € H f”(K ) folgen, ein Widerspruch. Folglich gilt, wie behauptet,
O, C Oy. O

Behauptung 5.16. Durch O, = ﬂHf"(K) wird ein n<-henselscher Bewertungsring
auf K definiert.

Beweis. Zunichst ist O,, als Schnitt von Unterringen von K wieder ein Unterring von
K.Seinun z € K\O,, und O,, € H="(K) so, dass x ¢ O, ist. Fiir jedes O, € H="(K)
gilt nach Behauptung 5.14, dass O, C O,, oder O, 2 O,, erfiillt ist. Im ersten Fall ist
¢ Oy, also 27! € O, im zweiten Fall ist 271 € Oy, € O,. Also ist z~1 € O, fiir jedes
O, € H="(K), das heift =1 € O,,. Damit ist O,, ein Bewertungsring auf K.

Weiter ist O = {OX |0, € H="(K)}, denn es gilt

r€0) =10, undz! €O,
— 1z cO,undz! €0, fir alle O, € H"(K)
— 1z c O fiir alle O, € H="(K).

Wir zeigen nun, dass fiir das maximale Ideal die Identitit m,, = |J{m, |0, € H="(K)}
gilt. Daraus lésst sich dann leicht folgern, dass O,, wie behauptet n<-henselsch ist.

Sei dazu zunéchst z € m,, = O,, \ O und sei O, € ngn(K) so, dass z ¢ OJ. Dann
ist x € O, \ O = m,. Ist andererseits x € m,, fiir ein O, € Hf"(K), so folgt x € O,
tiir alle 0, 2 O,, und z € m,,, € m,, € O, fiir alle O,, € O,,, also z € O,,. Wegen
x ¢ OF DO ist dann schon z € O,, \ O =m,,.

vo

Sei nun abschliefend f(X) = X4+ X% 1 +ay 9 X9 2+...4qaq € O,,[X] ein Polynom mit
d < nund aq_o,...,a9 € m,, . Dann gibt es, nach der zuvor gezeigten Identitat m,, =
U{m, |0, € Hy"(K)}, fiir jedes i = 0,...,d — 2 ein O,, € H="(K) mit a; € m,,. Da
H{"(K) linear geordnet ist, gibt es ein j € {0,...,d — 2} mit (=g Op, = Oy, € Hy"(K)
und fiir dieses gilt f € O,,[X] sowie ag_s,...,a0 € U?:_g my, =m,,. Weil 0, € HIS"(K)
insbesondere n<-henselsch ist, hat f daher eine Nullstelle in K" und damit ist auch O,,
ein n<-henselscher Bewertungsring. O

Falls Hy"(K) = () ist, so haben wir mit O,, € H="(K) einen n<-henselschen Bewer-
tungsring auf K gefunden, der mit allen n<-henselschen Bewertungsringen auf K ver-
gleichbar ist. Dieser heifst dann der kanonische n<-henselsche Bewertungsring und die
dazugehorige Bewertung v, heilit die kanonische n<-henselsche Bewertung auf K.

Jedoch liegt O,, nicht zwingend selbst in H="(K). Der Fall Hy"(K) # () erfordert daher
noch etwas mehr Aufwand.

An einer Stelle bendtigen wir dazu die Diskriminante eines Polynoms, deren fiir uns
wichtigste Eigenschaften die folgende Bemerkung beschreibt.
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Bemerkung und Definition 5.17. Sei K ein Korper und f € K[X] ein Polynom.
Dann ist f genau dann separabel, wenn es keine Polynome p, g € K[X]| mit {p, ¢} # {0}
sowie deg(p) < deg(f’) und deg(q) < deg(f) gibt, die p- f = q - f’ erfiillen.

Setze d := deg(f). Seien p(X) = pg_o X2+ -+ po und ¢(X) = qg1 X+ + qo
Polynome in den Unbekannten pg_o, ..., Po, qd—1, - - - , qo- Die Gleichung pf —qf’ = 0 lisst
sich als lineares Gleichungssystem in den 2d—1 vielen Koeffizienten von p und g schreiben.
Dieses System hat deg(pf — qf’) = max {deg(pf),deg(qf’)} = 2d — 1 viele Gleichungen
und wird daher durch eine quadratische Matrix M e K(2d=1)x(2d=1) heschrieben. Das
Polynom f ist, nach der Aquivalenz im ersten Absatz, genau dann separabel, wenn dieses
Gleichungssystem keine nicht-triviale Losung hat.

Wir definieren die Diskriminante §(f) von f als die Determinante dieser Matrix, §(f) :=
det(M) € K. Dann ist §(f) polynomiell in den Koeffizienten von f und das Polynom f
ist genau dann separabel, wenn 0(f) # 0 gilt.

Beweis. Zu zeigen ist die im ersten Absatz beschriebene Aquivalenz:

“Das Polynom ist f genau dann separabel, wenn es keine Polynome p,q €
K[X] mit {p,q} # {0} sowie deg(p) < deg(f’) und deg(q) < deg(f) gibt, die
p-f=q-f erfiillen.”

Sei f zunachst inseparabel, das heifit jeder grofite gemeinsame Teiler g von f und f’
hat Grad deg(g) > 0. Es existieren dann Polynome p,q € K[X] mit {p,q} # {0} sowie
qg = f und pg = f’. Fir diese gilt, wie behauptet, p- f = pgg = qpg = q - [’ sowie

deg(p) (f') — deg(g) < deg(f’) und

= deg
deg(q) = deg(f) — deg(g) < deg(f).

Seien jetzt andererseits Polynome p,q € K[X]| mit {p,q} # {0} sowie pf = ¢f" und
deg(p) < deg(f’) gegeben. Dann gilt f/|(pf) und aus deg(p) < deg(f’) folgt die Existenz
eines Polynoms g € K[X] mit g|f’ und g|f sowie deg(g) > 0. Insbesondere muss jeder
grofte gemeinsame Teiler von f und f bereits in K[X] \ K liegen, das heifit f ist
inseparabel.

Es ist also f genau dann separabel, wenn das Gleichungssystem M -x = 0 nur die triviale
Losung besitzt. Das ist genau dann der Fall, wenn 6(f) = det(M) # 0 ist. Auferdem ist
d(f) = det(M) ein Polynom in den Eintrdgen von M. Diese sind Linearkombinationen
der Koeffizienten von f, also ist 6(f) auch polynomiell in den Koeffizienten von f. O

Korollar 5.18. Fir jedes Polynom f € O,[X] gilt resg, (0(f)) = d (resky(f)).

Beweis. Nach Bemerkung 5.17 ist § polynomiell in den Koeffizienten von f und nach
Definition von resg, als Fortsetzung des Ringhomomorphismus O, — Kwv folgt die Be-
hauptung. O
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Behauptung 5.19. Fulls H;n(K) # 0 ist, so gibt es ein eindeutiges beziiglich C maxi-
males Element in Hy"(K).

Beweis. Wir zeigen zunichst die Existenz eines maximalen Elements unter Verwendung
des Zornschen Lemmas. Sei dazu ) # S C HZS”(K ) eine nicht-leere, linear geordnete
Teilmenge. Zu zeigen ist, dass Oy« := J S einen n<-henselschen Bewertungsring definiert,
der selbst in Hy"(K) liegt.

Zunéchst ist Oy« als Supremum der linear geordneten Menge S von Unterringen von K
jedenfalls ein Unterring von K. Ist nun = € K \ O+, das heift ¢ O, fir alle O, € 5,
so folgt =1 € O, fiir alle O, € S, und damit wegen S # () insbesondere £~ € Op«. Der
Ring O,« ist also ein Bewertungsring auf K.

Fiir jedes O, € S ist O, C O, und wegen S # () ist O, damit nach Lemma 5.12 bereits
n<-henselsch.
Zur Verwendung des Zornschen Lemmas miissen wir noch O,« € HQS"(K ) nachweisen.

Zu zeigen ist dafiir nur noch, dass (Kv*)=(d,) = Kv* gilt.

Sei dazu L O Kv* eine Galoiserweiterung vom Polynom-Grad < d,, und sei f € Kv*[X]
ein normiertes, irreduzibles und separables Polynom mit deg(f) < d, dessen Zerfil-
lungskorper gerade L ist. Wie im Beweis von Lemma 5.13 konnen wir dann ein nor-
miertes, irreduzibles Polynom f € O,+[X] mit deg(f) = deg(f) und resg,(f) = f
finden. Da die Diskriminante §(-) eines Polynoms polynomiell in den Koeffizienten ist,

gilt resgp (6(f)) = & (veskp(f)) = 8(f) # Ok = my, das heift 6(f) € O

Wir kénnen daher O, € S so wéhlen, dass 0(f) € O} gilt und aukerdem alle Koeffizienten
des Polynoms f in O, liegen. Insbesondere ist resg, (f) dann separabel iiber Kv. Nun ist
Op = Oy/my« ein n<-henselscher Bewertungsring auf Kv* und res gy ( f) = resgo(f)
hat eine — einfache — Nullstelle in Kv = (Kv*)9, da Kv=(d,) = Kv und deg (resg,(f)) <
dy, ist. Die Aussage 2 aus Theorem 5.5 (fiir d,, statt n) liefert uns dann, wegen d,,! < n, die
Existenz einer Nullstelle von f in Oy C Kv*. Da f nach Annahme irreduzibel ist, folgt
schon deg(f) = 1 und damit L = Kv*. Der Restklassenkorper Kv* hat also keine echten
Galoiserweiterungen vom Polynom-Grad < d,, das heifit es ist Oy € H;n(K ). Nach

.. . . . . <
dem Zornschen Lemma existiert also mindestens ein maximales Element in H5"(K).

Abschlieffend ist noch die Eindeutigkeit des maximalen Elements von H. 2Sn (K) zu zeigen.
Seien dazu O,, O,, € Hy"(K) beide maximal. Dann ist, nach Lemma 5.12 (1), auch O, =
O, - Oy ein n<-henselscher Bewertungsring auf K. Falls O, und O,, nicht vergleichbar
waren, so wiirde — wie im Beweis von Behauptung 5.14 — bereits O, € HQS"(K) folgen.
Dann wére aber O, 2 O, und insbesondere wire O, nicht maximal. Also miissen O,
und O,, vergleichbar sein. Da beide maximal sind folgt daraus bereits O, = O,,. O]

Nun haben wir alle ntigen Resultate, um die kanonische n<-henselsche Bewertung auf
einem Korper K im allgemeinen Fall definieren zu kénnen.
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5 n<-henselsche Bewertungen

Definition 5.20. Sei K ein beliebiger Korper und sei, wie zu Beginn des Abschnitts 5.2,
d, = max{d € N|d! < /n} sowie

HEY(K) = {0, € HS"(K) | Kv=(dy) # Kv} und

Hs"(K) = {0, € HS"(K) | Kv=(dy) = Kv} .

Falls Hy"(K) # 0 ist, sei O< das maximale Element von Hj"(K). Andernfalls sei
O< :=0,, = H="(K). Die zu O< gehérige Bewertung auf K sei mit U[S{n bezeichnet.

Die Bewertung UIS(” heifst dann die kanonische n<-henselsche Bewertung auf K, der zu-
gehorige Bewertungsring O<,, heifst der kanonische n<-henselsche Bewertungsring auf

K.

Zum Abschluss dieses Kapitels halten wir noch zwei Eigenschaften der kanonischen
n<-henselschen Bewertung fest. Ihre wichtigste Eigenschaft ist die Vergleichbarkeit mit
allen n<-henselschen Bewertungen auf dem zugrunde liegenden Korper.

Proposition 5.21. Der kanonische n<-henselsche Bewertungsring auf einem Kérper K
(mit K £ K ) ist, beziglich C, mit allen n<-henselschen Bewertungsringen auf K
vergleichbar.

Beweis. Tm Fall Hy"(K) = 0 ist die Aussage klar, denn H="(K) ist durch C linear
geordnet. Andernfalls ist O<,, maximales Element von HQSn(K ) und daher mit allen Be-
wertungsringen aus H;n(K ) vergleichbar. Da die Bewertungsringe aus H f"(K ) ohnehin
mit allen n<-henselschen Bewertungsringen vergleichbar sind, folgt die Behauptung. [J

Ist n € N grof genug (und besitzt der Korper K dann {iberhaupt eine nicht-triviale
n<-henselsche Bewertung), so ist O<,, # K. Genauer gilt die folgende Proposition.

Proposition 5.22. Sei K ein n<-henselscher Kérper. Dann gilt (vgl. Notation 5.9):
(1) Ist n > (m(K)!)?, so ist O<,, # K.
(2) Ist n < m(K)?, so gilt O<, = K.

Beweis. (1) Ist n > (m(K)")?, so gilt K<(d,) # K, also K € H="(K) # 0. Fiir
HQS"(K ) # 0 liegt der kanonische n<-henselsche Bewertungsring O<,, ohnehin
nicht in A IS"(K ) und kann damit insbesondere nicht mit K tbereinstimmen. Fiir
H;n(K ) = () sei v eine nicht-triviale n<-henselsche Bewertung auf K. Dann ist

O, € H="(K) und es folgt O<, = H:"(K) C O, C K.

(2) Ist n < m(K)?, das heift m(K) > d,!, so hat K keine echte endliche Galoi-
serweiterung vom Grad < d,!, also auch keine vom Polynom-Grad < d,. Nach
Lemma 5.13 gilt dann Kv=(d,) = Kuv fiir jede Bewertung v auf K, also folgt
€ HQS"(K ) = H="(K). Der kanonische n<-henselsche Bewertungsring O<,, ist
dann das maximale Element von H="(K), das heift O<, = K. O
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6 ZUSAMMENHANG DER VERSCHIEDENEN
BEGRIFFE

6.1 Henselsche, n<-henselsche und p-henselsche
Bewertungen

Eine erste Rechtfertigung der Untersuchung (kanonischer) n<-henselscher Bewertungsrin-
ge liefert die folgende Proposition, die einen Zusammenhang zur kanonischen henselschen
Bewertung herstellt.

Proposition 6.1. Sei K ein henselscher Kérper mit K5 # K und vk die kanoni-
sche henselsche Bewertung auf K, sowie O der zugehérige Bewertungsring. Dann ldsst
sich O wie folgt durch die kanonischen n<-henselschen Bewertungsringe O<y, auf K
ausdricken.

(1) Falls der Restklassenkorper Kvg separabel abgeschlossen ist, das heifit falls Ok €
Hy(K) gilt, so ist Ok = (e O<n-

(2) Falls der Restklassenkérper Kvg nicht separabel abgeschlossen ist, das heifit falls
Ok € Hi(K) gilt, so ist Ox = Uy, O<n fir alle ng € N mit ng > (d")?, wobei
d=min{[L : Kvg]poy | L/ Kvk ist Galoiserweiterung mit L # Kvk} sei.

Im Beweis benutzen wir die folgende Beobachtung.

Bemerkung 6.2. Sind n, m € Nmit n < m gegeben, so ist O<,, auch ein n<-henselscher
Bewertungsring auf K, also nach Proposition 5.21 mit Oc,, vergleichbar. Insbesondere
ist die Menge {O<;, | n € N} der kanonischen n<-henselschen Bewertungsringe auf K fiir
variierendes n € N daher durch C linear geordnet.

Beweis von Proposition 6.1. Wie in Abschnitt 5.2 sei d, = max{d € N|d! < /n} fir
n € N. Aukerdem schreiben wir der Ubersicht halber kurz v = v fiir die kanonische
henselsche und v,, = ’U[S(n fiir die kanonische n<-henselsche Bewertung auf K.

(1) Ist Kv separabel abgeschlossen, so gilt insbesondere Kv=(d,) = Kwv fiir alle n € N.
Fiir jedes n € N ist damit Ox € H>"(K) und insbesondere ist Hy"(K) dann nicht
leer. Daher ist O<,, nach Definition, maximales Element von H;n(K ). Folglich
ist Ox C O« fiir alle n € N, also auch O C (),,ey O<n =: O. Als Schnitt
von Unterringen von K, der mit O einen henselschen Bewertungsring enthilt, ist
O C K selbst ein henselscher Bewertungsring auf K. Es bezeichne w die Bewertung
auf K mit O = O,,. Fiir jedes n € N induziert w, wegen O,, € O<,,, eine Bewertung
wy, auf dem Restklassenkorper Kv,, mit (Kv,)w, = Kw.
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6 Zusammenhang der verschiedenen Begriffe

Hétte Kw nun eine echte endliche Galoiserweiterung, etwa vom Polynom-Grad d,
so hétte nach Lemma 5.13 auch Kwv, eine Galoiserweiterung desselben Polynom-
Grades. Fiir n > (d!)?, das heift d,, > d, fiihrt dies, wegen O<,, € HQS”(K)7
also Kv,=(d,) = Kuvy,, aber zum Widerspruch. Demnach ist Kw separabel abge-
schlossen, also gilt O,, € Hs(K). Da Ok maximales Element von Hs(K) ist, folgt
O = O, C Ok und insgesamt O = O = [, oy O<n.

Ist Kv nicht separabel abgeschlossen, so gibt es eine endliche Galoiserweiterung
L/Kwv vom Polynom-Grad [L : Kv]poy = d > 1. Fixiere nun ein beliebiges ng € N
mit ng > (d!)?. Fiir n > ng ist dann d,, > d,,, > d, das heift (Kv)=(d,) # Kv.
Es folgt O € HIS"(K) und damit O O O<, fiir alle n > ng, das heifst O O
Up>ne O<n- Da die Menge {O<y, [n € N} nicht-leer und nach Bemerkung 6.2 linear
geordnet ist, ist O := UnZno O<;, als deren Supremum selbst wieder ein Bewer-
tungsring auf K. Auferdem ist O nach Lemma 5.12 (1) mit O<, C O ebenfalls
n<-henselsch fiir alle n > ng.

Insgesamt ist O folglich ein henselscher Bewertungsring auf K. Weiter ist Ho(K) =
(), denn sonst lage Ok, nach Definition, in der Menge Hs(K ). Damit gilt O € Hq(K
und aus O = (| H1(K) folgt O O Ok, also insgesamt O = O = O<p. O

n>ng — >

Wir fiithren nun noch zwei weitere Begriffe ein, die mit dem der n<-henselschen Bewertung
in Verbindung stehen.

Definition 6.3. Sei (K, v) ein bewerteter Korper und n € N eine positive ganze Zahl.

(1)

Die Bewertung v (bzw. der bewertete Korper (K, v)) heilt prim-henselsch unterhalb
von n, falls fiir alle Primzahlen p < n und jede Galoiserweiterung L/K mit L(p) # L
und [L : K]-p < n jede Fortsetzung w von v auf L eine p-henselsche Bewertung
ist.

Die Bewertung v (bzw. der bewertete Korper (K, v)) heifst separabel prim-henselsch
unterhalb von n, falls fir alle Primzahlen p < n und jede separable Korpererwei-
terung L/K mit L(p) # L und [L : K] -p < n jede Fortsetzung w auf L eine
p-henselsche Bewertung ist.

Der Korper K heifst prim-henselsch unterhalb von n, falls es eine nicht-triviale
Bewertung v auf K gibt, die prim-henselsch unterhalb von n ist.

Der Korper K heifit separabel prim-henselsch unterhalb von n, falls es eine nicht-
triviale Bewertung v auf K gibt, die separabel prim-henselsch unterhalb von n
ist.

Offensichtlich ist jede Bewertung, die separabel prim-henselsch unterhalb von n ist auch
prim-henselsch unterhalb von n.

Auflerdem ist jede Bewertung, die prim-henselsch unterhalb von n ist auch p-henselsch fiir
alle Primzahlen p < n, was die Bezeichnung “prim-henselsch unterhalb von n” erklart.
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6 Zusammenhang der verschiedenen Begriffe

Bemerkung 6.4. Ist (K, v) (separabel) prim-henselsch unterhalb von n, so ist v bereits
p-henselsch fiir jede Primzahl p < n: Falls K(p) = K ist, ist die Aussage trivialerweise
erfiillt, andernfalls folgt sie sofort aus der Definition 6.3.

Den Zusammenhang zu n<-henselschen Bewertungen stellt nun die folgende Proposition
her.

Proposition 6.5. Ist (K,v) ein nl<-henselsch bewerteter Korper, so ist (K,v) (separa-
bel) prim-henselsch unterhalb von n.

Beweis. Sei p < n eine Primzahl und L/K eine separable Erweiterung mit L(p) # L und
[L: K]-p <n. Weiter sei w eine beliebige Fortsetzung von v auf L.

Wir halten nun eine beliebige Galoiserweiterung L'/L vom Grad p fest. Dann ist L'/ K
endlich und separabel und damit, nach dem Satz vom primitiven Element, insbesondere
eine einfache Korpererweiterung. Betrachte fir « € L' mit L' = K(«) das Minimalpo-
lynom f = mipog(«) € K[X] und den Zerfallungskorper N von f. Dann ist N/K eine
Galoiserweiterung, fiir deren Polynom-Grad die Ungleichung

[N : Klpoiy < deg(f) = [K(a): K] =[L': L] [L: K] =p-[L: K] <n

gilt, das heift es ist [V : K] < nl. Da (K, v) nach Voraussetzung n<-henselsch ist, hat v
damit eine eindeutige Fortsetzung auf N. Jede Fortsetzung von w auf L’ liefert auch eine
Fortsetzung von w auf N, die dann auch Fortsetzung von v auf N ist. Folglich besitzt w
auch nur genau eine Fortsetzung auf L'. Da L'/L von Grad p beliebig gewihlt war, ist
(L, w) demnach p-henselsch.

Insgesamt ist (K, v) dann wie behauptet separabel prim-henselsch unterhalb von n (und
damit auch prim-henselsch unterhalb von n). O

Korollar 6.6. Sei K ein Kdrper, der n<-henselsch ist fir jedes n € N. Dann ist K
bereits separabel prim-henselsch unterhalb von n fir jedes n € N.

Um die Umkehrung zu zeigen, verlangen wir eine zusétzliche Bedingung an die abso-
lute Galoisgruppe. Fiir allgemeine prim-henselsche Bewertungen fillt diese Bedingung
noch etwas stérker aus, als fiir separabel prim-henselsche Bewertungen: Im ersten Fall
benétigen wir, dass G pro-nilpotent ist, im zweiten geniigt es, wenn G g pro-auflosbar
ist.

Proposition 6.7. Sei (K,v) prim-henselsch unterhalb von n! und die absolute Galois-
gruppe G = Gal(K*P/K) von K sei pro-nilpotent. Dann ist v bereits n<-henselsch.

Beweis. Wir zeigen die Kontraposition. Sei also (K, v) nicht n<-henselsch und sei Gg
pro-nilpotent. Zu zeigen ist, dass (K,v) nicht prim-henselsch unterhalb von n! ist. Da
fiir n = 1 jede Bewertung auf jedem Korper trivialerweise n<-henselsch ist, gilt nach
Voraussetzung n > 2.
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6 Zusammenhang der verschiedenen Begriffe

Sei nun N/K eine Galoiserweiterung mit
[N : K] = min {[N" : K]|v hat keine eindeutige Fortsetzung auf N'} > 1,

sodass v mehr als eine Fortsetzung auf N besitzt.

Nach Bemerkung 5.6 gibt es eine Galoiserweiterung vom Grad hochstens n!, auf die
v keine eindeutige Fortsetzung hat, also ist 1 < [N : K] < nl. Sei nun p|[N : K]
ein Primteiler und S eine p-Sylowgruppe in G = Gal(N/K), sowie L = Fix(S) die
entsprechende Korpererweiterung von K. Da G pro-nilpotent und G damit nilpotent
ist, ist S insbesondere ein Normalteiler von G. Die Erweiterung L/K ist daher eine
Galoiserweiterung. Auferdem ist [N : L] = #S = pF fiir geeignetes k > 1, das heift
L(p) # Lund [L : K]-p < [N :L]-[L: K] =[N : K] < nl. Weiter gibt es, wegen
[L: K] < [N : K] und nach Wahl von N, eine eindeutige Fortsetzung w von v auf L. Da
v (und damit auch w) mehr als eine Fortsetzung auf N besitzt, kann (L, w) dann nicht
p-henselsch sein.

Insgesamt ist (K, v) also nicht prim-henselsch unterhalb von n!. O

Korollar 6.8. Sei K ein Kdrper, der prim-henselsch unterhalb von n ist fiir jedes n € N.
Ist Gk pro-nilpotent, so ist K bereils n<-henselsch fiir jedes n € N.

Proposition 6.9. Sei (K,v) separabel prim-henselsch unterhalb von n! und die absolute
Galoisgruppe Gk von K sei pro-auflosbar. Dann ist v bereits n<-henselsch.

Beweis. Wie im Beweis von Proposition 6.7 zeigen wir die Kontraposition. Sei also wieder
(K,v) nicht n<-henselsch (mit n > 2) und Gg diesmal pro-auflosbar.

Wihle, genau wie im Beweis von Proposition 6.7, eine Galoiserweiterung N/K mit
[N : K] = min {[N" : K]|v hat keine eindeutige Fortsetzung auf N’} ,

sodass v mehr als eine Fortsetzung auf N besitzt. Dann ist 1 < [N : K] < n!, wie oben
bereits gesehen.

Wir kénnen nun ohne Einschrinkung annehmen, dass n > 2 gilt: Fiir n = 2 folgt schon
[N : K] =2, womit L = K eine separable Korpererweiterung von K mit [L : K] -2 =
2 < nlist. Fir p = 2 ist dann weiter L(2) # L und (L, v) ist — nach Wahl von N — nicht
p-henselsch. Also ist (K, v) in diesem Fall nicht separabel prim-henselsch unterhalb von
n! — auch falls Gg nicht pro-auflésbar ist.

Nun ist G = Gal(N/K) # {id} auflésbar, da Gk pro-auflosbar ist. Fiir ein geeignetes
m € N existieren also Untergruppen G; < G sowie Primzahlen p; fiir 0 < ¢ < m mit

G=Go>G1B> ... >G> Gy = {id}

sodass G;/G;4+1 zyklisch von Ordnung p; ist.

93



6 Zusammenhang der verschiedenen Begriffe

Wir betrachten fiir 0 < i < m + 1 die zugehorigen Korpererweiterungen L; := Fix(G;)
von K. Fiir 0 <4 < m ist L;/K dann eine separable Korpererweiterung mit

[Li : K]-pi = [Liy1 : K] < [N : K] <nl,

das heikt insbesondere gilt p; < nl. Weiter ist L;(p;) # Li, denn es ist [Liy1 : L;] =
#Gi/Giv1 = pi.

Finden wir nun ein j € {0,...,m} =: M und eine Fortsetzung v; von v auf L;, die sich
nicht eindeutig auf L, fortsetzen lasst, so bezeugen L = L; und p = p;, dass (K,v)
nicht separabel prim-henselsch unterhalb von n! ist.

Betrachte dazu die Menge J := {i € M | v hat eine eindeutige Fortsetzung auf L;}. Diese
Menge ist endlich und nicht-leer (denn trivialerweise gilt 0 € .J), also enthélt sie ein
groftes Element j € J. Nach Definition hat v eine eindeutige Fortsetzung v; auf L;.
Jedoch ldsst v sich nicht eindeutig auf L; i fortsetzen — fiir j < m folgt dies sofort
nach Definition, fiir j = m folgt es nach Wahl von N = L,,;1. Damit ist (L;, v;) nicht
pj-henselsch, aber es gilt [L; : K| - p; < n! sowie L;j(p;) # L;.

Insgesamt ist (K, v) also nicht separabel prim-henselsch unterhalb von n. O

Korollar 6.10. Sei K ein Kérper, der separabel prim-henselsch unterhalb von n ist fiir
jedes n € N. Ist Gk pro-auflosbar, so ist K bereits n<-henselsch fiir jedes n € N.

6.2 Bezug zur Modelltheorie: t-henselsche
Bewertungen

Bewertete Korper — und insbesondere Korper mit Bewertungen, die unterschiedliche Va-
rianten von Hensels Lemma erfiillen — haben eine schéne und ergiebige Modelltheorie
(siehe etwa [ , , D-

So ist zwar die Figenschaft eines Korpers, eine nicht-triviale henselsche Bewertung zu
tragen, keine im modelltheoretischen Sinn elementare Eigenschaft, jedoch lassen sich die
Korper, die elementar dquivalent zu einem henselschen Koérper sind, ebenfalls durch eine
(topologische) Variante von Hensels Lemma beschreiben, wie Theorem 6.16 zeigt.

Eine erste modelltheoretische Anwendung der kanonischen n<-henselschen Bewertung ist
die folgende.

Proposition 6.11. Sei K # K5P ein Kdorper mit nicht-trivialer henselscher Bewertung
v. Ist der Bewertungsring O, auf K definierbar in der Sprache Lyng = {0,1,+,-} der
Ringe, so existiert ein ()-definierbarer nicht-trivialer Bewertungsring Oy, auf K mit T, =
Ty, das heifft w induziert die eindeutige henselsche Topologie.
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6 Zusammenhang der verschiedenen Begriffe

Bevor wir den Beweis fithren, halten wir zur Einordnung der Aussage von Proposition 6.11
fest, dass aus der Existenz einer definierbaren nicht-trivialen henselschen Bewertung auf
einem Korper im Allgemeinen nicht die Existenz einer (-definierbaren nicht-trivialen
henselschen Bewertung folgt.

Bemerkung 6.12. Es existiert ein Kérper L mit L # L%°P, auf dem es eine definierbare
nicht-triviale henselsche Bewertung, aber keine (-definierbare nicht-triviale henselsche
Bewertung gibt.

Beweis. In | , Example 6.3] konstruieren Jahnke und Koenigsmann einen Korper L
mit L # L5P auf dem es eine definierbare nicht-triviale henselsche Bewertung gibt, und
einen zu L elementar dquivalenten Korper K, der nicht henselsch ist.

Insbesondere kann es in dieser Situation keine (-definierbare nicht-triviale henselsche
Bewertung auf L geben, denn die Definition einer solchen wiirde auch auf K eine nicht-
triviale henselsche Bewertung definieren. O

Beweis von Proposition 6.11. Sei ¢(x,t) eine Lying-Formel, die den Bewertungsring O,
definiert, das heift mit ¢(K,t) = {x € K| ¢(x,t)} = O,. Wir kénnen ohne Einschrén-
kung annehmen, dass der Restklassenkorper Kv nicht separabel abgeschlossen ist — denn
andernfalls gébe es nach | , Theorem 3.10| sogar eine (-definierbare henselsche Be-
wertung auf K.

Es gibt dann also ein n > 2, sodass Kv eine echte Galoiserweiterung L vom Grad
[L : Kv] = n besitzt. Fiir m = (n!)? ist nun [L : Kv]poy < [L 1 Kv] < n = dpy, das
heiRt insbesondere gilt Kv=(d,,) # Kv und damit O, € H="(K). Nach Definition des
kanonischen m<-henselschen Bewertungsrings O<,, auf K folgt O, 2 O<,.

Betrachte nun die Menge S := {s € K |¢(K,s) € H=""(K)} der Parameter s € K, fiir
die ¢(K,s) = O, ein m<-henselscher Bewertungsring auf K mit Ku=(d,,) # Ku ist.
Dann ist O := (,cg ¢(K, 5) offensichtlich (-definierbar, da die Bedingung

$(K,s) € HE™(K) < ¢(K, s) = O, ist m<-henselsch mit Ku=(d,,) # Ku

an s sich als parameterfreie Ling-Formel ausdriicken lasst. Als Schnitt von Unterringen
von K ist O selbst wieder ein Unterring von K und, wegen O<,, C O, sogar ein Bewer-
tungsring auf K. Wegen ¢(K,t) = O, € H="(K) gilt t € S, also O, € {$(K,s)|s € S}
und daher O C O, # K. Die zum Bewertungsring O gehorige Bewertung w auf K
ist folglich nicht-trivial und erfiillt O,0,, # K, das heifst v und w induzieren dieselbe
Topologie. O

Im Zusammenhang mit der Modelltheorie (henselsch) bewerteter Korper fehlt uns noch
ein weiterer wichtiger Begriff.

Definition 6.13. Ein Korper K heiltt t-henselsch, falls es einen henselschen Korper L
gibt, der als Lyjyg-Struktur elementar dquivalent zu K ist.

95



6 Zusammenhang der verschiedenen Begriffe

Dass jeder henselsche Korper bereits t-henselsch ist, folgt sofort aus der Definition. Die
Umkehrung gilt im Allgemeinen nicht, wie Proposition 6.18 spéter zeigt. Unter gewissen
Voraussetzungen sind die beiden Begriffe jedoch dquivalent. Genauer gilt die folgende
Aussage.

Lemma 6.14 (Koenigsmann). Sei K ein t-henselscher Kdrper, der weder separabel abge-
schlossen noch reell abgeschlossen ist und dessen absolute Galoisgruppe G pro-auflésbar
1st. Dann ist K henselsch.

Beweis. Siehe | , Lemma 3.5]. O

Bewertete t-henselsche Korper lassen sich durch eine topologische Variante der Aussage
von Hensels Lemma charakterisieren, die eine direkte Verbindung zu n<-henselschen
Bewertungen herstellt: Ein Korper, der fiir jedes n € N eine nicht-triviale n<-henselsche
Bewertung besitzt, ist bereits t-henselsch.

Topologisch kénnen wir t-henselsche Korper dabei mithilfe sogenannter V-Topologien
beschrieben.

Definition 6.15. (1) Sei (K,7) ein topologischer Korper. Eine Teilmenge S C K
heifst beschrdinkt, falls es fiir jedes U € T mit 0 € U ein V € T gibt mit 0 € V und
V-8 CU (das heifst fir alle z € V und y € S gilt z -y € U).

(2) Eine V-Topologie auf einem Kérper K ist eine Kérper-Topologie T auf K beziiglich
der Menge (K \ U)~! fiir jede offene Umgebung U der 0 in K, das heifit fiir jedes
U € T mit 0 € U, beschréankt ist.

Wir kénnen jetzt das zuvor erwdhnte Theorem formulieren, das t-henselsche Koérper durch
eine Variante der Aussage von Hensels Lemma charakterisiert.

Theorem 6.16 (Prestel-Ziegler). Fin Kéorper K mit einer V -Topologie T ist genau dann
t-henselsch, wenn fir jedes n > 1 ein U € T \ {0} existiert, sodass jedes Polynom der
Form X"+ X"+ a, 1 X" Y+ +ag mita; €U fiir 0 <i<n—1 eine Nullstelle in
K besitzt.

Beweis. Siehe | , Theorem 7.2 (i)]. O

Diese topologische Beschreibung liefert den erwéhnten Zusammenhang zwischen n<-hen-
selschen und t-henselschen Korpern.

Korollar 6.17. Jeder Kérper K, auf dem es fir jedes n € N einen nicht-trivialen
n<-henselschen Bewertungsring gibt, ist t-henselsch.
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6 Zusammenhang der verschiedenen Begriffe

Beweis. Fiir n € N sei O<,, # K der kanonische n<-henselscher Bewertungsring und 7,
die von diesem induzierte Topologie auf K. Wir betrachten nun die Topologie T := Ty,
auf K fiir ng = m(K)-p(K). Diese ist, nach Proposition 2.37, eine Kérper-Topologie und
nach Theorem 5.10 gilt 7, = T fur alle n € N mit n > m(K) - p(K).

Wir setzen v(n) := max {n + 1,19} und wihlen U, := m<,(,) € 7. Jedes Polynom der
Form X" + X" +a, 1 X" '+ ... 4 a9 € K[X] mit a; € U, fiir 0 <i <n — 1 besitzt
dann eine Nullstelle in K, da der Bewertungsring O<,,), wegen v(n) > n + 1, stets
(n + 1)<-henselsch ist.

Es bleibt noch zu zeigen, dass T eine V-Topologie auf K ist. Wir miissen also fiir U € T
mit 0 € U zeigen, dass (K \ U)~! beschriinkt ist. Seien dazu U,W € T mit 0 € U
und 0 € W gegeben. Weiter sei v = UIS("O die kanonische ng<-henselsche Bewertung auf
K. Dann gibt es a,b € K* mit 0 € aQ, € W und 0 € bO, C U. Insbesondere ist
(K\U)™' C (K\bO,)™!, das heifit fiir z € (K \ U)~! gilt v(27!) < v(b) und damit
v(bz) > 0. Wir betrachten jetzt die offene Menge V' = abO,. Fiir jedes z € O, und jedes
z€ (K\U)™ ! gilt

v(ab-z - z) = v(azx) + v(bz) > v(azx) > v(a),

also ist V- (K \U)™! C a0, CW.Da W € T mit 0 € W beliebig (und insbesondere
unabhiingig von U) gewihlt war, ist die Menge (K \ U)~! fiir jedes U € T mit 0 € U
beschrankt. ]

Wir zeigen nun noch, dass es auch Korper gibt, die zwar n<-henselsch fiir jedes n € N,
aber nicht henselsch sind. Insbesondere ist jeder solche Korper dann ¢-henselsch, aber
nicht henselsch — Lemma 6.14 gilt also nicht ohne die Bedingungen an K.

Proposition 6.18. Es existiert ein Kdorper K, auf dem es fiir jedes n € N eine nicht-

triviale n<-henselsche Bewertung vy,

aber keine nicht-triviale henselsche Bewertung gibt.
Fiir den Beweis, der sich an | , Construction 6.5] orientiert, benotigen wir die folgende
Aussage iiber den inversen Limes eines inversen Systems von Bewertungsringen.

Lemma 6.19. Sei (I,<) eine partiell geordnete Menge und (I, 0;,m;;) ein inverses
System von Bewertungsringen O; auf den Korpern K; = Quot (O;). Dann ist der inverse
Limes O = @iel O; ein Bewertungsring auf K = Quot (O).

Beweis. Siehe | , Lemma 2.5]|. O

Beweis von Proposition 0.18. Sei (pn)nen eine Folge von Primzahlen mit p,, > n fiir alle
n € N und sei Ky = C. Fiir n,k € N definieren wir rekursiv n!) = n! und n!*+1) .=
(n!(k))! und wahlen nun rekursiv fiir jedes n € N mithilfe von Proposition 5.7 einen
bewerteten Korper (Kj,vy), der (n!™)<-henselsch, aber nicht pp-henselsch ist und fiir
den K,v, = K, 1 gilt.
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6 Zusammenhang der verschiedenen Begriffe

Fiir jedes m € N setzen wir vy,11,m = Um+1 und fiir n > m+1 definieren wir rekursiv die
Bewertungen vy, ;, 1= Up—1,m 0 Up = Upm41 © - - - 0 vy, auf K,. Dann gilt K, vy, = K, fiir
n > m: Fiir n = m+1 folgt dies sofort aus der Wahl von (K,,, vy,) und fiir n+1 > m+1
induktiv mit Ky 110p41,m = (Knt1Un41)Vnm = KnUnm.

Zwischenbehauptung. Die Bewertungsringe Oy, , zusammen mit den Abbildungen

Tnm - Ovn,o — Ovm,o
T T+ My, ,

fiir n > m bilden ein inverses System (indiziert durch N mit der Standardordnung <).

Beweis. Fixiere zunachst n,m € N mit n > m. Wegen v, = VUm0 © Upm gilt dann
Ovpo/ Moy, = Oy, und damit 7, () =  +my, ,, € O, , fiir alle z € O,, ,, das
heifst 7, 5, ist wohldefiniert.

Seien nun n,m,k € N mit n > m > k. Dann gilt v, x = vk © Unm und damit O, , =
Ou,, /My, ., also auch m,,  =m, ,/m, . Es folgt

(ﬂ-mJi‘ o Wn,m)(ﬂ?) = (.fL' + mvn,m) + mvm,k =T+ mvn,k = Trnvk(m)

fir alle x € Oy, 4. X

Nach Lemma 6.19 ist der inverse Limes O = h&lneN Oy, , ein Bewertungsring auf seinem
Quotientenkorper K = Quot (O). Fiir jedes n € N sei p,, := ker(O — O,,,) der Kern
der kanonischen Projektion. Die Lokalisierung Oy, von O an dem Ideal p,, ist dann ein
Unterring von K, der O enthilt, also selbst ein Bewertungsring ist. Das maximale Ideal

von Oy, ist m,, := p,Oy,,.

Fiir beliebige m,n € N mit m > n gilt nun p,, C p, und damit O, 2 O, , die Familie
{Op,, |m € N} wird also durch C linear geordnet. Weiter gilt ey Op, = On _pn =
O(p) = K und fiir die maximalen Ideale folgt [, oy m, = {0}.

Wir wihlen nun fiir jedes n € N eine Bewertung vy, auf K mit O, = Oy, und zeigen,
dass v, dann n<-henselsch ist.

Sei dazu g(X) = X9+ X% +ag o X492+ +ay € K[X] ein Polynom mit 1 < deg(g) =
d <nund a; € my: fiir 0 <i < d— 2. Fiir jedes m € N setzt die kanonische Projektion
Tm : O = Oy, , sich zu einem Epimorphismus 7, : Oyx = Op,, — Quot (Ovm’o) =K,
mit 7, (zyY) = T (2) - (Tm(y)) " fort und wir erhalten, wegen Myr = PppOyr =
ker(7,,), den kanonischen Isomorphismus

©m : Kvjy = Oy /My — Quot (Ovm,o) =K,

ay '+ My = T () -+ (T () !

firz e Oundy € O\ pm = {2z € O|mn(z) # 0}. Mittels dieses Isomorphismus kénnen
wir den Restklassenkérper Kvy, also mit dem Koérper K, identifizieren.
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6 Zusammenhang der verschiedenen Begriffe

Wir setzen nun gy, := resg,» (g) fiir alle m € N. Mit der obigen Identifizierung gilt dann
gm € Oy, o[ X], da alle Koeffizienten von g in p, € O und die Koeffizienten von g,, damit
in 1y, (0) = Oy, , liegen. Es folgt resk,,v,, . (9m) = gn = resgyx(g) fiir m > n. Da die
Koeflizienten von g alle im maximalen Ideal m, von v}, liegen, hat g,(X) = X dy xd-1 =
X4=1.(X +1) die einfache Nullstelle —1 € Kv}. Da die Bewertung v,, nach Voraussetzung
(m!(™)-henselsch ist, folgt mit Lemma 5.12 (2) induktiv, dass vy,_j o --- o vy, fiir
jedes k € N eine ((m — k)!(m*kfl)) ~-henselsche Bewertung ist. Insbesondere ist vy, =
Up410- -0V, dann ((n + 1)!(”)) ~-henselsch, also auch n<-henselsch. Das Polynom g; hat
daher eine Nullstelle zj, € O,, ,, die wie in Bemerkung 3.5 gesehen eindeutig bestimmt
ist. Die Folge © = (zk)ken ist daher ein Element von ylnkeN Ouo = O und es gilt
g(z) = (gr(zx)) = 0, das heift g hat eine Nullstelle im Bewertungsring O, welcher
damit wie behauptet n<-henselsch ist.

Wir zeigen nun durch einen Widerspruchsbeweis, dass K nicht henselsch ist. Ange-
nommen also, w wére eine nicht-triviale henselsche Bewertung auf K. Dann wére w
insbesondere n<-henselsch und nach Theorem 5.10 induzierten w und v} somit fiir
alle n > ng := m(K) - p(K) dieselbe Topologie T, = Tuz, auf K. Da die Menge

{a - My |la € K*} eine Umgebungsbasis der 0 fiir die Topologie T,+ ist, gébe es

dann ein ¢ € K* mit a - my:  C my. Fir a ¢ my , das heit v (@) SOO, wére dann
Myx € a-my Cmy. Firae My konnten wir wegen (o myx = {0} ein m > nyg
mit a ¢ mys finden und erhielten myr C oa-myr Coa-mye C©my. Insgesamt gibe es
also in jedem Fall ein m > ng mit myx C my,, das heikt der Bewertungsring Oy« 2 O,
wire henselsch. Damit wire auch die von vy, induzierte Bewertung vy, auf Kvy; | = Kp 11
henselsch.

Fiir das Bild des Bewertungsrings Ogx = Oy /pry1 © Kuvj; | unter der Identifizierung
©ny1 von Kvy 1 mit K;, 1 gilt jedoch

nt1 (Og) = {Wn+1(33) (1 () @,y € O, maly) # 0}
= O'Un,O : {Z_l € OUn,O | 7Tn+17n(2) # 0}
=0y, {27 € Ouno | 2 & ker(mnq1n) }

= OUn,O ' {Z_l € Ovn,O ‘ < ¢ mvn+l}
= O’Un,O ! (Ovn,o)

mvn+1 = (Ovn,o)mvn+1 = Ovn+17

da die Abbildung 7,11, @ Ouv,iy o — Ou, durch  — x +m,, ., gegeben ist und da
Unt1,n = Uny1 gilt. Also wire mit vy auch die Bewertung v, 41 auf K,41 henselsch. Wir
hatten die Bewertung v,4; jedoch so gewahlt, dass sie nicht p,-henselsch und damit
insbesondere nicht henselsch ist — ein Widerspruch! ]
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7 ZUSAMMENFASSUNG DER ERGEBNISSE
UND AUSBLICK

Die Resultate aus dem vorherigen Kapitel wollen wir nun in Diagrammform noch einmal
zusammenfassen. Wir schreiben dabei kurz “(separabel) prim-henselsch” statt “(separa-
bel) prim-henselsch unterhalb von n fiir alle n € N” sowie “N<-henselsch” bzw. “P-hen-
selsch” statt “n<-henselsch fiir alle n € N” bzw. “p-henselsch fiir alle p € P".

Fiir beliebige Korper K haben wir dann die folgenden Zusammenhéinge, wobei “<&="
meint, dass die jeweilige Implikation nicht ohne zusétzliche Voraussetzungen gilt.

K Dbeliebiger Kérper‘ K henselsch Xﬂ
Def.ﬂ %.18

6.6 6.17
separabel prim-henselsch 5 >N§—henselsch < ~ t-henselsch
A ? ?

Def.ﬂ ?

prim-henselsch

A
6.4ﬂ ?

P-henselsch

Aus dem obigen Diagramm ergeben sich natiirlicherweise eine Reihe offener Fragen.

Frage 7.1. (Unter welchen Bedingungen) ist jeder t-henselsche Korper bereits n<-hen-
selsch fiir jedes n € N?

Frage 7.2. (Unter welchen Bedingungen) ist jeder Korper, der fir alle n € N separabel
prim-henselsch unterhalb von n ist, bereits n<-henselsch fir alle n € N?

Teilantworten auf die Fragen 7.1 und 7.2 kénnen wir bereits geben: Nach Koenigsmanns
Lemma 6.14 und unserem Korollar 6.10 lautet die Antwort auf beide Fragen jedenfalls
“Ja” fir alle Korper mit pro-auflosbarer absoluter Galoisgruppe, die weder separabel
abgeschlossen noch reell abgeschlossen sind.

Offen bleibt, ob alle diese Bedingungen auch notwendig sind oder ob die entsprechenden
Implikationen sogar ganz ohne zuséatzliche Voraussetzungen gelten. Letzteres ist vermut-
lich nicht der Fall, eine genauere Untersuchung hétte jedoch den Rahmen der vorliegenden
Arbeit gesprengt und war leider nicht méglich.

Frage 7.3. (Unter welchen Bedingungen) ist jeder Korper, auf dem es fiir alle p € P eine
nicht-triviale p-henselsche Bewertung gibt, bereits n<-henselsch bzw. (separabel) prim-
henselsch unterhalb von n fiir alle n € N?
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7 Zusammenfassung der Ergebnisse und Ausblick

Die Untersuchung dieser Frage fand, sowie die der folgenden modelltheoretischen Frage,
ebenfalls keinen Platz mehr in der vorliegenden Arbeit. Beide bleiben einer zukiinftigen
Bearbeitung iiberlassen.

Frage 7.4. Ist die Figenschaft eines Korpers, n<-henselsch zu sein, das heif$t eine nicht-
triviale n<-henselsche Bewertung zu tragen, eine elementare Eigenschaft?

Die genannten Teilantworten auf die Fragen 7.1 und 7.2 lassen sich wie folgt grafisch
zusammenfassen. Alle Implikationen ohne Verweise folgen dabei sofort aus denen mit
Verweisen zusammen mit den Implikationen aus dem vorherigen Diagramm.

K weder separabel
noch reell abgeschlossen henselsch 6.14
und G pro-auflosbar ﬂ

separabel prim-henselsch LN <-henselsch <= t-henselsch

K

prim-henselsch
A
?

P-henselsch

Ist G sogar pro-nilpotent, so sind, mit Korollar 6.8, fast alle in den beiden obigen
Diagrammen aufgefiihrten Eigenschaften dquivalent.

K weder separabel
noch reell abgeschlossen henselsch
und G g pro-nilpotent H

separabel prim-henselsch <= N<-henselsch <= t-henselsch
6.8

prim-henselsch

I

P-henselsch
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