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Abstract

Let V' be a valuation domain of rank one and quotient field K. Let E be a fixed algebraic
closure of the v-adic completion K of K and let V be the integral closure of Vin K. We
describe a relevant class of valuation domains W of the field of rational functions K(X) which
lie over V', which are indexed by the elements o € Ku {o0}, namely, the valuation domains
W =W, ={pe KX)| plae 5} If V is discrete and m € V is a uniformizer, then a
valuation domain W of K (X) is of this form if and only if the residue field degree [W/M : V/P)|
is finite and 7W = M®, for some e > 1, where M is the maximal ideal of W. In general, for
a,B e K we have W, = Wy if and only if « ind B are conjugated over K. Finally, we show that
the set P"" of irreducible polynomials over K endowed with an ultrametric distance introduced

by Krasner is homeomorphic to the space {W, | a € K} endowed with the Zariski topology.

Keywords: Discrete valuation domain, Valuation overrings, Integer-valued polynomial, Priifer domain,
Zariski topology, Ultrametric space.
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1 Introduction

Let V be a valuation domain of rank 1, quotient field K and let v be the associated valuation.
Let V and K be the v-adic completions of V and K, respectively. Given a field extension K C F
and a valuation domain W of F, we say that W lies above Vif WNK =V. If F = K(f) is a
simple separable algebraic extension of K and p € K[X] is the minimal polynomial of 6, then the
valuation domains W of F' which lie above V' are well-known: they are rank 1 valuation domains
which are in one-to-one correspondence with the irreducible factors over K of p(X) (see for example
[2, Chapter VI, §. 8, 2., Proposition 2 and Corollaire 2] or [I5, Chapter 6, B.]). More precisely,

there exists a finite set of elements {1, ...,0,} in a fixed algebraic closure K of K (i.e., the roots
of p(X) in K) such that the above valuation domains W are equal to Wy, = {g(0) € K(6) |
g(6;) is integral over ‘7}, for i =1,...,n; moreover, Wy, = Wy, if and only if 0;,0; are conjugated
over K (i.e., 6;,0; are roots of the same irreducible factor of p(X) over K).

If instead we consider a simple transcendental extension K(X) of K, the structure of the set of

valuation domains of K (X) which lie above V' is much richer (see for example [T}, [8 9, [1T], 12} 13} [T6] ).
To begin with, it is well-known that the rank of W is 1 or 2 (see for example |2, Chapt. VI, §10,



Corollaire 1, p. 162]). The aim of this paper is to give an explicit description of a particular class
of these valuation domains, which, likewise the previous algebraic case, arise from the elements
o € KU {oo}, namely W =W, = {p € K(X) | ¢(a) is integral over V}. The description of these
valuation domains is accomplished in Proposition 2.2} When V is a discrete valuation domain of
rank one, we give in Theorem [2.5|sufficient conditions on a valuation domain W of K (X) lying over

V to be of the form W,, for some o € K U {oo}, namely:
i) the residue field degree [W/M : V/P] is finite;
il) #W = Me¢, for some e > 1;

where 7 is a uniformizer of V' and M is the maximal ideal of .
In contrast with the finite algebraic case recalled above, where the extensions of V to K(6)

are given by a finite set of elements in K , in the transcendental case one has to consider all the
uncountably many elements of K in order to obtain all the valuation domains W ¢ K (X) of the

above form. As in the algebraic case, for a, o €K , Wy = Wy if and only if o and o/ are conjugate
over K (Theorem. Moreover, it turns out that these valuation domains are precisely the unitary
valuation overrings of a class of generalized integer-valued polynomial rings which was introduced
in [I0]: given a finite field extension F' of K, let Vi be the integral closure of V in F. We set

It (Vie) = {f € K[X] | f(Vir) C Vi) (L1)

Note that Inti (V) is the contraction to K[X] of Int(Vy) = {f € F[X] | f(Vr) C Vg}, the classical
ring of integer-valued polynomials over Vp. Given a valuation domain W C K(X) as above, we
show that there exists a finite extension F' of K such that W is an overring of Intx (V).

In the second section we give the characterization of the aforementioned valuation domains W of
K(X). We show how the valuation domains Wy, for a € K, are related to the work of Kaplansky
about immediate extensions of a valued field in [6], see Remark More generally, when «
ranges in K , we show the connection with the work of MacLane in [I1 12] about approximations
of transcendental extensions of a DVR, see Remark m The valuation domains Wy, a € K ,
appear also in the recent paper [I3], which deals with extensions of a DVR to a transcendental
extension of its field of quotients in the spirit of MacLane. Furthermore, as an application, we
show that the Priifer domains of polynomials between Z[X] and Q[X] constructed in [I0] can
be represented as rings of integer-valued polynomials (Remark . In the third section, for a
general rank one valuation domain V, we show that the set 20 = {W, | o € K} is in one-to-one
correspondence with the following sets: the set P of irreducible polynomials over K; the set
Wrix) = {Wa NK[X] | a € K} (Theorem . In particular, this allows us to reduce many
considerations to polynomials rather than to rational functions. Moreover, if we endow PUT with
the ultrametric distance A(p,q) = min{|a — | | a, 8 € K,p(a) = q(8) = 0} and 20 and Wi x)
with the Zariski topology, these three spaces are homeomorphic (Theorem [3.4]). A first evidence of
this result is contained in a paper of Gilmer, Heinzer, Lantz and Smith, where, for a DVR V with
finite residue field, it is proved that the unitary maximal spectrum of the ring Int(V') (that is, those
maximal ideals whose contraction to V is equal to the maximal ideal of V') is homeomorphic to V'

(see [5, p. 677]). Since V is homeomorphic to the space of monic linear polynomials endowed with
the above distance A(-,-), Theorem [3.4]is a generalization of this result.



2 Main result

Throughout the paper, we adopt the following notation. Let V' be a valuation domain of rank 1
with quotient field K. We denote by v the associated valuation on K and by P,V, K the v-adic
completion of P, V, K, respectively. Note that VNK = V, V is a valuation domain of rank 1 of i
with residue field isomorphic to the residue field of V' and v extends uniquely to the valuation of
K associated to V which we still denote by v. Let K be a fixed algebraic closure of K and V the
integral closure of V in K. It is well known that v admits a unique extension to / K ([I5, Chapt. 5,
A.]), which again we denote by v and whose valuation ring is V, thus V = {a € K | v(a) > 0}. For

a € K, we denote by V,, the valuation domain of rank 1 of the finite field extension K (a) of K,
which is equal to the integral closure of Vin K (a), and by ﬁa the maximal ideal of f/\'a. We denote
by ve the valuation of K (a) associated to V, (thus, the restriction of v to K (a)).

We recall the notion of Gaussian extension of v. Given f(X) = >\ a; X" € K[X], we set
ve(f) = min{v(a;) | i = 0,...,n}, and this function extends in the natural way to a valuation
of K(X), called the Gaussian extension of v. The valuation domain of the Gaussian extension is
equal to V[X]p[x] (see for example [4, Proposition 18.7] or [2, Chapt. VI, §10]) and is the unique
extension of V to K(X) such that X is transcendental over the residue field ([2, Chapt. VI, §10,
Prop. 2]).

Given a field extension K C F, a valuation domain W of F' is immediate over K if the value
groups and the residue fields of W and W N K are the same, respectively. For a € K , note that the
elements of the value group of V,, C K(«a) are of the form v,(g(«)), where g € K[X]. If h € K[X]
is such that vg(h — g) is sufficiently greater than v, (g()), then vq(g(a) — h(a)) > va(g()), so
that V, is immediate over K (a) (see [2, §10, Exercise 2, p. 193]).

In order to describe all the possible valuation domains of K(X) we are interested in, we need to
consider the projective line over K, that is, P*(K) = K U{oco}. Given a rational function ¢ € K(X)
and a € K, ©(a) is an element of PL(K); we say that ¢ is not defined at « if o(a) = co. We also
set p(00) = (0), where ¥(X) = ¢(1/X), so that each rational function on K determines a map
from }P’I(IA( ) to itself, which is continuous with respect to the v-adic topology (see also Remark.

We introduce now the following definition.

Definition 2.1. Let a € ]P’l( ). We consider the set of rational functions ¢(X) over K which are
defined at a and such that their evaluation at « is integral over V:

Wo={pecK(X)|p()eV}

Clearly, for o € P! (E), peW, < pla)e Vo & v(p(a)) > 0, where by convention we set V=V
and Py, = P. We also set K(00) = K. The following proposition characterizes W,,. It is a standard
result, but for the sake of the reader we give a proof here.

Proposition 2.2. Let a € ]Pl(?). Then W, is a valuation domain of K(X) which lies over V
with mazimal ideal Mo = {¢ € K(X) | v(¢(a)) > 0} and rank 1 or 2. The rank of Wy is 1 if

and only if « is in K and is transcendental over K, it is 2 if either a € K is algebraic over K

or a = oco. If the rank of Wy, is 2, a € K and q € K[X] is the minimal polynomzal of a over K,
then the DVR K[X](y is the valuation overring of We,. If o = oo, then K|+ J(2) is the valuation



overring of Wo.. Moreover, the residue field of W, is isomorphic to the residue field of ‘A/a and the
value group of Wy /Qe is also isomorphic to the value group of Vi, where Qo = 0 if W, has rank
1 and Q, is the height one prime of W, if W, has rank 2.

Proof. Let o be any given element of IPI(I? ). It is straightforward to show that W, is a valuation
domain of K(X) which lies over V' and with maximal ideal M, = {¢ € K(X) | v(¢(a)) > 0}. In
fact, given a rational function ¢ € K(X) defined at «, that is, ¢(a) € K(a), either (a) € V,, or
o(a)~! € V,, since V,, is a valuation domain of K (). Both of these conditions hold if and only if
© € Wy \ My, so the latter is the multiplicative group of units of the valuation domain W, (and
so M, is its maximal ideal). We remark that W, can be realized as the pullback of the valuation

domain of rank 1 V, of K (), via the evaluation homomorphism ev,, at o:

eva t K(X) = K (o) U {o0}

p(a), if ¢(X) is defined at «
P(X) = { 00, otherwise (21)

The image of ev, in is contained in K () if and only if « is transcendental over K if and only
if the kernel Qo = {p € W, | p(a) = 0} of the restriction (eva )|y, : Wa — V, is equal to (0). If
a is algebraic over K, then the domain of definition of ev, is the DVR K[X],), where ¢ € K[X]
is the minimal polynomial of a over K, so ev,(K[X])) = K[X]/(q) = K(a). Moreover, since
Qo NV = (0), the height one prime ideal Q, of W, is equal to ¢(X)K[X], in the algebraic case

and the one-dimensional valuation overring of W, is equal to K[X]).

Suppose «a € K. If a is transcendental over K , then (eva)|wa Wo — ‘7a is an injective homo-

morphism that extends to an homomorphism of quotient fields ev, : K(X) — K (). Thus v, 0evq
defines a valuation of real rank 1 on K (X) whose associated valuation ring is Wy, hence W, is a
valuation domain of rank 1 of K(X). Reciprocally, if W, is a valuation domain of rank 1 of K(X)
and Q4 # 0 (the kernel of (ev,)|, ), then Q, = M, and Q, NV # (0), which is a contradiction.

Therefore, @, = 0 and « is transcendental over K. Hence, for a € K , W, is a valuation domain of
rank 1 if and only if « is transcendental over K and it is a valuation domain of rank 2 otherwise.

__ We prove now the last claims. Since the image of W, via ev, is equal to the valuation domain
Vo N K(a) and V, is immediate over K(«), it follows that the residue field of V,, is isomorphic to
the residue field of W,. Moreover, since the kernel of (ev,,) is Qq, then also the value group of

IWa

[Wa
Ve is isomorphic to the value group of W, /Q,.
The case @ = oo is treated by considering the change of variable K(X) - K(Y), X —» Y = %,
so W, C K(X) is easily seen to correspond to W{ in K (Y). O
For the rest of this section, we adopt the following assumptions and notations: let V be a
discrete valuation domain of rank 1 (DVR) and let 7 € V' be a uniformizer of V, that is, 7 is a

generator of the maximal ideal P of V. Note that V and V, are also DVRs, V is a non-discrete
valuation domain of rank 1 and that 7 is also a uniformizer of V.

On the other hand, recall that a discrete valuation domain is a valuation domain whose value
group is discrete (not necessarily of rank 1, see [I7, Chapter VI, (A) p.48]). Thus, by Proposition
W, is a discrete valuation domain of K(X) of rank 1 or 2 (notice that W,/Q, is a DVR,
see also Remark and the residue field of W, is a finite extension of the residue field of V. In



addition, 7W, = M, where e is the ramification index of 13a over P. Tn fact, since we clearly have
M! = {p € K(X) | p(a) € P} for each n > 1, it follows that 7V, = P¢ < 7€ P¢\ Pl &« e
ME\ Me+1,

Remark 2.3. By Proposition and the Hasse Existence Theorem ([I5, Chapter 6, Theorem 4]),
for each pair of positive integers e, f > 1, there exists a valuation domain W = W, of K(X) lying

over V, where a@ € K, whose residue field has degree f over V/P and 7W = M¢€. In fact, by
the aforementioned result of Hasse, there exists an algebraic separable extension K (a) of K with

is the pullback of ‘A/a via the evaluation morphism ev, and we can apply Proposition |2.2|to get that
W has residue field degree equal to f and 7W, = Mg.

Given a € K , it is not difficult to give an explicit representation of the associated valuation
wy + K(X)* = T'w,,, where 'y is the corresponding value group. If the rank of W, is 1 then, as
we saw in Proposition Ve is immediate over K (X) (via the embedding ev,), so:

wa () = va(p(a)), Ve e K(X)*

ramification index e and residue field degree f, where o € K (i.e., a primitive elemeﬁ. Now, W,

In particular, note that I'y,, = F‘A,a, the value group of ‘A/a.

Suppose now the rank of W, is 2 and let ¢ € K[X] be the minimal polynomial of a. By [I7]
Chapt. VI, §10, Thm. 17 & p. 48], the value group of W, is order-isomorphic to I'y x T'w, 0.,
where @, is the height one prime ideal of W,,, I'; is the value group of the DVR (W, )q, = K|[X]()
and Iy, /g, is the value group of W,/Qa. By the proof of Proposition ‘7& contains W, /Q,
and is immediate over it, so, in particular, I'yy_ /o, = Iy . Given ¢ € K(X)* there exist k € Z and

g,h € K[X], coprime with ¢(X), such that ¢(X) = ¢(X)* - %. Then

walp(X)) = (ko (,’;EZ;) €T, % Tw.jq.

Under the current assumption that V' is a DVR, we show in Theorem that the valuation
domains of Proposition are the only valuation domains W of K(X) lying over V' whose residue
field degree (over V/P) is finite and such that #W = M¢, for some e > 1. Moreover, the valuation
domains W, o € 17, are precisely the unitary valuation overrings of a particular class of rings
of integer-valued polynomials which we now recall (a valuation domain W of K(X) lying over V
is called unitary if its center on V is the maximal ideal P). As in the introduction, for a finite
field extension F' of K, we denote by Vr the integral closure of V in F', which is a Dedekind
domain. Given a non-zero prime ideal P of Vg, which necessarily lie over P, we denote by Vg p the
localization of Vg at P. We define also the following ring of integer-valued polynomials:

IntK(VF’p) = {f S K[X] | f(VF’p) - VF,p}
Let @ be the completion of Vrp. We will use the well-known fact that
Ity (Vip) = It (Vep) = {f € KIX]| f(Viep) C Vip} (2.2)

which is based on the continuity of the polynomials with respect to the v-adic topology.



Before giving the main result of this section, we need the following result, which may be well-
known, but for the sake of reader we give a complete proof, which is an adaption of the argument
given in [I5] Chapter 6, Theorem 1, p. 151].

Lemma 2.4. Let V C W be complete DVRs with quotient fields K C F and maximal ideals P, M,
respectively. Suppose that the residue field degree [W/M : V/P] is finite, equal to a positive integer
f, and let e be the ramification index of W over V. Then [F : K| = ef (so, in particular, F/K is
a finite extension).

Proof. Let m, A\ be uniformizers of V and W, respectively. If e is the ramification index of W over
V' (which is finite, since both valuation domains are DVRs), then m = A® - u, for some u € W*. Let
Y1,...,Ys € W be such that their residues modulo M form a V/P-basis of W/M. It is well-known
that the elements of the set {\"y; | »r =0,...,e—1,j = 1,..., f} are linearly independent over
K (for example, see first part of the proofs of [2 Chapt VI, §8, 1., Lemma 2] or [I5, Chapter 4,
F., p. 114] (or also 13.9 of Endler’s book; note that for this result we don’t need the completeness
assumption).

For each n € Z, we set n = qe + r, for some ¢ € Z and 0 < r < e. We set 0,, = 7I\" € W; note
that o, has value n, for each n € Z. Let now z € F. There exist ng € Z = I'yy and ug € W* such
that z = o,,ug. Since ug is a unit, there exist aq,0,...,af0 € V such that ug — Z;c:l ajoy; € M.

Hence, 21 = z — (25:1 @;,0Yj)0n, has value strictly greater than ng, so we may write

f

Z = (Z aj70yj)0-n0 + On UL
j=1

for some ny > ng and u; € W*. If we continue in this way, taking into account that F' is M-adically
complete, we have the following representation for z as a convergent power series:

/
&= Z (Z @jin¥s)On

neN j=1

Using the definition of o, we have that

2= Y O ajnmA\"y; (2.3)

0<r<e ¢eN
1<j<f

Since K is P-adically complete, for each j the series ) gen 43,nm? is convergent, thus an element of
K. Hence, (2.3) shows that the elements A\"y;, for 0 <r < e and 1 < j < f, are a basis of F' over
K. O

In particular, the above Lemma shows that if K is complete, then there are no DVRs in K (X)
above V_which have finite residue field degree, in contrast with the case of when K is not complete:
if « € K is transcendental over K, then W, is a DVR of K(X) above V which has finite residue
field degree (Proposition [2.2)).

Theorem 2.5. Let W be a valuation domain of K(X) with mazimal ideal M, such that W lies
above V. Suppose that



i) [W/M:V/P] =
i) W = Me,

for some f,e > 1. Then there exists a € Pl( K) such that K (o )/[E has ramification index e and

residue field degree f and W = Wy,. In particular, X € W < a € V & W is a valuation overring
of Intg (Vep), for some finite field extension F' of K and prime ideal P C V.

In particular, note that o has degree e - f over K ([15, Chapter 6, Theorem 1]). Also, in the
case W = W, we necessarily have e = f = 1 (see also Proposition .

The existence of such a valuation domain W is guaranteed also by a more general theorem given
by Kuhlmann [8] Theorem 1.4], but in the present context we have an explicit description of such
valuation domains, see Remark [2.3]

Proof. Because of condition ii), the ideal M is not idempotent, so M = W, for some ¢ € W.
Moreover, the rank of W is 1 or 2; we distinguish now the two cases.
Suppose first that W has rank 1, so that W is a DVR of K (X ) We consider the completion W

of W with respect to the M-adic topology. It is well-known that W is a DVR with field of fractions
I?(}), the completion of K(X) with respect to the M-adic topology7 and ¢ is a uniformizer of
W. Since W lies over V, it follows that K embeds into K ( ) and W lies over V. The residue
field of W is isomorphic to the residue field of W ([2, Chapt. VI, §5, n. 3, Proposition 5]) and
goe/W = W/W, since MW is the maximal ideal of W. In particular, the same assumptions i) and
ii) above for W hold for its completion W, so the ramification index e(/V[7|1A/) is equal to e and the
residue field degree f (/V[7|XA/) is equal to f. By Lemma K C I?()?) is a finite extension of degree
ef. Therefore, we have a K-embedding ® : K(X) — I?(-)?) such that o = ®(X) is algebraic over
K so, without loss of generality, we may consider « as an element of K note that the embedding @
is nothing else that the evaluation of X at a. It follows that K () is a finite extension of K hence
complete, and since via the K-embedding ® we have the containments K (X) C I/(\'(a) C I?(?), it
follows that K (a) is equal to the completion I?()?) of K(X). Note that W is isomorphic to the
local ring ‘7a of IA((a), so via the embedding ® we have:

W= {y € K(X) | (X)) = v(a) € Vol = W,

Since W has rank 1 it follows that « is transcendental over K, by Proposition

Suppose now that W C K(X) is a discrete valuation domain of rank 2. It is known that the
height one prime ideal @ of W is equal to [, .y M" (4, Theorem 17.3]). Let mqg : W — W/Q
be the canonical residue map. Since @ NV cannot be equal to P because of condition ii) (i.e.,
7 ¢ M°T1), we have @ NV = (0). Hence, the restriction of g to V is the identity, so V. C W/Q
and K is contained in the quotient field F' of the valuation domain W/Q); in particular, W/Q lies
over V. Moreover, W/@Q is DVR with maximal ideal M/Q, which is generated by the residue
class of ¢ modulo . The localization W¢ is a DVR of K(X) with maximal ideal ) and the
residue map Wg — Wg/Q coincides with mg over W (note that the two homomorphisms have
the same kernel). Now, X' € Q & Wy = K[X !|(x-1), and in this case the homomorphism
Wg — Wg/Q = K = F is easily seen to be evs, the evaluation of X at co. If instead X € Wy,
then Wo = K[X](,), for some irreducible polynomial ¢ € K[X]. Therefore, the residue map 7 is



equal to the restriction to W of the evaluation map ev, : K[X]) = K[X])/Q = K(a), where
« is the residue class of X modulo @, and K(«) = F is a finite extension of K. In either case
(X1e@ & a=o00or X € Wp), since W/Q is a DVR of F containing Vp, it follows that W/Q is
equal to Vg p, for some prime ideal P C Vi (if & = oo, then Vi p = V). We identify o € F with its
image in the P-adic completion ﬁp = I?(a) Cff{ of F' (see [15, Chapt. 4, L., p. 121]); in this way
« is uniquely associated to an element of }P’l(f( ), which is co exactly in the case X! € Q. Since
Ve p =VNFandae F', we have:

W = {¢ € K(X) | ¥(a) € Vpp} = Wa.

In fact, the value at o of ¢ € K(X) isin Vpp = W/Q = mg(W) if and only if ¢ is in W, since
7@ = (eva)w and the homomorphisms ev,, and ¢ share the same kernel, namely the ideal @ C W.
Note that the completion of Vi p is isomorphic to V. Since W/M = (W/Q)/(M/Q), which is the
residue field of W/Q = Vg p, the residue field degree of K (o) over K is f. From the assumption
W = M¢, it follows that 7 - W/Q = (M/Q)°, so the ramification index of K(a)/K is e.

We prove now the last equivalences, whether W = W, has rank 1 or 2 (note that in these cases
a # 00). Suppose that X € W. If W, has rank 1, then ®(X) =« € W ="V, so ais integral over
V. If W, has rank 2, then mo(X) = a € W/Q = Vg p, and so « is integral over 1% (in this case, «
is not necessarily integral over V', which is the case exactly when there is just one prime ideal P in
Vr above P).

Suppose that « is integral over V. In case W = W, has rank 2, then a € VNF = Vep, and
so Int (Vpp) C W,. Suppose now that W, has rank 1 and let g(X) be the minimal polynomial
of o over K, of degree ef. By Krasner’s Lemma (A5, Chapt. 5, G.]), if ¢ € K[X] is a monic
polynomial of degree ef which is v-adically sufficiently close to g(X), then ¢(X) is irreducible over
K , hence also over K. Let F = K(f) be the number field of degree ef generated by a root 3
of g(X). Note that there exists only one prime ideal P in Vp above P (precisely because g(X)
is irreducible over the completion K , see [I5) Chapt. 6, B.]); in particular, Vg is a DVR and the
P-adic completion of F is isomorphic to K(a) = K(f). Morcover, e(P|P) = e and f(P|P) = f
(2, Chapt. VI, §5, n. 3, Proposition 5]). Let W/, = {¢) € F(X) | ¥(a) € Va} be the valuation
domain of F(X) corresponding to . Since the P-adic completion of V is equal to Vi, by

~

we have Int(Vr) = Intr(V,), and the latter ring is clearly contained in W, because by assumption

a €V & a € V,. Contracting everything down to K(X) we get Intg (Vp) C W,,.
Finally, if W,, contains Intx (Ve p) D V[X], then X is in W,. The proof of the last claim of the
statement is now complete. O

Remark 2.6. Let W, be a valuation domain of K(X), with « € K. We have seen in the proof
of Theorem [2.5 that the completion of W, with respect to the M,-adic topology is isomorphic to
Vu: in fact, if « is transcendental over K, this is clear. If « is algebraic over K, then the M,-adic
completion of W, is equal to the (M, /Q.)-adic completion of W,/Q,, where @, is the height
one prime ideal of W, since Qo = (,cn M. It follows that if the rank of W, is 1, then W, is
immediate over K if and only if e = f = 1, thus «a € I/(\', so « is the limit of a (pseudo-)Cauchy

sequence {ay ey C K of transcendental type, according to the terminology used by Kaplansky in
his paper (see [6, Theorem 2]). Similarly, if the rank of W, is 2, then W, /Q, is immediate over



K if and only if e = f = 1, thus a € K. In this latter case, the corresponding Cauchy sequence
{ak }ren is of algebraic type.

Remark 2.7. We show now how the valuation domains W,, C K(X), a € P! (I?), are related with
the work of MacLane on valuations of the rational function field K (X) which extend a given DVR
V of K (see [II, [12]). The class of valuation domains of Definition are exactly the constant
degree limit valuations considered by MacLane in [I1} §7. p. 375] (we refer to that paper for all
the unexplained terminology that follows). Such a valuation domain is obtained as a suitable limit
of the so-called inductive commensurable valuations where the degree of the associated sequence
of key polynomials is bounded. These kind of valuation domains can be of two types, finite limit
valuations or infinite limit valuations (see [I1, §6 & §7, pp. 372-377, & Theorem 7.1] and [9, Note,
p. 108]). The first type of valuation domains are DVRs of K (X) with residue field which is a finite
extension of V/P ([11, Theorem 7.1 & Theorem 14.1]), so by Theorem [2.5|and Proposition [2.2] they

correspond to the W,’s where a € K is transcendental over K. The second type of valuation domain
is treated by MacLane as a one-dimensional valuation domain with the value group extended by
adding oo (they are also called pseudo-valuations in [I3]). In fact, as noted in [9, Lemma 1.23 &
p. 109], these last kind of limit valuations are 2-dimensional discrete valuation domains. Moreover,
the one-dimensional valuation overring of such a valuation domain W is of the form K[X],, for
some irreducible polynomial ¢ € K[X] and the residue field of W is a finite extension of the residue
field V/P (this can be verified directly or also by a suitable modification of the original proof by
MacLane in the case of finite limit valuations, [I1, Theorem 14.1]). Therefore, these valuations W

are exactly those of the form W, for a € K which is algebraic over K.

Conversely, suppose we have a valuation domain W,, a € K. By [II, Theorem 8.1] W, can
be realized as a limit valuation since its residue field is finite algebraic over V/P and the residue
field of an inductive commensurable valuation is a transcendental extension of V/P ([I1, Theorem
12.1]). Moreover, by [11, Theorem 14.1] the degree of the key polynomials is necessarily bounded,
so W, can be realized as a constant degree limit valuation.

Remark 2.8. In [I0] Loper and Werner construct Priifer domains contained between Z[X] and
Q[X] by considering arbitrary intersections of suitable valuation domains of Q(X), in order to
obtain examples of Priifer domains properly contained in Int(Z) = {f € Q[X] | f(Z) C Z}, the
classical ring of integer-valued polynomials over Z (see [10, Construction 2.3 & Corollary 2.12]).
The valuation domains used in that construction are exactly those introduced in Definition [2.1
and we show now that the Priifer domains of [I0] can be represented as rings of integer-valued
polynomials. Indeed, for each prime p € Z, the valuation domains V; of [10, Construction 2.3] have
finite residue field of cardinality bounded by a prescribed positive integer f,, and maximal ideal M;
such that pV; = M/*, for some e; bounded by a prescribed positive integer e,. Hence, by Theorem
each of these valuation domains is equal to W, o = {¢ € Q(X) | ¢(a) € Z,}, for some « in the
absolute integral closure ZT, of the ring Z, of p-adic integers, whose degree over Q, is bounded by
np = ep - fp. Let , C Z, be the set of all such elements a. Then we have

Dy = (] WpaNQIX] =Intg(Rp,Z,) = {f € QIX] | () € Z,}
aEcf),

which is the ring of polynomials with rational coefficients which are integer-valued over the set €,
with respect to Z,. The ring D obtained in [I0, Construction 2.3] as the intersection of all the



rings {D, | p € Z prime}, is thus represented as an intersection of such rings of integer-valued
polynomials over different subsets of integral elements over Z, of bounded degree, as p ranges
through the primes of Z. Following the notation of [3], we can give a more concise representation
of D. Let

[}
|
—
2
bS]
N
—
N
bS]
I
S

then

=

D =Into(2,2) = {f € Q[X] | f(a) € 2, YaeQ} (2.4)

where, for f € Q[X] and a = (a),, € 2 we set f(a) = (fap))p € Hpep@.

3 An ultrametric space of valuation domains of K(X)

In this section, we recover our initial assumptions, thus V' is a valuation domain of rank 1. Through-
out this section, we denote by 20 the set of all valuation domains W, of K(X), as « ranges in K.

For each a € K , we also set: -
Wa ={¢ € K(X) | ¢(a) € V}

By Proposition W, is a valuation domain of K (X) of rank 2, since « is algebraic over K by
definition. Clearly, W, N K(X) = W,, and W,, = W, if K is v-adically complete. Moreover, note
that W, is immediate over K(X) if and only if « is algebraic over K (if « is transcendental over K,
then W, has rank 1, by Proposition . We denote by 20 the set of all valuation domains W, of
K (X), for a € K. We also denote by P = Pi”(IA( ) the set of the monic irreducible polynomials
over K. Given a € K , we denote by p, € P"* the minimal polynomial of o over K. Given p € P
we let 2, C K be the set of roots of p(X). Let | | be the absolute value v induces on K. In general,
given an ultrametric space (S,|]), s € Sand r € R, r > 0, we let B(s,r) ={s' € S| [s— | < r}
be the open ball of center s and radius r.

In this section we show that there is a one-to-one correspondence from 20U to the set of orbits
of K under the action of the absolute Galois group Gp = Gal(f(/f(), that is, given a,a’ € IA(,
W4 = Wy if and only if « and o’ are roots of the same irreducible polynomial over K. Equivalently,
the set 20 is in bijection with the set P, Similarly, 20 is in bijection with P". We introduce now
in these spaces suitable natural topologies. We endow 20 with the Zariski topology, that is, the
topology which has as an open basis the sets E(¢1,...,¢0n) = {Wa | ¢;i € W,,Vi =1,...,n}, for
pi € K(X),i=1,...,n, n € N (see [I7, Chapt. VI, §17]). The set 20 is endowed with a similar
topology: for v; € IA((X), 1 =1,...,n, we set E(dﬁ,...,wn) =W, | i € Wo,Vi =1,...,n}.
We endow the set P with the following ultrametric distance, introduced by Krasner (see [7]): for

p,q € P we set
A(p,q) = min{la— | |a € Qp, 8 € Q,}

In other words, the function A(p,q) measures the smallest distance between the roots of p(X)
and the roots of ¢(X). As Krasner points out, for each a € €, there exists 8 € €, such that
| — B8] = A(p,q). The other main result of this section is that with the topologies we have

introduced P, 27 and M are homeomorphic.
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We recall the following formula due to Krasner (see [777 p. 150-151]): given p € P of degree

n with set of roots Q, ={a=0,...,a,} C K and 8 € K with minimal polynomial ¢ € P, we
have

p(B)] = HmaX{A(p, q), la — ail} (3.1)

Recall that, for ¢ € K(X) and p € P, the valuation of ¢(a) in E, for a € €2, does not depend
on the choice of « in Q,. In fact, for o, o’ € Q,, a # ¢/, the elements p(a), p(a’) are conjugated

over K, i.e., p(a) = o(p(a)), for some o € G ; then since K is complete of rank one, v and vo o
coincide ([I5, A., p. 127]), thus v(¢(a)) = v(o(p(a))) = v(p(a')).

The right hand side of (3.1)), which we denote by M,(A(p,q)), is a strictly increasing function
of A(p,q), that is, A(p,q) < A(p,¢) & My(A(p,q)) < My(A(p,q¢’)). In particular, formula
(3.1) shows that |p(5)| depends only on p(X) and A(p,pg). Therefore, |p(3)| = My(A(p,pg)) =
M,(A(p, q)) for each ¢ € P such that A(p,ps) = A(p, q). More generally, the real-valued function

M,(r) = Hmax{r, la — |} (3.2)

is a strictly increasing function of the real variable 7. It follows immediately that for each r € R+
we have M,(r) = |p(8)|, for each 8 € K such that A(p,pg) =r.

Remark 3.1. We will use the following well-known fact: a rational function ¢ € K(X) is a
continuous function over K with respect to the v-adic topology on its domain of definition, that is,
if @ € K is such that p(a) # oo, then, for each € € R, ¢ > 0, there exists § € R, § > 0, such tIEt
for all o/ € B(a,8) we have ¢(a’) € B(¢(a),e). In particular, if ¢ is integral at a (i.e., p(a) € V)
then for € < 1, the corresponding ¢ is such that ¢ is integral over B(«,d), that is, ¢ € W, for
all @’ € B(a,d). Actually, we note that, since we are considering rational functions over K, if

¢ is integral at o/ € K and p(X) = por(X) € P, then ¢ is integral over the set Q,, so, it is
sufficient that an element of €2, is in B(a, d) in order for ¢ to be integral at o; equivalently, for all
Par € B(pa,6) ={p € P" [ A(p,pa) <6}, ¢ € War.

We will also consider the sets formed by the contraction to K[X] and to K[X] of the valuation
domains of 20 and 20, respectively:

W) = {(Wa NK[X] |0 € K}, Wrpy = {WanK[X]|acK}

These contractions were first considered by MacLane in [11, p. 382], where they are called value
rings; see also [9] for a deeper study of their properties. Note also that we have the equality
WoNK[X] = {f e KIX]| f(a) € V}, where the last ring is a ring of integer-valued polynomials

over the finite set {a}, denoted by Intx ({a}, XA/) in [14]. The set Wxx] becomes a topological space
when it is endowed with the natural Zariski topology, where a basis is given by Ex(x)(f1,...,fn) =
{WoNK[X]| fi € WonNK[X],i =1,...,n}, where f1,..., f, are elements of K[X] and n € N.

e~

Similar topology is given to QBI?[ X7 We will show in our last main theorem that also Wk x) and

W R[x] are homeomorphic to P, 2 and 2. We show first in the next theorem that these sets are
in bijection with each other.
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Theorem 3.2. Let ap,as € E Then the following conditions are equivalent:
i) Wo, = Wa,.
it) Wo, N K[X] = W,, N K[X].
iii) Wa, N K[X] = W,, N K[X].
) ay, s are conjugated over K.
V) Wa, = Wh,.-
In particular, the sets 27, @, Wi (x], @f([x] and P are in bijective correspondence.

Proof. i) = ii). Clear.

1) = ). Suppose Wy, N K[X] = Wy, N K[X] and let f € Wy, N I/(\'[X] Let us write
(X) = Z?:O@»Xi, with a; € IA(, 0 < i < h and let us consider a; € K, 0 < i < h, such that
(@ — ai)al) = v(@; — a;) + w(a;) > v(f(e)), for all 0 < i < h and j = 1,2. If g(X) =
?:0 a; X" € K[X], then v(g(a1)) > min{v((g — f)(a1)),v(f(a1))} = v(f(a1)) > 0 (note that
(9— f)(1)) > min{v(a; —a;) +iv(a1)|i € {0,...,h}}). Thus, g € Wy, NK[X] = W,, NK[X] and
flaz)) = min{o((f —g)(a2)), v(g(a2))} = 0 (note that v((f —g)(az)) > minfv(a; —a;)+iv(az)|i €
.-y bt > v(f(a1))). Hence, f € W,, N K[X]. Since f(X) was arbitrary, this shows that
oy N IA([X] C Wy, N I?[X] and the other inclusion is proved in the same way.

iii) = iv). Suppose Wa, N K[X] = W,, N K[X] and let p = pa, € P™. Let us fix w € P,
w # 0. If p(ag) # 0, then there exists n € N such that @ ¢ \7, which is a contradiction, since
for every n € N we have % € Wa, N K[X] = Wa, N K[X]. Therefore p(as) = 0, so that oy, oy
are conjugated over K.

iv) = v). Suppose there exists o € G such that o(a1) = az. Given f € Wy, o(f) = f € Wa,,
50 Wa, € Wa,. The other inclusion is proved symmetrically, so W,, = W, .

v) = ). Since W,, N K(X) = W,,, i = 1,2, the claim follows immediately.

The last statement is now clear. O

SEME=

)

Proposition 3.3. Let o € E, r >0 and w € P, w # 0. Then there exist ¢ € K[X] and n € N
such that 1) s integral at o and for all Wy € E(q(X,)), we have por € B(pa,r). In particular,

wn wn

the family {E(q(X)) | ¢ € K[X],n € N} is a subbasis for the Zariski topology on 20.

wn

Proof. Given o € K, let p = pa € P and d the degree of p(X). Let B = B(p,r), where r is
any given positive real number. We suppose first that p(X) is separable. We choose n € N such
that |w™| < Mp(r). Let A(p) be the minimum distance of the distinct roots & = aq,...,aq of

p in K. Then there exists § > 0 such that if ¢ € K[X] is monic of degree d and |¢ — p|g < §

(where | |g is the absolute value associated with the Gauss valuation vg), then for each a; € Q,,

i=1,...,d, there exists a unique root ; € Q, such that |a; — 8;| < min{A(p),r} (see [15, Chapt.

5, p. 139]). In particular, A(q,p) < r and ¢(X) is irreducible over K (hence also over K; this holds

by Krasner’s Lemma, see [15, Chapt. 5, G. p. 139]). Moreover, up to a choice of a smaller §, we
9]

may also suppose that |g(a)| < |w™|, so that the polynomial -7 is integral at . We claim now
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that M,(p) = M,(p) for each p € R, and by the very definition (3.2) it is sufficient to show that
|y — | = |B1 — Bi, for each i = 2,...,d. Indeed, we have

|61 — Bil = |f1 — a1 + o1 —a; + o — Bi] = |ar — oy

since |a1 — ay| > A(p) > |B; — ¢ for j = 1,4. Finally, we have

Wa/eE( (X)) & 19(a!)] = My(A(g,por)) = My(Algspar)) < 17| < My(r) = Algspor) <7

since Mp(-) is a strictly increasing function. Therefore, A(pq/,p) < max{A(pa’,q),A(g,p)} < r,
thus, po € B.

We suppose now that p(X) is inseparable. Let [ > 0 be the characteristic of K and let p(X) =
p(X'"), where m > 1 and p € P is separable. Note that if Q, = {a = ay,...,a;} (where t < d
is the number of distinct roots of p(X)), then Q5 = {a}”,...,al"}. Weset vy =a!” and v; = al”,
fori=2,...,t. Let 7 =r!". By the ﬁrst part of the proof, there exist § € PN K[X] and n € N
such that it n) is integral at v = a!” and for each W, € E(Q(),f)) we have p,, € B(p,7). We set
q(X) = q(le). We have that q( %) is integral at a since g(a) = q(y). Moreover, let W, € E(%: g(X ))

This implies that W, € E (ao(ﬁf)) where 7/ = /', Therefore, A(p,/,p) < 7. Now,

A(py,p) =min{]y — | [i=1,...,t} =
=min{|a"" —a!"||i=1,...,t} =min{|e/ — | |i=1,...,t} = Apar,p)!”
Hence, A(pa/,p) < r, as wanted.

For the last statement, the finite intersections of the sets E(qi)f) ), for ¢ € K[X] and n € N, form
a basis for a topology on 2 which is weaker than the Zariski topology on 20. Let E(p), ¢ € K(X)

be an element of the subbasis for the Zariski topology. Let W, € E(p), a € K. By continuity
of ¢, there exists a neighborhood B = B(pa,r) of po(X), r > 0, such that for all p,, € B, we
have ¢ € W4 (see Remark . Then by what we have proved above, there exists a basic open
set £ = E(qff,f)), where ¢ € K[X] and n € N, such that W, € E C E(p), which shows that

{E(%) | ¢ € K[X],n € N} is a subbasis for the Zarisky topology on 20. O

Note that in the case K is a separable extension of K , the above proof shows that we may also
suppose that the polynomials q( ) above are irreducible over K (hence also over K). Also, the

same Proposition shows that {E( W,L)) | ¢ € K[X],n € N} is a subbasis for the Zarisky topology

on 2. These results are the main ingredients for the proof of our last theorem.

Theorem 3.4. The topological spaces 23, @, Wi (x], @qu] and P are homeomorphic.

Proof. Let Z be the bijection from 20 to 2 defined by W, — W,, for each a € K (Theorem .
Clearly, this map is continuous, since for ¢ € K(X) we have Z=H(E(p)) = {Wao | Wa 3 ¢} =

Wa | Wa 3 ¢} = E(p). Conversely, let E(1), ¥ € K(X), be a basic open set and let W, be an
element of I(E(w)) Let w € P, w # 0. By Proposition there exist ¢ € K[X] and n € N such
that W, € E(Q(X)) C I(E(l/})) Hence, 7 is open and 20 and 2 are homeomorphic.

wn
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The same proof shows that the maps 20 — Wg(x), Wo — Wao N K[X], and W — @qu],
Wa = Wa N K [X], for a € K , are homeomorphisms (thel are bijections by Theorem .

Finally, we prove that ® : P — 90, p, — W,, o € K , is an homeomorphism. We prove first
that ® is continuous. It is sufficient to show that, for any ¢ € K(X), the preimage via ® of E(p)
in P"" is open. Let ¢ € P"" be an element of this preimage, so that ¢ € Wg, where § is any root
of ¢(X). We have to show that there exists a neighborhood of ¢(X) in P which is contained in
O~1(E(y)), that is, if A(p,q), p € P, is sufficiently small, then ®(p) = Wy is in E(yp), where

8 e K is any root of p(X). But this holds because a rational function ¢ is a continuous function
with respect to the v-adic topology on its domain of definition, see Remark

Next, we show that ® is an open map. Let B(p,r) be an open neighborhood of a given p € P'™*
for some r € R, r > 0, and let W, € ®(B(p,r)) & A(pa,p) < r. By well-known properties of
ultrametric distances, B(p,r) = B(pa,r). Hence, without loss of generality, we may suppose that
p(a) = 0. Let w € P, w # 0. By Proposition there exist ¢ € K[X] and n € N such that

W, € E(1%)) C &(B(p,r)), so the map ® is open, hence an homeomorphism. O

wmn
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