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Real theory of central simple algebras with involution

Aim: to develop real algebra for (finite dimensional) central
simple algebras with involution

Examples:
(Mn(R), t), (Mn(C),−t), (Mn(H),−t),

(
Mn(Q(

√
2)), Int(a) ◦ t

)
In general:

Theorem (≈ Wedderburn’s Theorem)

(A, σ) � (Mn(D), Int(u) ◦ ϑt)
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Real theory of central simple algebras with involution

Fix notation (for the next few slides):

ñ F : (formally) real field

ñ XF : space of orderings of F

ñ FP : real closure of F at P ∈ XF

ñ a ≥P b
def⇐⇒ a− b ∈ P

ñ A: simple F -algebra with1 Z(A) = F and [A : F] <∞

1Our results are also valid for unitary involutions, but in order to simplify
the presentation, I ignore them in this talk.
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First step: signatures, positivity

Witt group: W(A, σ) ≈ hermitian forms over (A, σ)

Signature at P ∈ XF : signηP : W(A, σ) -→ Z (Nice properties !)

Positivity: Fix η. Let P ∈ XF and a ∈ Sym(A, σ). Then

a >P 0
def⇐⇒ signηP〈a〉σ is maximal

⇐⇒ signηP〈a〉σ = nP := matrix size of A⊗ FP (= Theorem !)

Application: answer[3] to Procesi-Schacher question[13]

(When are totally positive elements in (A, σ) sums of hermitian
squares ? – cf. Hilbert’s 17th Problem)

Question: Can positivity be defined intrinsically ?
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Positive cones on (A, σ)
Prepositive cone on (A, σ): P ⊆ Sym(A, σ) with

(1) P +P ⊆P

(2) σ(x) ·P · x ⊆P , ∀x ∈ A

(3) P ∩−P = {0}
(4) PF := {α ∈ F | αP ⊆P} ∈ XF

Positive cone := a maximal prepositive cone

Partial ordering åP on Sym(A, σ): a åP b
def⇐⇒ a− b ∈P

Theorem (A.-U. 2017[4])
X(A,σ) := {positive cones on (A, σ)} is a spectral space w.r.t.
the Harrison topology with basis

Hσ (a1, . . . ,ak) := {P ∈ X(A,σ) | a1 åP 0, . . . ,ak åP 0}.
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Positive cones on (A, σ)

Also[4]:

“Artin” Theorem: describes totally positive elements

“Artin-Schreier” Theorem: describes “formally real” algebras

Examples

ñ (A, σ) = (F , idF) =⇒ X(A,σ) = {P,−P | P ∈ XF}
ñ (A, σ) = (Mn(R), t) =⇒ X(A,σ) = {PSD,−PSD}
ñ (A, σ) with A division algebra

=⇒ X(A,σ) = {MP ,−MP | P ∈ XF , signηP 6≡ 0}

with MP := {a ∈ Sym(A, σ)× | signηP〈a〉σ is maximal} ∪ {0}
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Positive cones on (A, σ)

Theorem (“Sylvester Inertia”, A.-U. 2017[4])
∃t = t(A, σ) ∈ N such that ∀P ∈ X(A,σ), and ∀h ∈ W(A, σ),
∃u1, . . . ,ut ∈ P :=PF ∈ XF , ai ∈P and bj ∈ −P such that

n2
P × 〈u1, . . . ,ut〉 ⊗ h ' 〈a1, . . . ,ar〉σ ⊥ 〈b1, . . . ,bs〉σ .

Furthermore, r and s only depend on P and rank h.

Signature at P:

signP h := r − s
nPt

∈ Z

= εP signηP h, εP ∈ {−1,1} (= Theorem !)
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Valuation rings / valuations on real fields

Let P ∈ XF . Then

RP := {x ∈ F | ∃r ∈ Q |x|P ≤P r}

is a valuation ring in F with unique maximal ideal

IP := {x ∈ F | ∀r ∈ Q>0 |x|P ≤P r}.

RP ←→ valuation vP on F , and 1+ IP ⊂ P (vP is compatible with P).
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Valuation rings / valuations on real fields

v: valuation on F with residue field Fv and compatible with
P ∈ XF . Then P induces an ordering P on Fv .

Conversely, the Baer-Krull theorem describes the orderings on
F , compatible with v, that induce a given ordering on Fv .

Question:
Similar connection between P ∈ X(A,σ) and noncommuta-
tive valuations / valuation rings ?
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Noncommutative valuation rings / valuations

1950s: Valuations on division rings and invariant valuation
rings

1980s: Dubrovin valuation rings of simple Artinian rings

1990s: Morandi value functions on simple Artinian rings

2010s: Tignol-Wadsworth gauges on semisimple rings
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Conventions for rest of talk

To simplify presentation :

ñ D: division algebra with centre a field F , [D : F] <∞

ñ A: central simple algebra with centre a field F , [A : F] <∞

ñ Γ : divisible totally ordered abelian group

(large enough to contain the values of all valuations and
the degrees of all gradings that occur)
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Valuations on division rings / invariant valuation rings

Valuation defined in the usual way: v : D -→ Γ ∪ {∞} such that

(1) v(x) = ∞ ⇐⇒ x = 0

(2) v(x + y) ≥min{v(x), v(y)}
(3) v(xy) = v(x)+ v(y)

Γv := v(D×): value group (subgroup of Γ )

Rv := {d ∈ D | v(d) ≥ 0} is an invariant valuation ring of D, i.e.
∀d ∈ D×,

(a) d ∈ Rv or d−1 ∈ Rv

(b) dRvd−1 = Rv

valuations ←→ invariant valuation rings
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Valuations on division rings / invariant valuation rings

Very useful ! E.g. Amitsur (1972): construction of non-crossed
product algebras.

Problem: valuations on F need not extend to D !

Theorem (Ershov 1988[9], Morandi 1989[11])
v extends from F to D ⇐⇒ D ⊗ Fh is division
(Fh: Henselization). The extension is unique.

Problem: tensor products, scalar extensions may give matrices:
v does not extend (zero divisors !)
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Dubrovin valuation rings

A subring B of A with Jacobson radical J = J(B) is a Dubrovin
valuation ring of A if

(1) B/J is a simple ring

(2) ∀a ∈ A \ B, ∃b,b′ ∈ B such that ab,b′a ∈ B \ J

Examples: (matrices over) invariant valuation rings, Azumaya
algebras over commutative valuation rings

Going down:

ñ B ∩ F = Z(B)
ñ Z(B) is a valuation ring of F with maximal ideal J ∩ F
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Dubrovin valuation rings

Going up:

Theorem (Dubrovin 1984[8])
V: valuation ring of F =⇒ ∃ Dubrovin valuation ring B of A
with B ∩ F = V

Theorem (Wadsworth 1989[17])
B is unique up to isomorphism

Problem: in general there is no “valuation” on A associated to B
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Morandi value functions

w : A -→ Γ ∪ {∞} is a Morandi value function if

(1) w(x) = ∞ ⇐⇒ x = 0

(2) w(x + y) ≥min{w(x),w(y)}

(3) w(xy) ≥ w(x)+w(y)

(4) w(−1) = 0

(5) Γw := w(A×) = w
(
{x ∈ A× | w(x−1) = −w(x)}

)
Let

Bw := {x ∈ A | w(x) ≥ 0} (the “valuation ring” of w)

Jw := {x ∈ A | w(x) > 0} (two-sided ideal)

Aw := Bw/Jw (the “residue ring” of w)
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Morandi value functions

Theorem (Morandi 1989[12])
Let B be a Dubrovin valuation ring of A. Then B is integral
over V := Z(B) = B ∩ F ⇐⇒ ∃ a Morandi value function w
on A with B = Bw and J(B) = Jw .

In this case:

(1) v := w|F is a valuation on F corresponding to V

(2) w(x) ≤ 1
nv
(
Nrd(x)

)
in general, where n =

√
[A : F]

(3) w is uniquely determined on A by v and B
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Morandi value functions

Theorem (Wadsworth 1989 cf. [12])
Let w be a Morandi value function on A.Then Aw simple =⇒
Bw is a Dubrovin valuation ring of A with J(Bw) = Jw .

In this case, the defect of w is the integer

δ(w) := [A : F]
[Aw : Fv] |Γw : Γv |
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Tignol-Wadsworth gauges
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Tignol-Wadsworth gauges

Let v : F -→ Γ ∪ {∞} be a valuation.

Then g : A -→ Γ ∪ {∞} is a v-value function if ∀x, y ∈ A, ∀λ ∈ F ,

(1) g(x) = ∞ ⇐⇒ x = 0

(2) g(x + y) ≥min{g(x),g(y)}
(3) g(λx) = v(λ)+ g(x)

g is surmultiplicative if

g(1) = 0 and g(xy) ≥ g(x)+ g(y)
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Tignol-Wadsworth gauges

Define abelian groups

A≥γ := {a ∈ A | g(a) ≥ γ}, A>γ := {a ∈ A | g(a) > γ}

Aγ := A≥γ/A>γ

Similarly (for v):
F≥γ , F>γ , Fγ

If g is surmultiplicative v-value function on A, then

gr(A) :=
⊕
γ∈Γ

Aγ is a graded algebra over gr(F) :=
⊕
γ∈Γ

Fγ

A0: residue ring of g; F0= Fv : residue field of v
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Tignol-Wadsworth gauges

g : A -→ Γ ∪ {∞} is a v-gauge if

(1) g is a surmultiplicative v-value function

(2) gr(A) is a graded semisimple gr(F)-algebra

(3) [gr(A) : gr(F)] = [A : F]

Theorem (Tignol-Wadsworth 2010[14])

Let g be a surmultiplicative v-value function on A. Then g is
a Morandi value function on A with defect δ(g) = 1 ⇐⇒ g
is a gauge on A with simple residue ring A0.

In this case, the gauge ring A≥0 is a Dubrovin valuation
ring of A.
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Positive cones and gauges on (A, σ)

Fix P ∈ X(A,σ) with P =PF ∈ XF . (We say “P is over P”.)

Assume 1 ∈P and let (inspired by Holland 1980[10])

RP := {a ∈ A | ∃m ∈ Q σ(a)a äP m}
IP := {a ∈ A | ∀m ∈ Q>0 σ(a)a äP 1/m}

Properties

ñ RP is a subring of A and σ(RP) ⊆ RP

ñ IP is a two-sided ideal of RP and σ(IP) ⊆ IP
ñ R×P = {a ∈ A | ∃r, s ∈ Q>0 r äP σ(a)a äP s}
ñ RP ∩ F = RP
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Positive cones and gauges on (A, σ)
Theorem (A.-U. 2017[7])
Let P ∈ X(A,σ) with P=PF∈ XF . Assume that 1∈P. Then

(1) P induces a vP -gauge wP on A with RP = A≥0 and
IP = A>0

(2) wP is σ -special, i.e. wP(σ(x)x) = 2wP(x) ∀x ∈ A

(3) P induces a prepositive cone P on (A0, σ)
(A0: residue ring of wP ; σ : involution induced by σ )

Sketch of Proof of Part (1).

(a) Extend scalars to real closure at P:2

(A⊗ FP , σ ⊗ id) � (Mn(FP), t)

Then P over P extends to PSD over P on (Mn(FP), t), where
P = F2

P : unique ordering on FP .

Let RP be the valuation ring of FP induced by P and vP the
corresponding valuation.

2To simplify the presentation I only consider the split orthogonal case.
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(b) Consider the “Holland ring” RPSD and ideal IPSD.

Then RPSD is a Dubrovin valuation ring of Mn(FP) and
J(RPSD) = IPSD.

In fact: RPSD =Mn(RP).

(c) RPSD is integral over Z(RPSD) = RPSD ∩ FP = RP.

(d) Morandi =⇒ ∃ Morandi value function

wPSD :Mn(FP) -→ Γ ∪ {∞}

with RPSD = BwPSD . In fact:

wPSD
(
(aij)

)
=min

i,j
{vP(aij)}

(e) wPSD is a surmultiplicative vP-value function.

(f) char(FvP) = 0 =⇒ defect δ(wPSD) = 1.
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(g) Tignol-Wadsworth =⇒ wPSD is a vP-gauge on Mn(FP).

(h) wP := wPSD|A is a vP -gauge on A. (Requires some work !)

(i) RP = A≥0 and IP = A>0: easy computation. �

Problems we are currently working on

ñ In part (3), is P maximal, i.e., a positive cone ?

ñ A notion of compatibility between gauges and positive
cones ?

ñ Baer-Krull: Can we lift positive cones from the residue
algebra with involution to (A, σ) ?

ñ Residue hermitian forms ?

ñ Bröcker-Prestel local-global principle ?

Thank you !
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