

Positive cones and gauges on algebras with involution

(Joint work with Vincent Astier)

Thomas Unger

University College Dublin

Sums of Squares
Real Algebraic Geometry and its Applications
Innsbruck, 21.08.2017

Real theory of central simple algebras with involution

Aim: to develop real algebra for (finite dimensional) central simple algebras with involution

Examples:

$(\mathbb{M}_n(\mathbb{R}), t)$, $(\mathbb{M}_n(\mathbb{C}), -t)$, $(\mathbb{M}_n(\mathbb{H}), -t)$, $(\mathbb{M}_n(\mathbb{Q}(\sqrt{2})), \text{Int}(a) \circ t)$

In general:

Theorem (\approx Wedderburn's Theorem)

$$(A, \sigma) \cong (\mathbb{M}_n(D), \text{Int}(u) \circ \vartheta^t)$$

Real theory of central simple algebras with involution

Fix notation (for the next few slides):

- ▶ F : (formally) real field
- ▶ X_F : space of orderings of F
- ▶ F_P : real closure of F at $P \in X_F$
- ▶ $a \geq_P b \stackrel{\text{def}}{\iff} a - b \in P$
- ▶ A : simple F -algebra with¹ $Z(A) = F$ and $[A : F] < \infty$

¹Our results are also valid for unitary involutions, but in order to simplify the presentation, I ignore them in this talk.

First step: signatures, positivity

Witt group: $W(A, \sigma) \approx$ hermitian forms over (A, σ)

Signature at $P \in X_F$: $\text{sign}_P^\eta : W(A, \sigma) \rightarrow \mathbb{Z}$ (Nice properties !)

Positivity: Fix η . Let $P \in X_F$ and $a \in \text{Sym}(A, \sigma)$. Then

$a >_P 0 \stackrel{\text{def}}{\iff} \text{sign}_P^\eta \langle a \rangle_\sigma$ is maximal

$\iff \text{sign}_P^\eta \langle a \rangle_\sigma = n_P :=$ matrix size of $A \otimes F_P$ (= Theorem !)

Application: answer^[3] to Procesi-Schacher question^[13]

(*When are totally positive elements in (A, σ) sums of hermitian squares ? – cf. Hilbert's 17th Problem*)

Question: Can positivity be defined intrinsically ?

Positive cones on (A, σ)

Prepositive cone on (A, σ) : $\mathcal{P} \subseteq \text{Sym}(A, \sigma)$ with

- (1) $\mathcal{P} + \mathcal{P} \subseteq \mathcal{P}$
- (2) $\sigma(x) \cdot \mathcal{P} \cdot x \subseteq \mathcal{P}, \quad \forall x \in A$
- (3) $\mathcal{P} \cap -\mathcal{P} = \{0\}$
- (4) $\mathcal{P}_F := \{\alpha \in F \mid \alpha \mathcal{P} \subseteq \mathcal{P}\} \in X_F$

Positive cone := a maximal prepositive cone

Partial ordering $\succ_{\mathcal{P}}$ on $\text{Sym}(A, \sigma)$: $a \succ_{\mathcal{P}} b \stackrel{\text{def}}{\iff} a - b \in \mathcal{P}$

Theorem (A.-U. 2017^[4])

$X_{(A, \sigma)} := \{\text{positive cones on } (A, \sigma)\}$ is a spectral space w.r.t.
the **Harrison topology** with basis

$$H_{\sigma}(a_1, \dots, a_k) := \{\mathcal{P} \in X_{(A, \sigma)} \mid a_1 \succ_{\mathcal{P}} 0, \dots, a_k \succ_{\mathcal{P}} 0\}.$$

Positive cones on (A, σ)

Also^[4]:

“Artin” Theorem: describes totally positive elements

“Artin-Schreier” Theorem: describes “formally real” algebras

Examples

$$\blacktriangleright (A, \sigma) = (F, \text{id}_F) \implies X_{(A, \sigma)} = \{P, -P \mid P \in X_F\}$$

$$\blacktriangleright (A, \sigma) = (\mathbb{M}_n(\mathbb{R}), t) \implies X_{(A, \sigma)} = \{\text{PSD}, -\text{PSD}\}$$

$\blacktriangleright (A, \sigma)$ with A division algebra

$$\implies X_{(A, \sigma)} = \{\mathcal{M}_P, -\mathcal{M}_P \mid P \in X_F, \text{sign}_P^\eta \neq 0\}$$

with $\mathcal{M}_P := \{a \in \text{Sym}(A, \sigma)^\times \mid \text{sign}_P^\eta \langle a \rangle_\sigma \text{ is maximal}\} \cup \{0\}$

Positive cones on (A, σ)

Theorem (“Sylvester Inertia”, A.-U. 2017^[4])

$\exists t = t(A, \sigma) \in \mathbb{N}$ such that $\forall \mathcal{P} \in X_{(A, \sigma)}$, and $\forall h \in W(A, \sigma)$,
 $\exists u_1, \dots, u_t \in P := \mathcal{P}_F \in X_F$, $a_i \in \mathcal{P}$ and $b_j \in -\mathcal{P}$ such that

$$n_P^2 \times \langle u_1, \dots, u_t \rangle \otimes h \simeq \langle a_1, \dots, a_r \rangle_{\sigma} \perp \langle b_1, \dots, b_s \rangle_{\sigma}.$$

Furthermore, r and s only depend on \mathcal{P} and rank h .

Signature at \mathcal{P} :

$$\text{sign}_{\mathcal{P}} h := \frac{r - s}{n_P t} \in \mathbb{Z}$$

$$= \varepsilon_{\mathcal{P}} \text{sign}_{\mathcal{P}}^{\eta} h, \quad \varepsilon_{\mathcal{P}} \in \{-1, 1\} \quad (= \text{Theorem !})$$

Valuation rings / valuations on real fields

Let $P \in X_F$. Then

$$R_P := \{x \in F \mid \exists r \in \mathbb{Q} \quad |x|_P \leq_P r\}$$

is a **valuation ring** in F with unique maximal ideal

$$I_P := \{x \in F \mid \forall r \in \mathbb{Q}_{>0} \quad |x|_P \leq_P r\}.$$

$R_P \longleftrightarrow$ **valuation** v_P on F , and $1 + I_P \subset P$ (v_P is **compatible** with P).

Valuation rings / valuations on real fields

v : valuation on F with residue field F_v and compatible with $P \in X_F$. Then P induces an ordering \overline{P} on F_v .

Conversely, the **Baer-Krull theorem** describes the orderings on F , compatible with v , that induce a given ordering on F_v .

Question:

Similar connection between $\mathcal{P} \in X_{(A,\sigma)}$ and noncommutative valuations / valuation rings ?

Noncommutative valuation rings / valuations

- 1950s: Valuations on division rings and invariant valuation rings
- 1980s: Dubrovin valuation rings of simple Artinian rings
- 1990s: Morandi value functions on simple Artinian rings
- 2010s: Tignol-Wadsworth gauges on semisimple rings

Conventions for rest of talk

To simplify presentation :

- ▶ D : division algebra with centre a field F , $[D : F] < \infty$
- ▶ A : central simple algebra with centre a field F , $[A : F] < \infty$
- ▶ Γ : divisible totally ordered abelian group
(large enough to contain the values of all valuations and the degrees of all gradings that occur)

Valuations on division rings / invariant valuation rings

Valuation defined in the usual way: $v : D \rightarrow \Gamma \cup \{\infty\}$ such that

- (1) $v(x) = \infty \iff x = 0$
- (2) $v(x + y) \geq \min\{v(x), v(y)\}$
- (3) $v(xy) = v(x) + v(y)$

$\Gamma_v := v(D^\times)$: **value group** (subgroup of Γ)

$R_v := \{d \in D \mid v(d) \geq 0\}$ is an **invariant valuation ring** of D , i.e.
 $\forall d \in D^\times$,

- (a) $d \in R_v$ or $d^{-1} \in R_v$
- (b) $dR_vd^{-1} = R_v$

valuations \longleftrightarrow invariant valuation rings

Valuations on division rings / invariant valuation rings

Very useful ! E.g. Amitsur (1972): construction of non-crossed product algebras.

Problem: valuations on F need not extend to D !

Theorem (Ershov 1988^[9], Morandi 1989^[11])

v extends from F to $D \iff D \otimes F^h$ is division
(F^h : Henselization). The extension is unique.

Problem: tensor products, scalar extensions may give matrices:
 v does not extend (zero divisors !)

Dubrovin valuation rings

A subring B of A with Jacobson radical $J = J(B)$ is a **Dubrovin valuation ring** of A if

- (1) B/J is a simple ring
- (2) $\forall a \in A \setminus B, \exists b, b' \in B$ such that $ab, b'a \in B \setminus J$

Examples: (matrices over) invariant valuation rings, Azumaya algebras over commutative valuation rings

Going down:

- ▶ $B \cap F = Z(B)$
- ▶ $Z(B)$ is a valuation ring of F with maximal ideal $J \cap F$

Dubrovin valuation rings

Going up:

Theorem (Dubrovin 1984^[8])

V : valuation ring of $F \Rightarrow \exists$ Dubrovin valuation ring B of A
with $B \cap F = V$

Theorem (Wadsworth 1989^[17])

B is unique up to isomorphism

Problem: in general there is no “valuation” on A associated to B

Morandi value functions

$w : A \rightarrow \Gamma \cup \{\infty\}$ is a **Morandi value function** if

(1) $w(x) = \infty \iff x = 0$

(2) $w(x + y) \geq \min\{w(x), w(y)\}$

(3) $w(xy) \geq w(x) + w(y)$

(4) $w(-1) = 0$

(5) $\Gamma_w := w(A^\times) = w(\{x \in A^\times \mid w(x^{-1}) = -w(x)\})$

Let

$$B_w := \{x \in A \mid w(x) \geq 0\} \quad (\text{the "valuation ring" of } w)$$

$$J_w := \{x \in A \mid w(x) > 0\} \quad (\text{two-sided ideal})$$

$$A_w := B_w/J_w \quad (\text{the "residue ring" of } w)$$

Morandi value functions

Theorem (Morandi 1989^[12])

Let B be a Dubrovin valuation ring of A . Then B is integral over $V := Z(B) = B \cap F \iff \exists$ a Morandi value function w on A with $B = B_w$ and $J(B) = J_w$.

In this case:

- (1) $v := w|_F$ is a valuation on F corresponding to V
- (2) $w(x) \leq \frac{1}{n}v(\text{Nrd}(x))$ in general, where $n = \sqrt{[A : F]}$
- (3) w is uniquely determined on A by v and B

Morandi value functions

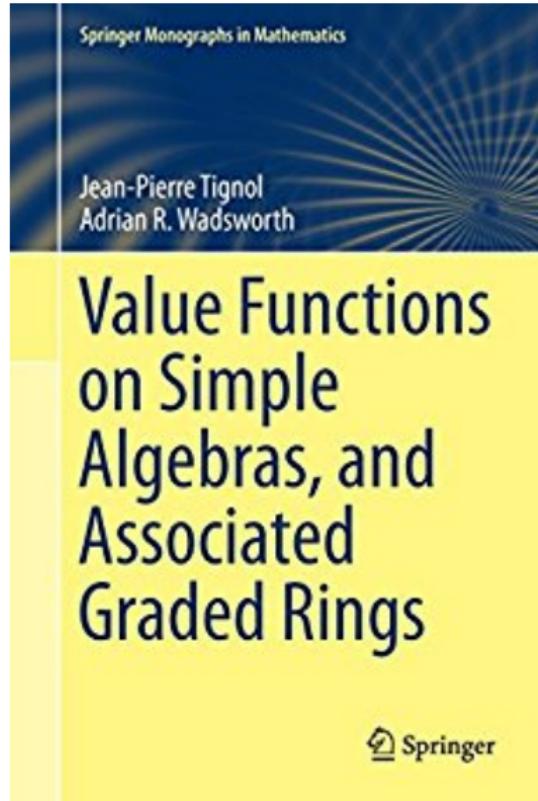
Theorem (Wadsworth 1989 cf. [12])

Let w be a Morandi value function on A . Then A_w simple \Rightarrow B_w is a Dubrovin valuation ring of A with $J(B_w) = J_w$.

In this case, the **defect** of w is the integer

$$\delta(w) := \frac{[A : F]}{[A_w : F_v] |\Gamma_w : \Gamma_v|}$$

Tignol-Wadsworth gauges



Tignol-Wadsworth gauges

Let $v : F \rightarrow \Gamma \cup \{\infty\}$ be a valuation.

Then $g : A \rightarrow \Gamma \cup \{\infty\}$ is a **v -value function** if $\forall x, y \in A, \forall \lambda \in F$,

- (1) $g(x) = \infty \iff x = 0$
- (2) $g(x + y) \geq \min\{g(x), g(y)\}$
- (3) $g(\lambda x) = v(\lambda) + g(x)$

g is **surmultiplicative** if

$$g(1) = 0 \quad \text{and} \quad g(xy) \geq g(x) + g(y)$$

Tignol-Wadsworth gauges

Define abelian groups

$$A_{\geq y} := \{a \in A \mid g(a) \geq y\}, \quad A_{>y} := \{a \in A \mid g(a) > y\}$$

$$A_y := A_{\geq y} / A_{>y}$$

Similarly (for v):

$$F_{\geq y}, \quad F_{>y}, \quad F_y$$

If g is surmultiplicative v -value function on A , then

$$\text{gr}(A) := \bigoplus_{y \in \Gamma} A_y \quad \text{is a graded algebra over} \quad \text{gr}(F) := \bigoplus_{y \in \Gamma} F_y$$

A_0 : residue ring of g ; $F_0 = F_v$: residue field of v

Tignol-Wadsworth gauges

$g : A \rightarrow \Gamma \cup \{\infty\}$ is a **v -gauge** if

- (1) g is a surmultiplicative v -value function
- (2) $\text{gr}(A)$ is a graded semisimple $\text{gr}(F)$ -algebra
- (3) $[\text{gr}(A) : \text{gr}(F)] = [A : F]$

Theorem (Tignol-Wadsworth 2010^[14])

Let g be a surmultiplicative v -value function on A . Then g is a Morandi value function on A with defect $\delta(g) = 1 \iff g$ is a gauge on A with simple residue ring A_0 .

*In this case, the **gauge ring** $A_{\geq 0}$ is a Dubrovin valuation ring of A .*

Positive cones and gauges on (A, σ)

Fix $\mathcal{P} \in X_{(A, \sigma)}$ with $P = \mathcal{P}_F \in X_F$. (We say “ \mathcal{P} is over P ”.)

Assume $1 \in \mathcal{P}$ and let (inspired by Holland 1980^[10])

$$R_{\mathcal{P}} := \{a \in A \mid \exists m \in \mathbb{Q} \quad \sigma(a)a \leq_{\mathcal{P}} m\}$$

$$I_{\mathcal{P}} := \{a \in A \mid \forall m \in \mathbb{Q}_{>0} \quad \sigma(a)a \leq_{\mathcal{P}} 1/m\}$$

Properties

- ▶ $R_{\mathcal{P}}$ is a subring of A and $\sigma(R_{\mathcal{P}}) \subseteq R_{\mathcal{P}}$
- ▶ $I_{\mathcal{P}}$ is a two-sided ideal of $R_{\mathcal{P}}$ and $\sigma(I_{\mathcal{P}}) \subseteq I_{\mathcal{P}}$
- ▶ $R_{\mathcal{P}}^{\times} = \{a \in A \mid \exists r, s \in \mathbb{Q}_{>0} \quad r \leq_{\mathcal{P}} \sigma(a)a \leq_{\mathcal{P}} s\}$
- ▶ $R_{\mathcal{P}} \cap F = R_P$

Positive cones and gauges on (A, σ)

Theorem (A.-U. 2017^[7])

Let $\mathcal{P} \in X_{(A, \sigma)}$ with $P = \mathcal{P}_F \in X_F$. Assume that $1 \in \mathcal{P}$. Then

- (1) \mathcal{P} induces a v_P -gauge $w_{\mathcal{P}}$ on A with $R_{\mathcal{P}} = A_{\geq 0}$ and $I_{\mathcal{P}} = A_{>0}$
- (2) $w_{\mathcal{P}}$ is σ -special, i.e. $w_{\mathcal{P}}(\sigma(x)x) = 2w_{\mathcal{P}}(x) \quad \forall x \in A$
- (3) \mathcal{P} induces a prepositive cone $\overline{\mathcal{P}}$ on $(A_0, \overline{\sigma})$
(A_0 : residue ring of $w_{\mathcal{P}}$; $\overline{\sigma}$: involution induced by σ)

Sketch of Proof of Part (1).

(a) Extend scalars to real closure at P :²

$$(A \otimes F_P, \sigma \otimes \text{id}) \cong (\mathbb{M}_n(F_P), t)$$

Then \mathcal{P} over P extends to PSD over \mathbb{P} on $(\mathbb{M}_n(F_P), t)$, where $\mathbb{P} = F_P^2$: unique ordering on F_P .

Let $R_{\mathbb{P}}$ be the valuation ring of F_P induced by \mathbb{P} and $v_{\mathbb{P}}$ the corresponding valuation.

²To simplify the presentation I only consider the split orthogonal case.

(b) Consider the “Holland ring” R_{PSD} and ideal I_{PSD} .

Then R_{PSD} is a Dubrovin valuation ring of $\mathbb{M}_n(F_P)$ and $J(R_{\text{PSD}}) = I_{\text{PSD}}$.

In fact: $R_{\text{PSD}} = \mathbb{M}_n(R_{\mathbb{P}})$.

(c) R_{PSD} is integral over $Z(R_{\text{PSD}}) = R_{\text{PSD}} \cap F_P = R_{\mathbb{P}}$.

(d) Morandi $\Rightarrow \exists$ Morandi value function

$$w_{\text{PSD}} : \mathbb{M}_n(F_P) \longrightarrow \Gamma \cup \{\infty\}$$

with $R_{\text{PSD}} = B_{w_{\text{PSD}}}$. In fact:

$$w_{\text{PSD}}((a_{ij})) = \min_{i,j} \{v_{\mathbb{P}}(a_{ij})\}$$

(e) w_{PSD} is a surmultiplicative $v_{\mathbb{P}}$ -value function.

(f) $\text{char}(F_{v_{\mathbb{P}}}) = 0 \Rightarrow \text{defect } \delta(w_{\text{PSD}}) = 1$.

- (g) Tignol-Wadsworth \Rightarrow w_{PSD} is a v_P -gauge on $\mathbb{M}_n(F_P)$.
- (h) $w_{\mathcal{P}} := w_{\text{PSD}}|_A$ is a v_P -gauge on A . (Requires some work !)
- (i) $R_{\mathcal{P}} = A_{\geq 0}$ and $I_{\mathcal{P}} = A_{> 0}$: easy computation. ■

Problems we are currently working on

- ▶ In part (3), is \mathcal{P} maximal, i.e., a positive cone ?
- ▶ A notion of compatibility between gauges and positive cones ?
- ▶ Baer-Krull: Can we lift positive cones from the residue algebra with involution to (A, σ) ?
- ▶ Residue hermitian forms ?
- ▶ Bröcker-Prestel local-global principle ?

Thank you !

References

- [1] V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch trace formula, *Math. Ann.* **358** (2014), no. 3-4, 925–947.
- [2] V. Astier and T. Unger, Signatures of hermitian forms and “prime ideals” of Witt groups, *Adv. Math.* **285** (2015), 497–514.
- [3] V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher (2016), <http://arxiv.org/abs/1511.06330>.
- [4] V. Astier and T. Unger, Positive cones on algebras with involution (2017), <http://arxiv.org/abs/1609.06601>.
- [5] V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution (2017), <http://arxiv.org/abs/1706.01264>.
- [6] V. Astier and T. Unger, Stability index of algebras with involution, *Contemporary Mathematics*, vol. 697, American Mathematical Society, 2017 (to appear).

- [7] V. Astier and T. Unger, Positive cones and gauges on algebras with involution, in preparation.
- [8] N. I. Dubrovin, Noncommutative valuation rings in simple finite-dimensional algebras over a field, *Mat. Sb. (N.S.)* **123** (165) (1984), 496–509 (Russian); English transl.: *Math. USSR Sb.* **51** (1985), 493–505.
- [9] Yu. L. Ershov, Co-Henselian extensions and Henselization of division algebras, *Algebra i Logika* **27** (1988), 649–658 (Russian); English transl.: *Algebra and Logic* **27** (1988), 401–407.
- [10] S. S. Holland, Jr., $*$ -Valuations and ordered $*$ -fields, *Trans. Amer. Math. Soc.* **262** (1980), 219–243.
- [11] P. J. Morandi, The Henselization of a valued division algebra, *J. Algebra* **122** (1989), 232–243.
- [12] P. J. Morandi, Value functions on central simple algebras, *Trans. Amer. Math. Soc.* **315** (1989), 605–622.
- [13] C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert’s 17th problem. *Ann. of Math. (2)*, **104**(3) (1976), 395–406.

- [14] J.-P. Tignol and A. R. Wadsworth. Value functions and associated graded rings for semisimple algebras. *Trans. Amer. Math. Soc.*, **362**(2) (2010), 687–726.
- [15] J.-P. Tignol and A. R. Wadsworth. Valuations on algebras with involution. *Math. Ann.*, **351**(1) (2011), 109–148.
- [16] J.-P. Tignol and A. R. Wadsworth. Value functions on simple algebras, and associated graded rings. *Springer Monographs in Mathematics*. Springer, Cham, 2015.
- [17] A. R. Wadsworth, Dubrovin valuation rings and Henselization, *Math. Ann.* **283** (1989), 301–328.