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Real theory of central simple algebras with involution

Aim: to develop real algebra for (finite dimensional) central
simple algebras with involution

Examples:

(MH([R)st)) (M”((C)’_t)’ (Mn(l]'[l),—t), (MH(Q(ﬁ))flnt(a) ° t)

In general:

Theorem (= Wedderburn’s Theorem)

(A, 0) = (Mu(D), Int(u) o 8)
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Real theory of central simple algebras with involution

Fix notation (for the next few slides):

» F: (formally) real field

» Xr: space of orderings of F

v

Fp: real closure of Fat P € X¢

def
»a=pb = a-beP

v

A: simple F-algebra with! Z(A) = Fand [A: F] <

'0ur results are also valid for unitary involutions, but in order to simplify
the presentation, | ignore them in this talk.
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First step: signatures, positivity

Witt group: W(A, o) = hermitian forms over (A, o)
Signhature at P € Xg: signZ WA o) — 7 (Nice properties !)
Positivity: Fix n. Let P € Xr and a € Sym(A, o). Then

def | . .
a>p0 = S|gnr,l(a)a is maximal

— signg(a)g = np := matrix size of A® Fp (= Theorem!)

Application: answer!3! to Procesi-Schacher question!'3!

(When are totally positive elements in (A, o) sums of hermitian
squares ? - cf. Hilbert’s 17th Problem)

Question: Can positivity be defined intrinsically ?
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Positive cones on (A, 0)
Prepositive cone on (A,0): & < Sym(A, o) with
(1) P+PcP
2) o(x)- P -xc P, VxeA
3) n-&=1{0}
(4) Pr={xeF|aPcP}ecX

Positive cone := a maximal prepositive cone

def
Partial ordering >4 on Sym(A,0): a>» b & a-be P

Theorem (A.-U. 2017[4])
Xao) i= {positive cones on (A, o)} is a spectral space w.r.t.
the Harrison topology with basis

Ho(ar,...,ak) :={Z € Xao) | a1 > 0,...,ak > 0}.
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Positive cones on (A, 0)
Alsol4l:

“Artin” Theorem: describes totally positive elements

“Artin-Schreier” Theorem: describes “formally real” algebras

Examples
» (A,0) = (F,idf) = Xwag) =1{P,—P|Pe Xr}
> (A0) = (Mu(R),t) = Xao) = {PSD,—PSD}
» (A, o) with A division algebra

= Xao) = {Mp,—Mp | P E Xr,sign} # 0}

with .Zp 1= {a € Sym(A, 0)* | signi(a)y is maximal} U {0}
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Positive cones on (A, 0)

Theorem (“Sylvester Inertia”, A.-U. 201 7[4])

dt=t(A,0) e N such thatVZ € Xag), andVhe W(A 0),
dur,...,us € P:= Pr € Xp, ai € & and bj € - such that

H%X(u],...,ut)®h= <a],...,ay)g-J_ <b],...,bs>o—.

Furthermore, r and s only depend on & and rank h.

Signature at &7:

yr—=Ss

signg h := p

€z

= gpsignp h, epe{-1,1} (= Theorem)
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Valuation rings / valuations on real fields

Let P € Xr. Then
Rp := {XEF|3V€Q |X|pSPI’}
is a valuation ring in F with unique maximal ideal

Ip = {XE F| Vre Qs |X|p <p I’}.

Rp — valuation vp on F,and 1 + Ip C P (vp is compatible with P).
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Valuation rings / valuations on real fields

v: valuation on F with residue field F, and compatible with
P € Xr. Then P induces an ordering P on F,.

Conversely, the Baer-Krull theorem describes the orderings on
F, compatible with v, that induce a given ordering on F,.

Question:
Similar connection between & € X(as) and noncommuta-

tive valuations / valuation rings ?
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Noncommutative valuation rings / valuations

1950s:

1980s:

1990s:

2010s:

Valuations on division rings and invariant valuation
rings

Dubrovin valuation rings of simple Artinian rings
Morandi value functions on simple Artinian rings

Tignol-Wadsworth gauges on semisimple rings
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Conventions for rest of talk

To simplify presentation f

» D: division algebra with centre a field F, [D: F] < o
» A: central simple algebra with centre a field F, [A: F] < »

» I': divisible totally ordered abelian group

(large enough to contain the values of all valuations and
the degrees of all gradings that occur)
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Valuations on division rings / invariant valuation rings

Valuation defined in the usual way: v: D — I' U {0} such that
(1) vix) =00 < x=0
(2) vix+y) =zmin{v(x),v(y)}
(3) vixy) = v(x) + v(y)

I, := v(D*): value group (subgroup of I')
R, :={d € D| v(d) = 0} is an invariant valuation ring of D, i.e.
Vd e D%,

(@ deR,ord ' eR,

(b) ded_] = Rv

valuations — invariant valuation rings
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Valuations on division rings / invariant valuation rings

Very useful ! E.g. Amitsur (1972): construction of non-crossed
product algebras.

Problem: valuations on F need not extend to D!

Theorem (Ershov 198891, Morandi 1989!])
v extends from F to D < D ® F" is division
(F": Henselization). The extension is unique.

Problem: tensor products, scalar extensions may give matrices:
v does not extend (zero divisors )
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Dubrovin valuation rings

A subring B of A with Jacobson radical J = J(B) is a Dubrovin
valuation ring of A if

(1) B/Jis a simple ring
(2) YVae A\ B,Ab,b’ € Bsuch thatab,b’'ac B\ J

Examples: (matrices over) invariant valuation rings, Azumaya
algebras over commutative valuation rings

Going down:
» BNF=2(B)
» Z(B) is a valuation ring of F with maximal ideal Jn F
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Dubrovin valuation rings

Going up:

Theorem (Dubrovin 1984(8])

V: valuation ring of F = 3 Dubrovin valuation ring B of A
with BN F =V

Theorem (Wadsworth 19890171)
B is unique up to isomorphism

Problem: in general there is no “valuation” on A associated to B
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Morandi value functions

w:A—TuU/{w} is aMorandi value function if

Let

(1) wix) =0 <= x=0
(2) w(x+y) = min{w(x),w(y)}

(3) wixy) = w(x) + w(y) f
(4) w(=1) =0
(5) Ly := w(A) = w({x € A [ wix™") = —w(x)})

By :={x€ Al w(x) =0} (the “valuation ring” of w)
Jw:i={xe Al w(x) >0} (two-sided ideal)
Ay = By/Jw (the “residue ring” of w)
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Morandi value functions

Theorem (Morandi 1989112])

Let B be a Dubrovin valuation ring of A. Then B is integral

over V:=Z(B) = BN F < 3 a Morandi value function w
on A with B = By, and J(B) = Jy.

In this case:

(1) v := w|f is a valuation on F corresponding to V
(2) w(x) < ];v(Nrd(x)) in general, where n = \J[A : F]
(3) w is uniquely determined on A by v and B
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Morandi value functions

Theorem (Wadsworth 1989 < [12])

Let w be a Morandi value function on A.Then A,, simple =
By is a Dubrovin valuation ring of A with J(By) = Ju.

In this case, the defect of w is the integer

. [A:F]
ow) = [Aw : Fy] [Tw : Iy
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Tignol-Wadsworth gauges

Jean-Pierre Tignol
Adrian R. Wadsworth

Value Functions
on Simple
Algebras, and
Associated
Graded Rings

@ Springer
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Tignol-Wadsworth gauges

Let v: F— T U {co} be a valuation.

Then g: A— T U {0} is a v-value function if Vx,y € A, VA € F,

(1) g(x) =0 <= x=0
(2) g(x+y) = min{g(x),g(y)}
(3) g(Ax) = v(A) + g(x)

g is surmultiplicative if

g(1) =0 and g(xy) = g(x) + g(y)
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Tignol-Wadsworth gauges
Define abelian groups
A.y:={aeAlgla) =y}, A,:={ac€Alga) >y}

Ay = Azy/A>y

Similarly (for v):
Fzy, F>y, Fy

If g is surmultiplicative v-value function on A, then

gr(A) := €D A, is a graded algebra over gr(F) := P F,
yel" yer

Ap: residue ring of g; Fo= F,: residue field of v
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Tignol-Wadsworth gauges

g:A—TuU/{w}isav-gauge if
(1) gis a surmultiplicative v-value function
(2) gr(A) is a graded semisimple gr(F)-algebra
(3) [gr(A):gr(F)] =[A:F]

Theorem (Tignol-Wadsworth 2010['41)

Let g be a surmultiplicative v-value function on A. Then g is
a Morandi value function on A with defect 6(g) =1 < g
is a gauge on A with simple residue ring Ay.

In this case, the gauge ring Asq is a Dubrovin valuation
ring of A.
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Positive cones and gauges on (A, 0)

Fix & € Xag) With P = Zr € Xp. (We say “7 is over P".)
Assume 1 € & and let (inspired by Holland 1980!'01)

Rz ={aeA|ldImeQ o(a)a<yp m}
Il ={ac AlVme Q.o o(a)a<z1/m}

Properties
» Rz is a subring of Aand 0(R») € R»
» |2 is a two-sided ideal of R» and o (l%) € |»
» Ry ={acAldr,se Q.o r<po(@a<ys}
» R» N F=Rp
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Positive cones and gauges on (A, 0)

Theorem (A.-U. 201717])
Let & € Xa o) With P=Pre Xr. Assume that 1 € &. Then
(1) & induces a vp-gauge wy on A with R = Aso and
ly = Aso
(2) we is o-special, i.e. wap (0 (x)x) =2wax(x) VX €A
(3) Z induces a prepositive cone & on (Ag, T)
(Ao: residue ring of we; T : involution induced by o)

Sketch of Proof of Part (1).
(a) Extend scalars to real closure at P:?
(A® Fp,0 ®id) = (M, (Fp), t)
Then &2 over P extends to PSD over P on (M,(Fp), t), where
P = Fﬁ: unique ordering on Fp.
Let Rp be the valuation ring of Fp induced by P and vp the

corresponding valuation.
2To simplify the presentation | only consider the split orthogonal case.
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(b) Consider the “Holland ring” Rpsp and ideal Ipsp.

Then Rpsp is a Dubrovin valuation ring of M, (Fp) and
J(Rpsp) = Ipsp.
In fact: Rpsp = M, (Rp).

(c) Rpsp is integral over Z(Rpsp) = Rpsp N Fp = Rp.
(d) Morandi = 3 Morandi value function
Wpsp : My (Fp) — T'U {oo}
with Rpsp = By - In fact:

wesp ((aj)) = rTI],_ijn{V[P(aU)}

(e) wpsp is a surmultiplicative vp-value function.
(f) char(F,) =0 = defect 6(wpsp) = 1.
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(g) Tignol-Wadsworth = wpsp is a vp-gauge on M, (Fp).
(h) wao := wpspla is a vp-gauge on A. (Requires some work !)

(i) R# = Asp and I = A.g: easy computation. [ |

Problems we are currently working on

» In part (3), is & maximal, i.e., a positive cone ?

» A notion of compatibility between gauges and positive
cones ?

» Baer-Krull: Can we lift positive cones from the residue
algebra with involution to (A, o) ?

» Residue hermitian forms ?
» Brocker-Prestel local-global principle ?

Thank you !
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