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ABSTRACT

For a field k of characteristic zero, we study the field of
Noetherian power series, khhtQii, which consists of maps
z : Q ! k whose supports are Noetherian (i.e., reverse well-
ordered) subsets of Q. There is a canonical valuation
LE : khhtQii ! Q [ f�1g that sends a nonzero series to the
maximum element of its support. Given a nonzero polynomial
fðx; yÞ 2 k½x; y� and a series z 2 khhtQii that is transcendental
over kðtÞ, we construct a formula for LEð fðt; zÞÞ in terms of
the roots of fðt; yÞ 2 kðtÞ½ y�. Using this formula, we find suf-
ficient conditions for fLEð fðt; zÞÞ : fðx; yÞ 2 k½x; y�?g to be a
well-ordered subset ofQ. In particular, this set is well-ordered
in case the support of z consists solely of positive numbers.
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1 INTRODUCTION

Moss Sweedler developed a theory of generalized Gröbner bases using
valuation theory in an unpublished manuscript.[12] Instead of using term
orders, he relies on valuation rings in kðxÞ ¼ kðx1; . . . ; xnÞ that are posi-
tioned appropriately with respect to the underlying polynomial ring
k½x� ¼ k½x1; . . . ;xn�. The first class of valuation rings that can be used in this
context were described in earlier work by the present authors.[6,8] This paper
studies and extends this class by using different techniques.

A valuation on a field F is a map v : F ! G [ f�1g, where G is an
ordered abelian group, that satisfies the following three properties:

ði) vð f Þ ¼ �1 if and only if f ¼ 0,
ðii) vð fgÞ ¼ vð f Þ þ vðgÞ,
ðiii) vð fþ gÞ � maxfvð f Þ; vðgÞg.

If v is a valuation then the map F ! G [ f1g given by f 7! �vð f Þ is a
valuation as defined by Krull.[3] One of the most important necessary con-
ditions for v to be suitable for use in the context of Sweedler’s work is the
following:

fvð fðxÞÞ : fðxÞ 2 k½x�?g must be a well-ordered subset of G:
Since our work is closely related to Gröbner bases, it turns out that the
valuations defined above are more compatible with these studies than are
Krull valuations. Note that the axioms above for a valuation are satisfied
when replacing v by ‘leading term’ with respect to a fixed term order.

Although Gröbner bases formed the original motivation for this
paper, the results herein may have other applications. Since well-
orderedness is a generally useful property, it is possible that proofs in other
areas may depend on these results. Examples of proofs and techniques that
utilize well-orderedness include Fermat’s method of infinite descent in
number theory and the proof of the validity of Buchberger’s criterion in
computational commutative algebra.

In this paper, we focus on a class of valuations on kðx; yÞ where k is a
field of characteristic zero. In particular, we consider valuations that arise
from (Noetherian) generalized power series as discussed by Zariski[13] and
MacLane and Schilling.[5] For a suitable choice of z 2 khhtQii, we can embed
kðx; yÞ in khhtQii via x 7! t1, y 7! z (where t1 denotes the map Q ! k that
sends 1 to 1 and all other numbers to 0). The natural valuation LE :
khhtQii ! Q given in Definition 2.1 induces a valuation on kðx; yÞ. The focus
of this paper (see Theorem 5.1) is to determine conditions that guarantee

fLEð fðt1; zÞÞ : fðx; yÞ 2 k½x; y�?g
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is a well-ordered subset of Q. Traditionally, generalized power series are
defined to have well-ordered support rather than Noetherian support. Our
decision to use series with Noetherian support is due to the connections of
this work with the theory of Gröbner bases.[8,12]

2 LEADING EXPONENTS

In this section, we introduce some of the key objects that are of
importance to us. We begin with the following notational conventions which
will be used throughout the paper. We denote by Qþ the set of nonnegative
rational numbers. Given r 2 Q, we define rZ ¼ frz : z 2 Zg and
rN ¼ frn : n 2 Ng. Whenever R is a ring or monoid, we denote by R? the
nonzero elements of R.

Let ðT;�Þ be a totally ordered set. We say that T is well-ordered if
every subset of T has a smallest element. We say that T is Noetherian (or
reverse well-ordered) if every subset of T has a largest element.

Given a function z : Q ! k, the support of z is defined by SuppðzÞ ¼
fr 2 Q : zðrÞ 6¼ 0g: The collection of Noetherian power series, denoted by
khhtQii, consists of all functions from Q to k with Noetherian support. As
demonstrated by Hahn, this collection of functions forms a field in which
addition is defined pointwise and multiplication is defined via convolution.[4]

More precisely, if z1; z2 2 khhtQii and q 2 Q, then

ðz1 þ z2ÞðqÞ ¼ z1ðqÞ þ z2ðqÞ;
ðz1z2ÞðqÞ ¼

X
u;v2Q
uþv¼q

z1ðuÞz2ðvÞ:

Since Suppðz1Þ and Suppðz2Þ are Noetherian, for any given q 2 Q, there are
only finitely many pairs u; v 2 Q such that uþ v ¼ q and fðuÞgðvÞ 6¼ 0, and
so the above multiplication is well-defined.[9711] Symbolically, it is con-
venient to denote a Noetherian power series as a sum:

z ¼
X

s2SuppðzÞ
zðsÞts;

where zðsÞ denotes the image of s under z. A typical example of a Noetherian
power series is the function z : Q ! k given by

zðqÞ ¼ 1 if q ¼ 2�n or q ¼ 2�n � 1 for some n 2 N?;
0 otherwise.

�
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This function can be represented as a formal sum:

z ¼ ðt1=2 þ t1=4 þ t1=8 þ � � �Þ þ ðt�1=2 þ t�3=4 þ t�7=8 þ � � �Þ: ð1Þ

We adopt the convention that t is shorthand for the series t1.

Definition 2.1. We define LE : khhtQii ! Q [ f�1g by

LEðzÞ ¼ maxfs : s 2 SuppðzÞg if z 6¼ 0;
�1 if z ¼ 0:

�

We call LEðzÞ the leading exponent of z.

Note that LEðz1z2Þ ¼ LEðz1Þ þ LEðz2Þ: Moreover, we have the fol-
lowing strong triangle inequality:

LEðz1 þ z2Þ � maxðLEðz1Þ;LEðz2ÞÞ;

with equality holding in case LEðz1Þ 6¼ LEðz2Þ.
Now LE yields a valuation on the rational function field in two

variables. Indeed, we have natural embedding j : kðx; yÞ ,! khhtQii that
maps x 7! t, y 7! z, where t and z are algebraically independent over k, i.e., z
is transcendental over kðtÞ. By the comments following Theorem 5.1, we will
see that there are many Noetherian series that are transcendental over kðtÞ.
Using this embedding, it follows that the composite map LE � j : kðx; yÞ !
Q is a valuation on kðx; yÞ. To provide valuations that are suitable for use in
the theory developed by Sweedler,[12] we give conditions in Sec. 5 that
guarantee

fLEð fðt; zÞÞ : fðx; yÞ 2 k½x; y�?g
is a well-ordered subset of Q.

3 PUISEUX SERIES

Although we are interested in the leading exponents of series taken
from khhtQii, it is first necessary to study various subrings of khhtQii. We
can identify the polynomial ring k½t� with the subring of khhtQii consisting of
all series z 2 khhtQii such that SuppðzÞ is a finite subset ofN. It immediately
follows that the rational function field kðtÞ can be embedded in khhtQii. The
field of reverse Laurent series khhtii is defined as the set of all functions from
Z to k with Noetherian support.
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The algebraic closure of the field of reverse Laurent series can be
described by Puiseux’s Theorem. Although the classical formulation of this
theorem deals with series that have well-ordered support rather than Noe-
therian support, the following statement is similar to that found in any
standard textbook.[1]

Theorem 3.1 (Puiseux’s Theorem). If k is an algebraically closed field of
characteristic zero, then the field of reverse Puiseux series defined by
[r2N?khht1=rii is an algebraic closure of khhtii.
Definition 3.2. Given a reverse Puiseux series w, the smallest positive integer r
such that w 2 khht1=rii is called the ramification index of w.

We have the following inclusions:

kðtÞ � khhtii �
[
r2N?

khht1=rii � khhtQii:

Definition 3.3. A series z 2 khhtQii is said to be infinite if SuppðzÞ is an
infinite subset of Q.

Definition 3.4. We say that z 2 khhtQii is bounded if SuppðzÞ is a bounded
subset of Q. In this case, we call the greatest lower bound (in R) of SuppðzÞ
the limit of z.

Definition 3.5. We say that a nonzero series z 2 khhtQii is simple if it can be
written in the form

z ¼
Xn
i¼1

cit
ei ;

where ci 2 k?; n 2 N? [ f1g; ei 2 Q; ei > eiþ1. Whenever we write a series in
this form, we implictly assume that each ci is nonzero and the ei’s are written in
descending order. We call e ¼ ðe1; e2; . . .Þ the exponent sequence of z and write
each exponent as ei ¼ ni=di where ni 2 Z, di 2 N?, gcdðni; diÞ ¼ 1. ðIn case
ni ¼ 0, we set di ¼ 1:Þ We call n ¼ ðn1; n2; . . .Þ the numerator sequence of z
and d ¼ ðd1; d2; . . .Þ the denominator sequence of z.

Definition 3.6. Let z 2 khhtQii be a simple series written as in Definition 3:5:
We define zð0Þ ¼ 0. Let m 2 N?. If SuppðzÞ has at most m elements, then
we define zðmÞ ¼ z. If SuppðzÞ has more than m elements, we define
zðmÞ ¼ c1t

e1 þ � � � þ cmt
em .

Definition 3.7. Let z1; z2 2 khhtQii. If zðmÞ
1 ¼ z

ðmÞ
2 for all m 2 N?, then we say

that z1 and z2 agree to infinite order. If z
ðmÞ
1 ¼ z

ðmÞ
2 but z

ðmþ1Þ
1 6¼ z

ðmþ1Þ
2 for
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some m 2 N, we say that z1 and z2 agree to order m. Thus two series z1 and z2
agree to order m if their first m terms are the same, but their ðmþ 1Þst terms
are different.

MacLane and Schilling argue that if z1; z2 2 khhtQii are two series that
agree to infinite order, then for any fðx; yÞ 2 k½x; y�?, LEð fðt; z1ÞÞ ¼
LEð fðt; z2ÞÞ.[5] Now for any series z 2 khhtQii, there exists a unique simple
series zo 2 khhtQii such that z and zo agree to infinite order.[5,8] For
example, if z is given by (1), then

zo ¼ t1=2 þ t1=4 þ t1=8 þ � � � :

Thus for our purposes it suffices to restrict our study that of simple series.

Definition 3.8. Let z 2 khhtQii be a simple series with infinite support, written
as in Definition 3:5: We define r0 ¼ 1 and for m � 1, we define rm to be the
ramification index of zðmÞ, and call r ¼ ðr0; r1; r2; . . .Þ the ramification sequence
of z.

Example 3.9. Consider the series

z ¼ t1=2 þ t1=3 þ t1=5 þ � � � :

This series has exponent sequence ð1=2; 1=3; 1=5; . . .Þ, numerator sequence
ð1; 1; 1; . . .Þ, denominator sequence ð2; 3; 5; . . .Þ, and ramification sequence
ð1; 2; 6; 30; . . .Þ.

We state the following simple lemma without proof.

Lemma 3.10. Let z 2 khhtQii be a simple series with infinite support. If d is
the denominator sequence of z and r is the ramification sequence of z, then for
m � 1, rm ¼ lcmðd1; . . . ; dmÞ.

Note that z 2 khhtQii is reverse Puiseux if and only its ramification
series eventually stabilizes. Puiseux’s theorem states that any reverse Puiseux
series w is algebraic over khhtii. The following result tells us how to con-
struct the minimal polynomial of w over khhtii.[2]

Proposition 3.11. Let k be an algebraically closed field of characteristic zero.
Suppose

w ¼
Xn
j¼1

cjt
ej ¼

Xn
j¼1

cjt
nj=dj
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is a Puiseux series of ramification index r and is written in the form according to
Definition 3:5: Then the minimal polynomial of w over khhtii isQr

i¼1ðy� wiÞ 2
khhtii½y� where

wi ¼
Xn
j¼1

cjðzit1=rÞðrnj=djÞ; 1 � i � r;

and z is a primitive rth root of unity. Note that the conjugate wr is simply w
itself.

4 LEADING EXPONENTS OF MINIMAL POLYNOMIALS

OF SKEW PUISEUX SERIES

In this section, k is an algebraically closed field of characteristic zero
and z 2 khhtQii is a simple series written as in Definition 3.5. We make the
assumption in this section that z is transcendental over kðtÞ.

Given fðx; yÞ 2 k½x; y�?, we can think of fðt; yÞ as an element of khhtii½y�
and then factor fðt; yÞ as fðt; yÞ ¼ qðtÞp1ðyÞ � � � psðyÞ where qðtÞ 2 k½t� and
each piðyÞ is a monic irreducible polynomial in khhtii½y�. Since LEð fðt; zÞÞ ¼
LEðgðtÞÞ þPs

i¼1 piðzÞ and LEðgðtÞÞ ¼ degðgðtÞÞ, we need to compute
LEðpiðzÞÞ for each i in order to construct a formula for LEð fðt; zÞÞ. The
purpose of this section is to compute LEðpiðzÞÞ for each irreducible factor
piðyÞ. Since piðyÞ 2 khhtii½y� is a monic irreducible polynomial, it is the
minimal polynomial of some reverse Puiseux series.

Let w be a reverse Puiseux series of ramification index R that is
algebraic over kðtÞ (and hence is algebraic over khhtii), and let pðyÞ 2
khhtii½y� be the minimal polynomial of w over khhtii. We write pðyÞ in the
form

QR
i¼1ðy� wiÞ, as given by Proposition 3.11. Since z is transcendental

over kðtÞ and w is algebraic over kðtÞ, we know that they cannot be the same,
and so they must agree to some finite order. Choose m to be the smallest
positive integer such that each of the roots w1; . . . ;wR agrees with z to an
order of at most m. By permuting the roots, we assume without loss of
generality than w agrees with z to order m.

Notation 4.1. In summary, we make the following assumptions throughout
this section.

� z 2 khhtQii is transcendental over kðtÞ with exponent, numerator,
denominator, and ramification sequences e, n, d, and r.

� w is a reverse Puiseux series that is algebraic over kðtÞ and has
ramification index R.
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� w has minimal polynomial
QR

i¼1ðy� wiÞ over khhtii in which the
conjugates of w are written according to Proposition 3.11.

� z and w agree to order m, and no conjugate of w agrees with z to an
order greater than m.

To obtain a formula for LEðpðzÞÞ in terms of the exponents of z and w
(see Proposition 4.6), we first prove some preliminary results concerning the
conjugates of w over khhtii.
Lemma 4.2. If 0 � j � m, the jth terms of z and wi are the same if and only if
dj divides i.

Proof. Since z and w agree to an order of at mostm and 0 � j � m, it follows
that z and w must have the same jth term. If we write this common term as

cjt
ej ¼ cjt

nj=dj ¼ cjðt1=RÞðRnj=djÞ;

then by Proposition 3.11, the jth term of wi is

cjðzit1=RÞðRnj=djÞ;
where z is a primitive Rth root of unity. Thus the jth terms of z and wi are
identical exactly when ziRnj=dj ¼ 1, which occurs whenever R divides iRnj=dj.
However, this occurs exactly when inj=dj is an integer. Since nj and dj are
relatively prime, this is equivalent to the condition djji. u

Suppose 0 � i < j � m. Since

rj ¼ lcmðd1; . . . ; djÞ ¼ lcmðri; diþ1; . . . ; djÞ;

it follows that rijrj. Given two Puiseux series P1;P2 with disjoint supports
(i.e., SuppðP1Þ \ SuppðP2Þ ¼ ;), it is not difficult to prove that the ramifi-
cation index of P1 þ P2 is the least common multiple of the ramification
indices of P1 and P2. We decompose w as w ¼ wð jÞ þ ðw� wð jÞÞ, noting that
wð jÞ and w� wð jÞ have disjoint supports. Thus the ramification index of w is
a multiple of the ramification index of wð jÞ. However, the ramification index
of w is R and the ramification index of wð jÞ (¼ zð jÞ) is rj, and so rjjR.
In summary, we have the following divisibility relations:

1 ¼ r0 j r1 j r2 j � � � j rm j R: ð2Þ

Lemma 4.3. If 0 � j � m, then the number of conjugates of w that agree with
z to an order of at least j is R=rj.
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Proof. By Lemma 4.2, the first j terms of z and wi agree if and only if
d1; . . . ; dj all divide i, which is equivalent to lcmðd1; . . . ; djÞji. By Lemma
3.10, lcmðd1; . . . ; djÞ is simply rj, and so the number of conjugates of w that
agree with z to an order of at least j is the cardinality of fi : 0 � i � R; rjjig:
However, this set has R=rj elements, and the claim has been justified. u

We decompose z and w as z ¼ zðmÞ þ ðz� zðmÞÞ and w ¼ wðmÞþ
ðw� wðmÞÞ. Since z and w agree to order m, zðmÞ ¼ wðmÞ and the first term of
z� zðmÞ is different than the first term of w� wðmÞ. Thus

LEðz� wÞ ¼ LEððz� zðmÞÞ � ðw� wðmÞÞÞ
¼ maxðLEðz� zðmÞÞ;LEðw� wðmÞÞÞ: ð3Þ

Since LEðz� zðmÞÞ ¼ emþ1, this provides us with the useful inquality

LEðz� wÞ � emþ1: ð4Þ

Lemma 4.4. Suppose 0 � j � m� 1. The number of conjugates of w that
agree with z to order j is R=rj � R=rjþ1. For each such conjugate wi,
LEðz� wiÞ ¼ ejþ1.

Proof. By Lemma 4.3, the number of conjugates that agree with z to an order
of at least j isR=rj, of whichR=rjþ1 conjugates agree with to z to an order of at
least jþ 1. Thus the first claim follows. Since z and wi agree to order j, the first
j terms of both z and wi cancel in the expression z� wi. Therefore, LEðz� wiÞ
is the exponent of either the ð jþ 1Þst term of z or the ð jþ 1Þst term of wi.
However, these two terms both have exponent ejþ1, and so the second claim
holds. u

Lemma 4.5. The number of conjugates of w that agree with z to order m is
R=rm. For each such conjugate wi, LEðz� wiÞ ¼ LEðz� wÞ.

Proof. By Lemma 4.3, the number of conjugates that agree with z to an
order of at least m is R=rm. Since no conjugate of w agrees with z to an order
greater than m, the first claim follows. By (3), LEðz� wÞ ¼
maxðLEðz� zðmÞÞ;LEðw� wðmÞÞÞ. Equation (3) depends only on the fact
that z and w agree to order m. Thus for each conjuagte wi that agrees with z
to order m, we have LEðz� wiÞ ¼ maxðLEðz� zðmÞÞ; LEðwi � w

ðmÞ
i ÞÞ. Since

w and wi agree to an order of at least m (they both agree with z to order m)
and the exponents of w and wi are identical by Proposition 3.11, it follows
that LEðw� wðmÞÞ ¼ LEðwi � w

ðmÞ
i Þ. Thus LEðz� wÞ ¼ LEðz� wiÞ. u
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We now combine these previous results to produce a formula for the
leading exponent of the minimal polynomial of w over khhtii.
Proposition 4.6. If pðyÞ 2 khhtii½y� is the minimal polynomial of w over khhtii,
then

LEðpðzÞÞ ¼
� R

rm

�h
rm

�Xm�1

j¼0

� 1
rj
� 1

rjþ1

�
ejþ1

�
þ LEðz� wÞ

i
:

Proof. By Notation 4.1, each conjugate of w agrees with z to an order of
at most m. By Lemma 4.4, given 0 � j � m� 1, there are R=rj � R=rjþ1
conjugates wi that agree with z to order j, and for each of these conju-
gates, LEðz� wiÞ ¼ ejþ1. By Lemma 4.5, there are R=rm conjugates wi that
agree with z to order m, and for each of these conjugates,
LEðz� wiÞ ¼ LEðz� wÞ. Thus

LEðpðzÞÞ ¼
XR
i¼1

LEðz� wiÞ

¼
�Xm�1

j¼0

�R

rj
� R

rjþ1

�
ejþ1

�
þ
� R

rm

�
LEðz� wÞ

¼
� R

rm

�h
rm

�Xm�1

j¼0

� 1
rj
� 1

rjþ1

�
ejþ1

�
þ LEðz� wÞ

i
: u

Using Proposition 4.6, we demonstrate that LEðpðzÞÞ lies in a discrete
subset of Q that depends solely on m and the ramification sequence r of z.

Proposition 4.7. LEðpðzÞÞ 2 ð1=ðrmrmþ1ÞÞZ.

Proof. Since z and w agree to order m, LEðz� wÞ must either be the ðmþ
1Þst exponent of z or the ðmþ 1Þst exponent of w. In the first case,
LEðz� wÞ 2 ð1=rmþ1ÞZ. In the second case, LEðz� wÞ 2 ð1=RÞZ since
w has ramification index R. In either case, we have

LEðz� wÞ 2 ð1=rmþ1ÞZ [ ð1=RÞZ � ð1=ðRrmþ1ÞÞZ:

Moreover, for 0 � j � m� 1, ejþ1 2 ð1=rmÞZ � ð1=ðRrmþ1ÞÞZ, and since
rm=rj 2 Z for all j � m, we have

rm

�Xm�1

j¼0

� 1
rj
� 1

rjþ1

�
ejþ1

�
þ LEðz� wÞ 2

� 1

Rrmþ1

�
Z:
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Thus by Proposition 4.6,

LEðpðzÞÞ 2 ðR=rmÞð1=ðRrmþ1ÞÞZ ¼ ð1=ðrmrmþ1ÞÞZ: u

5 WELL-ORDERED SETS OF EXPONENTS

We are now in a position to state the main theorem which we prove in
the next section.

Theorem 5.1. Let k be an arbitrary field of characteristic zero, and let z be
an infinite, simple, bounded series with exponent sequence e and ramification
sequence r. Define u0 ¼ 0 and for m � 1,

um ¼ rm

�Xm�1

j¼0

� 1
rj
� 1

rjþ1

�
ejþ1

�
:

Suppose the following conditions hold:

ðiÞ For all m 2 N, um þ emþ1 � 0,
ðiiÞ lim um ¼ 1.

Then the subset fLEð fðt; zÞÞ : fðx; yÞ 2 k½x; y�?g of Q is well-ordered.

Since SuppðzÞ consists of an infinite, bounded, decreasing sequence of
elements of Q, the denominator sequence of z must be unbounded, and
hence the ramification sequence must be unbounded, i.e.,

lim rm ¼ 1: ð5Þ

Thus z is not reverse Puiseux, and so it is transcendental over khhtii (and
hence transcendental over kðtÞ).

The following corollary states that series with positive support yield
well-ordered sets. Questions of further exploration naturally arise con-
cerning the necessity of the two conditions in Theorem 5.1. It is unlikely that
these conditions are as general as possible, and it would be interesting to
determine series that yield well-ordered sets despite the fact that they may
fail to satisfy one or both of the conditions. Another related question is
whether it is possible for a reverse Puiseux series z 2 khhtQii that is trans-
cendental over kðtÞ to yield a well-ordered set.
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Corollary 5.2. Let k be an arbitrary field of characteristic zero, and let z be an
infinite, simple series whose support is strictly positive. Then fLEð fðt; zÞÞ :
fðx; yÞ 2 k½x; y�?g is well-ordered.

Proof. Since each ej is positive, it follows that uj is positive for all j. Thus
condition (i) of Theorem 5.1 holds.

For each j � 0, define bj ¼
�
1
rj
� 1

rjþ1

�
ejþ1: Since rjþ1 � rj, we have

bj � 0. Since lim rm ¼ 1 by (5), rM > rM�1 for someM 2 N?, in which case
bM > 0. Thus for all m > M,

um ¼ rm

�Xm�1

j¼0

� 1
rj
� 1

rjþ1

�
ejþ1

�
¼ rm

�Xm�1

j¼0
bj

�
� rmbM:

Since bM is fixed and lim rm ¼ 1, condition (ii) of Theorem 5.1 must
hold. u

Here is an example in which the series z has a mixture of positive and
negative support, and yet well-ordereness still occurs.

Example 5.3. Let

z ¼ t3=2 þ
X1
i¼2

t�1þ2
�i ¼ t3=2 þ t�3=4 þ t�7=8 þ t�15=16 þ � � � :

The exponent sequence is e ¼ ð3=2;�1þ 1=4;�1þ 1=8; . . .Þ and the rami-
fication sequence is r ¼ ð1; 2; 4; 8; 16; . . .Þ. Clearly, condition (i) holds for
m ¼ 0. For m � 1, we compute:

um ¼ 2m
�Xm�1

j¼0

� 1
2j
� 1

2jþ1
�
ejþ1

�

¼ 2m
� 3
4
þ
Xm�1

j¼1

ejþ1
2jþ1

�

¼ 2m
� 3
4
þ
Xm�1

j¼1

�1þ 2�ð jþ1Þ

2jþ1
�
;

which simplifies to

um ¼
� 1
3

�
2m

�
1� 4�m

�
þ 1:
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Thus um � 1, and since emþ1 � �1, we have um þ emþ1 � 0. Moreover,
lim um ¼ 1, and so by Theorem 5.1, fLEð fðt; zÞÞ : fðx; yÞ 2 k½x; y�?g is well-
ordered.

6 THE PROOF OF THE MAIN THEOREM

If k is not algebraically closed, note that fLEð fðt; zÞÞ : fðx; yÞ 2
k½x; y�?g � fLEð fðt; zÞÞ : fðx; yÞ 2 k½x; y�?g (where k denotes the algebraic
closure of k), in which case the smaller set is well-ordered whenever the
larger set is well-ordered. Thus it suffices to prove Theorem 5.1 in case k is
algebraically closed.

Notation 6.1. We adopt the following notation for this section.

� k is an algebraically closed field of characteristic zero.
� z is an infinite, simple, bounded series with limit L (see

Definition 3.4).
� e and r are the exponent and ramification sequences of z.
� um is defined as in Theorem 5.1.

Definition 6.2. Define AmðzÞ to be the collection of all fðx; yÞ 2 k½x; y�? such
that the largest order to which any of the roots of fðt; yÞ 2 kðtÞ½y� agree with z
is m.

Example 6.3. Consider the series z ¼ t1=2 þ t1=3 þ t1=5 þ � � � : Let f1ðt; yÞ 2
khhtii½y� be the minimal polynomial of t1=2 þ 2t1=3 over khhtii and f2ðt; yÞ 2
khhtii½y� be the minimal polynomial of �t1=2 þ t1=3 over khhtii. Then
f1ðx; yÞ 2 A1ðzÞ because none of the conjugates of t1=2 þ 2t1=3 agree with z to
an order greater than 1, and f2ðx; yÞ 2 A2ðzÞ because t1=2 þ t1=3 is a con-
jugate of �t1=2 þ t1=3 that agrees with z to order 2.

Lemma 6.4. If um þ emþ1 � 0 for all m � 0, then fLEð fðt; zÞÞ : fðx; yÞ 2
AmðzÞg is well-ordered.

Proof. Let fðx; yÞ 2 AmðzÞ. First factor fðt; yÞ 2 k½t; y� as fðt; yÞ ¼
gðtÞp1ðyÞ � � � psðyÞ where gðtÞ 2 k½t� and each piðyÞ is an irreducible monic
polynomial in khhtii½y�. Since no root of any piðyÞ agrees with z to an order
greater than m, by Proposition 4.7, LEðpiðzÞÞ 2 ð1=rmi

rmiþ1ÞZ for some
mi � m. Since rmi

jrm by (2), it follows that LEðpiðzÞÞ 2 ð1=rmrmþ1ÞZ. Now
LEð fðt; zÞÞ ¼ LEðgðtÞÞ þ

X
LEðpiðzÞÞ

and LEðgðtÞÞ 2 N, and so LEð fðt; zÞÞ 2 ð1=rmrmþ1ÞZ. Thus we have shown

fLEð fðt; zÞÞ : fðx; yÞ 2 AmðzÞg � ð1=ðrmrmþ1ÞÞZ: ð6Þ

LEADING EXPONENTS OF NOETHERIAN SERIES 6067



If piðyÞ has degree R, then by Proposition 4.6 and (4),

LEðpiðzÞÞ ¼ ðR=rmÞ½um þ LEðz� wÞ� � ðR=rmÞ½um þ emþ1�:

By the assumption um þ emþ1 � 0; we have

LEðpiðzÞÞ � 0: ð7Þ

Thus LEð fðt; zÞÞ ¼ LEðgðtÞÞ þPLEðpiðzÞÞ � 0, and so

fLEð fðt; zÞÞ : fðx; yÞ 2 AmðzÞg � Qþ: ð8Þ

Combining the inclusions in (6) and (8), we obtain fLEð fðt; zÞÞ :
fðx; yÞ 2 AmðzÞg � ð1=ðrmrmþ1ÞÞN. Since ð1=ðrmrmþ1ÞÞN is a well-ordered set,
fLEð fðt; zÞÞ : fðx; yÞ 2 AmðzÞg must also be a well-ordered set. u

We state the following lemma without proof.

Lemma 6.5. Let V0;V1;V2; . . . be well-ordered subsets of Q, and let vm be the
smallest element of Vm. If lim vm ¼ 1, then

S1
m¼0Vm is well-ordered.

We are now in a position to give a lower bound for LEð fðt; zÞÞ (where
fðx; yÞ 2 AmðzÞ) in terms of um and the limit L of the series z.
Lemma 6.6. If um þ emþ1 � 0 for all m � 0, then for all fðx; yÞ 2 AmðzÞ,
LEð fðt; zÞÞ � um þ L.

Proof. Given fðx; yÞ 2 AmðzÞ, let w be a root of fðt; yÞ 2 kðtÞ½y� that agrees
with z to order m. Let p1ðyÞ 2 khhtii½y� be the minimal polynomial of w over
khhtii. Factor fðt; yÞ as

fðt; yÞ ¼ gðtÞp1ðyÞ � � � psðyÞ

where gðtÞ 2 k½t� and each piðyÞ is an irreducible monic polynomial in
khhtii½y�. As in (7) in the proof of Lemma 6.4, LEðpiðzÞÞ � 0. Moreover,
LEðgðtÞÞ 2 N, and so LEð fðt; zÞÞ can be expressed as

LEðgðtÞÞ þ LEðp1ðzÞÞ þ
Xs

i¼2
LEðpiðzÞÞ � LEðp1ðzÞÞ: ð9Þ

Let R be the ramification index of w. We know that LEðz� wÞ � emþ1
by (4), and so LEðz� wÞ � L. Moreover, R=rm � 1 by (2) and so we can
obtain the desired lower bound for LEðp1ðzÞÞ (and hence for LEð fðt; zÞÞ via
(9)) by replacing R=rm by 1 and LEðz� wÞ by L in the expression for
LEðp1ðzÞÞ given in Proposition 4.6. u
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We now complete the proof of Theorem 5.1. To do this, we make the
assumptions that (i) for all m 2 N, um þ emþ1 � 0, and (ii) lim um ¼ 1. By
Lemma 6.4, Vm ¼ fLEð fðt; zÞÞ : fðx; yÞ 2 AmðzÞg is well-ordered. By Lemma
6.6, it follows that for all fðx; yÞ 2 AmðzÞ, LEð fðt; zÞÞ � um þ L. Thus if vm
denotes the smallest element of Vm, then vm � um þ L. Since we are
assuming lim um ¼ 1, it follows that lim vm ¼ 1. Thus by Lemma 6.5,

[1
m¼0

fLEð fðt; zÞÞ : fðx; yÞ 2 AmðzÞg

is well-ordered. Since k½x; y�? ¼ S
AmðzÞ, the result follows.
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