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ABSTRACT

For a field k& of characteristic zero, we study the field of
Noetherian power series, k({t“)), which consists of maps
z:Q — k whose supports are Noetherian (i.e., reverse well-
ordered) subsets of (. There is a canonical valuation
LE : k{{t")) — QU {—oc} that sends a nonzero series to the
maximum element of its support. Given a nonzero polynomial
f(x,¥) € k[x,y] and a series z € k({*)) that is transcendental
over k(r), we construct a formula for LE(f{t,z)) in terms of
the roots of f{z,y) € k(¢)[y]. Using this formula, we find suf-
ficient conditions for {LE(f(t,2)) : f(x,¥) € k[x,y]"} to be a
well-ordered subset of Q. In particular, this set is well-ordered
in case the support of z consists solely of positive numbers.
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1 INTRODUCTION

Moss Sweedler developed a theory of generalized Grobner bases using
valuation theory in an unpublished manuscript.!'? Instead of using term
orders, he relies on valuation rings in k(x) = k(xj,...,x,) that are posi-
tioned appropriately with respect to the underlying polynomial ring
k[x] = k[x1,...,x,]. The first class of valuation rings that can be used in this
context were described in earlier work by the present authors.[**! This paper
studies and extends this class by using different techniques.

A valuation on a field F is a map v: F— G U {—oo}, where G is an
ordered abelian group, that satisfies the following three properties:

(i) v(f)= —oc if and only if /=0,
(i) v(f2) = v(f) +v(g),
(i) o(f+g) < max{v(f),v(g)}.

If v is a valuation then the map F — G U {oo} given by f+— —uv(f) is a
valuation as defined by Krull.’) One of the most important necessary con-
ditions for v to be suitable for use in the context of Sweedler’s work is the
following:

{v(f(x)) : f(x) € k[x]"} must be a well-ordered subset of G.

Since our work is closely related to Grobner bases, it turns out that the
valuations defined above are more compatible with these studies than are
Krull valuations. Note that the axioms above for a valuation are satisfied
when replacing v by ‘leading term’ with respect to a fixed term order.

Although Groébner bases formed the original motivation for this
paper, the results herein may have other applications. Since well-
orderedness is a generally useful property, it is possible that proofs in other
areas may depend on these results. Examples of proofs and techniques that
utilize well-orderedness include Fermat’s method of infinite descent in
number theory and the proof of the validity of Buchberger’s criterion in
computational commutative algebra.

In this paper, we focus on a class of valuations on k(x, y) where k is a
field of characteristic zero. In particular, we consider valuations that arise
from (Noetherian) generalized power series as discussed by Zariskil'* and
MacLane and Schilling."” For a suitable choice of z € k((r“)), we can embed
k(x,y) in k{{¢®)) via x> ¢!, yrsz (where ' denotes the map Q — k that
sends 1 to 1 and all other numbers to 0). The natural valuation LE:
k{(t“)) — Q given in Definition 2.1 induces a valuation on k(x, y). The focus
of this paper (see Theorem 5.1) is to determine conditions that guarantee

{LE(f(t',2)) : flx,») € klx,y]"}
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is a well-ordered subset of Q. Traditionally, generalized power series are
defined to have well-ordered support rather than Noetherian support. Our
decision to use series with Noetherian support is due to the connections of
this work with the theory of Grobner bases.®!?

2 LEADING EXPONENTS

In this section, we introduce some of the key objects that are of
importance to us. We begin with the following notational conventions which
will be used throughout the paper. We denote by Q7 the set of nonnegative
rational numbers. Given re€ Q, we define rZ ={rz:z€ 7} and
rN = {rn:n € N}. Whenever R is a ring or monoid, we denote by R* the
nonzero elements of R.

Let (7,<) be a totally ordered set. We say that T is well-ordered if
every subset of 7 has a smallest element. We say that T is Noetherian (or
reverse well-ordered) if every subset of T has a largest element.

Given a function z : Q — k, the support of z is defined by Supp(z) =
{re Q:z(r) #0}. The collection of Noetherian power series, denoted by
k{{t“)), consists of all functions from Q to k with Noetherian support. As
demonstrated by Hahn, this collection of functions forms a field in which
addition is defined pointwise and multiplication is defined via convolution.
More precisely, if z1, 2, € k((t”)) and ¢ € Q, then

(z1 +22)(q) = z1(q) + 22(q),
(2122)(q) = Z z1(u)z2(v).

u,ve
u+v=q

Since Supp(z;) and Supp(z,) are Noetherian, for any given ¢ € Q, there are
only finitely many pairs u,v € Q such that u + v = ¢ and f(u)g(v) # 0, and
so the above multiplication is well-defined.”~'"" Symbolically, it is con-
venient to denote a Noetherian power series as a sum:

z= Z z(s)?’,
seSupp(z)

where z(s) denotes the image of s under z. A typical example of a Noetherian
power series is the function z : Q — k given by

=(q) = 1 if g=2"0rgq=2"—1 for some n € N*;
0 otherwise.



6058 MOSTEIG

This function can be represented as a formal sum:
7= ([1/2 IV SN VL ST D+ (1—1/2 LA TS ). (1)

We adopt the convention that ¢ is shorthand for the series ¢!.

Definition 2.1. We define LE : k{{(t*)) — QU {—oc0} by

max{s :s € Supp(z if z #£0;
LEC) :{ { —o0 PP} ifzio.

We call LE(z) the leading exponent of z.

Note that LE(z)z2) = LE(z1) + LE(z2). Moreover, we have the fol-
lowing strong triangle inequality:

LE(z1 + z) < max(LE(z1), LE(z,)),

with equality holding in case LE(z;) # LE(z2).

Now LFE yields a valuation on the rational function field in two
variables. Indeed, we have natural embedding ¢ : k(x,y) < k{(t“)) that
maps x+—t, y— z, where ¢ and z are algebraically independent over k, i.c., z
is transcendental over k(7). By the comments following Theorem 5.1, we will
see that there are many Noetherian series that are transcendental over k(7).
Using this embedding, it follows that the composite map LE o ¢ : k(x,y) —
Q is a valuation on k(x, y). To provide valuations that are suitable for use in
the theory developed by Sweedler,'” we give conditions in Sec. 5 that
guarantee

{LE(f(t,2)) : flx,y) € k[x,y]"}

is a well-ordered subset of Q.

3 PUISEUX SERIES

Although we are interested in the leading exponents of series taken
from k((¢%)), it is first necessary to study various subrings of k{(¢“)). We
can identify the polynomial ring k[f] with the subring of k{(¢“)) consisting of
all series z € k({¢”)) such that Supp(z) is a finite subset of N. It immediately
follows that the rational function field k() can be embedded in k((t“)). The
field of reverse Laurent series k((t)) is defined as the set of all functions from
7, to k with Noetherian support.
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The algebraic closure of the field of reverse Laurent series can be
described by Puiseux’s Theorem. Although the classical formulation of this
theorem deals with series that have well-ordered support rather than Noe-
therian support, the following statement is similar to that found in any
standard textbook.!

Theorem 3.1 (Puiseux’s Theorem). If k is an algebraically closed field of
characteristic zero, then the field of reverse Puiseux series defined by
Urenek((t1/7)) is an algebraic closure of k({t)).

Definition 3.2. Given a reverse Puiseux series w, the smallest positive integer r
such that w € k({t'/")) is called the ramification index of w.

We have the following inclusions:

k(1) € k(1)) € [ k() € k(7).

reN*

Definition 3.3. A series z € k({¢2)) is said to be infinite if Supp(z) is an
infinite subset of Q.

Definition 3.4. We say that z € k{((t)) is bounded if Supp(z) is a bounded
subset of Q. In this case, we call the greatest lower bound (in R) of Supp(z)
the limit of z.

Definition 3.5. We say that a nonzero series z € k({t°)) is simple if it can be
written in the form

n
z= E ¢t
=1

where ¢; € k*,n € N*U{oo},e; € Q,e; > eiy1. Whenever we write a series in
this form, we implictly assume that each c; is nonzero and the e;’s are written in
descending order. We call e = (ey, ey, . ..) the exponent sequence of z and write
each exponent as e; = n;/d; where n; € 7., d; € N*, ged(n;, d;) = 1. (In case
n =0, we set di=1.) We call n = (ny,ny,...) the numerator sequence of z
and d = (dy,dy, . ..) the denominator sequence of z.

Definition 3.6. Let z € k{((t“)) be a simple series written as in Definition 3.5.
We define z\% = 0. Let m € N*. If Supp(z) has at most m elements, then
we define z" =z. If Supp(z) has more than m elements, we define
20 = et 4 et

Definition 3.7. Let z1, 2, € k((19)). If 2" = 2\ for all m € N*, then we say
that zy and z, agree to infinite order. Ifzgm) = ng) but zgmﬂ) #* zémﬂ) for
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some m € N, we say that z\ and z, agree to order m. Thus two series z| and z,
agree to order m if their first m terms are the same, but their (m + 1)st terms
are different.

MacLane and Schilling argue that if z, zo € k((t”)) are two series that
agree to infinite order, then for any f(x,y) € k[x,y]", LE(f(t,z1)) =
LE(f(t,2,)).”) Now for any series z € k((r“)), there exists a unique simple
series z,, € k((“)) such that z and z, agree to infinite order.”*! For
example, if z is given by (1), then

2y = M2 M8

Thus for our purposes it suffices to restrict our study that of simple series.

Definition 3.8. Let z € k((t)) be a simple series with infinite support, written
as in Definition 3.5. We define ro = 1 and for m > 1, we define r,, to be the
ramification index of 2™, and call v = (ro,r1,12,...) the ramification sequence

of z.

Example 3.9. Consider the series
2= B LA

This series has exponent sequence (1/2,1/3,1/5,...), numerator sequence
(1,1,1,...), denominator sequence (2,3,5,...), and ramification sequence
(1,2,6,30,...).

We state the following simple lemma without proof.

Lemma 3.10. Let z € k{((t°)) be a simple series with infinite support. If d is
the denominator sequence of z and r is the ramification sequence of z, then for
m>1, ry,=lem(d,...,d,).

Note that z € k({t“)) is reverse Puiseux if and only its ramification
series eventually stabilizes. Puiseux’s theorem states that any reverse Puiseux
series w is algebraic over k((r)). The following result tells us how to con-
struct the minimal polynomial of w over k((z)).1*)

Proposition 3.11. Let k be an algebraically closed field of characteristic zero.
Suppose

n n
W= E ¢ty = E cjt"/’/df
= =
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is a Puiseux series of ramification index r and is written in the form according to
Definition 3.5. Then the minimal polynomial of w over k{(t)) is []'_,(y — w;) €

k{{t))[v] where

n
wi= gl <<,

j=1

and { is a primitive rth root of unity. Note that the conjugate w, is simply w

itself.

4 LEADING EXPONENTS OF MINIMAL POLYNOMIALS
OF SKEW PUISEUX SERIES

In this section, k is an algebraically closed field of characteristic zero
and z € k{(t“)) is a simple series written as in Definition 3.5. We make the
assumption in this section that z is transcendental over k(¢).

Given f(x, ) € k[x,y]", we can think of /{z, y) as an element of k{{7))[]
and then factor f{(z,y) as f(z,y) = q(t)p1(y) - - - ps(y) where ¢(7) € k[f] and
each p;(y) is a monic irreducible polynomial in k((z))[y]. Since LE(f(t,z)) =
LE(g(1)) + >, pi(z) and LE(g(r)) = deg(g(t)), we need to compute
LE(p;(z)) for each i in order to construct a formula for LE(f(z,z)). The
purpose of this section is to compute LE(p;(z)) for each irreducible factor
pi(y). Since p;(y) € k{{1))[y] is a monic irreducible polynomial, it is the
minimal polynomial of some reverse Puiseux series.

Let w be a reverse Puiseux series of ramification index R that is
algebraic over k(f) (and hence is algebraic over k({¢))), and let p(y) €
k({t))[y] be the minimal polynomial of w over k{(z)). We write p(y) in the
form Hfi (¥ —w;), as given by Proposition 3.11. Since z is transcendental
over k() and w is algebraic over k(), we know that they cannot be the same,
and so they must agree to some finite order. Choose m to be the smallest
positive integer such that each of the roots wy,...,wg agrees with z to an
order of at most m. By permuting the roots, we assume without loss of
generality than w agrees with z to order m.

Notation 4.1. In summary, we make the following assumptions throughout
this section.

e € k({(t?)) is transcendental over k(¢) with exponent, numerator,
denominator, and ramification sequences e, n, d, and r.

e w is a reverse Puiseux series that is algebraic over k(z) and has
ramification index R.
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e w has minimal polynomial HZR; (v —w;) over k(()) in which the
conjugates of w are written according to Proposition 3.11.

e zand wagree to order m, and no conjugate of w agrees with z to an
order greater than m.

To obtain a formula for LE(p(z)) in terms of the exponents of z and w
(see Proposition 4.6), we first prove some preliminary results concerning the
conjugates of w over k{{)).

Lemma 4.2. If0 <j < m, the jth terms of z and w; are the same if and only if
d; divides i.

Proof. Since z and w agree to an order of at most m and 0 < j < m, it follows
that z and w must have the same jth term. If we write this common term as

Gt = cjl"//fff — Cj(tl/R)(R”j/d/')’

then by Proposition 3.11, the jth term of w; is
C]_(é"ill/R)(Rn//C#)’

where ( is a primitive Rth root of unity. Thus the jth terms of z and w; are
identical exactly when {®%/% = 1, which occurs whenever R divides iRn;/d;.
However, this occurs exactly when in;/d; is an integer. Since n; and d; are
relatively prime, this is equivalent to the condition djli. O

Suppose 0 < i < j < m. Since
r_/:lcm(dl,...,a_}) = lCm(r,‘,d,‘+1,...,d,'),

it follows that r;|r;. Given two Puiseux series P;, P, with disjoint supports
(i.e., Supp(P;) N Supp(P) = 0), it is not difficult to prove that the ramifi-
cation index of P; + P, is the least common multiple of the ramification
indices of P; and P,. We decompose w as w = wl/) + (w — wl)), noting that
w() and w — wl/) have disjoint supports. Thus the ramification index of w is
a multiple of the ramification index of w(/). However, the ramification index
of wis R and the ramification index of w\/) (=z) is r;, and so rj|R.
In summary, we have the following divisibility relations:

1:ro|r1|r2|~--|rm|R. (2)

Lemma 4.3. If'0 < j < m, then the number of conjugates of w that agree with
z to an order of at least j is R/r;.
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Proof. By Lemma 4.2, the first j terms of z and w; agree if and only if
di,...,d; all divide i, which is equivalent to lem(d,...,d;)|i. By Lemma
3.10, Iem(d,, . .., d;) is simply r;, and so the number of conjugates of w that
agree with z to an order of at least j is the cardinality of {i: 0 <i < R, rj|i}.
However, this set has R/r; elements, and the claim has been justified. [

We decompose z and w as z=z" + (z—z") and w= w4+
(w — wt™). Since z and w agree to order m, z”) = w(") and the first term of
z —z" is different than the first term of w — w(™. Thus

LE(z—w) = LE((z—z") = (w—w™))
= max(LE(z — z'), LE(w — w™)). (3)

Since LE(z — z™) = e, 1, this provides us with the useful inquality

LE(z—w) > eyt (4)

Lemma 4.4. Suppose 0 <j<m— 1. The number of conjugates of w that
agree with z to order j is R/rj— R/rjy1. For each such conjugate w;,
[:E(Z — W,-) = €jt1-

Proof. By Lemma 4.3, the number of conjugates that agree with z to an order
of atleastjis R/r;, of which R/r;.| conjugates agree with to z to an order of at
least j 4 1. Thus the first claim follows. Since z and w; agree to order j, the first
Jjterms of both z and w; cancel in the expression z — w;. Therefore, LE(z — w;)
is the exponent of either the (j+ 1)st term of z or the (j+ 1)st term of w;.
However, these two terms both have exponent e, 1, and so the second claim
holds. O

Lemma 4.5. The number of conjugates of w that agree with z to order m is
R/ry. For each such conjugate w;, LE(z — w;) = LE(z — w).

Proof. By Lemma 4.3, the number of conjugates that agree with z to an
order of at least m is R/r,,. Since no conjugate of w agrees with z to an order
greater than m, the first claim follows. By (3), LE(z—w)=
max(LE(z — z), LE(w — w™)). Equation (3) depends only on the fact
that z and w agree to order m. Thus for each conjuagte w; that agrees with z
to order m, we have LE(z — w;) = max(LE(z — z™), LE(w; — ng))). Since
w and w; agree to an order of at least m (they both agree with z to order m)
and the exponents of w and w; are identical by Proposition 3.11, it follows
that LE(w — w™) = LE(w; — w\™). Thus LE(z — w) = LE(z — w;). O
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We now combine these previous results to produce a formula for the
leading exponent of the minimal polynomial of w over k{(z)).

Proposition 4.6. [f p(y) € k((t))[y] is the minimal polynomial of w over k((t)),
then

£86) = (2) (8 (L= L)) + 26— w).

T =0 i T

Proof. By Notation 4.1, each conjugate of w agrees with z to an order of
at most m. By Lemma 4.4, given 0 <j <m — 1, there are R/r; — R/rj;
conjugates w; that agree with z to order j, and for each of these conju-
gates, LE(z — w;) = ejy1. By Lemma 4.5, there are R/r, conjugates w; that
agree with z to order m, and for each of these conjugates,
LE(z—w;) = LE(z—w). Thus

R
LE(p(z)) =Y LE(z—w;)

i=1

m—1

R R R

= E : ___)e./ﬂ) + (—)EE(Z— w)
=0 }"j l’jJr] "'m

_ (5){,},1("12‘:'(%_L)%) + LBz —w). 0

I'm =) Fjt1

Using Proposition 4.6, we demonstrate that LE(p(z)) lies in a discrete
subset of Q that depends solely on m and the ramification sequence r of z.

Proposition 4.7. LE(p(z)) € (1/(rmrm+1))7.

Proof. Since z and w agree to order m, LE(z — w) must either be the (m +
1)st exponent of z or the (m+ 1)st exponent of w. In the first case,
LE(z—w) € (1/rms1)7. In the second case, LE(z—w) € (1/R)7 since
w has ramification index R. In either case, we have

LEG—w) € (1) ZU/RZ C (1)(Rrni)Z.

Moreover, for 0 <j<m—1, ey € (1/rm)Z C (1/(Rrms1))7Z, and since
rm/r; € 7 for all j < m, we have

(o) et e ()

oM T Rryp
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Thus by Proposition 4.6,

LE(p(2)) € (R/rm)(1/(Rri 1)) 70 = (1) (rmrm1)) 7. O

5 WELL-ORDERED SETS OF EXPONENTS

We are now in a position to state the main theorem which we prove in
the next section.

Theorem 5.1. Let k be an arbitrary field of characteristic zero, and let z be
an infinite, simple, bounded series with exponent sequence e and ramification
sequence r. Define uy = 0 and for m > 1,

in=ra( 3 (2= Yo,

=0 Tt
Suppose the following conditions hold:

(i) For all m € N, u, + ey >0,
(i) lim u,, = oo.

Then the subset {LE(f(t,2)) : flx,y) € k[x,y]"} of Q is well-ordered.

Since Supp(z) consists of an infinite, bounded, decreasing sequence of
elements of Q, the denominator sequence of z must be unbounded, and
hence the ramification sequence must be unbounded, i.e.,

lim r,y, = 0. (5)

Thus z is not reverse Puiseux, and so it is transcendental over k{{¢)) (and
hence transcendental over k(7)).

The following corollary states that series with positive support yield
well-ordered sets. Questions of further exploration naturally arise con-
cerning the necessity of the two conditions in Theorem 5.1. It is unlikely that
these conditions are as general as possible, and it would be interesting to
determine series that yield well-ordered sets despite the fact that they may
fail to satisfy one or both of the conditions. Another related question is
whether it is possible for a reverse Puiseux series z € k({t“)) that is trans-
cendental over k(¢) to yield a well-ordered set.
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Corollary 5.2. Let k be an arbitrary field of characteristic zero, and let z be an
infinite, simple series whose support is strictly positive. Then {LE(f(t,z)) :
f(x,y) € klx,y|"} is well-ordered.

Proof. Since each e; is positive, it follows that u; is positive for all j. Thus
condition (i) of Theorem 5.1 holds.
For each j >0, define b; = (lL)ejH. Since riy1 > r;, we have

. . rj rvAI . .
b; > 0. Since lim r,,, = oo by (5), ry >/rM,,1 or some M € IN*, in which case

by > 0. Thus for all m > M,

m—1

i =ra( S (2 Vo) =t () 2 b

: r; :
j=0 JHl Jj=

Since by, is fixed and limr, = co, condition (ii) of Theorem 5.1 must
hold. ]

Here is an example in which the series z has a mixture of positive and
negative support, and yet well-ordereness still occurs.

Example 5.3. Let

o0
=724 wasz — P2 AL T 16
i=2

The exponent sequence is e = (3/2,—1+1/4,—1+1/8,...) and the rami-
fication sequence is r = (1,2,4,8,16,...). Clearly, condition (i) holds for
m = 0. For m > 1, we compute:

m—1

-n( o)

m 3 = -1 +27<j+1)
=2 (Z+Z 2/t )
J=

which simplifies to

oy = (%)2’”(1 —4)
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Thus u,, > 1, and since ¢, > —1, we have u,, + ¢,,,.1 > 0. Moreover,
lim u,, = oo, and so by Theorem 5.1, {LE(f(t,2)) : f(x,) € k[x,y]"} is well-
ordered.

6 THE PROOF OF THE MAIN THEOREM

If k is not algebraically closed, note that {LE(f(t,z)):f(x,y) €
k[x,y]"} C {LE(f(t,z)) : f(x,p) € kx,»]"} (where k denotes the algebraic
closure of k), in which case the smaller set is well-ordered whenever the
larger set is well-ordered. Thus it suffices to prove Theorem 5.1 in case k is
algebraically closed.

Notation 6.1. We adopt the following notation for this section.

e [k is an algebraically closed field of characteristic zero.

e z is an infinite, simple, bounded series with limit L (see
Definition 3.4).

e e and r are the exponent and ramification sequences of z.

e 1, is defined as in Theorem 5.1.

Definition 6.2. Define A,,(z) to be the collection of all f(x,y) € k[x,y]" such
that the largest order to which any of the roots of f(t,y) € k(t)[y] agree with z
is m.

Example 6.3. Consider the series z = t'/2 + 13 4 ¢1/5 ... Let fi(t,y) €
k({1))[y] be the minimal polynomial of ¢'/? + 2¢'/3 over k((t)) and f>(t,y) €
k({(£))[y] be the minimal polynomial of —¢/2 4¢3 over k{((t)). Then
fi(x,y) € A4(z) because none of the conjugates of ¢'/% 4- 2¢'/3 agree with z to
an order greater than 1, and f>(x,y) € 4,(z) because t'/? +¢'/3 is a con-
jugate of —¢'/2 4 ¢1/3 that agrees with z to order 2.

Lemma 6.4. If u, + ey >0 for all m>0, then {LE(f(t,2)) : f(x,y) €
An(2)} is well-ordered.

Proof. Let f(x,y) € A,y(z). First factor f{z,y) € k[t,y] as f(t,y) =
g(Op1(y) - - ps(y) where g(z) € k[7] and each p;(y) is an irreducible monic
polynomial in k£{(z))[y]. Since no root of any p;(y) agrees with z to an order
greater than m, by Proposition 4.7, LE(pi(z)) € (1/rp,rm+1)7 for some
m; < m. Since ry, |1y, by (2), it follows that LE(pi(z)) € (1/rmFmr1) 7. Now

LE(f(1,2)) = LE(g(1) + > LE(pi(2))
and LE(g(1)) € N, and so LE(f(t,z)) € (1/rmrm+1)7. Thus we have shown

{LE(f(t,2)) : f(x,y) € An(2)} C (1/(rmlms1)) 7. (6)
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If p;(y) has degree R, then by Proposition 4.6 and (4),
LE(pi(2)) = (R/rw)[tm + LE(z = w)] = (R/rm)[tm + em+1]-
By the assumption u,, + ¢, > 0, we have
LE(pi(z)) = 0. (7)

Thus LE(f(1,2)) = LE(g(?)) + > LE(pi(z)) > 0, and so

{LE(f(1,2)) : f(x,y) € An(2)} C Q7. (8)

Combining the inclusions in (6) and (8), we obtain {LE(f(1,z)):
fx,¥) € An(2)} C (1/(rprms1))N. Since (1/(rmrm+1))N is a well-ordered set,
{LE(f(t,2)):/(x,y) € A(z)} must also be a well-ordered set. O

We state the following lemma without proof.

Lemma 6.5. Let Vy, V1, V>, ... be well-ordered subsets of Q, and let vy, be the
smallest element of V,,. If limv,, = 0o, then Uf;fzo V.. is well-ordered.

We are now in a position to give a lower bound for LE(f{t,z)) (where
f(x,y) € Apy(2)) in terms of u,, and the limit L of the series z.

Lemma 6.6. If u, + e, >0 for all m >0, then for all f(x,y) € An(2),
LE(f(t,2)) > up + L.

Proof. Given f(x,y) € An(z), let w be a root of f(¢,y) € k(¢)[y] that agrees

with z to order m. Let p; () € k{())[y] be the minimal polynomial of w over
k({1)). Factor f(t,y) as

ft,y) =gOpi1(y) - ps(y)

where g(7) € k[f] and each p;(y) is an irreducible monic polynomial in
k{())[y].- As in (7) in the proof of Lemma 6.4, LE(p;(z)) > 0. Moreover,
LE(g(t)) € N, and so LE(f(t,z)) can be expressed as

LE(s(0) + LEu() + Y- LEp() 2 LE( (2) )

Let R be the ramification index of w. We know that LE(z — w) > €41
by (4), and so LE(z —w) > L. Moreover, R/r, > 1 by (2) and so we can
obtain the desired lower bound for LE(p;(z)) (and hence for LE(f(t,z)) via
(9)) by replacing R/r, by 1 and LE(z—w) by L in the expression for
LE(pi(z)) given in Proposition 4.6. O
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We now complete the proof of Theorem 5.1. To do this, we make the
assumptions that (i) for all m € IN, u,, + e,,,.1 > 0, and (ii) lim u,, = co. By
Lemma 6.4, V,,, = {LE(f(1,2)) :f(x,y) € An(2)} is well-ordered. By Lemma
6.6, it follows that for all f(x,y) € A(z), LE(f(t,2)) > uy + L. Thus if v,
denotes the smallest element of V,,, then v, > u, + L. Since we are

assuming lim u,, = oo, it follows that lim v,, = co. Thus by Lemma 6.5,

U LLEC(,2) M) € An(2))

m=0

is well-ordered. Since k[x,y]" = | 4,,(2), the result follows.
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