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This paper is a continuation of our recent joint work with K. H. Leung
on the real spectrum of a noncommutative ring [15]. The object of the
present paper is to develop a theory of real places and valuations to
accompany the theory of orderings developed in [15]. Because of the
existence of integral domains which are not embeddable in a skew field, it
is necessary to deal directly with integral domains. Consequently, the
theory of real places and valuations that we obtain is somewhat less
precise than the corresponding theory for fields or skew fields.

Archimedean classes in ordered abelian groups were considered already
by Hahn [11] and the connection between orderings and real places on
fields was worked out already by Baer and Krull in [2, 12]. In the 1970s,
inspired by Pfister’s earlier work on signatures of quadratic forms [17], the
connection between orderings, valuations, and quadratic forms on fields
was firmly established by Becker, Brocker, Brown, Prestel, and others; see
[13]. In the 1980s, after the real spectrum of a ring was introduced by
Coste and Roy, these ideas were applied to real algebraic geometry and
real analytic geometry; see [3, 1].

Abstract real spectra, also called spaces of signs, were introduced just
recently in [1, 5, 16] in an attempt to axiomatize parts of real algebraic
geometry and real analytic geometry. In [15] it is shown, and perhaps this is
a bit surprising (although there is some hint of it already in [14, Chap. 6;
8], for example), that the orderings on a noncommutative ring form an
abstract real spectrum, exactly as in the commutative case. In the course of
the proof, it is shown that if p is a real prime of A4, then A/p is an
integral domain and the orderings on A having support p form a space of
orderings.
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In the present paper, we define real places on a (not necessarily
commutative) integral domain A4 and examine the relationship between
real places on A and support {0} orderings on 4. We show that a version
of the Baer—Krull theorem holds, and that the real places yield a natural
P-structure on the space of support {0} orderings. (See [16] for the meaning
of this terminology.) More generally, we show, for an arbitrary noncommu-
tative ring, that the real places on the various residue domains yield a
natural P structure for the real spectrum of the ring. We also define
valuations on an integral domain and prove a general version of Brocker’s
trivialization theorem for fans; see [4]. Finally, as an example, we study
orderings and real places on the twisted polynomial ring R[ x, y], where the
multiplication is defined by yx = axy, a € R, a > 0, a # 1, and we com-
pute the stability index.

1. TERMINOLOGY AND NOTATION

Let A be a (not necessarily commutative) ring with 1. For any subset
S C A, let A%(S) denote the set of all permuted products of elements
ay,ay,...,0,,04,, 8,...,5,, fora,,...,a, €A, s,....,5, €S, n>=0mz>
0, and let ¥ A42(S) denote the set of all finite sums of elements of A2(S).
We denote ¥ A%({1}) by X A? for short. As in [15], a preordering in A is a
subset T C A such that Y A%(T) < T. ¥ A%(S) is the smallest preordering
in A containing S. In particular, ¥ 42 is the unique smallest preordering
in A. A preordering T of A is said to be proper if —1 & T.

A subset P of A is called an ordering if P+ P C P, PPCP, PP =A,
and PN — P is a prime ideal of A. The prime ideal P N — P is called
the support of P. Every proper preordering of A is contained in an
ordering. In particular, A possesses an ordering iff —1 & Y42 A prime p
in A is said to be real if it is the support of some ordering of 4. A prime p
is the support of an ordering containing the preordering T iff (T + p) N
—(T + p) = p. In particular, p is real iff (CA4% + p) N —(XA% + p) = p.

If p is a real prime, then the factor ring A /p is an integral domain and
{0} is a real prime of A /p. Also, the map P — P/p defines a one-to-one
correspondence between support p orderings of 4 and support {0} order-
ings of A /p. Thus, in studying support p orderings on A, one is reduced
immediately to the case where A is an integral domain and p = {0}.

Throughout the first several sections, we assume that A4 is a (not
necessarily commutative) integral domain, and {0} is a real prime of A4, i.e.,
(XA4%) n —(X.A?%) = {0}. A* denotes the set of all nonzero elements of A,
and X denotes the set of all support {0} orderings on A. Each a € A*
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gives rise to a mapping a: X — {—1,1} via

_ _ 1 ifaeP
"(P)_{—l ifae —P.

Let G denote the set of all such mappings, i.e.,, G ={ala € A*}. G is a
subgroup of {—1,1}¥, ab = ab for any a, b € A*, and (X, G) is a space of
ordering; see [15]. The topology on X is the weakest such that the
mappings @ € G are continuous (giving {—1,1} the discrete topology).
In other words, {U(a)|a € G} is an open subbasis for X where U(a) =
{PeX|a(P)=1}. X is a Boolean space, i.e., X is compact, Hausdorff,
and totally disconnected; see [16, Theorem 2.1.5]. Given a preordering T
on A with Tn — T = {0}, we denote by X, the set of all support {0}
orderings on A containing 7" and G, = Glx, the set of all restrictions of
elements of G to X;. (X, G;) is a subspace of (X, G) (so is itself a space
of orderings) and every subspace of (X, G) is of this form. Each ordering
P € X, gives rise to a character y, on G, given by a — a(P). The
mapping P — x, identifies X, with a subset of the character group of G
and x,(—1) = —1 holds for each P € X;. X; (more precisely, (X;, G;))
is said to be a fan if every character y: G, — {—1, 1} satisfying x(—1) =
—1 is of the form y = x, for some ordering P € X;. In concrete terms,
this just means that any subset P of A satisfying T P, PPC P, PU —
P=A, Pn — P ={0}is an ordering (i.e., is closed under addition).

2. ORDERINGS, REAL PLACES, AND VALUATIONS

Let P be a support {0} ordering on 4 and let < be the associated total
orderingon A, i.e.,a <b < b —a € P. Forany a € A, define |a| = a, if
a P and |a| = —a, if a € —P. Since (A4, +, <) is an ordered abelian
group we have a set valuation v: A — I' U {«} induced by P. This is
defined as follows. a,b € A are said to be archimedean equivalent if
la| < m|b| and |b| < nla| for some positive integers m and n. v(a) is just
the archimedean equivalence class of a, © = v(0), and I' = {v(a) | a € A*}.
I' U {=} is totally ordered by v(a) < v(b) iff nlal > |b| for some positive
integer n. All this works for any ordered abelian group (A4, +, <) [10, 11].
In our situation, because of the multiplication on A, there is a (not
necessarily commutative) binary operation + on I' defined by v(a) + v(b)
= v(ab), and (T', +) is a cancellation semigroup. That is, + is associative,
there is an identity element 0 = v(1), and if a + y=B+ yory+ a =
v + B then a = B. This semigroup is ordered, i.e., < is a total ordering
on I"'and a<B=a+y<B+yand y+a<y+B. Thus v is a
valuation of A4 in the following sense.
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DEerFINITION 2.1. A valuation on an integral domain A4 is a map v from
A onto T" U {=}, an ordered cancellation semigroup I = (T, +, <) with «©
adjoined, such that
1) v(a) = ea=0.
(2) wv(ab) = v(a) + v(b).
) wvla + b) = min{v(a), v(b)}.

If we drop the requirement that the ordered semigroup (T', +, <) has the
cancellation property then v is called a weak valuation on A.

Note. For any valuation or weak valuation v on A:
1 v@=00v(-1=0,v(—a)=v(a).
(2) If v(a) # v(b) then v(a + b) = min{v(a), v(b)}.

(3) For a skew field, valuations and weak valuations are the same
thing and the value semigroup T" is a group.

(4) We will need to consider weak valuations later, in Section 4.
LEMMA 2.2. If a,b< P, a+0, b +#0, and v(a) = v(b), then there

exists a unique real number u(a,b) € (0,) such that u(a,b) € [m/n,
(m + 1)/n] for any positive integers m, n satisfying mb < na < (m = 1)b.

Proof. See [10]. 1

By Lemma 2.2, a support {0} ordering P on A induces a map a = ap:
(A X A)N(0,0) > R U {o} defined by

© if v(a) <v(d)
w(a,b) - w(lal, [bl) if v(a) =v(b),abeP
’ — w(lal, 1bl) if v(a) =v(b),abe —P
0 if v(a) > v(b).

Obviously, « has the following properties.

() ala,b) =o < alb,a) =0.
(i) If a(a,b), a(b,c) # < then ala, b)a(b,c) = ala,c).
(i) If a(a,c), a(b,c) # » then ala,c) + a(b,c) = ala + b, ¢).
(iv) ala,b) = alac, bc) = alca, cb) for any ¢ € A*.
If A is a commutative integral domain, properties (i)—(iv) characterize
completely a real place on the quotient field of 4 (considering (a, b),
b # 0 as representing the element a /b in the quotient field). This moti-

vates us to define a real place on a not necessarily commutative integral
domain A as follows.
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DerINITION 2.3. A real place on A is a map a: (A X A) \ (0,0) —
R U {} which satisfies properties (i)—(iv).

PrRoPOSITION 2.4. Let a be a real place on A. Then

1) ao,)=1, a(-1,1) = —1, and «(0,1) = 0.
2 mmneZ n+0= almn)=m/n.

Q) If ala,b), alc,d) # « then ola,b)alc,d) = alac, bd) and
ala,b) + alc,d) = alad + be, bd).

(4) The finite elements in the image of a form a subfield of R.

Proof. (1) Property (i) ensures that a(1,1) # 0 or «. By property (ii),
a(l,Da,1) = a(1,1) so a(1,1) =1. By property (iv), a(—1,1) =
a(l, —1) so, by property (i), a(—1,1) # 0 or e. Thus a(1, —1)a(—1,1)
a(1,1) =1 so either a(—1,1)=1or a(—-1,1)= —1. If a(—-1,1) =
then «(0,1) = a(1,1) + a(—1,1) = 2, contradicting «(0,1) + «(1,1)
a(1,1). Thus a(—1,1) = —1 and «(0,1) = 0.

(2) By (1) and Property (iii), a(m,1) = m. Then a(l,n)a(n,1) =
al,D)=1if n+0,% ald,n)=1/n and a(m,n) = a(m,Dal,n) =
m/n.

Q) ala,b)alc,d) = alac, bc)albe, bd) = alac, bd) and, similarly,
ala,b) + alc,d) = alad, bd) + a(bc, bd) = a(ad + bc, bd).

(4) Thisis clear. 1

I

A real place a on A gives rise naturally to a valuation v,: A — I', U {oo}.
Namely, we define v (a) = {b € A*| a(a, b) # 0, a(a, b) # =}, for a € A*
and T, ={v (a)|a € A*}. Also, we define v (a) < v, (b), a,b € A* to
mean that a(b, a) # « and we define + on T, by v, (a) + v, (b) = v, (ab).
If v (a) <v,(b), a, b e A* then a(b,a)=05s0, forany c € A*, a(bc, ac)=
a(ced, ca) = 0so v (a) + v, (c) <v,(b) + v,(c)and v, (c) + v, (a) <v,(c)
+ v,(b). This shows that T, is an ordered cancellation semigroup.

Of course, if a = ap, the real place induced by some support {0}
ordering P of A, then v, is just the valuation induced by P. In the
commutative case, every real place is of this type. In the noncommutative
case, it is not clear if this is always the case. We have the following result.

THEOREM 2.5. Let a be a real place on A and let S,={ab € A| a(a, b)
(0,)}. Then the following are equivalent:

D a,beA S, = ala,b) €[0,%) U {}

(2 If ay,...,a, are non-=zero elements of A*(S,) then v,(a, +
«+ +a,) =min{v, (a)]i=1,...,n}

(3) (A%S,) N —(LA%S,)) = {0},
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(4)  There exists a support {0} ordering P on A such that P 2 S,,.

(5) a = ap for some support {0} ordering P on A.
6) A*(S)Nn-S,=3.

Proof. (1) = (2). We can assume v,(a;,) >v,(a;) for i=1,...,n.
Then «af(a;, a;) >0 and ala;,a;) =1>0 so a(Xl ,a; a) =
Y iala;, a,) > 0.

(2) = (3). If not, we have non-zero elements a,,...,a, € A%(S,)
with a, + -+ +a, = 0. This contradicts (2).

(3) = (4). It follows from [14, Theorem 17.10] or [15, Theorem 3.2].

(4) = (5). We want to show a(a,b) = ap(a,b). We may assume
ala,b) #oand b € P, b+ 0. Forany m,n € Z, n > 1such that m/n <
ala, b) < (m + D/n, we have 0 < a(na — mb, nb) and a(na —
(m + 1)b,nb) <0 so (na — mb)nb, ((m + b — na)nb € S,  P. This
implies na — mb, (m + Db —na € P s0o m/n < ap(a,b) < (m + 1)/n.
Therefore, a(a, b) = ap(a, b).

5)=@®). S,cPsoA(S)N -85S, cPnNn—P={0.But0esS,.

(6) = (1). If not then there exist a,b € A*(S,) with a(a,b) < 0.
Then —ab € S, so ab € A*(S,) N — S, ,a contradiction. [

DEFINITION 2.6. A real place satisfying the equivalent conditions (1)—(6)
in Theorem 2.5 is said to be order compatible.

In the commutative case, ¥ A4%(S,) = A*(S,) = S, U {0} so every real
place is order compatible.

Let « be an order compatible real place on 4 and let P be a support
{0} ordering on A. If ap = «, then clearly S, c P. Conversely, if S, C P,
then a, = a by the proof of the implication (4) = (5) of Theorem 2.5. In
this situation, we will say P is compatible with «. We denote by X, the set
of all support {0} orderings of A4 which are compatible with « and let
G, = Glx,. X, is precisely the set of support {0} orderings containing the
preordering ¥ A%(S,), so (X, G,) is a subspace of (X, G).

LEMMA 2.7.  Let a be an order compatible real place on A, and let P be a
subset of A. Then P is a support {0} ordering on A compatible with « if and
onlyif PPcP, PN —P={0}, PU—-P=A,and P> S,,.

Proof. The “only if” part is clear. To see the “if’ part, it suffices
to show P + P c P. Suppose a,b € P. We can suppose a, b # 0. Also,
interchanging a, b if necessary, we can assume v, (a) > v, (b). Then
a(a + b, b) > 0. For, otherwise, a(a,b) < —1,50 a(—a,b) >0, s0 —ab
€S, P,soab e PN — P,acontradiction. Therefore we have (a + b)b
€ S, C P, which impliesa +b e P. 1
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In the commutative case the Baer—Krull theorem (e.g., see [13]) relates
X, with the value group I',. This result carries over to the noncommuta-
tive case. We need some notation. Suppose « is a real place on 4. We
define an equivalence relation ~ on the value semigroup I, as follows.
Define y~ 68, v,6€l, e y+1t+ 6 € 2l for some t € 2T, where 2T,
is the set of all permuted sums of elements y,, v,,..., %, ¥, for v,,..., 7,
el,n=0Ify~é,say, y+t+dée€2l,t€2l,,then 6+s+ yeE
2I', where s = y+ ¢+ 6 € 2I', so 6 ~ y. Moreover, if y ~ 6 and & ~ n,
say, y+t+é6€2l, and 6 +s+ ne€ 2, for some ¢, s € 2T, then
y+r+mne2l, where r =1+ 28+ s € 2[,_so y~ n. This shows that
~ is an equivalence relation on I',. Let I, =T, /~ . Since, for any
v.6€l, y+td~d8+vyand forany nel,, y~d=n+y~3d+mn,
we see that I', is a quotient semigroup of I',, which is in fact an abelian
group of exponent 2.

THEOREM 2.8. Let a be an order compatible real place on A. Let X,
denote the set of all support {0} orderings on A compatible with «, and
G, = Glx,. Then

1 (X,,G,) is a fan.
_ (2) There is a natural (split) short exact sequence 0 —» {+1} —» G, —
r,—o.

(3) X, is in non-canonical one-to-one correspondence with the set of
characters of T,.

(4) _ X, is finite if and only if T, is finite and, if this is the case, then
| X, | = IL,1

Proof. Part (1) is immediate from Lemma 2.7. For (2), let 7, (a) € T,
a € A* denote the equivalence class of v,(a). We show first that the
natural surjection aly_~ 7,(a) from G, to I, is well-defined. Suppose
a=>bon X, Then —ab & P for each P € X,,. Since X, = Xy 425, bY
[14, Lemma 17.8] or [15, Theorem 3.5] we have sab =t for some s,t €
Y A%(S,), s, t # 0. Using the fact that if ¢, € X A4%(S,), c; #0,i=1,...,n
then v (c; + -+ +¢,) = min{v,(c)|i=1,...,n} and the fact 7, (c) =0
for any non-zero ¢ € A%(S,), we get 7,(s) =7,(¢+) =0. Thus, 7, (a) =
7. (b). To see the sequence is exact, it remains to prove that if 7,(a) =0
then a = +1 on X,. If not, we have P,Q € X, such that a € P, a & Q.
Let y: P* — {41} be defined by

1 ifbeQ
x(b) = _4 ifbe —Q,

where P* = P \ {0}. Clearly, y is a character on P*. Suppose v, (c) =
v,(d), c,d € P*. Then c¢cd € S, € Q so x(c) = x(d). Hence, y induces a
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character 7 on I,. Note that y~ 6, y,6 €I, = w(y) = w(8), so =
induces a character # on T,. Now #(7T, () = (v, (a)) = x(a) =

This is impossible because va(a) = 0. This proves (2). Part (3) follows from
(2). X, being a fan, is naturally identified with the set of characters y on
G, such that y(—1) = —1 which, in turn, is in non-canonical one-to-one
correspondence with the set of characters on F Part (4) is immediate
from (3). 1

ExAMPLE 2.9. Consider the semigroup ring R[T'], where (T, +, <) is
some ordered cancellation semigroup By definition, R[I'] consists of all
formal finite sums Zyerc x?, ¢, € R with componentwise addition and
with multiplication given by x’/x =x”"? x is just a symbol. There is a
natural valuation v: R[I'] - T" U {} defined by v(X, . rc,x?) = y, where
Yo=min{fy €'|c, # 0}if X, .c, x” # 0,and v(0) = . Note that v = v,
where « is the real place on R[T'] given by

o if o(f) <v(g)
a(f,g) =1{¢/d; if o(f) =v(g)
0 if v(f) >v(g),

where c,,d; are coefficients of the terms in f, g, respectively, with
smallest value. The real place o is order compatible. The support {0}
orderings on R[I"] compatible with o can be computed using Theorem 2.8.

3. THE SPACE OF REAL PLACES

In the rest of the paper, the term real place will always refer to an order
compatible real place. We denote by M the set of all such real places on A4
and define A: X -» M by A(P) = a, for all P € X. In the field case, the
mapping A is considered, for example, by Dubois [9], Brown [6], Brown and
Marshall [7], and Lam [13]. Various results can be generalized to noncom-
mutative domains. First of all, we need to generalize the real holomorphy
ring as defined in [13, 16]. Given o« € M, let B, = {(a,b) € (A X A) \
(0,0)| a(a, b) # =}, and define

N B..

aeM

Then H is a generalization of the real holomorphy ring in the field case to
noncommutative domains, although it does not have ring structure any
more. The following result shows that H is ‘““big enough.”
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LeEmMMA 3.1. (ab, a® + b?),(a? a® +b?) € H, for all (a,b) € (A XA) \
(0,0).

Proof. For any a € M, v,(a*® + b?) = min{v(a®), v, (b?)} <
v, (ab),v,(a®). 1

Each pair (a,b) € (4 X A) \ (0,0) defines a mapping a/b: M —
R U {0} given by (a/b)(a) = ala, b). The topology on M is defined to be
the weakest such that the mappings a/b,(a,b) € (A X A) \ (0,0), are
continuous, where R U {e0} is given the topology of the real projective line.
Let Cont(M, R) denote the ring of all continuous functions from M to R
and let H = {a/b|(a,b) € H}, so H C cont(M, R).

THEOREM 3.2. With the set-up as above, then

(1) M is Hausdorff.

(2) The natural surjection \: X — M is continuous.
(3) M is compact.

(4) The topology on M is the quotient topology.

(5) H is a subring of Cont(M, R).

(6) H is dense in Cont(M,R) in the sup norm.

(7)  Every fiber A"*(a), « € M, is a fan.

(8) Every fan Y C X intersects at most two fibers of \.

Proof. (1) Suppose a,B €M, a+# B. Thus there exists (a,b)
(A X A) \ (0,0) such that a(a, b) + B(a, b). If one of a(a, b)and B(a, b)
is infinite, say a(a,b) = and B(a,b) < then a(b,a)=0 and
ala +rb,a) = ala,a) + a(r,Da(b,a) =1 for any integer r, so a(rb,
a+r)=qala+rb,a+rb) —ala,a+rb) =1—-1=0. This implies
a(b,a + rb) = 0. Since B(a + rb,b) = B(a,b) + r, B(b,a + rb) # « and
B(b,a + rb) # 0if B(a,b) # —r. Thus, replacing (a, b) by (b, a + rb) for
some appropriate integer r if necessary, we can assume af(a,b) # o,
B(a, b) # . Finally, replace (a, b) by (+qga + pb, gb) for some appropri-
ate integers p, g, we can assume a(a, b) < 0 < B(a, b). This proves M is
Hausdorff.

(2) To prove the continuity of A we note that the inverse image
under A of the subbasic open set {a € M | a(a, b) > 0, a(a, b) + =} in M,
where (a, b) € (A X A) \ (0,0), is the union of the open sets
U((na — b)a) N U((nb — a)b) N Uab) in X, n running through the
positive integers. If MP) = «a, ala,b) >0, ala,b) # =, then ab € P,
and if we pick n > 1 large enough so that n > a(a, b), a(b, a), then
alnb —a,b) > 0,a(na —b,a) >0 so (nb — a)b,(na — b)a € P. Con-
versely, if P € X and ab,(na — b)a,(nb — a)b € P for some n > 1 and
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a = A(P) then, replacing a, b by —a, —b respectively, if necessary, we can
assume a,b € P. Then na — b, nb — a € P which implies vp(a) = vp(b),
so al(a,b) > 0, ala,b) # «.

(3) and (4). These follow from (1) and (2) since X is compact.

(5) Given (ay, b)), (a,, b,) € H, ((a,/b,) + (a,/b,)a) = alay, by)
+ ala,, b,) = ala,b, + bya,, b,b,) = (a;b, + b,a,)/(b;b,)(a) for all
a € M, so (ay/b,) + (a,/b,) = (a,b, + b,a,) /(b,b,). Similarly, we have
(a,/b;Xa,/b,) = (a,a,)/(b,b,). From this it is clear that H is closed
under addition and multiplication. Clearly H contains every rational
constant, so this proves H is a subring of Cont(M, R).

(6) By the Stone-Weierstrass theorem, applied to the closure of H, it
suffices to show H separates points in M. Let «, B € M, o # B. By the
proof of (1), we have (a, b) € (A X A) such that a(a, b), B(a, b) # « and
ala, b) < 0 < B(a, b). Replacing (a, b) by (ab,a? + b?) (using Lemma
3.1), we can assume (a, b) € H.

() A a) =X, so this is just Theorem 2.8 (2).

(8) Suppose, to the contrary, that Y is a fan in X which intersects
three or more fibers of A. Thus we have P, P,, P, € Y with o; = A(P),
i =1,2,3, distinct. Since Y is a fan, we have P, € Y such that I'T/_,a(P,)
= 1forall a € A*. Let «, = A(P,). Reindexing, we can assume that either
ay, ..., o, are all distinct or a3 = «,. Using the Tietze extension theorem,
we get a continuous function f: M — R with f(a) = -1, f(e) =1,
i=2,3,4. Using (6), we get (a,b) € H with a,(a,b) <0, aa,b) >0,
i=234 Then ab#0 and abe —P, and abe P, i=23,4, s0
[1}_,ab(P) = —1, a contradiction.

As in [16], a P-structure on a space of orderings (X, G) is defined to be a
surjection A from X to a set M such that the following hold:

(1) Foreach a e M, A" (a)isafanin X.

(2) For each fan Y C X, there exists a, 8 € M with Y € A" }(a) U
ATHB).

Also, a P-structure A: X —» M on (X, G) is said to be Hausdorff if M, with
the induced quotient topology, is Hausdorff.

COROLLARY 3.3. The map A: X — M defines a Hausdorff P-structure on
the space of orderings (X, G).
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4. TRIVIALIZATION THEOREM FOR FANS

In this section, we develop a version of Brocker’s trivialization theorem
for fans [4] which holds for noncommutative domains.

DeriniTION 4.1.  Given two valuations v,w on A, we say w is coarser
than v (or v is finer than w) if v(a) = v(b) = w(a) > w(b) VYa, b € A.

LeEMMA 4.2.  Suppose w,,w, are coarser than v. Then either w, is coarser
than w, or w, is coarser than w,.

Proof. Otherwise, there are ay, b, a, b, €A such that wya;) >
wi(by), wyla) <wy(b) and wy(a,) > w,(b,), wia,) <wb,). Then
wy(a;b,) > wy(bja,) and w,(a b,) < w,(b,a,), which implies v(a,b,) >
v(b,a,) and v(a,b,) < v(b,a,). This is impossible. 1

Thus the family of valuations coarser than a given valuation forms a
chain. Note however that our proof of Lemma 4.2 breaks down if w; and
w, are only assumed to be valuations in the weak sense. Moreover,
valuations in the weak sense are precisely the sort of valuation we obtain
in the trivialization theorem (Theorem 4.7) below. This is indeed unfortu-
nate. But anyway, because of this, we need to allow valuations in the weak
sense in the remainder of this section.

DerFiNITION 4.3. Let v be a valuation on A4 in the weak sense, and let
P be a support {0} ordering on A. We say P is compatible with v if
Va,b € A, v(a) > v(b) = (a + b)b € P.

Note. (1) P is compatible with v, . (2) If P is compatible with v,
then v is coarser than v,(P). The first assertion is clear. For the second,
suppose v(a) > v(b). Then, for any integer n > 1, v(—na) > v(b) so
(b — na)b € P. We may assume a,b € P. Then b —na € P for any
integer n > 1, 50 vyp\(a) > vy py(b). |

LEMMA 4.4. Let P be a support {0} ordering on A compatible with a
valuation v on A. Suppose Q is a subset of A such that QQ € Q, QU — Q =
A, ONn —0={0}, and P n{ab|v(a) = v(b)} = O N {ab|v(a) = v(b)}.
Then Q is a support {0} ordering on A and Q is compatible with v.

Proof. To see Q is an ordering, it suffices to show Q + Q < Q. Sup-
pose 0 # ¢, d € Q. If v(c) # v(d), say, v(c) > v(d), then ¢ +d # 0, (¢ +
d)d € P and v(c + d) = v(d). Then (¢ + d)d € Q which implies ¢ +d
Q. Now suppose that v(c) = v(d). Since ¢d € Q, this implies ¢d € P so
either ¢,d € P or ¢,d € —P. In either case, we have (¢ + d)d € P. We
claim that v(c + d) = v(d). For, otherwise, v(c + d) > v(d) = v(—d).
Then —cd = —(—d + ¢ +d)d € P and v(c) = v(—d), so —cd € Q so
cd € Q N — Q, a contradiction. Thus, v(c + d) = v(d) so (¢ + d)d € Q
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which forces ¢ + d € Q. To see Q is compatible with v, let v(a) > v(b),
a,b € A. Then v(a +b) =v(b) and P is compatible with v implies
(a + b)b € P,so (a + b)b € Q. This proves that Q is compatible with v.
|

Given a valuation v on A, let X, denote the set of all support {0}
orderings on A which are compatible with v. Suppose X, # & and let
G, = Gly,. Also, denote by S, the set of all products (a + b)b, a,b € A,
v(a) > v(b). Clearly a support {0} ordering P on A belongs to X, iff
P2S,. Thus X, = Xy 425, 50 (X, G,) is a subspace of (X, G).

LEMMA 45. If a;,...,a, € AX(S,) then v(a, + - +a,) = min{v(a,)|
i=1,...,n}

Proof.  Suppose v(a, + -+ +a,) > min{v(aq;)|i =1,...,n}. We can as-
sume v(a;) = v(a;), i=1,...,n and that n is chosen minimal. Then
(a, —(a; + - +a,)a, = —(a, + -+ +a,)a, €S, so (a, + -+ +a,)a, €
(ZA%S,) N —(XA%(S,)) = {0}, a contradiction. I

Let K, ={abla,b € A*, v(a) = v(b)}, and let G, =K,lx,. K, is a
subgroup of G and G, is a subgroup of G,. Note that —1 € G, since
—1 € K. Define an equivalence relation ~ on X, by P ~ Q < ¢(P) =
c(Q) or aII cekK, and let X, =X,/~. We refer 1o (X,,G,) as the
residue space of (X G) at v. In the fleld case, (X, G) is the space of
orderings of the residue field of v, but in the general case considered here,
the residue field may not even be defined.

Also, let T' = {v(a) | a € A*} be the value semigroup of v. We define an
equivalence relatlon ~ on I' exactly as we did for I', in Section 2 and,
just as in Section 2, I' = '/ ~ is an abelian group of exponent 2.

THEOREM 4.6. (1) (X,,G,) is a group extension of (X,,G,).
(2 (X,,G,) is a space of orderings.
(3) There is a natural short exact sequence 0 - G, - G, -» T — 0.

Proof. Part (1) is immediate from Lemma 4.4. Part (2) follows from (1)
using standard facts from the theory of spaces of orderings [16, Theorems
4.1.1 and 4.1.3]. For pat (3), for a € A*, let T(a) denote the equivalence
class of v(a). Exactly as in the proof of Theorem 2.8, the surjective map
alx, = v(a) from G, to I', is well-defined. It remains to show that if
U(a) = 0 then alx, € G,. If this is not the case then, by Lemma 4.4, we
have P,Q € X, with P ~ Qand a € P, a ¢ Q. This yields a contradiction

exactly as in the proof of Theorem 2.8. |

By Theorem 3.2, for any fan Y in X there are two real places «, B € M
such that Y ¢ A™*(a) U A"*(B). Let v,, v, be the valuation correspond-
ing to «, B, respectively. Then every ordering P in Y is either compatible
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with v, or with v,. Thus there is a unique finest valuation v compatible
with every P € Y, namely the finest valuation coarser than both of v,, v,.
We would like to prove that the pushdown of Y to the residue space
(X G ) is a trivial fan. We are not able to prove this. However, we are
able to prove the following weak version:

THEOREM 4.7 (Trivialization Theorem for Fans). IfY C X is a fan then
there exists a valuation v on A in the weak sense such that every ordering in 'Y
is compatible with v and the induced fan in the residue space (X,, G,) is
trivial.

Proof. LetY c A" (a) U A"Y(B) for some «, B € M. We can suppose
a+ B and YN A '(a), YN AH(B) are both nonempty. For, otherwise,
Y c A *(a) say, and we can take v =uv,. The induced fan in X, is
singleton so it is trivial. We now define a valuation v in the weak sense so
that every ordering in Y is compatible with v. For any a,b € A*, let
a <, b mean v,(a) <v,(b) and a <, b mean vz(a) < vz(b) and define
a < b if there is a finite chain of elements in 4, a = a,,..., a,, = b, such
that ay <, a, <, a, - <, a,,_; <, a,,. Define a ~b to mean a <b
and b < a. Obviously, < induces a total ordering on the equivalence
classes and a <b =ac <bc, ca <cb for all c€eA* and a +b >
min{a, b}. Let v(a) denote the equivalence class of a with respect to ~
and define v(a) < v(b) to mean that a < b. Also define v(a) + v(b) =
v(ab). Then it is easy to check that v is a valuation in the weak sense.
Since Y is a fan, we have Y = X, where T = Np.y P. Thus (X;,G;) is a
fan, where G, = {a; = alx, | a € A*}. By our assumption, A(X;) = {a, B}.
Let X, ={P € X, |MP) = a}and X, ={P € X, | A(P) = B}. By Theo-
rem 3.2, H = {a/b |(a, b) € H} is dense in Cont(M, R) in the sup norm so
a #+ B implies there exists (a, b) € H such that a(a,b) > 0 and B(a, b)
<0.Then ab=1o0n X, and ab = —1 on X,. Let G* ={c € A*|¢, €
{1, —1,ab,, — ab,}}.

Claim 1. If ¢ =1on X, or X, then ¢ € G*. For, say, ¢ =1 on X,
then ¢; € D(1,ab,) which, by Theorem 3.1.2 in [16], is {1,ab,} since Y is
a fan.

Claim 2. 1If ¢,d € A* and cd ¢ G*, then v,(c) # v,(d) and v,(c) #
vg(D). Suppose v,(c) = v,(d). Then either cd=1 on X orcd= —1on
X, so, by Claim 1 elther cd € G* or —cd € G* WhICh contradicts our
assumption. Similarly, vy(c) # vg(d).

Claim 3. If ¢,d € A* and cd & G*, then either v,(c) > v,(d), vy(c) >
Ug (d) or v,(c) <v,(d), Ug (c) < Ug (d). Otherwise, say, v,(c) > v, (d),
Ug (c) < vg (d) Thenc +d; e D<cT, d;} = {¢;,d;} since Y is a fan. Note
v (c)>v (d) implies a(c, d)—Oso alc +d,d)=1s0oc +d=d on X,.
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Similarly, ¢ + d=c¢ on X,. Now either ¢ + d; = ¢, s0 ¢ = d on X; so
c¢d=1on X, a contradiction by Claim 1, or ¢ +d, =d; so ¢ =d on X,
so cd= 1 on X,, also a contradiction by Claim 1.

Claim 4. If ¢,d € A* and cd & G* then v(c) # v(d). If v(c) = v(d),
then there exists a finite chain ¢ = a,,...,a,, = d such that a;, <, a; <,
a, - <y a,,_, <, a,,. Since cd=1T11?",a, ,a, a, ,a, & G* for some
1<i<2n By Claim 3, v,(a, 1) <v,(a), vgla,_1) < vgla).
Then a,_, <, a;, a,_; <, a;, S0 we can shorten the chain by eliminating
a;_, and a,. We may repeat this process until we get a short chain,
¢c=4ay<, a; <, a, =d. Then either ca, & G* or a,d & G*. In either
case, we have v,(c) <uv,(d), vy(c) < Uﬁ(d). Similarly, there is a finite
chain bg,...,b,,, with ¢ =by >, by >,b, -+ >, b,,,_, >, b,, =d 50,
as before, v,(c) > v,(d), UB(C) > UB(d) a contradlctlon

Let Y denote the pushdown of Y to X,. By Claim 4, for any cdlx, € G
cd € G*s0 G |y ={1, -1, ab,, — ab,}. Hence ¥ consists of two elements
soitisa tr|V|aI fan. 1

2m

5. REAL PLACES ON A NONCOMMUTATIVE RING

We now return to the general set-up considered at the beginning of
Section 1. Namely, we fix a (not necessarily commutative) ring A with 1
and assume —1 & Y. A% We denote by (X, G) the real spectrum of A4, i.e.,

= the set of all orderings on 4 and G ={a|a € A}, where a: X —
{—1,0,1} is defined by

1 ifaeP\ —P
a(P) = 0 ifaePnN —P
-1 ifae —P \ P.

X is a spectral space [15, 16]. The sets U(a) ={P X |a(P)=1},a € G
are a subbasis of open sets. The associated patch topology on X is the
weakest such that the mappings @ € G are continuous (giving {—1,0, 1}
the discrete topology). For a real prime p C A, we denote by (X, G,) the
space of support p orderings on A. This is identified with the space of
support {0} orderings on the integral domain A /p. Let M, be the set of
all (order compatible) real places on A4 /p. By Corollary 3.3, the natural
surjection A,: X, — M, defines a Hausdorff P-structure on (X, G,). Let
M=U,M, (disjoint union), p running through all real primes of A4, and
define A: X > M by M(P) = A,(P), if P € X,. To show the map A defines
a P-structure on the real spectrum (X, G), terminology as in [16, Sect. 8.6],
it only remains to show that A respects specialization.
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Recall: If P,Q are orderings on A, we say Q specializes P (or P
generalizes Q) if P € Q. Note that if Q specializes P and p and q are the
supports of P and Q respectivelythen p cgand Q=P+ qg=PUq.

To simplify notation, it is convenient to identify a real place @ on A/p
with the map «a: (A4 X 4) \ (p X p) - R U {«} obtained by composing «
with the natural map A XA - A/p X A/p. Thus if P has support p,
then ap = A(P) can be viewed as a mapping from (A4 X A) \ (p X p) to
R U {e}.

LEMMA 5.1. Let P be an ordering on A with support p and let Q be a
specialization of P with support q. Then

(1) ay is just the restriction of ap from (A XA) N\ (p Xp) to
(A XA\ (X 0q)

(2) If P’ is an ordering on A with support p such that ap = ap, then
Q' = P’ + q is an ordering on A with support q and ay = .

Proof. (1) This is easy to check. (2) In view of (1), it suffices to show
that Q' is an ordering with support q. Obviously, Q' + Q' € Q’, Q'Q’' C
Q' and Q'"U — Q' =A4. Tosee Q' N — Q' = q, we need only to show
Q'N—-0'cq. Let a=t, +s5,=—-t,+s5,€0' N -0, t,,t, €P’,
51,8, € q. Then t; + ¢, € q. there are four cases:

Case 1. t,,t, € P. Since q is compatible with P, Corollary 3.3 in [15]
implies ¢,, ¢, € q.

Case 2. t,,t, € —P. Then —t,,—t, € P and —t,—t, € q SO —t,,
—t, € g soalso t,,¢, € q.

Case 3. t,€P, t,€ —P. If 1,,T, & q then either a,(t;,7,) =0 or
ap(t,, t;) = 0. For, otherwise, a,(t,t,) = a,(t;,1,0 <0, so t;t, € —P’,
contradicting ¢,,¢, € P’. Suppose ap(t;,t,) = 0. Then a,(2¢; +1¢,,1,) =1
s02t;+t,e —Psot; € —(P+q)= —Q.Butt, €Pc Q. Hencet €
OgNn—-0=q,s0t€q.

Case 4. t, € —P,t, € P. By the same sort of argument used in Case 3,
we have ¢, 1, € q. |

THEOREM 5.2.  The mapping A: X — M defines a Hausdorff P-structure
on (X, G).

Proof. Combining Lemma 5.1 with Corollary 3.3, we see that A: X - M
defines a P-structure on the real spectrum (X, G). It remains to show that
the patch topology on X induces a Hausdorff quotient topology on M.
Suppose (pq, @), (p,, @) € M, (py, ay) #+ (p,, a,). If p; # p,,say b, &
p,, then there exists a € p,, a & p,. Let S ={(p, @) € M | a € p}, then
S is clopen in M, since A"X(S)={P€X|aePn — P}is clopen in X
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in the patch topology. Also, (p,, ;) € S, (p,, a,) € M \ S. This leaves
the case p, =p, (SO a; # a,). Let p, = p, = p. As in the proof of
Theorem 3.2, we get a,b € A \ p, with a,(a,b) <0 < a,(a,b), ala,b)
#,i=12 DefineS, ,={(q,B)EM|b & q,0 < B(a,b) < o}. Again
as in the proof of Theorem 3.2, one checks that A~*(S, ,) ={P € X |
dn > 1 such that (na — b)a &€ —P, (nb — a)b & —P, ab ¢ — P}, which
is open in X. Thus S, , is open in M. Since (p,a)) €S_,,, (b, a,) €
S.,and S_,, NS, , =. This completes the proof. 1

6. AN EXAMPLE

We consider the twisted polynomial ring R[x, y], with multiplication
given by yx = axy where a € R, a > 0, a # 1. We compute the real places
and orderings on R[x, y],.

Each element f < Rlx,y], is expressible uniquely as f =X, b;x'y’/
with b,D; € R, equivalently, as f=X,c;y/x’ with ¢; € R. The two
expression are related by the equations ¢;; = a~"/b;;.

ProrosiTION 6.1. (1) Rlx, yl, is an integral domain.
(2)  Any non-zero ideal in Rl x, yl, contains a monomial.

Proof. (1) Suppose f, g are nonzero elements of R[x, y],. Expanding
f and g as polynomials in y with coefficients in R[x], we see that the
lowest degree term in the product fg is not zero, so fg # O..
(2) Suppose f # 0, and let f, = a*xf — fx, and f, = yf — a'fy, where
y* is the highest power of y dividing f and x' is the highest power of x
dividing f. Then f, and f, have fewer monomial terms than f. Moreover,
if f is itself not a monomial, then either f, # 0 or f, # 0. The result
follows from this, by induction. i

Denote by (X, G) the real spectrum of R[x, y],. Also, for a real prime p
of Rlx,yl,, denote by (X,,G,), the space of support p orderings of
R[x, y],. It follows from Proposition 6.1 that the real primes in R[x, y], are
{0}, (x), (»), (x,y —=r), (x—r,y), reR also, Rlx,yl,/(x)=R[y],
Rlx, yl,/(y) = Rlx], and Rlx,yl,/(x,y —r) = Rlx,yl,/(x —r,y) =R,
Thus, if p # {0}, the structure of the space of orderings (X, C,) is well
known. the fact that the prime {0} is real will be clear in a minute.

If v is a valuation on R[x, y], which is trivial on R then v(y) + v(x) =
v(yx) = vlaxy) = v(a) + v(x) + v(y) = v(x) + v(y). Of course, if
v(x),v(y) are independent (i.e., if v(x'y’) = v(x'y/) = () =G, j"),
then (X, ;b,;x'y’) = min{o(x'y/)|i,j = 0, b, # 0}, so v is completely
determined by v(x),v(y). In this case, identifying v(x) with (1,0), and
v(y) with (0, 1), we see that the value semigroup of v is identified with a
subsemigroup of the group Z X Z. Also, the ordering on the value semi-
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group extends uniquely to an ordering on the group Z X Z. This process is
obviously reversible. Moreover, there is a unique real place associated to
v. This is given by

% if o(f) <v(g)
a(f,g) =1{¢/dy if o(f) =v(g)
0 if o(f) > v(g),

where ¢;; and d,, are coefficients of the terms in f and g, respectively,
with smallest value. It is easy to see that « is a (support {0}) real place in
the sense of Definition 2.3. Moreover, it is order compatible. In fact, let

={fg € Rix, y]| a(f, g) € (0,%)}. Then the coefficient of the term
with smallest value in any non-zero element of A%S, is positive, so
condition (3) of Theorem 2.5 is satisfied.

Conversely, let a be any (support {0}) real place on R[x, y],. We claim
that v (x), v,(y) are independent. If not, then, since cancellation holds in
the value semigroup of v,, either a(x’, y/) # 0, or a(x'y’,1) # 0, for
some (i, j) # (0,0). In the first case this yields a(x’, y/) = a(x'*?, y/x) =
a(x alxy’) = aa(x', y’), and similarly, a(x’,y’) = a(yx', y/*1) =
ala'x'y, y/*1t) = a'a(x', y’). Since a > 0, a # 1, this forces i =j =0, a
contradiction. The argument in the second case is similar. Thus we have
proved part (1) of the following:

THEOREM 6.2. (1) The set of support {0} real places on Rlx, yl, is in
one-to-one correspondence with the set of orderings on the group 7 X 7.

(2) The space of support {0} orderings on Rlx, yl, has stability index 2.

Proof. For each support {0} real place «, since v, (x),v,(y) are inde-
pendent and generate the value semigroup T, we see that [T | = 4 so X,
is a 4-element fan. Moreover, if «, 8 are distinct real places on [R[x y],
then v, # v, so there exists (i,)) # (i, j") with v (x'y/)) < v, (x"y7),
Ug (x yf) > vy (x"y/). Thus, if v is any weak valuation finer than both

, then v(x 'y/) = v(x"y’) so v(x),v(y) are not independent. Also
U(x) U(y) generate the value semigroup T',. This implies IF | < 2. Thus any
fan in X, which is trivial in the residue space of v can have at most 4
elements. Thus, by Theorem 4.7, any fan in the space of orderings
(X0 Gy has at most 4 elements. I

Remark. The spaces of orderings (X,,G,), p # {0} obviously have
stability index 0 or 1. (If p = (x) or (y), the stability index is 1; otherwise it
is 0.) Thus, by Theorem 6.2 (2), we are in a position to apply the results in
[16, Chap. 7] to get minimal generation results for the real spectrum of
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R[x, yl, exactly as in the commutative case. In more detail, using [16,
Corollary 7.2.4, Theorem 7.4.1, and Theorem 7.7.5], we have the following:

h

5

10.
11.

12.
13.

14.

15.

16.

17

—Any basic open set in X is defined by 2 inequalities f > 0, g > 0.

—Any basic closed set in X is defined by 3 inequalities f > 0, g > 0,
> 0.

—Any constructible set in X is expressible as a union of 4 basic sets.

—Any constructible set in X has a separating family consisting of
elements of R[x, y],.
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