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This paper is a continuation of our recent joint work with K. H. Leung
w xon the real spectrum of a noncommutative ring 15 . The object of the

present paper is to develop a theory of real places and valuations to
w xaccompany the theory of orderings developed in 15 . Because of the

existence of integral domains which are not embeddable in a skew field, it
is necessary to deal directly with integral domains. Consequently, the
theory of real places and valuations that we obtain is somewhat less
precise than the corresponding theory for fields or skew fields.

Archimedean classes in ordered abelian groups were considered already
w xby Hahn 11 and the connection between orderings and real places on

w xfields was worked out already by Baer and Krull in 2, 12 . In the 1970s,
w xinspired by Pfister’s earlier work on signatures of quadratic forms 17 , the

connection between orderings, valuations, and quadratic forms on fields
was firmly established by Becker, Brocker, Brown, Prestel, and others; see¨
w x13 . In the 1980s, after the real spectrum of a ring was introduced by
Coste and Roy, these ideas were applied to real algebraic geometry and

w xreal analytic geometry; see 3, 1 .
Abstract real spectra, also called spaces of signs, were introduced just

w xrecently in 1, 5, 16 in an attempt to axiomatize parts of real algebraic
w xgeometry and real analytic geometry. In 15 it is shown, and perhaps this is

Ž wa bit surprising although there is some hint of it already in 14, Chap. 6;
x .8 , for example , that the orderings on a noncommutative ring form an

abstract real spectrum, exactly as in the commutative case. In the course of
the proof, it is shown that if p is a real prime of A, then Arp is an
integral domain and the orderings on A having support p form a space of
orderings.
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ŽIn the present paper, we define real places on a not necessarily
.commutative integral domain A and examine the relationship between

� 4real places on A and support 0 orderings on A. We show that a version
of the Baer]Krull theorem holds, and that the real places yield a natural

� 4 Ž w xP-structure on the space of support 0 orderings. See 16 for the meaning
.of this terminology. More generally, we show, for an arbitrary noncommu-

tative ring, that the real places on the various residue domains yield a
natural P structure for the real spectrum of the ring. We also define
valuations on an integral domain and prove a general version of Brocker’s¨

w xtrivialization theorem for fans; see 4 . Finally, as an example, we study
w xorderings and real places on the twisted polynomial ring R x, y where thet

multiplication is defined by yx s axy, a g R, a ) 0, a / 1, and we com-
pute the stability index.

1. TERMINOLOGY AND NOTATION

Ž .Let A be a not necessarily commutative ring with 1. For any subset
2Ž .S : A, let A S denote the set of all permuted products of elements

a , a , . . . , a , a , s , . . . , s , for a , . . . , a g A, s , . . . , s g S, n G 0, m G1 1 n n 1 m 1 n 1 m
2Ž . 2Ž .0, and let ÝA S denote the set of all finite sums of elements of A S .

2Ž� 4. 2 w xWe denote ÝA 1 by ÝA for short. As in 15 , a preordering in A is a
2Ž . 2Ž .subset T : A such that ÝA T : T. ÝA S is the smallest preordering

in A containing S. In particular, ÝA2 is the unique smallest preordering
in A. A preordering T of A is said to be proper if y1 f T.

A subset P of A is called an ordering if P q P : P, PP : P, PyP s A,
and P l y P is a prime ideal of A. The prime ideal P l y P is called
the support of P. Every proper preordering of A is contained in an
ordering. In particular, A possesses an ordering iff y1 f ÝA2. A prime p
in A is said to be real if it is the support of some ordering of A. A prime p

Ž .is the support of an ordering containing the preordering T iff T q p l
Ž . Ž 2 . Ž 2 .y T q p s p. In particular, p is real iff ÝA q p l y ÝA q p s p.
If p is a real prime, then the factor ring Arp is an integral domain and

� 40 is a real prime of Arp. Also, the map P ¬ Prp defines a one-to-one
� 4correspondence between support p orderings of A and support 0 order-

ings of Arp. Thus, in studying support p orderings on A, one is reduced
� 4immediately to the case where A is an integral domain and p s 0 .

ŽThroughout the first several sections, we assume that A is a not
. � 4necessarily commutative integral domain, and 0 is a real prime of A, i.e.,

Ž 2 . Ž 2 . � 4ÝA l y ÝA s 0 . A* denotes the set of all nonzero elements of A,
� 4and X denotes the set of all support 0 orderings on A. Each a g A*
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� 4gives rise to a mapping a: X ª y1, 1 via

1 if a g Pa P sŽ . ½y1 if a g yP .

� < 4Let G denote the set of all such mappings, i.e., G s a a g A* . G is a
X� 4 Ž .subgroup of y1, 1 , ab s ab for any a, b g A*, and X, G is a space of

w xordering; see 15 . The topology on X is the weakest such that the
Ž � 4 .mappings a g G are continuous giving y1, 1 the discrete topology .

� Ž . < 4 Ž .In other words, U a a g G is an open subbasis for X where U a s
� < Ž . 4P g X a P s 1 . X is a Boolean space, i.e., X is compact, Hausdorff,

w xand totally disconnected; see 16, Theorem 2.1.5 . Given a preordering T
� 4 � 4on A with T l y T s 0 , we denote by X the set of all support 0T

<orderings on A containing T and G s G the set of all restrictions ofXT T

Ž . Ž . Želements of G to X . X , G is a subspace of X, G so is itself a spaceT T T
. Ž .of orderings and every subspace of X, G is of this form. Each ordering

Ž .P g X gives rise to a character x on G given by a ¬ a P . TheT P T
mapping P ¬ x identifies X with a subset of the character group of GP T T

Ž . Ž Ž ..and x y1 s y1 holds for each P g X . X more precisely, X , GP T T T T
� 4 Ž .is said to be a fan if every character x : G ª y1, 1 satisfying x y1 sT

y1 is of the form x s x for some ordering P g X . In concrete terms,P T
this just means that any subset P of A satisfying T : P, PP : P, P j y

� 4 Ž .P s A, P l y P s 0 is an ordering i.e., is closed under addition .

2. ORDERINGS, REAL PLACES, AND VALUATIONS

� 4Let P be a support 0 ordering on A and let F be the associated total
< <ordering on A, i.e., a F b m b y a g P. For any a g A, define a s a, if

< < Ž .a g P and a s ya, if a g yP. Since A, q, F is an ordered abelian
� 4group we have a set valuation ¨ : A ª G j ` induced by P. This is

defined as follows. a, b g A are said to be archimedean equï alent if
< < < < < < < < Ž .a F m b and b F n a for some positive integers m and n. ¨ a is just

Ž . � Ž . < 4the archimedean equivalence class of a, ` s ¨ 0 , and G s ¨ a a g A* .
� 4 Ž . Ž . < < < <G j ` is totally ordered by ¨ a F ¨ b iff n a G b for some positive

Ž . w xinteger n. All this works for any ordered abelian group A, q, F 10, 11 .
ŽIn our situation, because of the multiplication on A, there is a not

. Ž . Ž .necessarily commutative binary operation q on G defined by ¨ a q ¨ b
Ž . Ž .s ¨ ab , and G, q is a cancellation semigroup. That is, q is associative,

Ž .there is an identity element 0 s ¨ 1 , and if a q g s b q g or g q a s
g q b then a s b. This semigroup is ordered, i.e., F is a total ordering
on G and a F b « a q g F b q g and g q a F g q b. Thus ¨ is a
valuation of A in the following sense.
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DEFINITION 2.1. A ¨aluation on an integral domain A is a map ¨ from
� 4 Ž .A onto G j ` , an ordered cancellation semigroup G s G, q, F with `

adjoined, such that

Ž . Ž .1 ¨ a s ` m a s 0.
Ž . Ž . Ž . Ž .2 ¨ ab s ¨ a q ¨ b .
Ž . Ž . � Ž . Ž .43 ¨ a q b G min ¨ a , ¨ b .

Ž .If we drop the requirement that the ordered semigroup G, q, F has the
cancellation property then ¨ is called a weak ¨aluation on A.

Note. For any valuation or weak valuation ¨ on A:

Ž . Ž . Ž . Ž . Ž .1 ¨ 1 s 0, ¨ y1 s 0, ¨ ya s ¨ a .
Ž . Ž . Ž . Ž . � Ž . Ž .42 If ¨ a / ¨ b then ¨ a q b s min ¨ a , ¨ b .
Ž .3 For a skew field, valuations and weak valuations are the same

thing and the value semigroup G is a group.
Ž .4 We will need to consider weak valuations later, in Section 4.

Ž . Ž .LEMMA 2.2. If a, b g P, a / 0, b / 0, and ¨ a s ¨ b , then there
Ž . Ž . Ž . wexists a unique real number m a, b g 0, ` such that m a, b g mrn,

Ž . x Ž .m q 1 rn for any positï e integers m, n satisfying mb F na F m s 1 b.

w xProof. See 10 .

� 4By Lemma 2.2, a support 0 ordering P on A induces a map a s a :P
Ž . Ž . � 4A = A R 0, 0 ª R j ` defined by

¡̀ if ¨ a - ¨ bŽ . Ž .
< < < <m a , b if ¨ a s ¨ b , ab g PŽ . Ž . Ž .~a a, b sŽ .

< < < <ym a , b if ¨ a s ¨ b , ab g yPŽ . Ž . Ž .¢0 if ¨ a ) ¨ b .Ž . Ž .

Obviously, a has the following properties.

Ž . Ž . Ž .i a a, b s ` m a b, a s 0.
Ž . Ž . Ž . Ž . Ž . Ž .ii If a a, b , a b, c / ` then a a, b a b, c s a a, c .
Ž . Ž . Ž . Ž . Ž . Ž .iii If a a, c , a b, c / ` then a a, c q a b, c s a a q b, c .
Ž . Ž . Ž . Ž .iv a a, b s a ac, bc s a ca, cb for any c g A*.

Ž . Ž .If A is a commutative integral domain, properties i ] iv characterize
Ž Ž .completely a real place on the quotient field of A considering a, b ,

.b / 0 as representing the element arb in the quotient field . This moti-
vates us to define a real place on a not necessarily commutative integral
domain A as follows.
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Ž . Ž .DEFINITION 2.3. A real place on A is a map a : A = A R 0, 0 ª
� 4 Ž . Ž .R j ` which satisfies properties i ] iv .

PROPOSITION 2.4. Let a be a real place on A. Then

Ž . Ž . Ž . Ž .1 a 1, 1 s 1, a y1, 1 s y1, and a 0, 1 s 0.
Ž . Ž .2 m, n g Z, n / 0 « a m, n s mrn.
Ž . Ž . Ž . Ž . Ž . Ž .3 If a a, b , a c, d / ` then a a, b a c, d s a ac, bd and

Ž . Ž . Ž .a a, b q a c, d s a ad q bc, bd .
Ž .4 The finite elements in the image of a form a subfield of R.

Ž . Ž . Ž . Ž .Proof. 1 Property i ensures that a 1, 1 / 0 or `. By property ii ,
Ž . Ž . Ž . Ž . Ž . Ž .a 1, 1 a 1, 1 s a 1, 1 so a 1, 1 s 1. By property iv , a y1, 1 s
Ž . Ž . Ž . Ž . Ž .a 1, y1 so, by property i , a y1, 1 / 0 or `. Thus a 1, y1 a y1, 1 s
Ž . Ž . Ž . Ž .a 1, 1 s 1 so either a y1, 1 s 1 or a y1, 1 s y1. If a y1, 1 s 1

Ž . Ž . Ž . Ž . Ž .then a 0, 1 s a 1, 1 q a y1, 1 s 2, contradicting a 0, 1 q a 1, 1 s
Ž . Ž . Ž .a 1, 1 . Thus a y1, 1 s y1 and a 0, 1 s 0.

Ž . Ž . Ž . Ž . Ž . Ž .2 By 1 and Property iii , a m, 1 s m. Then a 1, n a n, 1 s
Ž . Ž . Ž . Ž . Ž .a 1, 1 s 1 if n / 0, so a 1, n s 1rn and a m, n s a m, 1 a 1, n s

mrn.
Ž . Ž . Ž . Ž . Ž . Ž .3 a a, b a c, d s a ac, bc a bc, bd s a ac, bd and, similarly,

Ž . Ž . Ž . Ž . Ž .a a, b q a c, d s a ad, bd q a bc, bd s a ad q bc, bd .
Ž .4 This is clear.

� 4A real place a on A gives rise naturally to a valuation ¨ : A ª G j ` .a a

Ž . � < Ž . Ž . 4Namely, we define ¨ a s b g A* a a, b / 0, a a, b / ` , for a g A*a

� Ž . < 4 Ž . Ž .and G s ¨ a a g A* . Also, we define ¨ a F ¨ b , a, b g A* toa a a a

Ž . Ž . Ž . Ž .mean that a b, a / ` and we define q on G by ¨ a q ¨ b s ¨ ab .a a a a

Ž . Ž . Ž . Ž .If ¨ a - ¨ b , a, b g A* then a b, a s0 so, for any c g A*, a bc, ac sa a

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .a cd, ca s 0 so ¨ a q ¨ c - ¨ b q ¨ c and ¨ c q ¨ a - ¨ ca a a a a a a

Ž .q ¨ b . This shows that G is an ordered cancellation semigroup.a a

� 4Of course, if a s a , the real place induced by some support 0P
ordering P of A, then ¨ is just the valuation induced by P. In thea

commutative case, every real place is of this type. In the noncommutative
case, it is not clear if this is always the case. We have the following result.

� < Ž .THEOREM 2.5. Let a be a real place on A and let S s ab g A a a, b ga

Ž .40, ` . Then the following are equï alent:

Ž . 2Ž . Ž . w . � 41 a, b g A S « a a, b g 0, ` j ` .a

Ž . 2Ž . Ž2 If a , . . . , a are non-zero elements of A S then ¨ a q1 n a a 1
. � Ž . < 4??? qa s min ¨ a i s 1, . . . , n .n a i

Ž . Ž 2Ž .. Ž 2Ž .. � 43 ÝA S l y ÝA S s 0 .a a
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Ž . � 44 There exists a support 0 ordering P on A such that P = S .a

Ž . � 45 a s a for some support 0 ordering P on A.P

Ž . 2Ž .6 A S l y S s B.a a

Ž . Ž . Ž . Ž .Proof. 1 « 2 . We can assume ¨ a G ¨ a for i s 1, . . . , n.a i a 1
Ž . Ž . Ž n .Then a a , a G 0 and a a , a s 1 ) 0 so a Ý a , a si 1 1 1 is1 i 1

n Ž .Ý a a , a ) 0.is1 i 1

Ž . Ž . 2Ž .2 « 3 . If not, we have non-zero elements a , . . . , a g A S1 n a

Ž .with a q ??? qa s 0. This contradicts 2 .1 n

Ž . Ž . w x w x3 « 4 . It follows from 14, Theorem 17.10 or 15, Theorem 3.2 .
Ž . Ž . Ž . Ž .4 « 5 . We want to show a a, b s a a, b . We may assumeP

Ž .a a, b / ` and b g P, b / 0. For any m, n g Z, n G 1 such that mrn -
Ž . Ž . Ž . Ža a, b - m q 1 rn, we have 0 - a na y mb, nb and a na y

Ž . . Ž . ŽŽ . .m q 1 b, nb - 0 so na y mb nb, m q 1 b y na nb g S : P. Thisa

Ž . Ž . Ž .implies na y mb, m q 1 b y na g P so mrn F a a, b F m q 1 rn.P
Ž . Ž .Therefore, a a, b s a a, b .P

Ž . Ž . 2Ž . � 45 « 6 . S : P so A S l y S : P l y P s 0 . But 0 f S .a a a a

Ž . Ž . 2Ž . Ž .6 « 1 . If not then there exist a, b g A S with a a, b - 0.a
2Ž .Then yab g S so ab g A S l y S ,a contradiction.a a a

Ž . Ž .DEFINITION 2.6. A real place satisfying the equivalent conditions 1 ] 6
in Theorem 2.5 is said to be order compatible.

2Ž . 2Ž . � 4In the commutative case, ÝA S s A S s S j 0 so every reala a a

place is order compatible.
Let a be an order compatible real place on A and let P be a support

� 40 ordering on A. If a s a , then clearly S : P. Conversely, if S : P,P a a

Ž . Ž .then a s a by the proof of the implication 4 « 5 of Theorem 2.5. InP
this situation, we will say P is compatible with a . We denote by X the seta

� 4of all support 0 orderings of A which are compatible with a and let
< � 4G s G . X is precisely the set of support 0 orderings containing theXa aa

2Ž . Ž . Ž .preordering ÝA S , so X , G is a subspace of X, G .a a a

LEMMA 2.7. Let a be an order compatible real place on A, and let P be a
� 4subset of A. Then P is a support 0 ordering on A compatible with a if and

� 4only if PP : P, P l y P s 0 , P j y P s A, and P = S .a

Proof. The ‘‘only if’’ part is clear. To see the ‘‘if’’ part, it suffices
to show P q P : P. Suppose a, b g P. We can suppose a, b / 0. Also,

Ž . Ž .interchanging a, b if necessary, we can assume ¨ a G ¨ b . Thena a

Ž . Ž . Ž .a a q b, b ) 0. For, otherwise, a a, b F y1, so a ya, b ) 0, so yab
Ž .g S : P, so ab g P l y P, a contradiction. Therefore we have a q b ba

g S : P, which implies a q b g P.a
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Ž w x.In the commutative case the Baer]Krull theorem e.g., see 13 relates
X with the value group G . This result carries over to the noncommuta-a a

tive case. We need some notation. Suppose a is a real place on A. We
define an equivalence relation ; on the value semigroup G as follows.a

Define g ; d , g , d g G m g q t q d g 2G for some t g 2G , where 2Ga a a a

is the set of all permuted sums of elements g , g , . . . , g , g for g , . . . , g1 1 n n 1 n
g G , n G 0. If g ; d , say, g q t q d g 2G , t g 2G , then d q s q g ga a a

2G where s s g q t q d g 2G so d ; g . Moreover, if g ; d and d ; h,a a

say, g q t q d g 2G and d q s q h g 2G for some t, s g 2G , thena a a

g q r q h g 2G where r s t q 2d q s g 2G so g ; h. This shows thata a
˜; is an equivalence relation on G . Let G s G r; . Since, for anya a a

g , d g G, g q d ; d q g and, for any h g G , g ; d « h q g ; d q h,a
˜we see that G is a quotient semigroup of G , which is in fact an abeliana a

group of exponent 2.

THEOREM 2.8. Let a be an order compatible real place on A. Let Xa

� 4denote the set of all support 0 orderings on A compatible with a , and
<G s G . ThenXa a

Ž . Ž .1 X , G is a fan.a a

Ž . Ž . � 42 There is a natural split short exact sequence 0 ª "1 ª G ªa

G̃ ª 0.a

Ž .3 X is in non-canonical one-to-one correspondence with the set ofa
˜characters of G .a

˜Ž .4 X is finite if and only if G is finite and, if this is the case, thena a
˜< < < <X s G .a a

Ž . Ž . Ž .Proof. Part 1 is immediate from Lemma 2.7. For 2 , let ¨ a g G ,ã a

Ž .a g A* denote the equivalence class of ¨ a . We show first that thea
˜< Ž .natural surjection a ¬ ¨ a from G to G is well-defined. Suppose˜X a a aa

2a s b on X . Then yab f P for each P g X . Since X s X , bya a a Ý A ŽS .aw x w x14, Lemma 17.8 or 15, Theorem 3.5 we have sab s t for some s, t g
2Ž . 2Ž .ÝA S , s, t / 0. Using the fact that if c g ÝA S , c / 0, i s 1, . . . , na i a i

Ž . � Ž . < 4 Ž .then ¨ c q ??? qc s min ¨ c i s 1, . . . , n and the fact ¨ c s 0˜a 1 n a i a
2Ž . Ž . Ž . Ž .for any non-zero c g A S , we get ¨ s s ¨ t s 0. Thus, ¨ a s˜ ˜ ˜a a a a

Ž . Ž .¨ b . To see the sequence is exact, it remains to prove that if ¨ a s 0˜ ˜a a

then a s "1 on X . If not, we have P, Q g X such that a g P, a f Q.a a

� 4Let x : P* ª "1 be defined by

1 if b g Q
x b sŽ . ½ y1 if b g yQ,

� 4 Ž .where P* s P R 0 . Clearly, x is a character on P*. Suppose ¨ c sa

Ž . Ž . Ž .¨ d , c, d g P*. Then cd g S : Q so x c s x d . Hence, x induces aa a
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Ž . Ž .character p on G . Note that g ; d , g , d g G « p g s p d , so pa a
˜ Ž Ž .. Ž Ž .. Ž .induces a character p on G . Now p ¨ a s p ¨ a s x a s y1.˜ ˜ ˜a a a

Ž . Ž . Ž .This is impossible because ¨ a s 0. This proves 2 . Part 3 follows fromã

Ž .2 . X , being a fan, is naturally identified with the set of characters x ona

Ž .G such that x y1 s y1 which, in turn, is in non-canonical one-to-onea
˜ Ž .correspondence with the set of characters on G . Part 4 is immediatea

Ž .from 3 .

w x Ž .EXAMPLE 2.9. Consider the semigroup ring R G , where G, q, F is
w xsome ordered cancellation semigroup. By definition, R G consists of all

formal finite sums Ý c xg, c g R with componentwise addition andg g G g g

with multiplication given by xg x d s xgqd. x is just a symbol. There is a
w x � 4 Ž g .natural valuation ¨ : R G ª G j ` defined by ¨ Ý c x s g whereg g G g 0

� < 4 g Ž .g s min g g G c / 0 if Ý c x / 0, and ¨ 0 s `. Note that ¨ s ¨0 g g g G g a

w xwhere a is the real place on R G given by

¡̀ if ¨ f - ¨ gŽ . Ž .
~c rd if ¨ f s ¨ gŽ . Ž .a f , g sŽ . g d¢0 if ¨ f ) ¨ g ,Ž . Ž .

where c , d are coefficients of the terms in f , g, respectively, withg d

� 4smallest value. The real place a is order compatible. The support 0
w xorderings on R G compatible with a can be computed using Theorem 2.8.

3. THE SPACE OF REAL PLACES

In the rest of the paper, the term real place will always refer to an order
compatible real place. We denote by M the set of all such real places on A

Ž .and define l: X ª M by l P s a for all P g X. In the field case, theP
w x w xmapping l is considered, for example, by Dubois 9 , Brown 6 , Brown and

w x w xMarshall 7 , and Lam 13 . Various results can be generalized to noncom-
mutative domains. First of all, we need to generalize the real holomorphy

w x �Ž . Ž .ring as defined in 13, 16 . Given a g M, let B s a, b g A = A Ra

Ž . < Ž . 40, 0 a a, b / ` , and define

H [ B .F a
agM

Then H is a generalization of the real holomorphy ring in the field case to
noncommutative domains, although it does not have ring structure any
more. The following result shows that H is ‘‘big enough.’’
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Ž 2 2 . Ž 2 2 2 . Ž . Ž .LEMMA 3.1. ab, a qb , a , a qb gH, for all a, b g A=A R
Ž .0, 0 .

Ž 2 2 . � Ž 2 . Ž 2 .4Proof. For any a g M , ¨ a q b s min ¨ a , ¨ b Fa a a
2Ž . Ž .¨ ab , ¨ a .a a

Ž . Ž . Ž .Each pair a, b g A = A R 0, 0 defines a mapping arb: M ª
� 4 Ž .Ž . Ž .R j ` given by arb a s a a, b . The topology on M is defined to be

Ž . Ž . Ž .the weakest such that the mappings arb, a, b g A = A R 0, 0 , are
� 4continuous, where R j ` is given the topology of the real projective line.

Ž .Let Cont M, R denote the ring of all continuous functions from M to R
˜ ˜� < Ž . 4 Ž .and let H s arb a, b g H , so H : cont M, R .

THEOREM 3.2. With the set-up as abo¨e, then

Ž .1 M is Hausdorff.
Ž .2 The natural surjection l: X ª M is continuous.
Ž .3 M is compact.
Ž .4 The topology on M is the quotient topology.

˜Ž . Ž .5 H is a subring of Cont M, R .
˜Ž . Ž .6 H is dense in Cont M, R in the sup norm.

Ž . y1Ž .7 E¨ery fiber l a , a g M, is a fan.
Ž .8 E¨ery fan Y : X intersects at most two fibers of l.

Ž . Ž .Proof. 1 Suppose a , b g M, a / b. Thus there exists a, b g
Ž . Ž . Ž . Ž . Ž . Ž .A = A R 0, 0 such that a a, b / b a, b . If one of a a, b and b a, b

Ž . Ž . Ž .is infinite, say a a, b s ` and b a, b - ` then a b, a s 0 and
Ž . Ž . Ž . Ž . Ža a q rb, a s a a, a q a r, 1 a b, a s 1 for any integer r, so a rb,

. Ž . Ž .a q rb s a a q rb, a q rb y a a, a q rb s 1 y 1 s 0. This implies
Ž . Ž . Ž . Ž .a b, a q rb s 0. Since b a q rb, b s b a, b q r, b b, a q rb / ` and
Ž . Ž . Ž . Ž .b b, a q rb / 0 if b a, b / yr. Thus, replacing a, b by b, a q rb for

Ž .some appropriate integer r if necessary, we can assume a a, b / `,
Ž . Ž . Ž .b a, b / `. Finally, replace a, b by "qa q pb, qb for some appropri-

Ž . Ž .ate integers p, q, we can assume a a, b - 0 - b a, b . This proves M is
Hausdorff.

Ž .2 To prove the continuity of l we note that the inverse image
� < Ž . Ž . 4under l of the subbasic open set a g M a a, b ) 0, a a, b / ` in M,

Ž . Ž . Ž .where a, b g A = A R 0, 0 , is the union of the open sets
Ž . Ž .U na y b a l U nb y a b l U ab in X, n running through theŽ . Ž .Ž .

Ž . Ž . Ž .positive integers. If l P s a , a a, b ) 0, a a, b / `, then ab g P,
Ž . Ž .and if we pick n G 1 large enough so that n ) a a, b , a b, a , then

Ž . Ž . Ž . Ž .a nb y a, b ) 0, a na y b, a ) 0 so nb y a b, na y b a g P. Con-
Ž . Ž .versely, if P g X and ab, na y b a, nb y a b g P for some n G 1 and
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Ž .a s l P then, replacing a, b by ya, yb respectively, if necessary, we can
Ž . Ž .assume a, b g P. Then na y b, nb y a g P which implies ¨ a s ¨ b ,P P

Ž . Ž .so a a, b ) 0, a a, b / `.

Ž . Ž . Ž . Ž .3 and 4 . These follow from 1 and 2 since X is compact.

Ž . Ž . Ž . ŽŽ . Ž ..Ž . Ž .5 Given a , b , a , b g H, a rb q a rb a s a a , b1 1 2 2 1 1 2 2 1 1
Ž . Ž . ŽŽ . Ž ..Ž .q a a , b s a a b q b a , b b s a b q b a r b b a for all2 2 1 2 1 2 1 2 1 2 1 2 1 2

Ž . Ž . Ž . Ž .a g M, so a rb q a rb s a b q b a r b b . Similarly, we have1 1 2 2 1 2 1 2 1 2
˜Ž .Ž . Ž . Ž .a rb a rb s a a r b b . From this it is clear that H is closed1 1 2 2 1 2 1 2

˜under addition and multiplication. Clearly H contains every rational
˜ Ž .constant, so this proves H is a subring of Cont M, R .

˜Ž .6 By the Stone-Weierstrass theorem, applied to the closure of H, it
˜suffices to show H separates points in M. Let a , b g M, a / b. By the

Ž . Ž . Ž . Ž . Ž .proof of 1 , we have a, b g A = A such that a a, b , b a, b / ` and
Ž . Ž . Ž . Ž 2 2 . Ža a, b - 0 - b a, b . Replacing a, b by ab, a q b using Lemma
. Ž .3.1 , we can assume a, b g H.

Ž . y1Ž . Ž .7 l a s X so this is just Theorem 2.8 1 .a

Ž .8 Suppose, to the contrary, that Y is a fan in X which intersects
Ž .three or more fibers of l. Thus we have P , P , P g Y with a s l P ,1 2 3 i i

4 Ž .i s 1, 2, 3, distinct. Since Y is a fan, we have P g Y such that Ł a P4 is1 i
Ž .s 1 for all a g A*. Let a s l P . Reindexing, we can assume that either4 4

a , . . . , a are all distinct or a s a . Using the Tietze extension theorem,1 4 3 4
Ž . Ž .we get a continuous function f : M ª R with f a s y1, f a s 1,1 i

Ž . Ž . Ž . Ž .i s 2, 3, 4. Using 6 , we get a, b g H with a a, b - 0, a a, b ) 0,1 i

i s 2, 3, 4. Then ab / 0 and ab g yP and ab g P , i s 2, 3, 4, so1 i
4 Ž .Ł ab P s y1, a contradiction.is1 i

w x Ž .As in 16 , a P-structure on a space of orderings X, G is defined to be a
surjection l from X to a set M such that the following hold:

Ž . y1Ž .1 For each a g M, l a is a fan in X.

Ž . y1Ž .2 For each fan Y : X, there exists a , b g M with Y : l a j
y1Ž .l b .

Ž .Also, a P-structure l: X ª M on X, G is said to be Hausdorff if M, with
the induced quotient topology, is Hausdorff.

COROLLARY 3.3. The map l: X ª M defines a Hausdorff P-structure on
Ž .the space of orderings X, G .
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4. TRIVIALIZATION THEOREM FOR FANS

In this section, we develop a version of Brocker’s trivialization theorem¨
w xfor fans 4 which holds for noncommutative domains.

DEFINITION 4.1. Given two valuations ¨ , w on A, we say w is coarser
Ž . Ž . Ž . Ž . Ž .than ¨ or ¨ is finer than w if ¨ a G ¨ b « w a G w b ;a, b g A.

LEMMA 4.2. Suppose w , w are coarser than ¨ . Then either w is coarser1 2 1
than w or w is coarser than w .2 2 1

Ž .Proof. Otherwise, there are a , b , a , b g A such that w a G1 1 2 2 1 1
Ž . Ž . Ž . Ž . Ž . Ž . Ž .w b , w a - w b and w a G w b , w a - w b . Then1 1 2 1 2 1 2 2 2 2 1 2 1 2
Ž . Ž . Ž . Ž . Ž .w a b ) w b a and w a b - w b a , which implies ¨ a b )1 1 2 1 1 2 2 1 2 2 1 2 1 2
Ž . Ž . Ž .¨ b a and ¨ a b - ¨ b a . This is impossible.1 2 1 2 1 2

Thus the family of valuations coarser than a given valuation forms a
chain. Note however that our proof of Lemma 4.2 breaks down if w and1
w are only assumed to be valuations in the weak sense. Moreover,2
valuations in the weak sense are precisely the sort of valuation we obtain

Ž .in the trivialization theorem Theorem 4.7 below. This is indeed unfortu-
nate. But anyway, because of this, we need to allow valuations in the weak
sense in the remainder of this section.

DEFINITION 4.3. Let ¨ be a valuation on A in the weak sense, and let
� 4P be a support 0 ordering on A. We say P is compatible with ¨ if

Ž . Ž . Ž .;a, b g A, ¨ a ) ¨ b « a q b b g P.

Ž . Ž .Note. 1 P is compatible with ¨ . 2 If P is compatible with ¨ ,lŽP .
Ž .then ¨ is coarser than ¨ P . The first assertion is clear. For the second,l

Ž . Ž . Ž . Ž .suppose ¨ a ) ¨ b . Then, for any integer n G 1, ¨ yna ) ¨ b so
Ž .b y na b g P. We may assume a, b g P. Then b y na g P for any

Ž . Ž .integer n G 1, so ¨ a ) ¨ b .lŽP . lŽP .

� 4LEMMA 4.4. Let P be a support 0 ordering on A compatible with a
¨aluation ¨ on A. Suppose Q is a subset of A such that QQ : Q, Q j y Q s

� 4 � < Ž . Ž .4 � < Ž . Ž .4A, Q l y Q s 0 , and P l ab ¨ a s ¨ b s Q l ab ¨ a s ¨ b .
� 4Then Q is a support 0 ordering on A and Q is compatible with ¨ .

Proof. To see Q is an ordering, it suffices to show Q q Q : Q. Sup-
Ž . Ž . Ž . Ž . Žpose 0 / c, d g Q. If ¨ c / ¨ d , say, ¨ c ) ¨ d , then c q d / 0, c q

. Ž . Ž . Ž .d d g P and ¨ c q d s ¨ d . Then c q d d g Q which implies c q d g
Ž . Ž .Q. Now suppose that ¨ c s ¨ d . Since cd g Q, this implies cd g P so

Ž .either c, d g P or c, d g yP. In either case, we have c q d d g P. We
Ž . Ž . Ž . Ž . Ž .claim that ¨ c q d s ¨ d . For, otherwise, ¨ c q d ) ¨ d s ¨ yd .

Ž . Ž . Ž .Then ycd s y yd q c q d d g P and ¨ c s ¨ yd , so ycd g Q so
Ž . Ž . Ž .cd g Q l y Q, a contradiction. Thus, ¨ c q d s ¨ d so c q d d g Q
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Ž . Ž .which forces c q d g Q. To see Q is compatible with ¨ , let ¨ a ) ¨ b ,
Ž . Ž .a,b g A. Then ¨ a q b s ¨ b and P is compatible with ¨ implies

Ž . Ž .a q b b g P, so a q b b g Q. This proves that Q is compatible with ¨ .

� 4Given a valuation ¨ on A, let X denote the set of all support 0¨
orderings on A which are compatible with ¨ . Suppose X / B and let¨

< Ž .G s G . Also, denote by S the set of all products a q b b, a, b g A,X¨ ¨¨
Ž . Ž . � 4¨ a ) ¨ b . Clearly a support 0 ordering P on A belongs to X iff¨

Ž . Ž .2P = S . Thus X s X , so X , G is a subspace of X, G .¨ ¨ Ý A ŽS . ¨ ¨¨

2Ž . Ž . � Ž . <LEMMA 4.5. If a , . . . , a g A S then ¨ a q ??? qa s min ¨ a1 n ¨ 1 n i
4i s 1, . . . , n .

Ž . � Ž . < 4Proof. Suppose ¨ a q ??? qa ) min ¨ a i s 1, . . . , n . We can as-1 n i
Ž . Ž .sume ¨ a G ¨ a , i s 1, . . . , n and that n is chosen minimal. Theni 1

Ž Ž .. Ž . Ž .a y a q ??? qa a s y a q ??? qa a g S so a q ??? qa a g1 1 n 1 2 n 1 ¨ 2 n 1
2 2Ž Ž .. Ž Ž .. � 4ÝA S l y ÝA S s 0 , a contradiction.¨ ¨

˜� < Ž . Ž .4 <Let K s ab a, b g A*, ¨ a s ¨ b , and let G s K . K is aX¨ ¨ ¨ ¨¨
˜ ˜subgroup of G and G is a subgroup of G . Note that y1 g G since¨ ¨ ¨

Ž .y1 g K . Define an equivalence relation ; on X by P ; Q m c P s¨ ¨
˜ ˜ ˜Ž . Ž .c Q or all c g K , and let X s X r; . We refer to X , G as the¨ ¨ ¨ ¨ ¨

˜ ˜Ž . Ž .residue space of X, G at ¨ . In the field case, X , G is the space of¨ ¨
orderings of the residue field of ¨ , but in the general case considered here,
the residue field may not even be defined.

� Ž . < 4Also, let G s ¨ a a g A* be the value semigroup of ¨ . We define an
equivalence relation ; on G exactly as we did for G in Section 2 and,a

˜just as in Section 2, G s Gr; is an abelian group of exponent 2.

˜ ˜Ž . Ž . Ž .THEOREM 4.6. 1 X , G is a group extension of X , G .¨ ¨ ¨ ¨

˜ ˜Ž . Ž .2 X , G is a space of orderings.¨ ¨

˜ ˜Ž .3 There is a natural short exact sequence 0 ª G ª G ª G ª 0.¨ ¨

Ž . Ž . Ž .Proof. Part 1 is immediate from Lemma 4.4. Part 2 follows from 1
wusing standard facts from the theory of spaces of orderings 16, Theorems

x Ž . Ž .4.1.1 and 4.1.3 . For pat 3 , for a g A*, let ¨ a denote the equivalence˜
Ž .class of ¨ a . Exactly as in the proof of Theorem 2.8, the surjective map

˜< Ž .a ¬ ¨ a from G to G is well-defined. It remains to show that if˜X ¨ ¨¨
˜Ž . <¨ a s 0 then a g G . If this is not the case then, by Lemma 4.4, we˜ X ¨¨

have P, Q g X with P ; Q and a g P, a f Q. This yields a contradiction¨
exactly as in the proof of Theorem 2.8.

By Theorem 3.2, for any fan Y in X there are two real places a , b g M
y1Ž . y1Ž .such that Y : l a j l b . Let ¨ , ¨ be the valuation correspond-a b

ing to a , b , respectively. Then every ordering P in Y is either compatible
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with ¨ or with ¨ . Thus there is a unique finest valuation ¨ compatiblea b

with every P g Y, namely the finest valuation coarser than both of ¨ , ¨ .a b

We would like to prove that the pushdown of Y to the residue space
˜ ˜Ž .X , G is a trivial fan. We are not able to prove this. However, we are¨ ¨

able to prove the following weak version:

Ž .THEOREM 4.7 Trivialization Theorem for Fans . If Y : X is a fan then
there exists a ¨aluation ¨ on A in the weak sense such that e¨ery ordering in Y

˜ ˜Ž .is compatible with ¨ and the induced fan in the residue space X , G is¨ ¨
trï ial.

y1Ž . y1Ž .Proof. Let Y : l a j l b for some a , b g M. We can suppose
y1Ž . y1Ž .a / b and Y l l a , Y l l b are both nonempty. For, otherwise,

y1 ˜Ž .Y : l a say, and we can take ¨ s ¨ . The induced fan in X isa ¨
singleton so it is trivial. We now define a valuation ¨ in the weak sense so
that every ordering in Y is compatible with ¨ . For any a, b g A*, let

Ž . Ž . Ž . Ž .a F b mean ¨ a F ¨ b and a F b mean ¨ a F ¨ b and define1 a a 2 b b

a F b if there is a finite chain of elements in A, a s a , . . . , a s b, such0 2 n
that a F a F a ??? F a F a . Define a ; b to mean a F b0 1 1 2 2 1 2 ny1 2 2 n
and b F a. Obviously, F induces a total ordering on the equivalence
classes and a F b « ac F bc, ca F cb for all c g A* and a q b G

� 4 Ž .min a, b . Let ¨ a denote the equivalence class of a with respect to ;
Ž . Ž . Ž . Ž .and define ¨ a F ¨ b to mean that a F b. Also define ¨ a q ¨ b s

Ž .¨ ab . Then it is easy to check that ¨ is a valuation in the weak sense.
Ž .Since Y is a fan, we have Y s X where T s F P. Thus X , G is aT P g Y T T

� < < 4 Ž . � 4fan, where G s a s a a g A* . By our assumption, l X s a, b .XT T TT

� < Ž . 4 � < Ž . 4Let X s P g X l P s a and X s P g X l P s b . By Theo-1 T 2 T
˜ � < Ž . 4 Ž .rem 3.2, H s arb a, b g H is dense in Cont M, R in the sup norm so

Ž . Ž . Ž .a / b implies there exists a, b g H such that a a, b ) 0 and b a, b
� <- 0. Then ab s 1 on X and ab s y1 on X . Let G* s c g A* c g1 2 T

� 441, y1, ab , y ab .T T

Claim 1. If c s 1 on X or X then c g G*. For, say, c s 1 on X ,1 2 1
² : w x � 4then c g D 1, ab which, by Theorem 3.1.2 in 16 , is 1, ab since Y isT T T

a fan.

Ž . Ž . Ž .Claim 2. If c, d g A* and cd f G*, then ¨ c / ¨ d and ¨ c /a a b

Ž . Ž . Ž .¨ D . Suppose ¨ c s ¨ d . Then either cds 1 on X or cds y1 onb a a 1
X so, by Claim 1, either cd g G* or ycd g G* which contradicts our1

Ž . Ž .assumption. Similarly, ¨ c / ¨ d .b b

Ž . Ž . Ž .Claim 3. If c, d g A* and cd f G*, then either ¨ c ) ¨ d , ¨ c )a a b

Ž . Ž . Ž . Ž . Ž . Ž . Ž .¨ d or ¨ c - ¨ d , ¨ c - ¨ d . Otherwise, say, ¨ c ) ¨ d ,b a a b b a a

Ž . Ž . ² 4 � 4¨ c - ¨ d . Then c q d g D c , d s c , d since Y is a fan. Noteb b T T T TT
Ž . Ž . Ž . Ž .¨ c ) ¨ d implies a c, d s 0 so a c q d, d s 1 so c q ds d on X .a a 1
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Similarly, c q ds c on X . Now either c q d s c so c s d on X so2 T 1T
cds 1 on X , a contradiction by Claim 1, or c q d s d so c s d on X1 T 2T
so cds 1 on X , also a contradiction by Claim 1.2

Ž . Ž . Ž . Ž .Claim 4. If c, d g A* and cd f G* then ¨ c / ¨ d . If ¨ c s ¨ d ,
then there exists a finite chain c s a , . . . , a s d such that a F a F0 2 n 0 1 1 2

2 na ??? F a F a . Since cds Ł a a , a a f G* for some2 1 2 ny1 2 2 n is1 iy1 i iy1 i
Ž . Ž . Ž . Ž .1 F i F 2 n. By Claim 3, ¨ a - ¨ a , ¨ a - ¨ a .a iy 1 a i b iy 1 b i

Then a F a , a F a , so we can shorten the chain by eliminatingiy1 1 i iy1 2 i
a and a . We may repeat this process until we get a short chain,iy1 i
c s a F a F a s d. Then either ca f G* or a d f G*. In either0 1 1 2 2 1 1

Ž . Ž . Ž . Ž .case, we have ¨ c - ¨ d , ¨ c - ¨ d . Similarly, there is a finitea a b b

chain b , . . . , b with c s b G b G b ??? G b G b s d so,0 2 m 0 2 1 1 2 2 2 my1 1 2 m
Ž . Ž . Ž . Ž .as before, ¨ c ) ¨ d , ¨ c ) ¨ d , a contradiction.a a b b

˜ ˜ ˜<Let Y denote the pushdown of Y to X . By Claim 4, for any cd g G ,X¨ ¨¨
˜ ˜< � 4cd g G* so G s 1, y1, ab , y ab . Hence Y consists of two elementsY¨ T T

so it is a trivial fan.

5. REAL PLACES ON A NONCOMMUTATIVE RING

We now return to the general set-up considered at the beginning of
Ž .Section 1. Namely, we fix a not necessarily commutative ring A with 1

2 Ž .and assume y1 f ÝA . We denote by X, G the real spectrum of A, i.e.,
� < 4X s the set of all orderings on A and G s a a g A , where a: X ª

� 4y1, 0, 1 is defined by

1 if a g P R y P
a P sŽ . 0 if a g P l y P½ y1 if a g yP R P .

w x Ž . � < Ž . 4X is a spectral space 15, 16 . The sets U a s P g X a P s 1 , a g G
are a subbasis of open sets. The associated patch topology on X is the

Ž � 4weakest such that the mappings a g G are continuous giving y1, 0, 1
. Ž .the discrete topology . For a real prime p : A, we denote by X , G thep p

space of support p orderings on A. This is identified with the space of
� 4support 0 orderings on the integral domain Arp. Let M be the set ofp

Ž .all order compatible real places on Arp. By Corollary 3.3, the natural
Ž .surjection l : X ª M defines a Hausdorff P-structure on X , G . Letp p p p p

Ž .M s D M disjoint union , p running through all real primes of A, andp p
Ž . Ž .define l: X ª M by l P s l P , if P g X . To show the map l definesp p

Ž . w xa P-structure on the real spectrum X, G , terminology as in 16, Sect. 8.6 ,
it only remains to show that l respects specialization.
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ŽRecall: If P, Q are orderings on A, we say Q specializes P or P
.generalizes Q if P : Q. Note that if Q specializes P and p and q are the

supports of P and Q respectively then p : q and Q s P q q s P j q.
To simplify notation, it is convenient to identify a real place a on Arp

Ž . Ž . � 4with the map a : A = A R p = p ª R j ` obtained by composing a
with the natural map A = A ª Arp = Arp. Thus if P has support p ,

Ž . Ž . Ž .then a s l P can be viewed as a mapping from A = A R p = p toP
� 4R j ` .

LEMMA 5.1. Let P be an ordering on A with support p and let Q be a
specialization of P with support q. Then

Ž . Ž . Ž .1 a is just the restriction of a from A = A R p = p toQ P
Ž . Ž .A = A R q = q .

Ž .2 If P9 is an ordering on A with support p such that a s a thenP P 9

Q9 s P9 q q is an ordering on A with support q and a s a .Q Q9

Ž . Ž . Ž .Proof. 1 This is easy to check. 2 In view of 1 , it suffices to show
that Q9 is an ordering with support q. Obviously, Q9 q Q9 : Q9, Q9Q9 :
Q9 and Q9 j y Q9 s A. To see Q9 l y Q9 s q , we need only to show
Q9 l y Q9 : q. Let a s t q s s yt q s g Q9 l y Q9, t , t g P9,1 1 2 2 1 2
s , s g q. Then t q t g q. there are four cases:1 2 1 2

w xCase 1. t , t g P. Since q is compatible with P, Corollary 3.3 in 151 2
implies t , t g q.1 2

Case 2. t , t g yP. Then yt , yt g P and yt yt g q so yt ,1 2 1 2 1 2 1
yt g q so also t , t g q.2 1 2

Ž .Case 3. t g P, t g yP. If t , T f q then either a t , t s 0 or1 2 1 2 P 1 2
Ž . Ž . Ža t , t s 0. For, otherwise, a t , t s a t , t 0 - 0, so t t g yP9,P 2 1 P 9 1 2 P 1 2 1 2

Ž . Ž .contradicting t , t g P9. Suppose a t , t s 0. Then a 2 t q t , t s 11 2 P 1 2 P 1 2 2
Ž .so 2 t q t g yP so t g y P q q s yQ. But t g P : Q. Hence t g1 2 1 1 1

Q l y Q s q , so t g q.2

Case 4. t g yP, t g P. By the same sort of argument used in Case 3,1 2
we have t , t g q.1 2

THEOREM 5.2. The mapping l: X ª M defines a Hausdorff P-structure
Ž .on X, G .

Proof. Combining Lemma 5.1 with Corollary 3.3, we see that l: X ª M
Ž .defines a P-structure on the real spectrum X, G . It remains to show that

the patch topology on X induces a Hausdorff quotient topology on M.
Ž . Ž . Ž . Ž .Suppose p , a , p , a g M, p , a / p , a . If p / p , say p ­1 1 2 2 1 1 2 2 1 2 1

�Ž . < 4p , then there exists a g p , a f p . Let S s p , a g M a g p , then2 1 2
y1Ž . � < 4S is clopen in M, since l S s P g X a g P l y P is clopen in X
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Ž . Ž .in the patch topology. Also, p , a g S, p , a g M R S. This leaves1 1 2 2
Ž .the case p s p so a / a . Let p s p s p. As in the proof of1 2 1 2 1 2

Ž . Ž . Ž .Theorem 3.2, we get a, b g A R p , with a a, b - 0 - a a, b , a a, b1 2 i
�Ž . < Ž . 4/ `, i s 1, 2. Define S s q , b g M b f q , 0 - b a, b - ` . Againa, b

y1Ž . � <as in the proof of Theorem 3.2, one checks that l S s P g Xa, b
Ž . Ž . 4'n G 1 such that na y b a f yP, nb y a b f yP, ab f yP , which

Ž . Ž .is open in X. Thus S is open in M. Since p , a g S , p , a ga, b 1 ya, b 2
S and S l S s B. This completes the proof.a, b ya, b a, b

6. AN EXAMPLE

w xWe consider the twisted polynomial ring R x, y with multiplicationt
given by yx s axy where a g R, a ) 0, a / 1. We compute the real places

w xand orderings on R x, y .t
w x i jEach element f g R x, y is expressible uniquely as f s Ý b x yt i, j i j

with b D g R, equivalently, as f s Ý c y j x i with c g R. The twoi j i j i j i j
expression are related by the equations c s ayi jb .i j i j

Ž . w xPROPOSITION 6.1. 1 R x, y is an integral domain.t

Ž . w x2 Any non-zero ideal in R x, y contains a monomial.t

Ž . w xProof. 1 Suppose f , g are nonzero elements of R x, y . Expandingt
w xf and g as polynomials in y with coefficients in R x , we see that the

lowest degree term in the product fg is not zero, so fg / 0..
Ž . k l2 Suppose f / 0, and let f s a xf y fx, and f s yf y a fy, where1 2

y k is the highest power of y dividing f and x l is the highest power of x
dividing f. Then f and f have fewer monomial terms than f. Moreover,1 2
if f is itself not a monomial, then either f / 0 or f / 0. The result1 2
follows from this, by induction.

Ž . w xDenote by X, G the real spectrum of R x, y . Also, for a real prime pt
w x Ž .of R x, y , denote by X , G , the space of support p orderings oft p p

w x w xR x, y . It follows from Proposition 6.1 that the real primes in R x, y aret t
� 4 Ž . Ž . Ž . Ž . w x Ž . w x0 , x , y , x, y y r , x y r, y , r g R. also, R x, y r x ( R y ,t

w x Ž . w x w x Ž . w x Ž .R x, y r y ( R x , and R x, y r x, y y r ( R x, y r x y r, y ( R.t t t
� 4 Ž .Thus, if p / 0 , the structure of the space of orderings X , C is wellp p

� 4known. the fact that the prime 0 is real will be clear in a minute.
w x Ž . Ž .If ¨ is a valuation on R x, y which is trivial on R then ¨ y q ¨ x st

Ž . Ž . Ž . Ž . Ž . Ž . Ž .¨ yx s ¨ axy s ¨ a q ¨ x q ¨ y s ¨ x q ¨ y . Of course, if
Ž . Ž . Ž Ž i j. Ž i9 j9. Ž . Ž ..¨ x , ¨ y are independent i.e., if ¨ x y s ¨ x y « i, j s i9, j9 ,

Ž i j. � Ž i j. < 4then ¨ Ý b x y s min ¨ x y i, j G 0, b / 0 , so ¨ is completelyi j i j i j
Ž . Ž . Ž . Ž .determined by ¨ x , ¨ y . In this case, identifying ¨ x with 1, 0 , and

Ž . Ž .¨ y with 0, 1 , we see that the value semigroup of ¨ is identified with a
subsemigroup of the group Z = Z. Also, the ordering on the value semi-



MARSHALL AND ZHANG206

group extends uniquely to an ordering on the group Z = Z. This process is
obviously reversible. Moreover, there is a unique real place associated to
¨ . This is given by

¡̀ if ¨ f - ¨ gŽ . Ž .
~c rd if ¨ f s ¨ gŽ . Ž .a f , g sŽ . i j k l¢0 if ¨ f ) ¨ g ,Ž . Ž .

where c and d are coefficients of the terms in f and g, respectively,i j k l
Ž � 4.with smallest value. It is easy to see that a is a support 0 real place in

the sense of Definition 2.3. Moreover, it is order compatible. In fact, let
� w x < Ž . Ž .4S s fg g R x, y a f , g g 0, ` . Then the coefficient of the terma

with smallest value in any non-zero element of A2S is positive, soa

Ž .condition 3 of Theorem 2.5 is satisfied.
Ž � 4. w xConversely, let a be any support 0 real place on R x, y . We claimt

Ž . Ž .that ¨ x , ¨ y are independent. If not, then, since cancellation holds ina a

Ž i j. Ž i j .the value semigroup of ¨ , either a x , y / 0, ` or a x y , 1 / 0, ` fora

Ž . Ž . Ž i j. Ž iq1 j .some i, j / 0, 0 . In the first case this yields a x , y s a x , y x s
Ž iq1 j j. yj Ž i j. Ž i j. Ž i jq1.a x , a xy s a a x , y , and similarly, a x , y s a yx , y s
Ž i i jq1. i Ž i j.a a x y, y s aa x , y . Since a ) 0, a / 1, this forces i s j s 0, a

contradiction. The argument in the second case is similar. Thus we have
Ž .proved part 1 of the following:

Ž . � 4 w xTHEOREM 6.2. 1 The set of support 0 real places on R x, y is int
one-to-one correspondence with the set of orderings on the group Z = Z.

Ž . � 4 w x2 The space of support 0 orderings on R x, y has stability index 2.t

� 4 Ž . Ž .Proof. For each support 0 real place a , since ¨ x , ¨ y are inde-a a
˜< <pendent and generate the value semigroup G , we see that G s 4 so Xa a a

w xis a 4-element fan. Moreover, if a , b are distinct real places on R x, y t
Ž . Ž . Ž i j. Ž i9 j9.then ¨ / ¨ , so there exists i, j / i9, j9 with ¨ x y - ¨ x y ,a b a a

Ž i j. Ž i9 j9.¨ x y ) ¨ x y . Thus, if ¨ is any weak valuation finer than bothb b

Ž i j. Ž i9 j9. Ž . Ž .¨ , ¨ , then ¨ x y s ¨ x y so ¨ x , ¨ y are not independent. Alsoa b
˜Ž . Ž . < <¨ x , ¨ y generate the value semigroup G . This implies G F 2. Thus any¨ ¨

fan in X which is trivial in the residue space of ¨ can have at most 4¨
elements. Thus, by Theorem 4.7, any fan in the space of orderings
Ž .X , G has at most 4 elements.�04 �04

Ž . � 4Remark. The spaces of orderings X , G , p / 0 obviously havep p
Ž Ž . Ž .stability index 0 or 1. If p s x or y , the stability index is 1; otherwise it

. Ž .is 0. Thus, by Theorem 6.2 2 , we are in a position to apply the results in
w x16, Chap. 7 to get minimal generation results for the real spectrum of
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w x wR x, y exactly as in the commutative case. In more detail, using 16,t
xCorollary 7.2.4, Theorem 7.4.1, and Theorem 7.7.5 , we have the following:

}Any basic open set in X is defined by 2 inequalities f ) 0, g ) 0.
}Any basic closed set in X is defined by 3 inequalities f G 0, g G 0,

h G 0.
}Any constructible set in X is expressible as a union of 4 basic sets.
}Any constructible set in X has a separating family consisting of

w x5 elements of R x, y .t
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