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ON EPIMORPHISMS AND PROJECTIVITIES OF PROJECTIVE PLANES!

Franz B. Kalhoff

We present geometric characterizations of those epimorphisms of (arbitrary) projective planes which
stem from uniform valuations admitting an abelian value group. In particular, we study relations
between such epimorphisms and the groups of projectivities of the projective planes involved.

Given an epimorphism ¢: II — IT' between projective planes IT and IT, it is an open
question how the groups of projectivities of IT and IT' (regarded as permutation
groups on projective lines) are related. Within this note we will not answer this
sophisticated and hard problem in full, but we will address the question to which
extend the projectivities of II induce permutations on the lines of II' which are
distinct from the projectivities of II'. Questions of this kind are especially of interest
when functions on projective planes which are invariant under perspectivities, such
as orderings or half orderings, are subject to be lifted via an epimorphism.

In particular, we show that for any pappian projective plane IT' there exists a
projective plane IT and an epimorphism ¢: IT - IT' such that the projectivities of I1
induce the full symmetric group on the lines of IT' via ¢ (in this case no non-trivial
function on IT' invariant under perspectivities lifts to IT). On the other hand, in
terms of valuations and places of coordinatizing ternary fields we will characterize
certain situations where only the projectivities of IT' and no further permutations
are induced through ¢.

We denote the points (resp. lines) of a projective plane T1 by lower case (resp. upper
case) Latin letters, and write pq for the line joining two distinct points p and q of IL
Given a frame (o,u,v,e) of I1, following Pickert [9, §1 p.31], we coordinatize the affine
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plane [T,y with respect to uv as line at infinity and get a Hall ternary field K(o,u,v,e)
= (K,T) of IT = TI(K,T). We identify K with ov\{v} and simply write y for (0,y) and
for v. Further let a + b := T(1,a,b), ab := T(a,b,0), K* := K\ {0}, and take a — b, -b, a/c,
and c\a to be the elements defined by (a —b) + b=a, (-b) + b = 0, (a/c)e = a, and
c(c\a) = a respectively (a,b,c € K, ¢ 2 0). Note that (a + b) = b = a, (ac)e = a, c\(ca) =
a, and that in general (K, +) and (K*, -) are non-associative loops. If (K, +) is a group
and if T(m,x,c) = mx + ¢ for all m,x,c € K, then K is called a cartesian field.

An epimorphism ¢ of II onto a projective plane IT' is a map from the point and line
set of II onto the point and line set of II' that preserves incidence. If ¢ maps the
frame (o,u,v,e) of I onto a frame (o',u’,v',e') of IT' then, by

o(y) = AMy)  for all points y on ov = K U {eo},
© corresponds to a place A between the associated ternary fields and vice versa, i.e.
to a map A:K(o,u,v,e) - K'(o',u',v',e") U {0} satisfying André's eight axioms [10, p.242]
(S1) A(0)=0 and ML) =1,
(82) Am), Mx), Me)#e = AMTm,x,c)) = T'AMm)AE),AMc)),
(83) A(x) =o0, MT(mx,c))# o0, Mc)#eo = Alm)=0,
(84) A(m) = oo, MT(m,x,¢)) # o0, Me) £ = AMx)=0,
(S5) Mc) =, MT(m,x,c)) # o = o € {Mm), Ax),
(S6) y = T(m,x,¢) = T(n,x,0), Mx) =My) =, Mc)#= = Alm)=A(n),
(S7) 0 = T(m,x,c), A(m) =Alc) = e, AMT(m,u,c)) # oo = Mx) = AMu),
(88) vy = T(m,x,¢) = T(n1,x,0), 0="T(m,uc), My),A(m)Ax),AMc) =0 = e {A(n), Mu)}.
In case K is a commutative field, this notion reduces to the well-known valuation
theoretic notion of a place. Paralleling this classical setting, let

Ay ={keK| M) #~]} denote the place ring of A,

Up = {ke K| Ak)#0, =} denote the set of units of A,

I ke K| Mk =0} denote the place ideal of A,
and call two places A: K = K' U {eo} and p: K — K" U (oo} equivalent, if there exists an

isomorphism o:K' — K" such that pu(k) = aA(k) for all k € Aj. Accordingly, two epi-
morphisms ¢, ¢ of IT are equivalent, if there exists an isomorphism p with ¢ = py.

We denote the group of projectivities from a line L of IT = II(K,T) onto L by (L) and
consider it as a permutation group of L. In particular, #(ov) is a permutation group
of K U {eo}. Since any two lines of IT can be mapped onto each other by a perspecti-
vity, the permutation group # (L) does not depend on L, and we simply write &
instead of #(ov) or (). %, means the stabilizer of a point p € L in &
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1. PROJECTIVITIES UNDER EPIMORPHISMS

Within this section let ¢: IT — IT' be an epimorphism mapping the line L of IT onto L.
Given a projectivity © € & via

' (oplp)) == o(n(p)) forallpe L
7 induces a well-defined permutation ' of L, if and only if & lies in

Gi={ne Z| forallp,ge L: olp)=09lg) & ¢xrlp) = ¢ly) }.
One easily checks that £is a group, and that the mapping ®: & — Sym(L') sending &t
onto 7' is a group homomorphism with kernel

T :={ne £| forallpe L: ¢p)=orp)},
i.e. its image, the group 9 := ®($) of permutations of L' induced by & fulfills

g9 =Gl T
Besides &9 we have another permutation group acting on L', namely the group &' of
projectivities of II'. In what follows, we will study relations between these two
groups.

(1.1) IEMMA. Let n' ¢ #"' and let x'1, X9 € L' be distinct. Choose arbitrary inverse
images Xj, yi € Liunder ¢ of X' and y'; := ®'(x'}), 1 =1, 2. Then there exists a projectivity
n € 2 of [T which induces ©n' and maps xj ontoyj,i=1, 2.

Proof. Since each element of # 'is a product of perspectivities, it suffices to show
that each perspectivity o: G' - H' with center z’' of I1' (i.e. G, H' are distinct lines of
IT' not incident with the point z', and a'(x") = z'x' N H' for all X' € G') mapping two
given points x'1, X'g € G' onto y'1, y'2 € H' lifts to a projectivity a: G — H mapping x;
onto yj where G € ¢-UG"), He ¢-1(H"), xj e ¢~1(x]) N G, and y; € ¢~1(y') N H can be
taken arbitrarily i =1, 2).

In the case that x'1, x'9, y'1, y'2 form a frame, after choosing the elements G, H, xi, y;
simply put z := x1y1 N x2y2 and take o to be the perspectivity from G onto H with
center z. Then @(z) = Z', oxj) = y; (i = 1, 2), and o'(p(x)) = ap(x)) for all x € G.

In the case that x', x'9, y'1, ¥'2 do not form a frame, say x'1 = y'1, take a line M' of IT'
with x'j, ¥4, z' ¢ M' (1 # 1, 2) and consider the perspectivities o'1: G' = M' with center
z' and o'9: M' — H' with center z'. Clearly, we have o' = a'20.'1. Since x'1, x'9, 0'1(x'1),
o'2(x'2) as well as o'1(x'y), a'2(x'2), ¥'1, ¥'e form frames, by the case settled above we
obtain two perspectivities ajand o of I1, such that the projectivity o := cgo; has the

desired properties. [J
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(1.2) COROLLARY. &'is a subgroup of §'9.

(1.3) LEMMA. Let ' € @' and let x'1, X'9, x'g € L' be distinct. Choose arbitrary inverse
images xj, Vi € L under ¢ of x'i and y'i := n'(xy), 1 =1, 2, 3. Then there exists a projecti-
vity t € & of ll which induces ©' and maps x;ontoy;fori=1, 2, 3.

Proof. In view of Lemma (1.1) &' lifts to a projectivity 6 € % of IT with o(x;) = y; for
i=1, 2. We choose a frame (o, u, v, e) of Il which is mapped onto a frame by ¢ such
that o = y1, v = yo, and ov M ue = y3. Then, coordinatizing IT by the ternary field K =
Ko, u, v, ), @ is given by a place A of K via

ox) = Mx) forallxe ov=Ku {«},
and we have 0 =y1, =y 9, 1 =ys. Put ¢ := o(x3) € K. Since ¢ induces 7', we find

Me) = olo(xg)) = m'(e(x3)) = w'(x's) = ¥y'3 = ¢(yg) = M) = 1.
Now let vy e 2 be the projectivity mapping « onto « and x € K onto x¢, and consider
n:=v1lo e . As desired, the latter fulfills

nxp = vy = vH0) = 0 = y1,

n(xg) = vy = 7Hew) = = = yy,

n(xg) = vc) = 1 = y3,
and for all (other) x € K (by (52), (84), and Ac) = 1)

o(n(x)) = My Ho®x) = Mox)Ve) = Mo®) = ¢(ox) = m(ex)). [

Given three points a, b, ¢ € L with mutually distinct ¢(a), ¢(b), ¢(c), let (G b,)? =
(G, b,c) be the group of permutations of L' = ¢(L) which are induced via ¢ by those
projectivities of Il from L onto L lying in & and stabilizing {a,b,c} pointwise. In-

stantly, from (1.3) we obtain the following.
(1.4) COROLLARY. Z' N (Sab,)? = P'p(a),e(b),ec)-

(1.5) PROPOSITION. Let @: I1 — IT' be an epimorphism of projective planes, and let
a, b, ¢ be collinear points of Il with mutually distinct ¢(a), ¢(b), ¢(c). Then we have
g0 = &' (‘gba,b,c)(p-

Proof. Let ¢' € &9 be induced by some ¢ € & Since #' acts 3-transitive on ¢(ab),
there exists a projectivity n' € %' mapping ¢(a), o(b), and ¢(c) onto ¢'(p(a)), ¢'(p(b)),
and o'(¢(c)) respectively. In view of the preceding lemma, n' lifts to a projectivity
T € & with n(a) = o(a), n(b) = 6(b), and n(c) = 6(c). Hence p :=w-lc € G pc, and the
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permutation p' induced by p on ¢(ab) lies in (& p,¢)? and fulfills ¢' = w'p’. This shows
G < P (Fap,c)?. The reverse inclusion is clear by (1.2). [J

Immediately from (1.4) and (1.5) we get:

(1.6) COROLLARY. Let ¢: IT — IT' be an epimorphism of projective planes, and let
a, b, ¢ be collinear points of I1 with mutually distinct images under ¢. Then we have
G0 = 2 o L)) = Gab)

In the case of pappian projective planes, which are characterized by the fact that
any projectivity fixing three points is the identity (see, say [9]), we obtain the follow-
ing specializations.

(1.7) COROLLARY. Let ¢: 1 — II' be an epimorphism of projective planes, and let
a, b, ¢ be collinear points of 11 with mutually distinct images under ¢.

(a) If 1lis pappian, then 59 = &'

(6) 1I1'is pappian, if and only if @' N (Gap,o)? = {id}.

(1.8) REMAREK. If ¢ is a proper epimorphism (i.e. not injective), then &is an imprimi-
tive group which has the set of inverse images ¢—1(p'") of the points p’ of L' as a
system of blocks. Identifying this system with L', &'? may be regarded as the
induced permutation group of this system.

2. PROJECTIVITIES UNDER FRIENDLY EPIMORPHISMS

A uniform valuation of a ternary field (K, T) is a mapping viK — I' U {0} from K into
an ordered loop (T, -) united with a least element 0 fulfilling:

(V1) v(ia)=0 < a=0,

(V2) viab) = v(a) - v(b),

(V3) v(a-b) < max{v(a), v(b)},

(V4) v(r) = 1 forallr e R(K).
Herein, R = R(K) denotes the radical of K, i.e. the normal subloop of (K*, )
generated by those elements r € K* for which there are a, b, ¢, d, m, n, x, y ¢ K with
a# b, n#m,y#x, and T(m,y,c) = T(n,y,d), such that at least one of the following

equations holds
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(1) T(n,x,a) — Tm,x,b) = r-(a-b)

(i) Tn,x,d) — Tmx,e) = r-(h-m) - x—y)).
Obviously, v may be regarded as a loop homomorphism of (K*, ) containing R in its
kernel Uy = {(k € K | v(k) = 1}. Therefore, if v is onto, its value loop I is an abelian
group, if and only if even the extended radical R, of K lies in Uy, i.e. the normal
subloop R, of K* generated by R(K) and by those r € K* for which there exist x,y,z €
K* such that

(i) =x(yz) = r-((xy)z) or

Gv) xy = r-(yx.
Note that for a cartesian field K, (i) and (ii) reduce to

i a+e—-a =r-e

(i)Y ac—ad+bd—-be = r-[(a—b)c-d)],
(a, b, ¢, d, e ranging over K with a # b, ¢ # d, e # 0) and that R,(K) = {1}, if and only if
K is a commutative field. As shown in [1], each uniform valuation v of (K, T) gives
rise to a place A: K — Ay/I, U {o with valuation ring Ay :={ke K | v(k) <1} = Ay,
and valuation ideal Iy = {k € K | v(k) < 1} = I, and therefore yields an epimorphism
of II(K). But in contrast to the situation for pappian planes, in general, not every
epimorphism of an arbitrary projective plane I(K) can be obtained in this way (see
say [7] and note that the uniform valuations of a skew field are exactly its Schilling
valuations [6, 3.1]).

DEFINITION. An epimorphism ¢: IT — IT' of a projective plane IT is called a friendly
epimorphism, if IT can be coordinatized by a ternary field (K, T) admitting a uniform
valuation v which induces ¢ up to equivalence and has an abelian value group.

(2.1) LEMMA. Let A: K — K' U [} be a place of ternary fields containing the
extended radical Ry(K) in its place ring A),. Then, up to equivalence, X is induced by a
uniform valuation admitting an abelian value group, and therefore yields a friendly
epimorphism ¢: II(K) — TI(K").

Proof. Plainly, in view of the axioms (S1) up to (S5), the place ring A, is a subloop of
(K, +), it is multiplicatively closed, contains the radical of K, and it is total (i.e. for
all k € K we have k € Ay or 1/k € Ajy). Further, A) is normal with respect to multi-
plication, since it even contains Rz(K) and K*/R,(K) is an abelian group. Hence, by
virtue of [3, 1.4], Ay, is a uniform valuation ring of K, that means K carries a uniform
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valuation v: K — I' u {0} with valuation ring Aj and with an abelian value group I.
Asin [3, 1.5] one shows, that A and the place induced by v are equivalent. []

(2.2) THEOREM. Let ¢: IT — IT' be an epimorphism of projective planes, and let a, b be
points of T1 with ¢(a) # ¢(b). Then the following statements are equivalent.

(@) ©isa friendly epimorphism,

(b) forall cxe ab\Mablandallme FHpe: ox) =o¢b) & ornx) = @),

(c) forall cxe ab\{a,b}and all m e Fpc: ¢(x) = @la),ob) = ¢r(x)) = ¢la),eb) .

Proof. (a = b). By definition, IT can be coordinatized by a ternary field K = K(o,u,v,e)
such that (up to equivalence) @ is induced by a uniform valuation of K containing R,
= Ra(K) in its valuation ring A. For all ¢’ € K¥, allme %y o' = & ¢, and all X' € K*
we have n(x') € Ryx' by [4, 1.3], and therefore we get
) ox)=0ov) @ x' ¢ A o nx)e A o onX))=0W).
To show, that this property also holds for the given a, b, ¢, x instead of 0, v, ¢/, X' we
first consider the case that ¢(a), ¢(b), ¢(0), ¢(v) form a frame. In this instance we
make use of the perspectivity o: ab — ov with center z := ao n bv. It namely induces
a perspectivity o': ¢(ab) — @(ov) of IT such that
ola(x)) = oe)) forallxe ab,
and such that for each © € & ¢ we have onol e S with ¢' := ale). Hence, by (*),
we obtain for all x € ab
ox) = ob) & eola®) = olalv) o o-Lex)) = a-Le)

e olox) = o) & elomorox) = ov)

o olonx) = elob)) & alerx) = o(e(b))

e ox) = o).
The case that three or all of ¢(a), ¢(b), ©(o), ¢(v) are collinear can now be settled by
considering additional points @(a,), ¢(b,) and applying the step above twice.
(b = c¢) is trivial, for exchanging the points a and b in claim (b) yields a claim equiva-
lent to (b).
(¢ = a). Choose a frame (o, u, v, e) of II which is mapped onto a frame by ¢ and
where a = 0 and b = v. Then, coordinatizing II by K = K(o, u, v, €), ¢ corresponds to a
place X of K, and on ab = K U {«} we have a = 0, b = =, and ¢(x) # ¢(a),0b) & x e U,
Given r € Ra(K), in light of [4, 1.3], there exist mj € Py wc, cie K*,i=1, ..., n
(n € N), such that r = tan,-1...711(1). Successively applying (¢), we get from 1 ¢ Uy,
first ®1(1) € Uy, then man1(1) € Uy, and so on up to r = myny_1...711(1) € Up. Hence
Ra(K) c Uy, and by the lemma above, ¢ is a friendly epimorphism. [J
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From these geometric characterizations of friendly epimorphisms and from their
proof one immediately infers, that -in contrast to the definition- the property of
being friendly does not depend on the special coordinatization of IT. So we have the

following.

(2.3) COROLLARY. If ¢ is a friendly epimorphism of 11, then each underlying ternary
field the coordinatizing frame of which is mapped onto a frame by @ carries a uni-
form valuation v inducing ¢ up to equivalence and admitting an abelian value group.

(2.4) COROLLARY. A place A: K — K' U {eo} of ternary fields induces a friendly epi-
morphism, if and only if its place ring Ay contains the extended radical Ra(K).

(2.5) COROLLARY. If a projective plane I1 admits a friendly epimorphism which is
proper (i.e. not injective), then the group of projectivities of Il is not 4-transitive.

(2.6) LEMMA. Let ©: II — II' be a friendly epimorphism of a projective plane 11, and
let T be a projectivity from the line L of Il onto itself. If there exist a, b, c € L with
mutually distinct ¢(a), ¢(b), ¢(c) and mutually distinct o(n(a)), (n(b)), ¢(n(c)), then
we have forall x e L

ox) = ob) o onx) = orbd).

Proof. Since &' acts 3-transitive on L' = ¢(L)), there exists a projectivity ¢' e &' with
o'(o(n(a))) = @(a), o'(p@(b))) = ©(b), and ¢'(p(n(c))) = ¢(c). In view of (1.3), ¢' lifts to a
projectivity ¢ € & fulfilling

on(a)) = a, omd)) =b, onle)) =¢, and (o)) = ¢plo(x)) forallxe L.
Hence on € % p,c. By Theorem (2.2b), the hypothesis ¢(x) = ¢(b) leads to ¢plon(x)) =
o(b) = o(on(b)), which in face of 6 € & means ¢'(¢(n(x)) = ¢'(e((b)), and therefore
finally o(n(x)) = @(r(b)). O

(2.7) THEOREM. Let ¢: I1 — IT' be a friendly epimorphism of a projective plane 11,
and let T be a projectivity from the line L of I onto itself. If there exist at least three
points on L with mutually distinct images under ¢ and mutually distinct images
under ¢ o, then © induces a well defined permutation on o(L), that ism e 4.

Proof. Let a, b, ¢ € L with mutually distinct o(a), o), ¢(c) and mutually distinct
e(r(a)), oln(b)), e(n(c)). Given p, q € L with o(p) = ¢(q), we have to show that ¢(rn(p))
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= @(n(q)). This, together with the same argument applied to n~1, yields n e <.

We first settle the case that ¢(q) € {¢(a), ¢(b), ¢(c)}, say ¢(q) = ¢(b). Using the lemma
above, we find ¢(n(q)) = ¢((b)), and again by the lemma above, from ¢(p) = ¢(b) we
get o(n(p)) = ¢m(b)), and therefore oin(p)) = ¢(r(q)).

Now we turn to the case that ¢(q) ¢ {¢(a), ¢(b), ¢(c)}. Then, in view of the lemma
above, we also have that ¢(n(q)) ¢ {¢(n(a)), (b)), ¢(n(c))}. Now applying the lemma
with q instead of b and p instead of x we get the desired equality ¢(n(p)) = ¢(n(q)). U

Of course, also the reverse claim of (2.7) holds, i.e. the elements 7 of £ are characte-

rized by the existence of three points with mutually distinct images under the
friendly epimorphism ¢ and under ¢ o7. In particular this leads to the following.

(2.8) COROLLARY. Let ¢:I1 - I1' be a friendly epimorphism of a projective plane I,
and let a, b, ¢ be collinear points of T1 with mutually distinct ¢(a), ¢(b), ¢(c). Then

»‘ZJa,b,c = %,b,c-

(2.9) REMARKS.

(a) Note that (2.7), and also (2.8), are wrong, if one requires only two points to have
mutually distinct images under ¢ and under ¢ . For instance, let K = K'((t)) be a
commutative field of Laurent-series, let L:K — K' U {e} be the place associated to the
degree valuation v of K, and let ¢:II(K) — II(K') be the friendly epimorphism induced
by v. Then the projectivity mapping - onto « and x € K onto tx fixes the two points 0
and o, but is ocbviously not in &

(b) Apart from the theorems above, friendly epimorphisms can be described geome-
trically by valuations of I in the matroid theoretical sense of Dress and Wenzel (see
[5]), or by certain multiple valued halforderings of IT in the sense of Junkers (see
[8D). In particular, corollaries (2.3) and (2.4) are also consequences of each one of
these two approaches.

3. PROJECTIVITIES UNDER VERY FRIENDLY EPIMORPHISMS

DEFINITION. An epimorphism ¢: IT — IT' of a projective plane II is called a very
friendly epimorphism, if IT can be coordinatized by a ternary field (K, T) admitting a
uniform valuation v which induces ¢ (up to equivalence), has an abelian value

group, and contains R4(K) in its loop 1 — I of one-units.
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(3.1) THEOREM. Let ¢: I1 — I1' be an epimorphism of projective planes, and let a, b
be two points of TL with ¢(a) # ¢(b). Then the following statements are equivalent.

(@) ©isavery friendly epimorphism,

(b) forall ¢,x e ab\abland all t € F} c we have: p(n(x)) = P(x).

Proof. (a =» b). By hypothesis, we may coordinatize I1 by a ternary field K =
K(o,u,v,e) such that (up to equivalence) ¢ is induced by a uniform valuation of K
with Ra(K) < 1 — Iy. Hence we have AMr) = 1 for all r ¢ Ra(K) and for the place A
associated to ¢. Given ¢' € K¥*, n € %y ¢ = P, and x' € K*, from [4, 1.3] we
obtain that n(x') = rx’ for some r € Ry(K), and thus we find

") onlx)) = Mrx') = AX) = ox).

Now, in the very same vein as in the proof of (2.2), one shows that this property also
holds for the given a, b, ¢, x instead of o, v, ¢', x'.

(b = a). Coordinatize IT by a ternary field K = K(a, u, b, ), such that a = 0, b = oo,
and ¢ corresponds to a place A of K. Given re R,(K), in view of [4, 1.3], there exist m;
€ P, i€ K¥, i=1, ..., n{ne N), such that r = mymy-1...71(1). Applying (b), we
obtain 1 = M1) = ¢(1) = ¢m(l) = ... = ¢pAp-1...71(1)) = Ar), proving that
Rac1-1Iy c Ay Inview of (2.1), ¢ is a very friendly epimorphism. [

Again, the theorem above and its proof show that -in contrast to the definition- the
property of being very friendly does not depend on the coordinatization of I1. So, in

view of (2.1) and (3.1), we have the following.

(3.2) COROLLARY. If ¢ is a very friendly epimorphism of 11, then each underlying
ternary field XK the coordinatizing frame of which is mapped onto a frame by @ carries
a uniform valuation v inducing ¢ up to equivalence, admitting an abelian value
group, and satisfying Ra(K) ¢ 1 —1Iy.

(3.3) COROLLARY. A place h: K — K' U [} of ternary fields induces a very friendly
epimorphism, if and only if it maps each element of the extended radical Ra(X) of K
onto 1.

(3.4) COROLLARY. Let ¢: I1 — IT' be a very friendly epimorphism of projective planes.
Then IT' is a pappian projective plane, and the permutations induced by the projecti-
vities of I1 on the lines of IT' are exactly the projectivities of IT', i.e. we have $%= &',
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Proof. Given collinear points a, b, ¢ of IT with mutually distinct images, immediately
from (3.1) we obtain (S b o)? = {id}. The claim now follows from (1.6) and (1.7b). T

(3.5) REMARK. Of course, if IT is pappian, then each epimorphism of I is a very
friendly epimorphism, since the extended radical of a commutative field is always
trivial. However, in general there exist friendly epimorphisms which are not very
friendly. In particular, an isomorphism between projective planes is always friendly
(it is induced by a trivial valuation v g+ = 1 with Ay = K, 1-Iy = {1}), but it needs not
to be very friendly (namely if R, # {1}, which holds exactly for non-pappian planes).

4. EPIMORPHISMS ONTO PAPPIAN PLANES

In this section we will present examples for the settings described in the sections
above. We shall show that .&'®, which obviously varies between £ 'and the full sym-
metric group on the lines of [1', actually takes both values, even if ¢ is a friendly epi-

morphism onto a pappian projective plane.

Recall that a uniformly valued ternary field (K, T, v) yields an ultrametric space
(K, d) with respect to the metric defined by d(x,y) := v(x — y). In particular, K is said
to be spherically complete, if every chain of balls of K has a non-empty intersection; a
mapping ¢: K — K is called an isomeiry of K, if it is a bijection fulfilling d(¢(x), ¢(y))
=d(x, y); and a mapping ¢: K — K is called a contraction, if d(o(x), ¢(y)) < d(x, y) for
all x, y € K with x # y. We will make use of the notion of a cartesian field of formal
power series C((T")) over the cartesian field C on the ordered loop (T, -, <) as

introduced in [2]. Its elements are of the form x = Eyer xtY with well ordered
support s(x) and degree d(x) := min(s(x)) for x # 0 (3(0) := 0, xy € C). Recall that the
degree gives rise to a uniform valuation on C((I")) with residue class cartesian field C
and value loop T (carrying the dual ordering <4), and that, with respect to this
valuation, C((T")) is spherically complete (see, say {12, 5.1 and 5.2)).

(4.1) LEMMA. Let (K, +, -) be a (cartesian) field admitting a uniform valuation

v: K — T'U{0} such that (K, v) is spherically complete. Further let ® = (DylyeTU(0) be

any family of isometries of K fixing 1 and 0 and with ®1 = idg. With the new product
adb = a- Oygb)

K® := (K, +, 0, v) is a uniformly valued cartesian field.
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Proof. Clearly, (K, +) is an abelian group with neutral element 0, and for alla e K
wehavea¢ 0=00a=0anda¢1=1¢a=a. We have to check that for a, b, c € K,
a# b, the equation
—-aldx + bdx = ¢
has a unique solution x in K. In the case v(a) = v(b) =: v, the equation reads ¢ =
—-a®dy(x) + b®(x), which has a unique solution ®(x) in the cartesian field (K, +, -). In
the case v(a) # v(b), say v(a) < v(b), the mapping f(x) := (@yp)"LUb\(a - Dy@)x) + ¢)) is
a contraction on K, because for all x, y € K with x # y we have
v(flx) - f(y)) V( (Dy(p))~Hb\(a - By(a)(x) + ¢) — (Dy(p)) b\ (a - Dy(a)y) + )

]

= v(b\(a  Pyu)(x) +¢) —b\(a - Pyp)y) +¢) Dy (p) isometry
= vib}\v(a  Oy@)®) —a- DPya)(y)) by [1, 1.2]

= v(b) \ (v(a) - v( Dya)(x) — Dy@)¥))) by [1, 1.2]

= v\ (v(a) -v(x-y)) @y (n) isometry
< v(ix-y).

Hence, by Priess-Crampe's fixed point theorem [11], f admits a unique fixed point x,,
which is the desired unique solution. Analogously, one shows that for a, b, ¢ € K,
a # b, also the equation x ¢ a —x 0 b =c¢ has a unique solution. Hence (X, +, ) is a
cartesian field.
Obviously, the mapping v fulfills (V1) and (V3) also for this new cartesian field. (V2)
is immediate by

v(a0b) = vi(a Oya)(b)) = via)  v(dya)(b) = via) - v(b),
since Qy(y) is an isometry. For (V4) we only have to check that (with a #b, c# d)

viadc—aldd +b0d—blc) = v(a-b)-vic-d).
The left hand side translates into

vy = v ady(g)(c) — aDy)(d) + bDypy(d) — bDyp(c) ).
In the case v(a) = v(b), by [1, 1.2] yequals v{a — b) - v(Dy(a)(c) — Py(a)(d)), which yields
the desired expression, because ®y(y) is an isometry. In the case v(a) # v(b), say v(a)
< v(b), we have v(a®y(a)(c) — a®y(g)(d)) = v(a) - vic—d) < v(b) - vic—d) = v(bDyp)(d) —
b®yp)(c)), and the principle of domination implies

v = vb®yp)(d) - bDym)c)) = vib) -vie—d) = va-b)-v(e-d). O

(4.2) PROPOSITION. Let I1' be an arbitrary pappian projective plane. Then there exist
a projective plane Il and a friendly epimorphism ¢: 11 — I1' such that the projectivi-
ties of Il induce the full symmetric group on each line of TT'.
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Proof. Let K be a commutative field coordinatizing IT' with respect to the frame
(o', u', v, e, and let Q be the full permutation group of the line L' := o'v' = K v {eo}.
Choose an ordered abelian group (T, -, £) which is large enough to allow a (set theo-
retic) injection 1 of the (pointwise) stabilizer Q0,1 « into I'\{1} (large ordered abelian
groups exist, see, say [10]). For each ot & T" U {0} we define a permutation ng of L
fixing 0, 1 and < as follows

(k) = {{f(k) ;ﬁ;"ee U€0,1,) and & = 1) for all k € K U (oo},

Let F = K((I") be the field of formal power series over K on I' with degree valuation
v, which is a uniform valuation of F with respect to the dual ordering <4 on T. For
each o € I' U {0} we define a bijection @y of F by

Ol Lyer kyt?) 1= Talk) t1 + Zyery(p) Ky tY.
Then clearly, each @y is an isometry of F fixing 0 and 1, and we have ®1 = idg,
because 1 ¢ 1Qp1.). Now consider the uniformly valued cartesian field Fo as
defined in the preceding lemma and the projective plane I over F®.
For the place A: F — K U {eo} associated to v we have

0 if v(Zyerkyth) <d 1
MZerkyt) = ki ifvperkt) =1
o ifv(Xyerkyty) >4 1

And for the projectivities py € & oo € T'\{1}, defined by pu(x) = (t% 0 x) 0 t&* for all
x € I and by pglee) 1= o, we observe

pol Tyerkyt?) = (1 OpEerkyth) 0 to!

(t2(mok) t1 + Zyervin kyt?)) ¢ to
(molky) & + 2yeryin) Ky 1) - Dy( )(t070)
(k) t% + Dyeryy kytre) - o

n

Tk t1 + Zyer\) ky tY.
So we have pyg € % 1,.. and

Mpol Zyer kyt1) = Mok t! + Zyervia kyt?)
Tl M Dt Ky t7)),

which means that pg lies in & with respect to the epimorphism ¢: I1 — I’ associated
to A, and that pg induces the permutation 7ty on 1. Hence we find

(90,1,)? = Q0,1,00-
Since ' is three-fold transitive on L', (1.5) finally yields $¢ =Q. [
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{(4.3) REMARK. The proposition above is supposed to hold for arbitrary non-pappian
projective planes IT', too. Indeed, if II' can be coordinatized by a (not necessarily
proper) cartesian fleld C, then with C instead of K the proof of (4.2) goes through
nearly word by word. For weaker projective planes IT', the ideas above should extend

to Schérner's notion of formal power series over arbitrary ternary fields [13].

(4.4) PROPOSITION. Let (K, +, -, v) be a valued commutative field, and let (ryyeTui0)
(syveruio} be two families of elements of K with rg =11 =80 =51 =0 and v(ry), v(sy) <y
forall ye T". Then the new product

alb = a-b + Tya) Svb)
makes (K, + , 0, v) @ uniformly valued cartesian field the extended radical of which

liesin 1~15.

Proof. By [6, 3.8], C := (K, +, 0, v) is a uniformly valued cartesian field. Hence R =

R(C) lies in Uy. To check that R even lies in the loop 1 — Iy of one-units, we simply

write rp and sp, instead of ry(z) and sy). In view of (i') and (ii") from the beginning of

section two, R is generated by those r € K* which satisfy (note ry = 0, since v(r) = 1)
ac+1ra8; — rasd—ad + bd + rpsqg -~ rpse — be

rO0((a—-b}c—d) + ra-bscd)

r- ((a-b)e~d) + ra-pse-d ),

Il

that is by elements of the shape

r = (ac~ad+bd—bhe + rasc — rasd + rpsg — rpse)/((a=Db)ec—d) + rapscqd)
(a-b)lc~d) + (ra—rp)sc—sd))/((a=blc—d) + rapsc-d)
(1+A\ ((ra—1p)ise—sa) ) / (1 +A\(ra—bSe-q))
with A == (a —~ b){e — d) . Now, if v(a) = v(b) or v{¢) = v(d), then {rs — rp)}sc —sg) = 0,
and if v(a) = v(b) and v(e) # v(d), say v{a) < v(b) and v(¢) < v(d), then we have

v({(rag — rp)se — 8q)) € max{v(rase),v(rasq),v(rpse),v(rpsa)} < max{v(ac),v(ad),v(be),v(bd)}
= v(bd) = v(A), In both cases we find v(A\((ra — rp)(sc — 8a))) < 1, and therefore
1+ A\({rg —rpXsc —sq)) € 1 — L. Further we immediately get v { A\{rg.pse—q) ) < 1,
so also 1 + A\N{ra—psed) € 1 ~ Iy, which finally shows r € 1 — 1. Hence we have that
Rliesin 1-15.
The extended radical Ry = R4(C) is generated by R and additionally by those r ¢ K*
fulfilling at least one of the equations

adb = r¢(b0oa),

(adb)0c = r0@0boe))
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where a,b,c vary over K¥*. Since v(a ¢ b) = v(ab), we find v(r) = 1 also for these r.
Hence these elements are of the shape

(ab + rasp) - (ba + rpsg)~!

(1 + rasp/(ab)) - (1 + rpsa/(ab))-1

or of the shape

((ab + rasp)e + rapsc ) - (albe + rpse) + raspe)—t

r

r

(abc + raspc + rapse ) - (abe + arpse + raspe) ™t
(1 + rasp/(ab) + rapse/(abe) ) - (1 + rpsef(be) + raspe/(abe) )1,
and both are easily seen to be in 1 - I,. So we finally have R; <1~ 1,. O

Given any pappian projective plane IT', say over the field K', we take the field K :=
K'((I") where I is the multiplicative group of the positive real numbers and put ry :=
8o :=r1 =81 := 0 and ry 1= sy := t2Y for all y € T \ {1} (recall that the degree is a
valuation of K with respect to the dual ordering of I'). Then (4.4) provides us with
the projective plane IT over the cartesian field (K, +, ¢) admitting a very friendly
epimorphism onto IT'. So, in view of (3.4), here we have ¢ = &'

The following example yields proper translation planes I1 with this property, i.e.

planes over cartesian fields fulfilling one distributive law (so called quasifields).

(4.5) PROPOSITION. Let (K, +, -) be a commutative field carrying a valuation
v: K — T v {0} such that K is spherically complete. Further let (Oyyerufo) be any
family of isometries ®ye Aut(K, +) fixing 1. With the new product

a0b = (Dya)t( Dy@)a) - Pya)d))
Ko = (K, +, 0, v) becomes a uniformly valued quasifield, the extended radical R, of
which lies in Uy. If additionally (k) € (1 -Iv)k forallk e K¥ and all ye T U {0},
then Ry liesin 1 -15.

Proof. By 16, 3.3], Ko is a uniformly valued (left) quasifield. In particular, R = R(Kg)
lies in Uy. Since the image of K* under v is an abelian group, we even find
R, c Us.

Now suppose that ®y(k) € (1 - Ik for all k € K¥ and all ye I' U {0}. We simply write
@y instead of Dy(k). First note, that for all a,b € K we have

*) adb e (1-Iyab,

since 1 — I is a (normal) subgroup of (K*, - ), and since ®,(a 0 b) € (1-1I,)Xa 0 b)but
also ®3(a 0 b) = (@a(a) Pab)) € 1-Tpa- (1 -I,)b =(1-1,)ab.
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For a left quasifield, R is generated by elements r of the shape

adc— bdc = r0¢ (a-b)do),
with a,b,c € K, a # b, ¢ # 0. We first settle the case v(a) = v(b). Then &, = ¢}, and we
observe

(Da—l((pa(a —b) ®y(c))

O, H(Da(a)-Dy(b)) alc))
@, 1(Dy(a) - Da(c)) — @y~ Dy(b) - Dalc))
adec - boc
r¢{(a-b)¢c)
e (1-Iy)  r(a—-D,
by (*). Therefore, using ®4(k) € (1 - L)k, we get
Dyla—-b) Pyale) e (1-Iy)-ra—-b)e n (1-1I,) (a—-ble,
which finally leads to r € 1 -1, as desired.

Now we consider the case v(a) # v(b), say v(a) > v(b). In view of (*) there exist e1, e2
e 1 -1, with ejac — egbc = adc— bdc = r0((a —b)oc) e (1-1Iy) - r(a — b)e, which
leads to

eja — esb € (1-1I,) r(a-h),

el — eobal € (1-1Iy) r(1—-bal),
and thus to

r € (1-Iy) (e — egbal) . (1-ba1)l < 1-1,
because ba~! € 1. Hence we have shown R < 1 —I. By virtue of (*), it is easily to be

seen that also the extended radical R, lies in 1 —Iy. [J

For a concrete example illustrating (4.5) take a commutative field of Laurent series
K= L({(%) = L((ID) and put

Oy (Y xpt) = %, + (LT D xth
ieZ iz0
where I' = (Z, +) is written additively. Then @y is an additive automorphism and an
isometry fixing 1. It also fulfills ®(k) € (1 - Iy)k, since k and ®.(k) have the same
degree and the same leading coefficient. Hence II := [I(Kg) is a translation plane
admitting a very friendly epimorphism onto IT' := IT(L).
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