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ON EPIMORPHISMS AND PROJECTIVITIES OF PROJECTIVE PLANES 1 

Franz  B. Kalhoff  

We present geometric characterizations of those epimorphisms of (arbitrary) projective planes which 
stem from uniform valuations admitting an abelian value group. In particular, we study relations 
between such epimorphisms and the groups of projectivities of the projective planes involved. 

Given an  ep imorph i sm (p: H --+ II '  be tween projective planes 1U and H', it is an  open 

ques t ion  how the  g roups  of project ivi t ies  of 1-I and  II '  ( regarded as p e r m u t a t i o n  

groups  on project ive lines) a re  related.  Within  this  note  we will not  answer  this  

sophis t ica ted  and  h a r d  problem in full, bu t  we will address  the  quest ion to which 

ex tend  the  project iv i t ies  of YI induce p e r m u t a t i o n s  on the  l ines of H'  which are  

distinct from the projectivit ies of 1-I'. Quest ions of this kind are especially of in teres t  

when  functions on projective planes which are invar ian t  under  perspectivi t ies ,  such 

as orderings or ha l f  orderings,  are subject to be lifted via an epimorphism.  

In  pa r t i cu la r ,  we show t h a t  for any  p a p p i a n  project ive p lane  H'  the re  exis ts  a 

projective p lane  I I  and  an  ep imorph i sm ~: 1-I --> 12 ' such t ha t  the  projectivit ies of rI 

induce the  full symmet r i c  group on the lines of H' via (p (in this  case no non-tr ivial  

funct ion on FI' i n v a r i a n t  unde r  perspect iv i t ies  lifts to YI). On the  o ther  hand ,  in 

t e rms  of va lua t ions  and  places of coordinatizing t e r n a r y  fields we will charac ter ize  

cer ta in  s i tua t ions  where  only the  projectivit ies of [I '  and no fu r the r  p e r m u t a t i o n s  

are induced th rough  % 

We denote the  points  (resp. lines) of a projective plane l-I by lower case (resp. upper  

case) La t in  let ters ,  and  wri te  pq for the line joining two distinct points p and q of I]. 

Given a f r ame  (o,u,v,e) of II, following Pickert  [9, w p.31], we coordinatize the  affine 

1Supported in part by the Minerva Foundation, Israel 



150 Kalhoff 

p l a n e  Iluv w i t h  r e s p e c t  to uv  as  l ine  a t  i n f i n i t y  a n d  ge t  a H a l l  ternary field K(o,u,v,e)  

= (K,T) of  I I  = rI(K,T).  W e  i d e n t i f y  K w i t h  o v \  {v} a n d  s i m p l y  w r i t e  y for  (0,y) a n d  

for v. F u r t h e r  l e t  a + b := T(1,a,b),  ab  := T(a,b,0),  K* :-- K\{0}, a n d  t a k e  a - b, - b ,  a/c, 

a n d  c \ a  to be  t h e  e l e m e n t s  de f i ned  b y  (a - b) + b = a, ( -b )  + b = 0, (a/c)c = a, a n d  

c ( c \ a )  = a r e s p e c t i v e l y  (a,b,c c K, c a 0). No te  t h a t  (a + b) - b = a, (ac)/c -- a, c \ ( ca )  = 

a, a n d  t h a t  in  g e n e r a l  (K, +) a n d  (K*, .) a r e  n o n - a s s o c i a t i v e  loops.  I f  (K, +) is a g roup  

a n d  i f  T(m,x,c)  = m x  + c for  a l l  m,x,c  ~ K, t h e n  K is ca l led  a cartesian field. 

A n  epimorphism (p of II  onto  a p ro jec t ive  p l a n e  II '  is a m a p  f rom t h e  p o i n t  a n d  l ine  

s e t  of  U onto  t h e  p o i n t  a n d  l ine  s e t  of  II '  t h a t  p r e s e r v e s  inc idence .  I f  q) m a p s  t h e  

f r a m e  (o,u,v,e) of  I I  onto  a f r a m e  (o' ,u' ,v' ,e ')  of II '  t hen ,  by  

(p(y) = k(y) for a l l  po in t s  y on ov = K w {~}, 

c o r r e s p o n d s  to a place ~ b e t w e e n  t h e  a s s o c i a t e d  t e r n a r y  f ie lds  a n d  vice  ve r sa ,  i.e. 

to a m a p  k:K(o,u,v,e)  --~ K'(o ' ,u ' ,v ' ,e ' )  w {~} s a t i s f y i n g  A n d r e ' s  e igh t  a x i o m s  [10, p.242] 

($1) k(0) = 0 a n d  ~(1) = 1, 

($2) k(m),  ~.(x), k(c) r ~ k(T(m,x,c))  = T'(k(m),k(x),k(c)),  

($3) k(x) -- ~ ,  k(T(m,x,c))  v ~ ,  k(c) ~ ~ ~ k(m) -- 0, 

($4) k(m) = ~ ,  k(T(m,x,c))  r ~ ,  k(c) r ~ ~ k(x) = 0, 

($5) k ( c ) =  ~ ,  k ( T ( m , x , c ) ) r  ~ ~ e [k(m), k(x)}, 

($6) y = T(m,x,c)  = T(n,x,0),  k(x) = k(y) = ~,  k(c) r ~ ~ k(m) = k(n), 

($7) 0 = T(m,x,c),  k(m) = k(c) = ~ ,  k(T(m,u,c))  v ~ ~ k(x) = k(u), 

($8) y = T(m,x,c)  = T(n,x,0),  0 = T(m,u,c),  k(y),~.(m),k(x),k(c) = ~ ~ ~ e {k(n), k(u)}. 

In  case  K is a c o m m u t a t i v e  f ie ld ,  t h i s  no t i on  r e d u c e s  to t h e  w e l l - k n o w n  v a l u a t i o n  

t heo re t i c  no t i on  of  a p lace .  P a r a l l e l i n g  th i s  c l ass ica l  s e t t i ng ,  l e t  

A~ := { k ~  K I k ( k ) ~ }  denote the place ring of~, 

UX := { k E K I k(k)  ~ 0, ~ } deno te  t h e  set of units of~., 

Ik := [ k e K I k(k)  = 0 } deno t e  t h e  place ideal of ~, 

a n d  cal l  two p l ace s  ~: K ~ K'  u {~} a n d  ~t: K --~ K" w {~} equivalent, i f  t h e r e  ex is t s  an  

i s o m o r p h i s m  a : K '  ~ K" such  t h a t  ~(k) = a k ( k )  for  a l l  k ~ A~.. Acco rd ing ly ,  two epi- 

m o r p h i s m s  ~, ~ ofl-I  a r e  equivalent, i f  t h e r e  ex is t s  a n  i s o m o r p h i s m  p w i t h  (p = PW. 

We deno te  t h e  group ofprojectivities f rom a l ine  L o f I I  = II(K,T) onto L by  2 ( L )  a n d  

c o n s i d e r  i t  a s  a p e r m u t a t i o n  g r o u p  of  L. In  p a r t i c u l a r ,  2 ( o v )  is  a p e r m u t a t i o n  g roup  

of  K w [HI. S ince  a n y  two l ines  of  I-I can  be m a p p e d  onto each  o t h e r  by  a pe r spec t i -  

v i ty ,  t h e  p e r m u t a t i o n  g r o u p  2 ( L )  does  no t  d e p e n d  on L, a n d  w e  s i m p l y  w r i t e  2 

i n s t e a d  of  2 ( o v )  or  2 ( L ) .  2p means t he  s t a b i l i z e r  of  a p o i n t  p ~ L in  _~. 
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1. PROJECTIVITIES UNDER EPIMORPHISMS 

With in  th is  sec t ion  let  r H -~ YI' be an  e p i m o r p h i s m  m a p p i n g  the  l ine L o f r I  onto L'. 

G iven  a p ro jec t iv i ty  ~ e 2 ,  v ia  

~' (~o(p) ) := ~(~(p)  ) for  all p e L 

induces  a wel l -def ined  p e r m u t a t i o n  =' of  L', i f  and  only if  n lies in 

J c~ := { ~ e 2 [ for all  p,q c L: ~o(p) = ~0(q) r ~(=(p)) = ~(=(q)) }. 

One  eas i ly  checks  t h a t  ~ i s  a group,  and  t h a t  the  m a p p i n g  r G--+ Sym(L ' )  s end ing  

onto =' is a g roup  h o m o m o r p h i s m  wi th  ke rne l  

J r  := { ~ e 2 1 for all  p ~ L: ~(p) = ~(n(p)) }, 

i.e. i ts  image ,  t he  group . ~  := q~($~) of permutations of  L' induced by jc" fulfills 
G ~  = ~ / ~ .  

Bes ides  ,~o we h a v e  a n o t h e r  p e r m u t a t i o n  group  ac t ing  on L', n a m e l y  the  g roup  ff~' of 

p ro jee t iv i t i e s  of  YI'. I n  w h a t  follows, we  will  s t u d y  r e l a t i o n s  b e t w e e n  t h e s e  two 

groups .  

(1.1) I_EMMA. Let ~' ~ 2 '  and  let x'l ,  x'2 e L' be distinct. Choose arbitrary inverse 

images xi, Yi e L under (p of  x'i and Y'i := ff(x'i), i =1, 2. Then there exists a projectivity 

E (~2 of  Fi which induces ~' and maps xi onto Yi, i = 1, 2. 

Proof. Since  each  e l e m e n t  of  2 ' i s  a p roduc t  of  pe r spec t iv i t i e s ,  i t  suff ices  to show 

t h a t  each  p e r s p e c t i v i t y  a':  G' -> H '  w i th  cen te r  z' o f r I '  (i.e. G', H '  a re  d is t inc t  l ines of  

1T not  i nc iden t  w i t h  t he  po in t  z', and  (z'(x') = z'x'  n H '  for  all  x' ~ G') m a p p i n g  two 

g iven  po in t s  X'l, x'2 ~ G' onto Y'I, Y'2 ~ H'  l ifts to a pro jec t iv i ty  a: G --~ H m a p p i n g  xi 

onto Yi w h e r e  G ~ ~- I (G ' ) ,  H e ~ - I (H ' ) ,  xi e (p-l(x'i) n G, and  Yi ~ ~- l (y ' i )  n H can  be 

t a k e n  a r b i t r a r i l y  (i = 1, 2). 

In  the  case  t h a t  X'l, x'2, Y'I, Y'2 fo rm a f r ame ,  a f t e r  choosing the  e l e m e n t s  G, H,  xi, Yi 

s i m p l y  p u t  z := XlYl n x2Y2 and  t a k e  cr to be the  p e r s p e c t i v i t y  f rom G onto H w i t h  

cen te r  z. T h e n  ~(z) = z', (z(xi) -- Yi (i = 1, 2), and  cr = a(q)(x)) for all x c G. 

In  the  case  t h a t  x ' l ,  x'2, Y'I, Y'2 do not  fo rm a f r ame ,  s ay  X'l = Y'I, t a k e  a l ine M' of  YI' 

w i th  x'i, Y'i, z' ~ M' (i ~ 1, 2) and  cons ider  the  pe rspec t iv i t i e s  C~'l: G' -> M' w i th  cen te r  

z' and  a'2: M' ~ H '  w i t h  cen te r  z'. Clear ly ,  we  h a v e  (z' = (z'2(z' 1. Since x ' l ,  x'2, (Z'l(X'l), 

c~'2(x' 2) as wel l  as  (Z'l(X'l) , (~'2(x'2), Y'I, Y'2 fo rm f r ames ,  by  the  case  se t t l ed  above  we 

ob ta in  two pe r spec t iv i t i e s  a l a n d  a2 of 11, such  t h a t  the  pro jec t iv i ty  a := (~2(Zl has  the  

des i red  p roper t i e s .  [] 
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(1.2)  COROLLARY.  3 is a subgroup of,~'~. 

(1 .3)  LEMMA.  Let ~' e 2 '  and let X'l, x '2,  x '3 ~ L '  be distinct. Choose arbitrary inverse 

images xi, Yi e L under (p ofx'i and Y'i := n'(x' i) ,  i =1, 2, 3. Then there exists a projecti- 

vity ~ e 2 of II which induces ~' and maps xi onto Yi for i = 1, 2, 3. 

Proof. I n  v i e w  of  L e m m a  (1.1)  ~' l i f t s  to  a p r o j e c t i v i t y  o e ~ of  FI w i t h  c~(xi) = Yi for  

i = 1, 2. W e  c h o o s e  a f r a m e  (o, u ,  v,  e) of  FI w h i c h  is  m a p p e d  on to  a f r a m e  b y  q0 s u c h  

t h a t  o = Yl,  v = Y2, a n d  ov n u e  = Y3. T h e n ,  c o o r d i n a t i z i n g  FI b y  t h e  t e r n a r y  f i e ld  K = 

K(o,  u,  v, e), q0 is  g i v e n  b y  a p l a c e  )~ of  K v i a  

q)(x) = ~.(x) for  a l l  x e ov = K u {oo}, 

a n d  w e  h a v e  0 = Yl,  oo = y 2, 1 = Y3. P u t  c := o(x3) e K. S i n c e  o i n d u c e s  TO', w e  f i nd  

~.(c) = (p((~(x3)) = E'((p(x3)) = E'(x'3) = Y'3 = (P(Y3) = ~.(1) = 1. 

N o w  l e t  7 e 2 b e  t h e  p r o j e c t i v i t y  m a p p i n g  ~ on to  ~ a n d  x E K on to  xc, a n d  c o n s i d e r  

:= 7-1(~ e 2 .  A s  d e s i r e d ,  t h e  l a t t e r  fu l f i l l s  

r~(xl) = y - l ( y l )  = W I ( 0 )  = 0 = Yl, 

~(x2) = 7-1(y2) = 7-1(oo) = ~ = Y2, 

x (x  3) = 7-1(c) = 1 = Y3, 

a n d  for  a l l  ( o t h e r )  x e K (by  ($2) ,  ($4) ,  a n d  ~.(c) = 1) 

~0(n(x)) = ; ~ ( T l ( o ( x ) ) )  = k (G(x) / c )  = k (G(x ) )  = q0(G(x)) = n'(q~(x)). [ ]  

G i v e n  t h r e e  p o i n t s  a,  b,  c c L w i t h  m u t u a l l y  d i s t i n c t  (p(a), r (p(c), l e t  (J(a,b,c)~ := 

(P($a,b,c) b e  t h e  g r o u p  o f  p e r m u t a t i o n s  of  L'  = ~(L)  w h i c h  a r e  i n d u c e d  v i a  (p b y  t h o s e  

p r o j e c t i v i t i e s  o f  H f r o m  L o n t o  L l y i n g  i n  G a n d  s t a b i l i z i n g  {a,b,c} p o i n t w i s e .  In -  

s t a n t l y ,  f r o m  (1.3) w e  o b t a i n  t h e  fo l lowing .  

(1.4)  COROLLARY.  (_~,' (h (JCa,b,c)r = 2'~(a),~(b),cp(c). 

(1 .5)  P R O P O S I T I O N .  Let (p: rI --> H' be an epimorphism of projective planes, and let 

a, b, c be collinear points of II with mutually distinct (p(a), (p(b), (p(c). Then we have 

•(P = 2 ' .  (•a,b,c)(P. 

Proof. L e t  (~' e d% ~ b e  i n d u c e d  b y  s o m e  (~ E d :  S i n c e  ~ '  a c t s  3 - t r a n s i t i v e  on  q0(ab), 

t h e r e  e x i s t s  a p r o j e c t i v i t y  n '  e _~ '  m a p p i n g  q0(a), q0(b), a n d  q0(c) on to  (~'(qo(a)), (~'(q(b)), 

a n d  &(q0(c)) r e s p e c t i v e l y .  I n  v i e w  of  t h e  p r e c e d i n g  l e m m a ,  7r' l i f t s  to  a p r o j e c t i v i t y  

e ~ w i t h  ~(a)  = c~(a), To(b) = o(b) ,  a n d  ~(c) = (~(c). H e n c e  p := Tc-lc~ e da,b,c, a n d  t h e  
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permuta t ion  p' induced by p on (p(ab) lies in (,;a,b,c)~ and fulfills (~' = u'p'. This shows 

, ~  c 2 '  (Ga,b,c)% The reverse  inclusion is clear by (1.2). D 

Immediate ly  from (1.4) and (1.5) we get: 

(1.6) COROLLARY. Let (p: H ---> YI' be an epimorphism of projective planes, and let 

a, b, c be collinear points of  II with mutually distinct images under % Then we have 

G~? = 2 '  r 2'(p(a),(p(b),(p(c) = (,~a,b,c) ~. 

In the case of pappian  projective planes, which are character ized by the  fact tha t  

any projectivity fixing th ree  points is the ident i ty  (see, say [9]), we obtain the follow- 

ing specializations. 

(1.7) COROLLARY. Let (p: 1-I -~ H' be an epimorphism of projective planes, and let 

a, b, c be collinear points of  H with mutually distinct images under (p. 

(a) I f  H is pappian, then ~(/~ = 2 ' .  

(b) H' is pappian, i f  and only i f  ~ '  • (~(/a,b,c)q) = {id}. 

(1.8) REMARK. If  (p is a proper  epimorphism (i.e. not injective), then  Gis an imprimi- 

rive group which has  the set  of inverse images (p-l(p,) of the  points p' of L' as a 

sys tem of blocks. Ident i fy ing  this  sys tem with  L', $ ~  m a y  be r ega rded  as the  

induced permuta t ion  group of this system. 

2. PROJECTIVITIES UNDER FRIENDLY EPIMORPHISMS 

A uniform valuation of a t e rna ry  field (K, T) is a mapping v:K ---> F u {0} from K into 

an ordered loop (F, .) uni ted with a least  element  0 fulfilling: 

(V1) v ( a ) = 0  r a = 0 ,  

(V2) v(ab) = v(a)-v(b) ,  

(V3) v(a - b) _< max{ v(a), v(b)}, 

(V4) v(r) = 1 for a l l r e  R(K). 

Here in ,  R = R(K) denotes  the  radical of K, i.e. the  normal  subloop of (K*, -) 

genera ted  by those elements  r e K* for which there  are a, b, c, d, m, n, x, y E K with 

a ~ b, n v m, y ~ x, and T(m,y,c) = T(n,y,d), such tha t  at  least  one of the following 

equations holds 
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(i) T(m,x,a) - T(m,x,b) = r -  ( a - b )  

(ii) T(n,x,d) - T(m,x,c) -- r - ( ( n - m ) - ( x - y ) ) .  

Obviously, v m a y  be regarded  as a loop homomorph i sm of (K*, .) containing R in its 

kernel  Uv = {k e K I v(k) = 1}. Therefore,  i f v  is onto, its value loop F is an abel ian 

group, i f  and only if  even the  extended radical Ra of K lies in Uv, i.e. the  normal  

subloop Ra of K* genera ted  by R(K) and by those r e K* for which there  exist x,y,z 

K* such tha t  

(iii) x(yz) = r .  ( (xy )z )  or 

(iv) xy = r . ( yx ) .  

Note tha t  for a car tes ian  field K, (i) and (ii) reduce to 

(i') a + e - a = r . e  

(ii') a c - a d + b d - b c  = r . [ ( a - b ) ( c - d ) ] ,  

(a, b, c, d, e ranging  over K with  a v b, c v d, e ;~ 0) and tha t  Ra(K) = {1}, i f  and only if 

K is a commuta t ive  field. As shown in [1], each uniform va lua t ion  v of (K, T) gives 

rise to a place k: K ~ Av/Iv w {oo} with valuation ring Av := { k e K ] v(k) _< 1} = Ak 

and valuation ideal Iv := {k e K [ v(k) < 1} = Ik, and therefore yields an  ep imorphism 

of I-I(K). But  in cont ras t  to the  s i tuat ion for papp ian  planes,  in general ,  not every 

ep imorph i sm of an  a rb i t r a ry  projective plane H(K) can be obtained in this way (see 

say [7] and note t h a t  the uniform valuat ions  of a skew field are exactly its Schilling 

va luat ions  [6, 3.1]). 

DEFINITION. An ep imorph ism q~: YI ~ [I' of a projective plane rI is called a friendly 

epimorphism, i f  rI can be coordinatized by a t e rna ry  field (K, T) admi t t ing  a uniform 

valuat ion v which induces q~ up to equivalence and has  an abel ian value group. 

(2.1) LEMMA. Let ~.: K -~ K' w {~o} be a place of ternary fields containing the 

extended radical Ra(K) in its place ring A~.. Then, up to equivalence, ~. is induced by a 

uniform valuation admitting an abelian value group, and therefore yields a friendly 

epimorphism q): [I(K) ---> [I(K'). 

Proof. Plainly,  in view of the axioms ($1) up to ($5), the place ring A~. is a subloop of 

(K, +), it is mul t ip l ica t ive ly  closed, contains the radical  of K, and it is total  (i.e. for 

all k c K we have  k e A~ or 1/k c A~.). Fur ther ,  AX is normal  wi th  respect  to multi- 

plication, since it even contains Ra(K) and K*/Ra(K) is an abel ian group. Hence,  by 

vir tue  of [3, 1.4], A~ is a uniform valuat ion ring of K, tha t  means  K carries a uniform 
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va lua t i on  v: K ~ F w {0} wi th  va lua t ion  r ing  Ak and  wi th  an  abel ian  va lue  g roup  F. 

As in [3, 1.5] one shows,  t h a t  k and  the  place induced  by v are  equivalent .  [] 

(2.2) THEOREM. Let 9: FI ~ I1' be an epimorphism of projective planes, and let a, b be 

points of Il wi th  9(a) r q)(b). Then the following statements are equivalent. 

(a) (p is a friendly epimorphism, 

(b) for all c,x E ab\{a,b} and all rce ff~~ c : q~(x) = qKb) ~=~ 9(n(x)) = 9(b) ,  

(c) for all c,x e a b \  {a,b} and all ~ e 2a,b,c : q~(x) ~ 9(a),9(b) ~ 9(n(x)) ~ q)(a),9(b) �9 

Proof. (a ~ b). By  defini t ion,  II  can be coordinat ized by a t e r n a r y  field K = K(o,u,v,e) 

such t h a t  (up to equivalence)  q~ is induced  by a un i form va lua t ion  of  K con ta in ing  Ra 

:= Ra(K) in its va lua t ion  r ing  A. For  all c' ~ K*, all ~ e 2o,v,c' = ~ ,~ , c ' ,  and  all x' E K* 

we have  ~(x') E Rax'  by [4, 1.3], and  therefore  we get  

(*) q~(x') = 9(v) ~=* x' ~ A ~=~ ~(x') E A r 9(~(x '))= 9(v) .  
I X I To show, t h a t  this  p rope r ty  also holds for the  given a, b, c, x in s t ead  of  o, v, c ,  we 

f irs t  cons ider  the  case  t h a t  9(a), 9(b), 9 ( @  9(v) form a f rame.  In  this  i n s t ance  we  

m a k e  use  of the  pe rspec t iv i ty  c~: ab ~ ov wi th  center  z := ao r~ bv. I t  n a m e l y  induces  

a perspec t iv i ty  a ' :  9(ab) -~ 9(ov) of  II '  such t h a t  

9(a(x)) = (x'(9(x)) for all x e a b ,  

and  such  t h a t  for each n ~ C_~a,b,c we have  ana -1 e J~o,v,c' w i th  c' := a(c). Hence,  by (*), 

we obta in  for all x ~ ab 

9(x) = 9(b) ~ 9 (a - i a (x ) )  = 9(a- i (v))  ~ a'-i(9(c~(x))) = ~'- i(9(v)) 

9(a(x)) = 9(v) ~( , )  9 ( ~ a - l ( ~ ( x ) ) )  = 9(v) 

9(a~(x)) = q~(a(b)) ~=~ a'(9(~(x))) = a'(9(b)) 

*=~ 9(n(x)) = q)(b). 

The  case t h a t  t h r ee  or all of  9(a), 9(b), q~(o), (p(v) are  col l inear  can now be se t t led  by 

cons ider ing  addi t iona l  points  q0(ao), 9(bo) and  app ly ing  the  s tep above twice. 

(b ~ c) is tr ivial ,  for exchang ing  the  points  a and  b in claim (b) yields a claim equiva- 

lent  to (b). 

(c ~ a). Choose  a f r a m e  (o, u, v, e) of  II  wh ich  is m a p p e d  onto a f r a m e  by q~ and  

whe re  a = o and  b = v. Then ,  coordina t iz ing  17 by  K = K(o, u, v, e), ~p cor responds  to a 

place k of  K, and  on ab - K u {~} we have  a = 0, b = ~, and  9(x) ~ 9(a),9(b) r x e U~.. 

Given  r E Ra(K), in l igh t  of  [4, 1.3], t he re  exist  n i e  J~0,~,ci, ci e K*, i = 1, ..., n 

(n E N), such  t h a t  r = nnnn-l . . .n l (1) .  Success ive ly  app ly ing  (c), we  ge t  f rom 1 E U~. 

f i rs t  tel(l) e U)~, t h e n  ~2~1(1) E U)~, and  so on up to r = ~nTCn-l...nl(1) e U)~. Hence  

Ra(K) c U)~, and  by the  l e m m a  above, 9 is a f r iendly ep imorphism.  [] 
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F rom the se  geome t r i c  c h a r a c t e r i z a t i o n s  of  f r i end ly  e p i m o r p h i s m s  and  f rom t h e i r  

p roof  one  i m m e d i a t e l y  infers ,  t h a t  -in con t r a s t  to t he  def in i t ion-  t he  p r o p e r t y  of 

be ing  f r i end ly  does not  depend  on the  special  coord ina t iza t ion  of YI. So we have  the  

following. 

(2.3) COROLLARY. [f  (p is a friendly epimorphism of Fi, then each underlying ternary 

field the coordinatizing frame of which is mapped onto a frame by (p carries a uni- 

form valuation v inducing (p up to equivalence and admitting an abelian value group. 

(2.4) COROLLARY.A place ~,: K --> K' w {~} of ternary fields induces a friendly epi- 

morphism, i f  and only i f  its place ring A~ contains the extended radical Ra(K). 

(2.5) COROLLARY. I f  a projective plane fI admits a friendly epimorphism which is 

proper (i.e. not injective), then the group of projectivities of [I is not 4-transitive. 

(2.6) LEMMA. Let ~o: I] -~ II' be a friendly epimorphism of a projective plane H, and 

let ~ be a projectivity from the line L of FI onto itself. I f  there exist a, b, c e L with 

mutually distinct (p(a), ~(b), q)(c) and mutually distinct q)(n(a)), r ~0(~(c)), then 

we have for all x e L 

(p(x) = (p(b) r ~(~(x)) = ~o(~(b)). 

Proof. Since 2 '  acts  3 - t rans i t ive  on L' = ~(L), t he r e  exists  a projec t iv i ty  6' ~ c2' wi th  

(~l(~(x(a))) = ~0(a), cf(9(=(b))) = (p(b), and  (~'(r = ~(c). In  view of (1.3), ~' lifts to a 

project iv i ty  o e G fulfi l l ing 

o(=(a)) = a, (~(=(b)) = b, c~(=(c)) = c, and  (~'0p(x)) = g0(~(x)) for all x e L. 

Hence  G= e 2a,b,c. By  T h e o r e m  (2.2b), t he  hypo thes i s  (p(x) = r leads  to q(o=(x)) = 

~(b) = ~(~=(b)), wh ich  in  face of ~ e G m e a n s  ~'(~(=(x)) = o'(~0(z(b)), and  the re fo re  

f inal ly ~(=(x)) = g0(=(b)). [] 

(2.7) THEOREM. Let r H -~ [I' be a friendly epimorphism of a projective plane I], 

and let T~ be a projectivity from the line L of FI onto itself. I f  there exist at least three 

points on L with mutually distinct images under (p and mutually distinct images 

under (p o ~, then ~ induces a well defined permutation on (p(L), that is ~ e G. 

Proofi Le t  a, b, c c L w i th  m u t u a l l y  d i s t inc t  (p(a), r ~o(c) and  m u t u a l l y  d is t inc t  

q~(x(a)), r ~(~(c)). Given  p, q e L wi th  (p(p) = ~(q), we have  to show t h a t  (p(x(p)) 
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= e(n(q)). This, together  with the same argument  applied to =-1, yields ~ c 

We first settle the case tha t  q~(q) e {~(a), ~(b), (p(c)}, say q)(q) = ~0(b). Using the lemma 

above, we find q)(n(q)) = q)(=(b)), and again by the lemma above, from r = (p(b) we 

get ~(x(p)) = q)(=(b)), and therefore (p(=(p)) = ~(=(q)). 

Now we tu rn  to the case t ha t  ~0(q) ~ {~(a), ~(b), (p(c)}. Then,  in view of the lemma 

above, we also have tha t  (p(=(q)) ~ {~(n(a)), ~(=(b)), ~(=(c))}. Now applying the lemma 

with q instead of b and p instead of x we get the desired equali ty ~(=(p)) = (p(=(q)). [] 

Of course, also the reverse  claim of (2.7) holds, i.e. the elements ~ of ,Care  characte- 

rized by the exis tence of th ree  points with mutua l ly  dis t inct  images under  the 

friendly epimorphism ~0 and under  ~ o =. In par t icular  this leads to the following. 

(2.8) COROLLARY. Let (p: FI -~ FI' be a friendly epimorphism of a projective plane 1-[, 

and let a, b, c be collinear points of YI with mutually distinct ~(a), q)(b), ~(c). Then 

Za,b,c = ~a,b,c. 

(2.9) REMARKS. 

(a) Note tha t  (2.7), and also (2.8), are wrong, if one requires only two points to have 

mutua l ly  dist inct  images under  (p and under  ~ o ~. For  instance,  let  K = K'((t)) be a 

commutat ive field of Laurent-series ,  let %:K --> K' w {~} be the place associated to the 

degree valuat ion v of K, and let ~0:II(K) ~ FI(K') be the friendly epimorphism induced 

by v. Then the projectivity mapping ~ onto ~ and x e K onto tx fixes the two points 0 

and ~, but  is obviously not in ,r 

(b) Apart  from the theorems above, friendly epimorphisms can be described geome- 

trically by valuat ions of FI in the matroid theoretical  sense of Dress and Wenzel (see 

[5]), or by cer ta in  mult iple  valued halforderings of rI in the sense of Junke r s  (see 

[8]). In par t icular ,  corollaries (2.3) and (2.4) are also consequences of each one of 

these two approaches.  

3. PROJECTIVITIES UNDER VERY FRIENDLY EPIMORPHISMS 

DEFINITION. An epimorphism (p: H -~ l-I' of a projective plane 1-I is called a very 

friendly epimorphism, i f  FI can be coordinatized by a t e rna ry  field (K, T) admit t ing a 

uniform va lua t ion  v which induces ~ (up to equivalence),  has an abel ian value 

group, and contains Ra(K) in its loop 1 - Iv of one-units. 
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(3.1) THEOREM. Let 9: 1-I -~ I]' be an epimorphism of projective planes, and let a, b 

be two points of  Yi with 9(a) r (p(b). Then the following statements are equivalent. 

(a) 9 is a very friendly epimorphism, 

(b) for all c, x e ab\{a,b} and all ~ e ~ ,b ,c  we have: 9(n(x)) = ~(x). 

Proof.  (a ~ b). By  h y p o t h e s i s ,  we  m a y  c oo rd ina t i z e  I] by  a t e r n a r y  field K = 

K(o,u,v,e) s u c h  t h a t  (up to equivalence)  9 is induced  by  a un i fo rm  v a l u a t i o n  of  K 

wi th  Ra(K) c 1 - Iv. Hence  we have  ~(r) = 1 for all r e Ra(K) and  for the  place )~ 

assoc ia ted  to % Given  c' e K*, n e 2o,v,c '  = S~o,~,c', and  x' e K*, f rom [4, 1.3] we 

obta in  t h a t  z(x') = rx'  for some  r e Ra(K), and  t h u s  we f ind 

(*) 9(T~(X')) = ~(rx') = ~(X') = 9(x'). 

Now, in the  v e r y  s a m e  vein  as in the  proof  of  (2.2), one shows t h a t  th is  p rope r ty  also 

holds for the  g iven a, b, c, x ins tead  ofo ,  v, c', x'. 

(b ~ a). Coord ina t i ze  [I by  a t e r n a r y  field K = K(a, u, b, e), such  t h a t  a = 0, b = ~,  

and  ~ cor responds  to a place h of  K. Given r e  Ra(K), in view of  [4, 1.3], t he re  exist  ~i 

2o,~,ci, ci e K*, i = 1 . . . .  , n (n ~ N),  such  t h a t  r = 7Cn~n_l...~l(1). App ly ing  (b), we  

obta in  1 = ~.(1) = 9(1) = 9(~1(1)) . . . . .  9(EnEn_I...EI(1)) = ~.(r), p rov ing  t h a t  

Ra c 1 - Iv c A v .  In  v iew of (2.1), 9 is a ve ry  f r iendly ep imorphism.  [] 

Again ,  t he  t h e o r e m  above  and  its p roof  show t h a t  -in con t ra s t  to the  defini t ion-  the  

p rope r ty  of  be ing  v e r y  f r iendly  does no t  depend  on the  coord ina t i za t ion  of  YI. So, in 

view of  (2.1) and  (3.1), we have  the  following. 

(3.2) COROLLARY. I f  9 is a very friendly epimorphism of N, then each underlying 

ternary field K the coordinatizing frame of which is mapped onto a frame by 9 carries 

a uniform valuation v inducing 9 up to equivalence, admit t ing an abelian value 

group, and satisfying Ra(K) c 1 - Iv. 

(3.3) COROLLARY. A place )~: K -~ K' w {~} of ternary fields induces a very friendly 

epimorphism, i f  and only i f  it maps each element of the extended radical Ra(K) of K 

onto 1. 

(3.4) COROLLARY. Let 9: H -~ [I' be a very friendly epimorphism of projective planes. 

Then YI' is a pappian projective plane, and the permutations induced by the projecti- 

vities of Yi on the lines of Fi' are exactly the projectivities of IT, i.e. we have ~6~P = -J2'. 
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Proof. Given collinear points a, b, c of H with mutual ly  distinct images, immediately 

from (3.1) we obtain (Ga,b,c)~ = {id}. The claim now follows from (1.6) and (1.7b). [] 

(3.5) REMARK. Of course, if  rI is pappian,  then  each epimorphism of H is a very  

fr iendly epimorphism,  since the extended radical of a commutat ive  field is always 

trivial. However,  in general  there  exist fr iendly epimorphisms which are not very  

friendly. In part icular ,  an isomorphism between projective planes is always friendly 

(it is induced by a trivial valuat ion V lK* - 1 with Av = K, 1-Iv = {1}), but  it  needs not 

to be very  fr iendly (namely if Ra v {1}, which holds exactly for non-pappian planes). 

4. EPIMORPHISMS ONTO PAPPIAN PLANES 

In this section we will p resent  examples for the sett ings described in the sections 

above. We shall show tha t  .r which obviously varies between 2 ' a n d  the full sym- 

metric group on the lines of rI', actually takes both values, even if q) is a friendly epi- 

morphism onto a pappian projective plane. 

Recall tha t  a uni formly valued t e rna ry  field (K, T, v) yields an u l t ramet r ic  space 

(K, d) with respect  to the metric defined by d(x,y) := v(x - y). In part icular ,  K is said 

to be spherically complete, if  every chain of balls of K has a non-empty intersection; a 

mapping ~0: K --~ K is called an isometry of K, i f  it is a bijection fulfilling d(~(x), ~D(y)) 

= d(x, y); and a mapping ~o: K --~ K is called a contraction, if  d(~(x), q~(y)) < d(x, y) for 

all x, y ~ K with x ~ y. We will make  use of the notion of a cartesian field of formal 

power series C((F)) over the  car tes ian  field C on the ordered loop (F, -, <_ ) as 

in t roduced in [2]. Its e lements  are  of the form x = ~3,e r xvtV wi th  well ordered 

support  s(x) and degree 0(x) := min(s(x)) for x ~ 0 (2(0) := 0, x v e C). Recall tha t  the 

degree gives rise to a uniform valuation on C((F)) with residue class car tesian field C 

and value  loop F (carrying the dual ordering _<d), and that ,  wi th  respect  to this 

valuation, C((F)) is spherically complete (see, say [12, 5.1 and 5.2]). 

(4.1) LEMMA. Let (K, +, .) be a (cartesian) field admitting a uniform valuation 

v: K -~ F~{0} such that (K, v) is spherically complete. Further let r = (qbT)7~Fu{0 } be 

any family of isometrics of K fixing i and 0 and with r = idK. With the new product 

a 0 b  := a.~Pv(a)(b) 

K q~ := (K, +, 0, v) is a uniformly valued cartesian field. 
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Proof. C l e a r l y ,  (K,  +) is  a n  a b e l i a n  g r o u p  w i t h  n e u t r a l  e l e m e n t  0, a n d  for  a l l  a e K 

w e  h a v e a 0 0 = 0 0 a = 0 a n d a 0 1 = 1 0 a = a .  W e  h a v e  to  c h e c k  t h a t  fo r  a,  b,  c e  K,  

a ~ b, t h e  e q u a t i o n  

- a 0 x  + b o x  = c 

h a s  a u n i q u e  s o l u t i o n  x i n  K. I n  t h e  c a s e  v (a )  = v (b)  =: 7, t h e  e q u a t i o n  r e a d s  c = 

-a(P~(x) + bVp~(x), w h i c h  h a s  a u n i q u e  s o l u t i o n  r  i n  t h e  c a r t e s i a n  f i e ld  (K, +, .). I n  

t h e  c a s e  v (a )  ~ v(b) ,  s a y  v (a )  < v(b),  t h e  m a p p i n g  f(x) := (q)v(b)) - l (b \  ( a .  r + c)) is  

a c o n t r a c t i o n  on  K,  b e c a u s e  for  a l l  x, y e K w i t h  x ~ y w e  h a v e  

v(f(x) - f ( y ) )  = v( ( r  �9 Cv(a)(X) + c)) - ( ( P v ( b ) ) - l ( b \ ( a  �9 r + c)) ) 

= v( b \ ( a .  (Pv(a)(X) + c) - b \ ( a .  r + c)) r i s o m e t r y  

= v(b)  \ v( a .  r - a .  r ) b y  [1, 1.2] 

= v(b)  \ (v(a)  �9 v(q)v(a)(X) - r ) ) b y  [1, 1.2] 

= v(b)  \ (v(a)  �9 v( x - y ) ) CPv(a) i s o m e t r y  

< v ( x - y ) .  

H e n c e ,  b y  P r i e s s - C r a m p e ' s  f i xed  p o i n t  t h e o r e m  [11], f a d m i t s  a u n i q u e  f i x e d  p o i n t  Xo, 

w h i c h  is  t h e  d e s i r e d  u n i q u e  s o l u t i o n .  A n a l o g o u s l y ,  one  s h o w s  t h a t  fo r  a ,  b, c e K, 

a ~ b, a l so  t h e  e q u a t i o n  x 0 a - x 0 b = c h a s  a u n i q u e  s o l u t i o n .  H e n c e  (K, + ,  0) is  a 

c a r t e s i a n  f ie ld .  

O b v i o u s l y ,  t h e  m a p p i n g  v fu l f i l l s  (V1) a n d  (V3) a l so  for  t h i s  n e w  c a r t e s i a n  f ie ld .  (V2) 

is  i m m e d i a t e  b y  

v (a  0 b) = v ( a  ~v(a)(b))  = v(a)  �9 v(q)v(a)(b)) = v(a)  �9 v(b),  

s i n c e  CPv(a) is  a n  i s o m e t r y .  F o r  (V4) w e  o n l y  h a v e  to  c h e c k  t h a t  ( w i t h  a ~ b, c ;~ d) 

v( a0c - a 0 d  + b0d  - b0c ) = v ( a  - b) �9 v(c - d). 

T h e  l e f t  h a n d  s i d e  t r a n s l a t e s  i n t o  

~z := v(aCPv(a)(C) - aOv(a)(d)  + bOv(b)(d) - br ). 

I n  t h e  c a s e  v (a )  = v(b) ,  b y  [1, 1.2] 7 e q u a l s  v ( a  - b) - v(Cgv(a)(C) - r w h i c h  y i e l d s  

t h e  d e s i r e d  e x p r e s s i o n ,  b e c a u s e  (Pv(a) is  a n  i s o m e t r y .  I n  t h e  c a s e  v (a )  ;e v(b) ,  s a y  v(a)  

< v(b) ,  w e  h a v e  v(aePv(a)(C) - a~Pv(a)(d)) = v ( a ) .  v(c - d) < v ( b ) .  v(c - d) = v(bCPv(b)(d) - 

bCPv(b)(C)), a n d  t h e  p r i n c i p l e  of  d o m i n a t i o n  i m p l i e s  

~/ = v(bCPv(b)(d) - bCPv(b)(C)) = v(b)  �9 v(c - d) = v (a  - b) �9 v(c - d). []  

(4 .2)  P R O P O S I T I O N .  Let FI' be an arbitrary pappian projective plane. Then there exist 

a projective plane YI and a friendly epimorphism ~: [I --41]' such that the projectivi- 

ties of Yi induce the full symmetric group on each line of Fi'. 
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Proof. Let  K be a commuta t ive  field coordinatizing H' with respect  to the  f rame 

(o', u', v', e'), and let  ~2 be the full permuta t ion  group of the line L' := o'v' = K w {~o}. 

Choose an ordered abelian group (F,. ,  _<) which is large enough to allow a (set theo- 

retic) injection t of the  (pointwise) stabilizer ~20,1,~ into F\  {1} (large ordered abelian 

groups exist, see, say [10]). For  each a ~ F • {0} we define a pe rmuta t ion  ~a of L' 

fixing O, 1 and ~ as follows 

tea(k) := { k (k) ifaelsee t(~0,1,~) and a = t(a)) for all k e K w {oo}. 

Let  F = K((F)) be the field of formal power series over K on F with degree valuat ion 

v, which is a uniform valuat ion of F with respect  to the dual ordering <d on F. For  

each a e F w {0} we define a bJjection (Pa o f F  by 

Oa(~-~erkTtT)  := ~ ( k l ) t  I + ~Ter\{i}kTt~- 

Then clearly, each Oa is an i sometry  of F fixing 0 and 1, and we have r = idL, 

because 1 ~ t(~0,1,~). Now consider the uniformly valued car tes ian  field F O as 

defined in the preceding lemma and the projective plane 1] over F ~ 

For  the place ~.: F ~ K w {~} associated to v we have 

~-( ~ r k7 t7 ) = if v(~7~ rk~tT) = 1 

ifv(~_,TeFkTt7 ) >d 1 

And for the projectivities Pa c ~ a e F\ {I}, defined by pa(x) := (t a 0 x) 0 t a-1 for all 

x c F and by pa(oo) := ~, we observe 

Pa( ~-qe F k7 t7 ) : ( t a +a(~-qe r k~ tY) ) 0 t u-~ 

= ( t a ( ~ a ( k l ) t  1 + ~-ffer\{1}k~tT)) 0 t a-~ 

= ( ~ a ( k l ) t  a + ~-TeZ\{1}k~t~a) " q%(...)(t a- l )  

= ( ~ a ( k l )  ta  + E ~ r \ l l l  kTt~a ) . t a-~ 

= ~a(kl) t 1 + EyeF\{llkTtT. 

So we have Pa e 2o,1,~ and 

= ~d k ( E ~ r  k~t~)), 
which means  tha t  Pc~ lies in ~ wi th  respect  to the epimorphism ~: YI --> 1T associated 

to k, and tha t  pu induces the permuta t ion  ~a on L'. Hence we find 

(~o,~,~)~ = ~o,~,~- 
Since ~ '  is three-fold transi t ive on L', (1.5) finally yields ,r = ~2. [] 
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(4.3) REMARK. T h e  p r o p o s i t i o n  above  is  s u p p o s e d  to ho ld  for  a r b i t r a r y  n o n - p a p p i a n  

p r o j ec t i ve  p l a n e s  I I ' ,  too. I n d e e d ,  i f  H '  can  be  c o o r d i n a t i z e d  b y  a (no t  n e c e s s a r i l y  

p rope r )  c a r t e s i a n  f ie ld  C, t h e n  w i t h  C i n s t e a d  of K t h e  p r o o f  of  (4.2) goes  t h r o u g h  

n e a r l y  word  by  word .  F o r  w e a k e r  p ro jec t ive  p l a n e s  Fl', t h e  i d e a s  above  shou ld  e x t e n d  

to SchSrne r ' s  no t i on  of  f o r m a l  p o w e r  se r i e s  over  a r b i t r a r y  t e r n a r y  f ie lds  [13]. 

(4.4) PROPOSITION.  Let (K, +, -, v) be a valued commutative field, and let (@~,eru{ol, 

(s~)~e r u I 0 / b e  two families of elements of K with r0 = r l  = so = s l  = 0 and v(ry), v ( @  < 3' 

for all ~ ~ F. Then the new product 

a 0 b  := a . b  + rv(a) 'Sv(b) 

makes (K, + ,  0, v) a uniformly valued cartesian field the extended radical of which 

lies in 1 -  Iv. 

Proof. By [6, 3.8], C := (K, + ,  0, v) is  a u n i f o r m l y  v a l u e d  c a r t e s i a n  field.  H e n c e  R = 

R(C) l ies  in  Uv. To check  t h a t  R even  l ies  in  t h e  loop 1 - Iv of  o n e - u n i t s ,  we  s i m p l y  

w r i t e  ra  a n d  Sb i n s t e a d  of  rv(a) a n d  Sv(b). I n  v iew of  (i') a n d  (ii ') f rom t h e  b e g i n n i n g  of  

sec t ion  two,  R is g e n e r a t e d  by  those  r c K* w h i c h  sa t i s fy  (note  r r  = 0, s ince  v(r) = 1) 

a c + r a S c  - r a s d - a d  + bd  + rbSd - rbsc - bc 

= r 0 ( ( a - b ) ( c - d )  + ra-bSc-d ) 

= r -  ( ( a -  b ) ( c -  d) + ra-bSc-d ), 

t h a t  is  b y  e l e m e n t s  of  t h e  s h a p e  

r = ( a c -  a d  + b d - b c  + rasc  - raSd + rbSd - r b s c ) / (  ( a - b ) ( c -  d) + ra -bSc-d)  

= ( (a - b)(c - d) + (ra - rb)(Sc - Sd) ) / ( ( a -  b)(c - d) + ra-bSc-d ) 

= ( 1 + A \  ( ( r a - r b ) ( S c - S d ) ) )  / ( 1 + A \ ( r a - b S c - d ) )  

w i t h  A := (a  - b)(c - d ) .  Now,  i f v ( a )  = v(b) or  v(c) = v(d),  t h e n  (ra - rb)(Se - Sd) = 0, 

a n d  i f  v(a)  ~e v(b)  a n d  v(c) ~ v(d),  s a y  v(a)  < v(b)  a n d  v(c) < v(d),  t h e n  we  h a v e  

v((ra - rb)(Sc - Sd)) -< max{v(rasc),v(rasd),V(rbsc),v(rbSd)} < max{v(ac),v(ad),v(bc),v(bd)} 

= v(bd)  = v(A). I n  b o t h  c a s e s  we  f ind  v ( A \ ( ( r a  - rb)(Sc - Sd))) < 1, a n d  t h e r e f o r e  

1 + AX((ra - rb)(Sc - Sd)) E t - Iv. F u r t h e r  we  i m m e d i a t e l y  g e t  v ( A \ ( r a - b S e - d )  ) < 1, 

so a lso  1 + AX(ra-bSc-d) ~ i - Iv, w h i c h  f i na l l y  shows  r c 1 - Iv. H e n c e  we  h a v e  t h a t  

R l ies  in 1 - Iv. 

The  e x t e n d e d  r a d i c a l  Ra = Ra(C) is  g e n e r a t e d  by  R a n d  a d d i t i o n a l l y  b y  t h o s e  r e K* 

fu l f i l l ing  a t  l e a s t  one of t h e  e q u a t i o n s  

a 0 b  = r 0 ( b 0 a ) ,  

( a 0 b )  0 c  = r 0 ( a 0 ( b 0 c ) )  
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w h e r e  a,b,c v a r y  over  K*. Since v(a  0 b) = v(ab), we f ind v(r) = 1 also for  these  r. 

Hence  these  e l emen t s  a re  of  the  shape  

r = (ab + rasb) �9 (ba + rbsa) -1 

= (1 + rasb/(ab)) �9 (1 + rbSa/(ab)) -1 

or of  the  shape  

r = ((ab + rasb)c + rabSc ) �9 (a(bc + rbsc) + raSbc) -1 

= ( a b c +  rasbc + rabSe ) �9  + arbsc + rasbc) -1 

= ( 1 + raSb/(ab) + rabsJ(abc)  ) .  ( 1 + rbSc/(bc) + raSbJ(abc) )-1, 

and  bo th  are  easi ly  seen  to be in 1 - Iv. So we finally have  Ra c 1 - Iv. [] 

Given  any  p a p p i a n  project ive p lane  11', s ay  over the  field K', we t a k e  the  field K := 

K'((F)) w h e r e  F is the  mul t ip l ica t ive  g roup  of the  posit ive rea l  n u m b e r s  and  pu t  ro := 

So := r l  := s l  := 0 a n d  ry := s~ := t2~ for all 7 E F \ {1} (recall  t h a t  t he  degree  is a 

v a l u a t i o n  of  K wi th  r e spec t  to the  dua l  o rder ing  of  F). T h e n  (4.4) provides  us  wi th  

the  project ive  p lane  FI over  the  ca r t e s i an  field (K, +, 0) a d m i t t i n g  a v e r y  f r iendly  

ep imorph i sm onto rI'. So, in view of  (3.4), he re  we have  S ~  = 2 '. 

The  fo l lowing e x a m p l e  yie lds  p roper  t r a n s l a t i o n  p lanes  11 wi th  th is  p roper ty ,  i.e. 

p lanes  over ca r t e s i an  fields fulfil l ing one dis t r ibut ive  law (so called quasifields).  

(4.5) PROPOSITION. Let  (K, +, .) be a commutative field carrying a valuation 

v: K --> F u {0} such that K is spherically complete. Further let (r any 

family of isometries ~ Aut(K, +) f ix ing  1. With the new product 

a 0 b := (qbv(a)) -1 (qbv(a)(a) �9 Ov(a)(b) ) 

Iz~ := (K, +, 0, v) becomes a uniformly valued quasifield, the extended radical Ra of 
which lies in Uv. I f  additionally r ~ (1 - Iv)k for all k c K* and all 7 e F u {0}, 

then Ra lies in 1 - Iv. 

Proof. By [6, 3.3], K o  is a un i fo rmly  va lued  (left) quasifield.  In  par t icu lar ,  R = R(K~) 

lies in  Uv. S ince  t he  i m a g e  of  K* u n d e r  v is an  abe l i an  g roup ,  we  even  f ind 

Ra c U v .  

Now suppose  t h a t  r c (1 - Iv)k for all k e K* and  all 7 e F • {0}. We s imply  wri te  

q5 k i n s t ead  of  qSv(k). F i r s t  note,  t h a t  for all a,b c K we have  

(*) a 0 b  ~ ( 1 - I v ) a b ,  

since 1 - Iv is a (normal)  subgroup  of(K*,  �9 ), a nd  since Oa(a 0 b) c (1 - Iv)(a 0 b) bu t  

also ~ a ( a  0 b) = (Oa(a) �9 Oa(b)) ~ (1 - Iv)a-  (1 - Iv)b = (1 - Iv)ab. 
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For  a left quasi f ie ld ,  R is gene ra t ed  by e l emen t s  r of the  shape  

a 0 c  - b 0 c  -- r 0  ( ( a - b )  0c) ,  

wi th  a,b,c e K, a w b, c r 0. We f i rs t  se t t le  the  case v(a) = v(b). T h e n  r = ~)b, a n d  we 

observe 

q b a - l ( ~ a ( a - b )  r = r Oa(C)) 

= (I)a-l(Oa(a) �9 r - qba-l(qba(b) �9 (I)a(C)) 

= a O c -  b O c  

= r 0 ( ( a - b )  0 c) 

e (1 - Iv) �9 r(a  - b)c, 

by (*). Therefore ,  u s i n g  r e (1 - Iv)k, we get 

qba(a - b) Ca(C) e (1 - Iv) - r ( a -  b)c ~ (1 - Iv) (a - b)c, 

which  f ina l ly  leads  to r e 1 - Iv, as desired.  

Now we cons ider  the  case v(a) ~ v(b), say v(a) > v(b). In  v iew of (*) t he re  exist  e l ,  e2 

e 1 - I v w i t h  e lac  - e2bc = a 0 c -  b0c = r 0 ( ( a - b ) 0 c ) e  ( 1 - I v ) . r ( a - b ) c ,  which  

leads to 

e l a  - e2b e ( 1 - I v ) . r ( a - b ) ,  

e l  - e2ba -1 e ( 1 - I v ) . r ( 1 - b a - 1 ) ,  

and  t h u s  to 

r e ( 1 - I v ) . ( e l  - e2ba - 1 ) . ( 1 - b a - 1 )  -1 c 1 - I v ,  

because  ba  -1 e Iv. Hence  we have  shown  R c i - Iv. By v i r t ue  of (*), i t  is eas i ly  to be 

seen  t h a t  also the  ex tended  rad ica l  Ra lies in  1 - Iv. [] 

For  a concrete  example  i l l u s t r a t i n g  (4.5) t ake  a c o m m u t a t i v e  field of L a u r e n t  ser ies  

K = L((t)) = L((F)) and  pu t  

(I)T( Z xi'ti) := Xo + (1 + t)T. Z xi'ti, 
ie Z ir  

where  F = (Z, +) is w r i t t e n  addi t ively .  T h e n  (by is a n  addi t ive  a u t o m o r p h i s m  a nd  a n  

i some t ry  f ix ing 1. I t  also fulfi l ls  (bT(k) e (1 - Iv)k, s ince k a n d  O~(k) h a v e  the  s a m e  

degree  a n d  the  s a m e  l e a d i n g  coefficient.  Hence  [I := 1-I(Km) is a t r a n s l a t i o n  p l a ne  

a d m i t t i n g  a ve ry  f r i end ly  e p i m o r p h i s m  onto H' := II(L). 
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