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Abstract. We present general fixed point theorems for spaces that
are equipped with a transitive relation. We apply them to prove corre-
sponding theorems for ultrametric spaces, topological spaces, complete
lattices, and ordered abelian groups and fields.

1. Introduction

In our papers [1] and [3] we have developed a general framework for fixed
point theorems that work with functions which are in some way contracting,
or have other properties that allow an application of Zorn’s Lemma. We
consider ball spaces (X,B), that is, nonempty sets X with a nonempty
set B of distinguished nonempty subsets B. The completeness property we
need for our fixed point theorems is inspired by the spherical completeness of
ultrametric spaces. A nest of balls in (X,B) is a nonempty totally ordered
subset of (B,⊆). A ball space (X,B) is called spherically complete if
every nest of balls has a nonempty intersection.

Note that B, a subset of the power set P(X), is a partially ordered set
under reverse inclusion. However, spherically completeness in its simplest
form, which we have defined here, does not mean that B is inductively
ordered, i.e., that every increasing chain has an upper bound. But this
would be true if for instance every singleton, or every intersection over a
nonempty descending chain of balls, is a ball.

In this note we add a transitive relation R to the set X. We do not require
that the relation has any other properties, such as reflexivity, symmetry or
antisymmetry. We write xRy if x, y ∈ X and x is in relation with y.

If X is the set of vertices of a graph (directed or not), and if we define
xRy to mean that there is a path of finite length from x to y, then R is a
transitive relation. The same is true when we also allow paths of infinite
length. Fixed point theorems for spaces with additional graph structure
have been abundant in the more recent literature, so it seems to be worthwile
to adapt our above mentioned unified approach to this additional structure.

Given a function f : X → X, we call a ball B ∈ B f-contracting if it is
either a singleton containing a fixed point, or f(B) ⊂6= B holds.
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For the remainder of this introduction, we assume that (X,B) is
a ball space, R is a transitive relation on X, and f : X → X is a
function. We will write fx in place of f(x).

Theorem 1. Assume that the following conditions hold:

(A1) For every non-singleton f -contracting ball B ∈ B and every x ∈ B,
the image f(B) contains an f -contracting ball B′ and an element x′ ∈ B′
such that xRx′.
(B1) If κ is a regular cardinal, (Bν)ν<κ is a nest of f -contracting balls, and
xν ∈ Bν are elements such that xµRxν whenever µ < ν < κ, then

⋂
ν<κBν

contains an f -contracting ball B and there is some z ∈ B such that xνRz
whenever ν < κ.

Then for every x in any f -contracting ball there is a fixed point z of f such
that xRz.

Note that if B = {x} is f -contracting, then by definition, x is a fixed point
and we have that f(B) = B contains the f -contracting ball B. However, as
we do not require R to be symmetric, we may not have that xRx, and this
is the reason why we exclude singleton f -contracting balls from condition
(A1).

The following theorem gives conditions for the existence of a unique fixed
point.

Theorem 2. Assume that the following conditions hold:

(A2) For every f -contracting ball B ∈ B and every x ∈ B, the image f(B)
is again an f -contracting ball and contains an element x′ ∈ B′ such that
xRx′.
(B2) If κ is a regular cardinal, (Bν)ν<κ is a nest of f -contracting balls, and
xν ∈ Bν are elements such that xµRxν whenever µ < ν < κ, then

⋂
ν<κBν

is an f -contracting ball and contains an element z such that xνRz whenever
ν < κ.

Then every f -contracting ball B0 contains a unique fixed point z of f , and
we have that xRz for all x ∈ B0 .

A function f : X 7→ X will be called R-compatible if xRfx for all
x ∈ X. Condition (A2) can be replaced by the condition

(A′2) The function f is R-compatible and the image f(B) of every f -
contracting ball B ∈ B is again an f -contracting ball.

We will now state a third theorem which treats functions that are not
necessarily contractive. A set S ⊆ X is called f-closed if f(S) ⊆ S. A ball
space is called intersection closed if the intersection of every nest of balls
is again a ball, provided it is nonempty. For example, in every topological
space the nonempty closed subsets form an intersection closed ball space.
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Theorem 3. Assume that (X,B) is intersection closed and that the follow-
ing conditions hold:

(A3) For every non-singleton f -closed ball B ∈ B and every x ∈ B, there
is an f -closed ball B′ ⊂6= B and some x′ ∈ B′ such that xRx′.

(B3) If κ is a regular cardinal, (Bν)ν<κ is a nest of f -closed balls, and
xν ∈ Bν are elements such that xµRxν whenever µ < ν < κ, then

⋂
ν<κBν

contains an element z such that xνRz whenever ν < κ.

Then for every x in any f -closed ball there is a fixed point z of f such that
xRz.

Finally, we present a fourth theorem that generalizes Theorem 4 of [1],
which is helpful for applications in ordered abelian groups and fields.

A function f on a ball space (X,B) will be called contracting on orbits
if there is a function

X 3 x 7→ Bx ∈ B
such that for all x ∈ X, the following conditions hold:

(SC1) x ∈ Bx ,
(SC2) Bfx ⊆ Bx , and if x 6= fx, then Bf ix

⊂
6= Bx for some i ≥ 1.

Note that (SC1) and (SC2) imply that f ix ∈ Bx for all i ≥ 0.

Theorem 4. Assume that the following conditions hold:

(A4) The function f is R-compatible and contracting on orbits.
(B4) If λ is a limit ordinal and (Bxν )ν<λ is a nest such that xν+1 = fxν
and xµRxν whenever µ < ν < λ, then

⋂
ν<λBxν contains an element z such

that Bz ⊆
⋂
ν<λBxν and xνRz whenever ν < λ.

Then for every x ∈ X there is a fixed point z of f such that xRz.

The proofs of these theorems will be given in Section 2. In Section 3, we
will then derive fixed point theorems for ultrametric spaces. In Section 4,
we apply our theorems to prove corresponding fixed point theorems for
compact topological spaces. In Section 5, we give a fixed point theorem for
order preserving functions on complete lattices We will conclude the paper
in Section 6 with a fixed point theorem for ordered abelian groups and fields.

2. Proof of the main theorems

Take a ball space (X,B), a transitive relation R on X, and a function
f : X → X. For the proofs of our first two theorems, we take Bf to be
the subset of B consisting of all f -contracting balls. Then we introduce a
partial order on the set

S = {(B, x) | B ∈ Bf and x ∈ B}
as follows:

(B1, x1) < (B2, x2) ⇔ B2
⊂
6= B1 and x1Rx2 .
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Lemma 5. Take an f -contracting ball B ∈ B and an element x ∈ B. Set

S(B,x) = {(B′, x′) ∈ S | (B, x) ≤ (B′, x′)} ⊆ S .

If condition (B1) of Theorem 1 holds, then (S(B,x), <) is inductively ordered.
If condition (B2) of Theorem 2 holds, then (S(B,x), <) is chain complete.

Proof: We take any chain C in (S, <), and let κ be its cofinality. Then
κ is a regular cardinal. We may assume that κ is infinite since otherwise, C
has a last element which then is a supremum for C.

We choose a subchain ((Bν , xν))ν<κ that is cofinal in C. Then condition
(B1) means that this subchain has an upper bound (B∗, z). It follows that
B∗ is a proper subset of all Bν and hence also of all balls in C. Further, we
have that xνRz for all ν < κ. For every (B′, x′) ∈ C, there is some ν < κ
such that (B′, x′) < (Bν , xν) < (B∗, z), which shows that (B∗, z) is also an
upper bound for C. This proves assertion 1).

If condition (B2) holds and we set B∗ =
⋂
ν<κBν and choose z according

to this condition, then (B∗, z) is a supremum of ((Bν , xν))ν<κ and hence
also of C. This proves assertion 2). �

In order to prove Theorem 1, we take an f -contracting ball B ∈ B and an
element x ∈ B. We assume that conditions (A1) and (B1) hold. Then by
Lemma 5, (S(B,x), <) is inductively ordered. By Zorn’s Lemma, it admits
a maximal element (B∗, z). If B∗ is not a singleton, then by condition
(A1), f(B) ⊂6= B contains an f -contracting ball B′ and an element x′ ∈ B′
such that xRx′. It follows that (B∗, z) < (B′, x′), which contradicts the
maximality of (B∗, z). Therefore, B∗ is a singleton. As (B∗, z) ∈ S(B,x),
B∗ is f -contracting and it follows that z is a fixed point of f . The fact
that (B∗, z) ∈ S(B,x) also implies that xRz. This completes the proof of
Theorem 1.

In order to prove Theorem 2, we take an f -contracting ball B ∈ B. We as-
sume that conditions (A2) and (B2) hold. This time, we will replace the use
of Zorn’s Lemma by that of transfinite induction. We build a chain of ele-
ments of S(B,x) as follows. We set B0 := B and x0 := x. Having constructed
(Bν , xν) for an ordinal ν, we stop the construction if Bν is a singleton; oth-
erwise, making use of condition (A2) we set Bν+1 := f(Bν), which is again
an f -contracting ball and is properly contained in Bν , and choose xν+1 in
f(Bν) such that xνRXν+1. We obtain that (Bν , xν) < (Bν+1, xν+1).

If λ is a limit ordinal and we have constructed Bν for all ν < λ, we
proceed as follows. We take κ to be the cofinality of λ and choose a cofinal
subsequence (Bνα , xνα)α<κ. By condition (B2), Bλ :=

⋂
α<κBνα =

⋂
ν<λBν

is an f -contracting ball, and there is some z ∈
⋂
α<κBνα = Bλ such that

xναRz for all α < κ. As in the proof of the above lemma it follows that
xνRz for all ν < λ. So we can set xλ := z to obtain that (Bν , xν) < (Bλ, xλ)
for all ν < λ.
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The chain of balls thus constructed is strictly descending. Hence there
must be an ordinal ν∗, bounded by the cardinality of X, where the con-
struction stops. Then Bν∗ must be a singleton, that is, Bν∗ = {xν∗}. As
it is also an f -contracting ball, xν∗ is a fixed point of f . If xν∗ 6= y ∈ B,
then y /∈ Bν∗ , which means that there is some µ < ν∗ such that y ∈ Bµ,
but y /∈ Bµ+1 = f(Bµ). This shows that y cannot be a fixed point of f .
Therefore, xν∗ is the unique fixed point of f . Since (Bν∗ , xν∗) ∈ S(B,x), we
also know that xRxν∗ . Since x ∈ B was arbitrary, this holds for all x ∈ B.

We turn to the proof of Theorem 3. Now we take Bf to be the set of all
f -closed balls in B. Using this new meaning of Bf , we define S and S(B,x)
as before.

Lemma 6. Assume that (X,B) is an intersection closed ball space and
take an f -closed ball B ∈ B and an element x ∈ B. If condition (B3) of
Theorem 3 holds, then (S(B,x), <) is chain complete.

Proof: We take any chain C in (S, <). As in the proof of Lemma 5,
we let κ be its cofinality, assume that it is infinite, and choose a subchain
((Bν , xν))ν<κ that is cofinal in C. By condition (B3) of Theorem 3,

⋂
ν<κBν

contains an element z such that xνRz whenever ν < κ. In particular,
((Bν , xν))ν<κ is nonempty, and as (X,B) is intersection closed,

⋂
ν<κBν is a

ball. Finally, being an intersection of f -closed sets, also
⋂
ν<κBν is f -closed.

Therefore,
⋂
ν<κBν ∈ S(B,x), and it is the supremum of C. This proves our

assertion. �

In order to prove Theorem 3, we take an f -closed ball B ∈ B and an
element x ∈ B. We assume that conditions (A3) and (B3) hold. Then
by Lemma 6, (S(B,x), <) is chain complete. By Zorn’s Lemma, it admits a
maximal element (B∗, z). If B∗ is not a singleton, then by condition (A3),
there is an f -closed ball B′ ⊂6= B and an element x′ ∈ B′ such that xRx′. It

follows that (B∗, z) < (B′, x′), which contradicts the maximality of (B∗, z).
Therefore, B∗ is a singleton. As B∗ is f -closed, it follows that z is a fixed
point of f . The fact that (B∗, z) ∈ S(B,x) also implies that xRz. This
completes the proof of Theorem 3.

Finally, we turn to the proof of Theorem 4. Again, we take an f -closed
ball B ∈ B and an element x ∈ B. We assume that conditions (A4) and
(B4) hold.

We consider the set Sx that consists of all nests of the form (Bxν )ν<λ,
where λ is any ordinal, such that xν+1 = fxν and xµRxν whenever µ < ν <
λ. We introduce a partial order on Sx by defining that C ≤ C ′ if and only
if the sequence C is an initial segment of C ′. It follows that the union over
an ascending chain of nests in Sx is again a nest in Sx. Hence by Zorn’s
Lemma, Sx admits a maximal nest N .



6 KATARZYNA KUHLMANN AND FRANZ-VIKTOR KUHLMANN

Suppose that N is of the form (Bxν )ν<λ with λ a limit ordinal. But then
condition (B4) of Theorem 4 shows the existence of a ball Bz such that
N ∪ {Bfkz | k ∈ N} properly contains N . Since f is R-compatible, we
have that zRfkz for all k ∈ N, and by the transitivity of R, we obtain that
xνRf

kz for all ν < λ and all k ∈ N. This shows that N ∪ {Bfkz | k ∈ N} ∈
Sx , contradicting the maximality of N . Therefore, N contains a smallest
ball Bz .

We wish to show that z is a fixed point of f . If we would have that
z 6= fz, then by (SC2), Bf iz

⊂
6= Bz ⊆

⋂
N for some i ≥ 1, and the nest

N ∪ {Bfkz | k ∈ N} would again properly contain N . As before, we would
obtain a cotradiction to the maximality of N .

Hence, z is a fixed point of f . Since N ∈ Sx , we also have that xRz.
This completes the proof of Theorem 4.

3. Ultrametric spaces

In this section we consider ultrametric spaces (X, d) which are defined as
follows. An ultrametric d on a set X is a function from X×X to a partially
ordered set Γ with smallest element 0, such that for all x, y, z ∈ X and all
γ ∈ Γ,

(U1) d(x, y) = 0 if and only if x = y,
(U2) if d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ,
(U3) d(x, y) = d(y, x) (symmetry).

(U2) is the ultrametric triangle law; if Γ is totally ordered, it can be replaced
by

(UT) d(x, z) ≤ max{d(x, y), d(y, z)}.
A closed ultrametric ball is a set Bα(x) := {y ∈ X | d(x, y) ≤ α},
where x ∈ X and α ∈ Γ. The problem with general ultrametric spaces is
that closed balls Bα(x) are not necessarily precise, that is, there may not
be any y ∈ X such that d(x, y) = α. Therefore, we prefer to work only with
precise ultrametric balls, which we can write in the form

B(x, y) := {z ∈ X | d(x, z) ≤ d(x, y)} ,
where x, y ∈ X. We obtain the ultrametric ball space (X,B) from (X, d)
by taking B to be the set of all such balls B(x, y).

It follows from symmetry and the ultrametric triangle law that B(x, y) =
B(y, x) and that

(1) B(t, z) ⊆ B(x, y) if and only if t ∈ B(x, y) and d(t, z) ≤ d(x, y) .

In particular,

B(t, z) ⊆ B(x, y) if t, z ∈ B(x, y) .

Two elements γ and δ of Γ are comparable if γ ≤ δ or γ ≥ δ. Hence if
d(x, y) and d(y, z) are comparable, then B(x, y) ⊆ B(y, z) or B(y, z) ⊆
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B(x, y). If d(y, z) < d(x, y), then in addition, x /∈ B(y, z) and thus,
B(y, z) ⊂6= B(x, y). We note:

(2) d(y, z) < d(x, y) =⇒ B(y, z) ⊂6= B(x, y) .

If Γ is totally ordered and B1 and B2 are any two balls with nonempty
intersection, then B1 ⊆ B2 or B2 ⊆ B1 .

As for ball spaces, we consider nests of (precise) ultrametric balls, and we
will represent them in the form (B(xi, yi))i∈I where I is a totally ordered
set and B(xj, yj) ⊂6= B(xi, yi) whenever i, j ∈ I with i < j. The ultrametric

space (X, d) with a transitive relation R on X will be called R-spherically
complete if for every nest of balls (B(xi, yi))i∈I satisfying xiRxj whenever
i, j ∈ I with i < j there is z ∈

⋂
i∈I B(xi, yi) such that xiRz for all i ∈ I.

Recall that a function f : X → X is said to be R-compatible if xRfx for
all x ∈ X. Further, f is non-expanding if d(fx, fy) ≤ d(x, y) for all
x, y ∈ X, contracting if d(fx, fy) < d(x, y) for all distinct x, y ∈ X, and
contracting on orbits if d(fx, f 2x) < d(x, fx) for all x ∈ X with x 6= fx.

Theorem 7. Take an ultrametric space (X, d), an element x ∈ X, a tran-
sitive relation R on X, and an R-compatible function f : X → X which is
non-expanding and contracting on orbits.

If (X, d) is R-spherically complete, then f admits a fixed point z ∈
B(x, fx) that satisfies xRz. If in addition f is contracting, then f ad-
mits a unique fixed point z; it is independent of the choice of x and satisfies
xRz for all x ∈ X.

Proof: To begin with, we note that for every x ∈ X the ball B(x, fx)
is f -contracting. Indeed, if x 6= fx then d(fx, f 2x) < d(x, fx) which by (2)
shows that B(fx, f 2x) ⊂6= B(x, fx).

If the ball B(x, y) is f -contracting, then fx ∈ B(x, y), whence B(x, fx) ⊆
B(x, y). By what we have just shown, B(x, y) properly contains B(fx, f 2x).
This proves that condition (A1) of Theorem 1 holds. Our assumption that
(X, d) is R-spherically complete implies that also condition (B1) holds. So
by Theorem 1, for every x ∈ X there is a fixed point z ∈ B(x, fx) of f .

If f is contracting, then it is non-expanding and contracting on orbits.
Hence by what we have shown, it admits a fixed point z. If y 6= z were
another fixed point, then d(x, y) = d(fx, fy) < d(x, y), a contradiction.
Therefore, z is the only fixed point of f , and it follows that xRz holds for
all x ∈ X. �

4. Topological spaces

In this section we will consider topological spaces X, equipped with a
transitive relation R. A ball space is associated with X by taking B to be
the collection of all nonempty closed sets.
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We will say that X is R-compact if for every regular cardinal κ, ev-
ery descending chain (Bν)ν<κ of nonempty closed sets, and any choice of
elements xν ∈ Bν such that xµRxν whenever µ < ν < κ, the intersection⋂
ν<κBν contains an element z such that xνRz for all ν < κ. If xRy for all

x, y ∈ X, then every R-compact topological space is compact.

Theorem 8. Take a topological space X with a transitive relation R on X
and a function f : X → X such that for every non-singleton closed f -closed
set B and every x ∈ B there is a closed f -closed set B′ ⊂6= B and some
x′ ∈ B′ such that xRx′. If X is R-compact, then for every x ∈ X there is
a fixed point z of f that satisfies xRz.

Proof: We take B to be the set of all nonempty closed sets in X.
Then (X,B) is intersection closed. By our assumptions, condition (A3) of
Theorem 3 is satisfied. If X is R-compact, then also condition (B3) holds.
Hence, our assertion follows from Theorem 3 together with the fact that X
itself is a closed f -closed set. �

5. Complete lattices

We consider a complete latice (L,<), together with a transitive relation
R on L. We denote the top element of L by > and the bottom element by
⊥. For any a, b ∈ L with a ≤ b, we define the interval

[a, b] := {c ∈ L | a ≤ c ≤ b} .

If we talk of an interval [a, b], we will always implicitly assume that it is
nonempty. The ball space associated with the lattice is obtained by setting

B := {[a, b] | a, b ∈ L with a ≤ b} .

In [3] we prove:

Proposition 9. The ball space associated with a complete lattice is spheri-
cally complete and intersection closed.

A function f : L → L is order preserving if a < b implies fa < fb.
For such a function, an interval [a, b] is f -closed if and only if fa ≥ a and
fb ≤ b.

From Theorem 3, we derive the following result:

Theorem 10. Take an order preserving R-compatible function f : L →
L and assume that for every regular cardinal κ, every descending chain
([aν , bν ])ν<κ of nonempty intervals, and any choice of elements xν ∈ [aν , bν ]
such that xµRxν whenever µ < ν < κ, the intersection

⋂
ν<κ[aν , bν ] contains

an element z such that xνRz for all ν < κ. Then for every x ∈ L there is
a fixed point z of f that satisfies xRz.
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Proof: Take a non-singleton f -closed interval [a, b] and x ∈ [a, b]. Since
we assume f to be order preserving, we find that fx ∈ [fa, fb] ⊆ [a, b] and
that also [fa, fb] is f -closed. Since f is R-compatible, we have that xRfx.
If [fa, fb] = [a, b], then we replace fa by fx if f 2x ≥ fx, and fb by fx
if f 2x ≤ fx. The so obtained interval is again f -closed, and it is properly
contained in [a, b] (the proof by case distinction is straightforward). We
have proved that condition (A3) of Theorem 3 is satisfied.

Since (L,B) is intersection closed, the assumptions of the theorem yield
that also condition (B3) holds. Hence, the assertion of our theorem follows
from Theorem 3 together with the fact that L = [⊥,>] ∈ B is f -closed. �

6. Ordered abelian groups and fields

For the conclusion of this paper, we consider an ordered abelian group
(G,<) together with a transitive relation R on G. Since the underlying
additive group of an ordered field is an ordered abelian group (G,<), we
are implicitly covering also the case of ordered fields.

The associated ball space is given by the collection of all (nonempty)
closed bounded intervals in (G,<):

B := {[a, b] | a, b ∈ G with a ≤ b} .

We call (G,<) symmetrically complete if this ball space is spherically
complete. See [4] for more information on this notion and for a charac-
terization of symmetrically complete ordered abelian groups and fields. In
particular, we know from this characterization that every symmetrically
complete ordered abelian group is divisible.

Take a function f : G→ G. We call it non-expanding if

|fx− fy| ≤ |x− y|

for all x, y ∈ G, and contracting on orbits if there is a positive rational
number m

n
< 1 with m,n ∈ N such that

|fx− f 2x| ≤ m

n
|x− fx|

for all x ∈ G. Note that the right hand side makes sense since G is divisible.
From Theorem 4, we derive the following result:

Theorem 11. Take a symmetrically complete ordered abelian group (G,<),
a transitive relation R on G, and an R-compatible non-expanding function
f : G → G which is contracting on orbits. Assume that for every regular
cardinal κ, every descending chain ([aν , bν ])ν<κ of nonempty intervals, and
any choice of elements xν ∈ [aν , bν ] such that xµRxν whenever µ < ν < κ,
the intersection

⋂
ν<κ[aν , bν ] contains an element z such that xνRz for all

ν < κ. Then for every x ∈ L there is a fixed point z of f that satisfies xRz.
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Proof: We set C = m
n

. As in Section 8 of [1], for every x ∈ G we take
Bx to be the closed interval

Bx :=

{
y ∈ X

∣∣∣∣ |x− y| ≤ |x− fx|1− C

}
to obtain that f ix ∈ Bx for all i ≥ 0. In particular, x ∈ Bx , hence (SC1)
holds. It is further shown in Section 8 of [1] that our condition that f is
contracting on orbits implies that also (SC2) holds.

In the proof of Theorem 21 of [1] it is shown that for every element z in
the intersection of a nest as given in condition (B4) of Theorem 4, the whole
interval Bz is contained in the intersection. Together with the assumptions
of our theorem, this shows that condition (B4) holds. Hence, the assertion
of our theorem follows from Theorem 4. �
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