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Abstract

Let p be a prime number, let K be a field of characteristic 0 containing a primitive root of
unity of order p. Also let v be a p-henselian (Krull) valuation on K with residue characteristic
p. We determine the structure of the maximal pro-p Galois group Gx(p) of K, provided that
it is finitely generated. This extends classical results of Demuskin, Serre and Labute. © 1999
Elsevier Science B.V. All rights reserved.

AMS Classification: Primary 12J10; secondary 12F10, 11520

0. Introduction

Fix a prime number p. Given a field K let K(p) be the composite of all finite Galois
extensions of K of p-power order and let Gx(p)= Gal(K(p)/K) be the maximal pro-p
Galois group of K. When K is a finite extension of @, containing the roots of unity
of order p the group Gy(p) is generated (as a pro-p group) by [K :Q,] + 2 elements
subject to one relation, which has been completely determined by DemuSkin [3, 4],
Serre [20] and Labute [14].

In this paper we extend these classical results to the following more general situation:
let K be a field of characteristic 0 containing the roots of unity of order p and suppose
that Gx(p) is finitely generated. Let v be a Krull valuation on K (of arbitrary rank)
with residue characteristic p. We assume that (K, v) is p-henselian, i.e., that Hensel’s
lemma holds for all polynomials that split completely in K(p) (equivalently, v has
a unique prolongation to K(p); cf. [2, Section 1]). We show that then Gg(p) is a
semi-direct product Z;) X G, where m is a non-negative integer, and either:
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(i) G=Gg«(p) for some finite extension K* of @, containing the pth roots of
unity (and then the structure of G is known by the above-mentioned results); or

(ii) G is a finitely generated free pro-p group.

See Theorem 3.8 for a description of the action of G on Zy;. Moreover, if v has rank
1 then Gx(p)=G for G as in (i) or (ii) above (Theorem 3.7).

In Section 4 we apply these methods to characterize the finitely generated pro-p
absolute Galois groups of henselian valued fields with residue characteristic p. These
turn out to be the semi-direct products Z;) xG where m is a non-negative integer and
G is as in (ii) above (see Theorem 4.3 for a description of the possible actions).

1. Cyclotomic pro-p pairs

In this section we introduce a formalism which will facilitate the presentation and
proofs of the main results. It is motivated by the ideas of [9, 10].

Let Z, and Z;° be the additive and multiplicative groups, respectively, of the p-adic
integers, and consider 1 + pZ, as a subgroup of Zy.

Definition. A cyclotomic pro-p pair (G, 0) consists of a pro-p group G and a continuous
homomorphism 0:G — 1 + pZ,. A morphism ®:(G,0)— (G’',8) of cyclotomic pro-
p pairs is a continuous homomorphism @:G — G’ such that 0=0' o . We call a
cyclotomic pro-p pair (G,0) finitely generated if G is finitely generated as a pro-p
group.

Let K be a field of characteristic #p. We denote the group of all roots of unity
of order p" (in the algebraic closure of the field K under consideration) by .
Also let ppoe = J,2, pupr. Now suppose that #p C€K. Then p,~ CK(p). There is a
natural isomorphism 7 = Aut(y;°), where a € ZS corresponds to the automorphism
{ + {*. Therefore, the restriction Gg(p) — Aut(yp~) induces a continuous homomor-
phism yx :Gx(p) — Z,. Since w, CK one has in fact Im(yx)C 1 + pZ,. We call
%(K)=(Gk(p), xx) the cyclotomic pro-p pair of K.

Given an extension L/K of fields of characteristic # p containing p, one has
K(p)C L(p). Therefore, there is a continuous restriction homomorphism Res: G.( p) —
Gk (p). We observe that y; = yxoRes on G.(p), so Res induces a morphism Res: %(L)
— %(K). This makes K — %(K) a contravariant functor from the category of fields of
characteristic # p containing p, to the category of cyclotomic pro-p pairs.

Definition. Let ¥ =(G,0) be a cyclotomic pro-p pair and let m be a cardinal num-
ber. The semi-direct product Zy x(G, ) is the cyclotomic pro-p pair (Z xG,00 1),
with ¢ € G acting on te€Z) by oto~ ' =1%) and where 7 is the natural projection
ZyxG —G.

Note that if ¢, and %, are isomorphic cyclotomic pro-p pairs then so are Z)' X%,
and Z7 X%,.
Recall that the rank of a profinite group G is the cardinality of a minimal set of
(topological) generators of G which converges to 1. We denote the free pro-p product
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of pro-p groups G;,G, (i.e., their direct sum in the category of pro-p groups) by
G] *p Gz.

Lemma 1.1. Let (F,0) and (F',8") be cyclotomic pro-p pairs, where F,F' are free
pro-p groups of equal ranks and Im(0)=1m(0'). Then (F,0) and (F',0") are
isomorphic.

Proof. Let r be the rank of the pro-p group Im(6)=Im(8") (by the structure of 1+ pZ,
one has 0 < r < 2). Choose o, € F such that 8(a;), 1 <i<r, generate Im(8), and choose
elements ¢/ € F' such that 0'(¢/)=60(o;) for each i. Thus 0'(5;), 1 <i<r, generate
Im(6"). Since F,F’ are free pro-p groups,

F= <O'I> *p o kp <O'r> *p Ker(0), F'= <0{> *p o Xp <6r’> *p Ker(()/),

In addition, (6;) = (6/) 2 7, for each i. Since F,F’ have equal ranks, Ker(8) = Ker(0").
Therefore there is a continuous isomorphism @:F — F’ such that &(o;) =g/, i=1,
..,r, and P(Ker(0))=Ker(¢’). Then 6 =0 o ®. O

2. Preliminaries in valuation theory

For a (Krull) valuation v on a field X we denote by K. T,0.;m, and U, the
corresponding residue field, value group, valuation ring, valuation ideal, and group of
units, respectively. For an abelian group 4 and a positive integer n we write ,4 and
A/n for the kernel and cokernel, respectively, of the map 4 - A of multiplication by ».

Lemma 2.1. Ler (K,v) be a valued field with charK .= p. The valuation v and the
residue homomorphism U, — K 1>,< induce natural exact sequences:
1—=U/p—K*/p—T/p—0,
= (l+m)/p—U/p—K/p—1.
Proof. The exactness at (1 + nt,)/p follows from the fact that K, does not contain

pth roots of unity other than 1. The rest is straightforward from the right-exactness of
the functor ®Z/p on abelian groups. O

Remark. A more general fact is proved in [18, Lemma 2.6] under the additional
assumption that v is henselian.

For an abelian group I' let m,(I")= dimgz;,({/p). The following is an immediate
consequence of {6, Lemma 1.1]:

Proposition 2.2. Let (K,v) be a p-henselian field such that charK.# p and u »CK.
Then 4(K )’EZ;,"”(F") x%(K,) naturally, where Z;"”(r’) corresponds under this isomor-
phism to the inertia group of v relative to K(p).
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Given valuations v and u on a field K one says that v is finer than u, and that u
is coarser than v, if O, C O,. When this happens, O./m, is a valuation ring on K,.
We denote the corresponding valuation by v/u. Its residue field is K. Moreover, for a
fixed valuation u on K, the map v — v/u is an order-preserving bijection between the
refinements of u and the valuations on K, (the partial order being “finer than”; cf. [1,
Ch. VI, Section 4.1]). The valuation v is p-henselian if and only if both u and v/u are
p-henselian [2, Lemma 1.3]. For valuations v,u on K such that v is finer than u one
has a short exact sequence of ordered abelian groups

0_’11*/u_’11"_’ru”’07

and I, is an isolated (i.e., convex) subgroup of I', [1, Ch. VI, Section 4.3]. Using
the right-exactness of ®Z/p and the convexity of I, we obtain the exact sequence

0—Iyu/p—1/p—I,/p—0. (*)

There is an order-preserving bijection between the prime ideals of a valuation ring
O, and the coarsenings of v; it is given by p +— u, where O, is the localization (O,),
of O, at p [1, Ch. VI, Section 4.1, Proposition 1].

A valuation v on a field K has rank 1 if it has no proper coarsenings other than
the trivial valuation; equivalently, I, embeds in R as an ordered group [1, Ch. VI,
Section 4.5, Proposition 7]. It is often possible to reduce to such valuations by means
of the following “slicing” technique:

Proposition 2.3. Let (K,v) be a p-henselian field such that char K =0, char K.=p,
and p, CK. There exists a p-henselian valuation u on K with residue field E such
that:
(i) u is coarser than v;
(ii) char £=0;
(iti) p, CE;
(iv) 9K)= 70" G(E) naturally;
(V) E is p-henselian with respect to a valuation w of rank 1 such that charE,.= p;
(vi) I,/p is a quotient of I,/p;
(vii) I,/p is a subquotient of I,/p;
(viii) rank(Gk(p))=mp(I,) + rank(Gg(p)).

L)

Proof. Denote the collection of all prime ideals p in O, with p€p (resp., p€p) by
AT (resp., A7). We have m,€4" and 0 € 4~. Moreover, 4~ UA" is totally ordered
by inclusion [1, Ch. VI, Section 4.1, Corollary to Proposition 1]. Consequently, A*
contains a minimal element p* and 4~ contains a maximal element p~. Let u", u~
be the coarsenings of v corresponding to p*,p~, respectively. Note that u~ is coarser
than ut. We check the assertions with u=u~, E=K,=K,—, and w=u"/u".

Assertion (i) is trivial, and the p-henselianity of ¥~ and w follows from the preced-
ing remarks. Next we have 1/p€(0,),- =0,~ and 1/p ¢ (O.)y =O,-. This shows
that char E # p and char £, =char K+ = p. In particular we get (ii).
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Also, (iii) follows from (ii), and (iv) follows from Proposition 2.2, (ii) and (iii).

To see that w has rank 1 use the natural order-preserving bijections between

(1) valuations on E which are coarser than v/u~;

(2) valuations on K which are finer than ¥~ and coarser than v;

(3) prime ideals in O, containing p~.

Since there are no prime ideals between p~ and p™, there is no non-trivial valuation
on E which is strictly coarser than w=u"/u", as desired.
(vi) is immediate from (%) above.

To prove (vii) use (*) to obtain that I,/p is a subgroup of I, /p and that I,:/p is
a quotient of I},/p.

Finally, denote the maximal elementary p-abelian quotients of Gk (p) and Gg(p) by
Gk[p] and Gg[ p] respectively. Then rank(Gk( p)) =rank(Gk[ p]) and rank(Gg(p)) =
rank(Ge[ p]) [21, 1-37, Proposition 25]. But by (iv), Gk[p]= Zy""™ x Gg[ p), so (viii)
follows. (O

The following is a pro-p version of the Hensel-Rychlik lemma for p-henselian fields.

Lemma 2.4. Let (K,v) be a p-henselian valued field of characteristic # p such that
Up CK. Then 1+ prm, CKP.

Proof. Let 0#a € m, and consider the polynomial f(X)=(1+ paX)’ —1— p’a. We
have f(X)= p’a[—1+4X +aX?g(X)] for some polynomial g(X )€ O,[X]. Since f(X)
splits completely in K( p), so does h(X)= — 1 +X +aX?g(X). Moreover, v(h(1))>0
and v(#’(1))=0. The p-henselianity of (K, v) therefore yields b € K such that 4(b)=0.
Then f(b)=0, ie., 1 + p*a=(1 +pab)P cK?. [

3. Maximal pro-p Galois groups

In this section we compute the structure of the finitely generated groups G( p) where
(K.v) is a p-henselian field of characteristic 0 containing u, such that char K,=p. We
first consider the case where v has rank 1. As a starting point we record the following
result which is implicit in [18, Kor. 2.7]; note that the assumption there that (K, v)
is henselian is actually not needed in the proof (since it is not needed in Lemma 2.1
above).

Proposition 3.1 (Pop). Let K be a valued field of characteristic O such that (K™ :
(K*)Py<oo. Let v be a valuation on K with charK.= p. Then K, is perfect. If in
addition v has rank 1 then either:

(a) I,=Z and K, is finite; or

(b) I = pl.

Accordingly, our computation for valuations of rank 1 will break into cases (a) and
(b) of Proposition 3.1. We start with the easier case (a). Denote the p-adic valuation
on Q, by v,.
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Proposition 3.2. Let (K,v) be a p-henselian field of characteristic 0. Suppose that
I,>=Z7 and that K, is a finite extension of F,. Let (K*,v*) be the completion of
(K,v). Then:

(a) Gk~(p)= Gg(p) by restriction.

(b) (K*,v*) is a finite extension of (Qp,uv,).

(¢) If up, LK™ then Gy(p) is a free pro-p group.

Proof. By the p-henselianity, Resg- n k(0™ is the unique prolongation of v to K* N
K{(p). As v*/v is immediate, so is Resg~ mK(p)v*/v. Moreover, since I, =2 7 this exten-
sion is defectless [1, Ch. VI, Section 8.5, Corollary 1]. It follows that K = K* N K(p).
Therefore [11, Lemma 2.3] implies (a).

Now (F)l,* ~K, and I,- 7. By the universal property of the ring #'(K,) of
Witt vectors over K, [22, Ch. II, Section 5, Theorem 4], O, is a free module of
finite rank over #°(K,). The quotient field K* of O, is therefore a finite extension
of the quotient field of #'(K,), hence also a finite extension of Qp. Furthermore,
O,» NQ, is a valuation ring on Q, containing 7, = #(K,)N Q, and not containing
1/p. Consequently, Z, = O,~ N @,. This proves (b).

Assertion (¢) now follows from a result of Safarevi¢ ([19, 21, II-30, Theorem 3]).

O

For the case I = pI; we first need the following technical lemma:

Lemma 3.3. Let (K,v) be a valued field such that (K* :(K*)?)<oco and l?F:IZf.
There exists 0<AieT, such that for every ue U, one can find we U, satisfying
v(wP —u) > J.

Proof. Let R be a system of representatives for the cosets of U,/U/. By Lemma 2.1,
|R| <oo. Since K, = (K, )?, for every a € R we can find w, € U, such that the residues
a, wq of a, w,, respectively, satisfy w? =a. Thus 2= min{v(w; —a)|a€ R} >0.

Now given u€ U, we can write u—=az” for some a€R and some zc U,. Let
w=w,z. We have v(w? —u)=v(wl —a)> ). O

Recall that if charK # p and p, CK then K*/p=H'(Gk(p),Z/p) (see e.g. [8,
(1.7)]). In particular, (K> : (K*)?)<oc if and only if Gg(p) is finitely generated [21,
1-38, Corollary].

Proposition 3.4. Ler K be a field of characteristic O containing p, and such that
Gy (p) is finitely generated. Let v be a p-henselian valuation on K satisfying char K,
= p and I, = pl,. Then Gg(p) is a free pro-p group.

Proof.
Case I: v has rank 1. Let L/K be a cyclic extension of degree p and let N:L —K
be the norm map. Let § be the unique prolongation of v to L. By the p-
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henselianity,
pli=d(N(L*)) < T, = pI, < pl},

so pl'; = pl;. Since I} is torsion-free this implies I, =TI,

By [25, p. 725, Remark] it suffices to show that N(L)=K. By Proposition 3.1,
K, :[Z{,’. Hence, in light of Lemma 2.1, K* = (1 + m,)}(K*)?. It therefore suffices to
show that | +m, CN(1 + m;).

Fix o€ L with 2”7 € K and L =K(«). After dividing « by an appropriate element of
K, we may thus assume that 6(a)=0. Let 0<A & I, be as in Lemma 3.3.

Now take a€1 + m, and assume that a ¢ N(1 + mg). We construct inductively
sequences by, by,... €m, and ¢,¢a,... € 1 + m; such that for every n,

o(bns1) 2 v(by) + 2, a=(14by)N(cp)-

First we take by =a — 1 and ¢ =1. Suppose that b,,c, have already been defined.
Necessarily, b, 7 0. Use the p-divisibility of I, to choose 0# 7, € i, such that v(b,) =
pv(m,) and let u, =b,/(m,2)?. Then u, € U,. By the choice of A there exists w, € U,
such that o(wf + u,) > 1. We define

()P (Wh + uy)

b1 = 1 — (W )? s Car1 = Cu(1 — Myw,a0).

Then
o(bns1) = po(mn) + 0wy + up) 2 v(by) + A>0
and ¢,y € 1 + mg. Furthermore,
L+ by =1+ (o) up = (1 + byt ) [1 — (mawn)?].

But X? — (m,w,a)? = HGEGHI(L/K)(X — mywyo(a)). In particular, 1 — (m,w,a)? =
N(1 = myw,a). Therefore

a=(1+b)N(ch) = (1 + by )N(1 — uwpa)N(cp) = (1 + byi1 N (Cns1),

completing the construction.

Since v has rank 1, the group I, embeds in R. As 0</ we therefore have v(b,)>
2v( p) for n sufficiently large. Then 1 + b, € (K*)? by Lemma 2.4. Moreover, (1 +
m)N(K*)? =1+ m,)” by Lemma 2.1. It follows that 1 + b, € (1 + m,)”. Conse-
quently, a=(1 + b,)N(c,) € N(1 4+ my), contradiction.

Cuase 1I: v arbitrary. Let u, F and w be as in Proposition 2.3. Thus char £ =0,
up CE, and w is a p-henselian valuation of rank 1 on E with residue characteristic
p. By condition (viii) of Proposition 2.3, Gg(p) is finitely generated. Furthermore,
by conditions (vi) and (vii) of Proposition 2.3 and the assumptions, I, = pI, and
Iy = pl,,. By condition (iv), Gx(p)= Gg(p). Case 1 (applied with respect to (E,w))
implies that this is a free pro-p group. O
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Corollary 3.5. Let K be a field of characteristic 0 containing i, and such that Gg(p)
is finitely generated. Let v be a p-henselian valuation on K and suppose that K, =K'
and I, = pl.. Then Gx(p) is a free pro-p group.

Proof. When charK = p this follows from Proposition 3.4. When chark,+# p

the assumptions imply that yu, CK, and Gz (p)=1, so we are done by Proposition
22. 0O

Combining Propositions 3.1, 3.2, and 3.4 we obtain:

Corollary 3.6. Let K be a field of characteristic 0 containing pt, and such that Gx(p)
is finitely generated. Let v be a p-henselian valuation on K of rank 1 and with
char K, = p. Then either:

(a) I, 2Z, K, is finite, the completion (K*,v*) of (K,v) is a finite extension of
(Qp.v,), and Res: 9(K*) — 4(K) is an isomorphism; or

(b) I,= pI,, K, is perfect, and Gi( p) is a free pro-p group.

We now come to the first characterization theorem:

Theorem 3.7. Let % be a finitely generated cyclotomic pro-p pair. The following
conditions are equivalent:

(a) There exists a p-henselian valued field (K,v) such that v has rank 1, char K =0,
charK, = p, Up K, and 9(K)= 9,

(b) either 4= %(K*) for some finite extension K* of Qp(pp), or $=(F,0) for
some finitely generated free pro-p group F and a continuous homomorphism 0
F—1+ pZ,

Proof. (a)=(b): This follows from Corollary 3.6.

(b)=(a): If #22%(K*) for some finite extension K* of Q,(y,) then (a) is clear.

Next suppose that 4= (F,0) with F and 6 as in (b). Let K, be the inertia field
of Q,(up) relative to (Q,(,))(p). The Galois extension Q,(p,=)/Qp(x,) is totally
ramified {22, Ch. IV, Proposition 17]. Hence Ky and Q,(u,~) are linearly disjoint
over (3,(1t,). Moreover, it follows from [22, Ch. IV, Proposition] again that the map
Y@ 0@, (P) — 1+ pZ, is surjective. By the linear disjointness, yx, : Gk, (p) — 1+
pZ, is also surjective.

Now take a subfield K; of Ky(u,~)/Kp such that Im(yk, )=Im(6). Thus yk, in-
duces an isomorphism Gal(Ko(u,~)/K;) — Im(0). Let » be the rank of Im(0)
(by the structure of | + pZ,, 0<r<2). Choose elements a;, 1<i<r, of Gk, (p)
whose restrictions to Ko(u,~ ) generate Gal(Ko(pp )/K;). Set I =rank(F) and observe
that />7. By local class field theory (cf. [6, Proposition 1.3] or [5, Proposition 2.3]),
Gk,(p) is a free pro-p group of countable rank. We can therefore choose o,.1,...,0,
€ Gal(Ko( p)/Ko(pp~)) such that (oy,...,0;) is a free pro-p group of rank /. For the
fixed field K of (g),...,0;) in Ko(p) we have Im(yx)=Im(0). Lemma 1.1 therefore
implies that ¥(K)=(F,0). O
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For valuations of arbitrary rank we have:

Theorem 3.8. The following conditions on a finitely generated cyclotomic pro-p pair
4G are equivalent:

(a) 9= Y(K) for some p-henselian valued field (K,v) such that charK =0,
charK, = p and ,u,,CK

(b)y ¥=77 XY, where m is a non- negatwe integer, and where either 4= %(K*)
Jor some ﬁmte extension K* of Q,(u,), or G (F,0) for some finitely generated free
pro-p group F and a continuous homomorphism 0:F — 1 + pZ,

Proof. (a)=-(b): Let (K,v) be as in (a), take u, £, w be as in Proposition 2.3. Then
m=m,(I,)<oo, Ge(p) is finitely generated, and ¥(K) = Z) x%(E). By Theorem 3.7,
%4 =%(E) is as n (b).

(b)=(a): Theorem 3.7 yields a p- -henselian valued field (E, w) such that char E =0,
char £, = p, pp CE, and 4(E)= 4. Set I'=7" and order it lexicographically with
respect to the usual ordering on Z. Let K =E((I')) be the field of all formal power
series 2=} ra;t’ with a,€E and with {y€I'|a,# 0} well-ordered. When o #0
we define u(o) =min{y € I' |a, # 0}. We also set u(0)=oc. Then (K,u) is henselian
with K,~E and I',=T. By Proposition 2.2,

GK)= 2 xHUE) =T 1G> 5.

Let v be the unique valuation on K which is finer than u and such that v/u=w; it is
p-henselian and K. =E,, has characteristic p (see Section 2). [

4, Absolute Galois groups

In this section we determine the structure of the finitely generated pro-p absolute
Galois groups of henselian fields with residue characteristic p. This structure is some-
what simpler than that of the maximal pro-p Galois groups, as given in Theorem 3.8.

For a pro-p group G let H'(G)=H'(G,Z/p) be the ith pro-p cohomology group,
with Z/p considered as a trivial G-module. For a field K we abbreviate H(K)=
H(Gk(p)). We first need two computational facts.

Lemma 4.1. Let (K,v) be a p-henselian valued field such that charK,# p, Up CK,
dimg, H'(K)>3, and H*(K)= Z/p. Then my(I})=0.

Proof. Let d:dimeH'(]?v), m=my(I;) and I =m(m — 1)/2 (when m is an infinite
cardinal number, / =m). By [23, Theorem 3.6 and Remark 3.14],

HY(K)=H" (K)o H(K,)",
HYK)=2H*K,) & H (K. )" o H(K.).
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Taking F,-dimensions and observing that H%(K,)=Z/p we obtain that d + m >3 and
md 4 [ <1. This can happen only when m=0. [J

Given a field K we denote its absolute Galois group by Gy and its algebraic closure
by K.

Proposition 4.2. Let (K,v) be a henselian field such that Gg is a pro-p group of
finite rank >3 and H*(K)=Z/p. Then charK,+# p and my(I},)=0.

Proof. As H*(K)=2Z/p we have charK # p by [21, lI-4, Proposition 3]. Since
[K(#p): K] is prime to p and Gk is pro-p necessarily u, C K. By [21, 1-38, Corollary],
dimg, H'(K)>3. In light of Lemma 4.1 it suffices to show that char K, # p.

Suppose that char K, = p (whence char K = 0). Proposition 2.3 yields a p-henselian
valuation # on K and a p-henselian valuation w of rank | on E=K, such that
char =0, y, CF, and 9(K)= ZZ’”(F”) X%4(E). But by Lemma 4.1 again (applied with
respect to (K,u)), m,(I,)=0. Thus 4(K)=%(E). As Gk is pro-p, the p-henselian
field (K,u) is in fact henselian. Therefore there is a natural epimorphism Gg — Gp,
implying that G is pro-p and Gx = Gg. Consequently, G is not a free pro-p group
[21, 1-37, Corollary 2]. Corollary 3.6 now implies that (£, w) embeds inside a finite
extension (E*,w*) of (Q,,v,). By Krasner’s lemma, E* = QE* = EE*. It follows that
Res: Gg- — G is injective. However G is a pro-p group while Gg. is not. We thus
obtain the desired contradiction. [

Theorem 4.3. The following conditions on a cyclotomic pro-p pair 4 are equivalent:
(a) There exists a henselian valued field (K, v) such that Gy is a finitely generated
pro-p group, charK, = p, and 9(K)=4;
(b) ¥ =77 X(F,0) for some non-negative integer m, a finitely generated free pro-p
group F, and a continuous homomorphism 0:F — 1 4+ pZ,.

Proof. (a)=(b): If Gk is a finitely generated free pro-p group then (b) holds with
m=0 and (F,0)=%(K). So suppose that Gx is not a free pro-p group. As in the
proof of Proposition 4.2, char K =0 and u, CK.

Let u, E =K, and w be as in Proposition 2.3. Then mp(l,) <oo and Gg( p) is finitely
generated. As Gy is pro-p, so is Gg, whence (£, w) is henselian. Applying Proposition
4.2 with respect to (E,w) we obtain that Gg cannot be a pro-p group of finite rank
>3 such that H%(E)=Z/p. In particular, it is not of the form Gex(p), with K* a
finite extension of Q,(x,) [21, 1I-30, Theorem 4]. It follows from Theorem 3.7 that
%(E)=(F,0) with F, 0 as in (b). Then 4= Z,"""*) x(F,0).

(b)=(a): For 4 as in (b) Theorem 3.8 yields a p-henselian valued field (K, v)
such that char K =0, char K, =p, tp CK and = %(K). In fact, in the construction
there, v is henselian. Let ¢ be a prolongation of v to K. Since Gk(p) is a free pro-p
group this epimorphism has a homomorphic section s: Gg(p)— Gk. Let K’ be the
fixed field in K of the image of s. Then Gk is a finitely generated pro-p group
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and Res%(K’) — %4(K) is an isomorphism. Consequently, ¥(K’)=¥. Since (K,Resg?)
is henselian so is its algebraic extension (K’,Resk#). Furthermore, the residue field
of (K',Resk:/0) is an algebraic extension of K,, hence has characteristic p. This
proves (a). O

In a similar manner one obtains:

Theorem 4.4. The following conditions on a cyclotomic pro-p pair % are equivalent:
(a) There exists a henselian valued field (K,v) such that Gk is a finitely generated
pro-p group, char K, = p, v has rank 1, and 9(K)=2 9,
(b) 4 (F,0) for some finitely generated free pro-p group F and a continuous
homomorphism 0:F — 1 + pZ,.

Proof. (a)=-(b): As in the proof of Theorem 4.2 we may assume that char K =0 and
ip € K. By Proposition 4.2 and [21, 1I-30, Theorem 4}, Gx cannot be isomorphic to
Gk-(p) for any finite extension K™ of @,(y,). By Theorem 3.7, % is as in (b).

(b)=(a): This can be shown precisely like the corresponding part of the proof of
Theorem 4.3, using in the proof Theorem 3.7 instead of Theorem 3.8 (note that an
algebraic extension of a valued field of rank 1 also has rank 1 [1, Ch. VI, Section 8.1,
Corollary 1]). O

5. Applications
5.1. Ramification groups

Recall that the ramification group of a Galois extension (L,u)/(K, v) of valued fields
consists of all ¢ € Gal(L/K) such that o(x)/x€ 1+ m, for all 0#x€ L. When K a
finite extension of Q, and L=K(p), it follows from local class field theory that the
ramification group of the canonical valuations is a free pro-p group [5, Proposition 2.3].
The following result extends this fact.

Theorem 5.1. Let K be a field of characteristic O containing p, and such that Gx(p)
is finitely generated. Let v be a p-henselian valuation on K of rank 1. Then the
ramification group of v relative to K(p) is a free pro-p group.

Proof. In an arbitrary Galois extension of valued fields with residue characteristic />0
the ramification group is pro-/; when the residue characteristic is 0, this group is trivial
[7, Theorem 20.18]. Therefore, if in our case char K, # p then the ramification group of
v in the pro-p extension K( p)/K is trivial. We may thus assume that char K, = p. Then
the ramification group coincides with the inertia group of v in K(p)/K [7, Theorem
20.18]. In light of Corollary 3.6 we may also assume that (K,v)C (K™, v*) for some
finite extension (K™*,v*) of (Q,,v,) containing p, such that Res:Gg«(p)— Gk(p)
is an isomorphism and v*/v is immediate. Let 7,7* be the ramification groups of
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(K, v),(K*,v*) relative to K(p),K*(p), respectively. One has a natural commutative
diagram of group extensions:

1 T* Gg-(p) —— Gg (p) —— 1
Res Res |
1 T Gk(p) —— Gg(p) —— 1.

Since the middle vertical map is an isomorphism, so is the left vertical map. But as
remarked above, T™* is a free pro-p group. [

5.2, Finitely generated Demuskin groups as pro-p Galois groups

Recall that a pro-p group G is a Demuskin group if H*(G)=Z/p and the cup-
product |J: H(G) x H'(G) — H*(G) is non-degenerate. For example, if K is a finite
extension of Q,(u,) then Gg(p) is a pro-p Demuskin group, by local class field theory
[21, 1I-30, Theorem 4]. It is an open problem to characterize the pro-p Demuskin groups
of finite rank >3 which can be realized as Gy (p) for some field X of characteristic
# p containing yu,, say (cf. [17, p. 339; 9, Remark 5.5]). The following result may
shed some light on this question.

Proposition 5.2. Let G be a pro-p group of finite rank >3 such that H*(G)=Z/p.
The following conditions are equivalent:

(a) G=Gk(p) for some p-henselian field (K,v) such that charK =0, char K, = p,
and 1, CK;

(b) G = Gk-(p) for some finite extension K* of Q,(u,).

Proof. (a)=(b): We have dimg, H'(K)=rank(G)>3 [21, 1-38, Corollary]. It follows
from Proposition 2.3 and Lemma 4.1 that Gx(p) = Ge(p) for some field E of charac-
teristic 0 containing y, which is p-henselian with respect to a valuation w of rank 1|
satisfying char £, = p. Now G = Gg(p) is not a free pro-p group [21, 1-32, Corollary].
Corollary 3.6 therefore shows that Gg(p) = Gg-(p) with K* as in (b).

(b) = (a): Immediate. [

Question 5.3. Let K be a field such that Gx(p) is a pro-p Demuskin group of finite
rank >3. Is K necessarily p-henselian with respect to a valuation having residue
characteristic p?

Remark 5.4. (a) In light of Proposition 5.2, an affirmative answer to Question 5.3
would imply that the pro-p Demuskin groups of finite rank >3 which occur as Gk (p)
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for some field K of characteristic # p containing u, are precisely the groups Gg+(p),
where K* is a finite extension of Q,(up).

(b) In light of Proposition 4.2, an affirmative answer to Question 5.3 would also
imply that pro-p Demuskin groups of finite rank >3 do not occur as absolute Galois
groups of fields. The question whether this is indeed the case was posed to me by
Jochen Koenigsmann. Note however that pro-p Demuskin groups of countable rank do
occur as absolute Galois groups (cf. [13, Theorem 5; 17,16]).

(c) There exist fields K with Gg(p) a pro-p Demuskin group of countable rank
which are not p-henselian with respect to any valuation with residue characteristic p.
In fact, Mina¢ and Ware construct in [16, Remark 2.6(i)] a field K of characteristic 0
such that Gg = Gg(p) is a pro-p Demuskin group of countable rank and K does not
contain any henselization of @ with respect to its p-adic valuation. Hence K cannot
be ( p-)henselian with respect to a valuation as above.

5.3. Elementary type Witt rings

We conclude by an application to the theory of quadratic forms. Here we fix p=2
and denote the Witt ring of a field K of characteristic #2 by W(K). For the basic
notions of the category of abstract Witt rings we refer to [15]. An abstract Witt ring
is said to have elementary type if it can be constructed in finitely many steps from
the abstract Witt rings Z, Z/2, Z/4, and the Witt rings of the finite extensions of Q>
by means of the two standard constructions in that category, namely, direct products
and extensions. The long-standing “elementary type conjecture” predicts that if (K> :
(K*)?)<oo then W(K) has elementary type. Our final result proves this conjecture in
an important test-case:

Theorem 5.5. Let (K,v) be a 2-henselian field of characteristic 0 such that char K, =2
and (K> :(K*)?)<oo. Then W(K) has elementary type.

Proof. We combine the methods of [9, 10] with the results of Section 3. Proposition
2.3 gives a 2-henselian valuation u on K such that £ =K, has characteristic 0 and
is 2-henselian with respect to a valuation w of rank 1 with residue characteristic 2.
Then W(K) is the extension W(E)[I,/2I,] of W(E) by the elementary abelian 2-group
I,/2I, [12, Section 12]. Furthermore, by condition (vii) of Proposition 2.3, the latter
group is finite and Gg(2) is finitely generated. It thus remains to show that W (£) has
elementary type.

By Corollary 3.6 one of the following cases holds:

Case (1): T,, =2 Z, the completion (E*, w*) of (E,w) is a finite extension of (Q,,v;),
and Res: %(E*) — %(E) is an isomorphism. By [24, Corollary 2.5] this implies that
W(E)= W(E™*), and we are done.

Case (I1): Gg(2) is a finitely generated free pro-2 group. In this case we take subex-
tensions Ey,...,E, of E(2)/FE such that Gg(2)=Gg,(2)*2- - *2GEg,(2) and Gg,(2) = 7,
i=1,...,n. Then W(E) is the direct product of W(E,),...,W(E,) in the category of
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abstract Witt rings [9, Remark 3.5]. Finally, for each 1<i<n either W(E;)=Z/4 or
W(E;)=Z/2[Z/2] [9, Table 5.1], completing the proof. O
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