
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSEYIER Journal of Pure and Applied Algebra 138 (1999) 215-228 

Finitely generated pro-p Galois groups of p-Henselian 
fields 

Ido Efrat * 

Depurtment of Mathematics and Computer Science, Ben Gurion Uniaersity of’ the Negev, P.O. BO.Y 653. 

Be’er-Sheva 84105, Israel 

Communicated by M.-F. Roy; received 25 January 1997; received in revised form 22 July 1997 

Abstract 

Let p be a prime number, let K be a field of characteristic 0 containing a primitive root of 
unity of order p. Also let u be a p-henselian (Krull) valuation on K with residue characteristic 
p. We determine the structure of the maximal pro-p Galois group GK(P) of K, provided that 
it is finitely generated. This extends classical results of DemuSkin, Serre and Labute. @ 1999 
Elsevier Science B.V. All rights reserved. 
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0. Introduction 

Fix a prime number p. Given a field K let K(p) be the composite of all finite Galois 

extensions of K of p-power order and let GK(~) = Gal(K(p)/K) be the maximal pro-p 

Galois group of K. When K is a finite extension of Q, containing the roots of unity 

of order p the group GK(P) is generated (as a pro-p group) by [K : Cl!,,] + 2 elements 

subject to one relation, which has been completely determined by Demuskin [3, 41, 

Serre [20] and Labute [14]. 

In this paper we extend these classical results to the following more genera1 situation: 

let K be a field of characteristic 0 containing the roots of unity of order p and suppose 

that GK(P) is finitely generated. Let u be a Krull valuation on K (of arbitrary rank) 

with residue characteristic p. We assume that (K, o) is p-henseliun, i.e., that Hensel’s 

lemma holds for all polynomials that split completely in K(p) (equivalently, u has 

a unique prolongation to K(p); cf. [2, Section 11). We show that then GK(~) is a 

semi-direct product Z!F xG, where m is a non-negative integer, and either: 
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(i) G Z GK*(~) for some finite extension K” of QP containing the pth roots of 

unity (and then the structure of G is known by the above-mentioned results); or 

(ii) G is a finitely generated free pro-p group. 

See Theorem 3.8 for a description of the action of G on 22:. Moreover, if v has rank 

1 then GK(~) = G for G as in (i) or (ii) above (Theorem 3.7). 

In Section 4 we apply these methods to characterize the finitely generated pro-p 

ubsolute Galois groups of henselian valued fields with residue characteristic p. These 

turn out to be the semi-direct products Zr XG where m is a non-negative integer and 

G is as in (ii) above (see Theorem 4.3 for a description of the possible actions). 

1. Cyclotomic pro-p pairs 

In this section we introduce a formalism which will facilitate the presentation and 

proofs of the main results. It is motivated by the ideas of [9, lo]. 

Let Z$ and Zi be the additive and multiplicative groups, respectively, of the p-adic 

integers, and consider 1 + pZP as a subgroup of ZT. 

Definition. A cyclotomic pro-p pair (G, 8) consists of a pro-p group G and a continuous 

homomorphism 0 : G + 1 + p&. A morphism @ : (G, 0) + (G’, /3’) of cyclotomic pro- 

p pairs is a continuous homomorphism @J: G + G’ such that 8= 0’ o @. We call a 

cyclotomic pro-p pair (G, 0) jinitely generated if G is finitely generated as a pro-p 

group. 

Let K be a field of characteristic fp. We denote the group of all roots of unity 

of order p” (in the algebraic closure of the field K under consideration) by pPf2. 

Also let pPX = l-l,“=, ppli. Now suppose that pP C K. Then pLp= C K(p). There is a 

natural isomorphism Z!; ” Aut(pF)), where x E Zt corresponds to the automorphism 

[ H p. Therefore, the restriction GK(P) + Aut(pP=) induces a continuous homomor- 

phism XK : GK(~) + Zt. Since pP C K one has in fact Im(xK ) C 1 + pZP. We call 

29(K) = (GK(~), 1~) the cyclotomic pro-p pair of K. 

Given an extension L/K of fields of characteristic # p containing ,uP one has 

K(p) C L(p). Therefore, there is a continuous restriction homomorphism Res: GL( p) + 

GK(~). We observe that XL = scores on GL(P), so Res induces a morphism Res: 3(L) 
+9(K). This makes K H 3(K) a contravariant functor from the category of fields of 

characteristic # p containing pP to the category of cyclotomic pro-p pairs. 

Definition. Let 9 = (G,6) be a cyclotomic pro-p pair and let m be a cardinal num- 

ber. The semi-direct product Zr x(G, 0) is the cyclotomic pro-p pair (ZF XC?, 4 o x), 

with 0 E G acting on r E ZF by ore’ = #‘), and where 7-t is the natural projection 
_ _ 

Zp” XG + G. 

Note that if %Yi and 3~ are isomorphic cyclotomic pro-p pairs then so are ZF >aC!?i 

and Zp” ~92. 

Recall that the rank of a profinite group G is the cardinality of a minimal set of 

(topological) generators of G which converges to 1. We denote the free pro-p product 
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of pro-p groups Gi, G2 (i.e., their direct sum in the category of pro-p groups) by 

GI *p G2. 

Lemma 1.1. Let (F, 0) and (F’, 6’) be cyclotomic pro-p pairs, lvhere F, F’ are ,frer 

pro-p groups of equal ranks and Im(0) =Im(O’). Then (F,O) and (F’,H’) are 

isomorphic. 

Proof. Let r be the rank of the pro-p group Im(O) = Im(e’) (by the structure of 1 +pZ[, 

one has 0 5 r 5 2). Choose 0; E F such that U(o;), 1 5 i 5 r, generate Im(H), and choose 

elements 0: E F’ such that (I’(o/)= 0(0;) for each i. Thus O’(rr,), 1 5 i < r, generate 

Im(0’). Since F, F’ are free pro-p groups, 

F=(o,) *,,‘.’ *p (or) *r KM@, F’ = (0;) *t> . . *p (CT,!) *p Ker(B’). 

In addition, (ci) Z (u/) Z ZP for each i. Since F, F’ have equal ranks, Ker(f1) ?Z Ker(B’). 

Therefore there is a continuous isomorphism @ : F + F’ such that @(o,) = a/, i = 1. 

. . ..I’. and @(Ker(B))=Ker(B’). Then f)=(I’o@. 0 

2. Preliminaries in valuation theory 

For a (Krull) valuation r on a field K we denote by l?,-, c., Or,m,, and U,. the 

corresponding residue field, value group, valuation ring, valuation ideal, and group of 

units, respectively. For an abelian group A and a positive integer n we write ,,A and 

A/n for the kernel and cokemel, respectively, of the map A r, A of multiplication by n. 

Lemma 2.1. Let (K, v) be a valued field M’ith char Z?,. = p. The valuation v and the 

residue homomorphism U,. + I?,? induce natural exact sequences: 

1 +U,./p4KX,‘p + T,,lp --) 0, 

li(l+n,,.)/piU~fpiK,X/p7-1. 

Proof. The exactness at (1 + ~~r~)/p follows from the fact that I?,. does not contain 

pth roots of unity other than 1. The rest is straightforward from the right-exactness of 

the functor 8Zjp on abelian groups. 0 

Remark. A more general fact is proved in [18, Lemma 2.61 under the additional 

assumption that c’ is henselian. 

For an abelian group r let m,(T) = dimn:,(T/p). The following is an immediate 

consequence of [6, Lemma 1 .I]: 

Proposition 2.2. Let (K, v) be a p-henselian jield such that charl?,. # p and up 2 K. 

Then 3(K)” Zp(” x~(K,.) naturally, kvhere Z!T(’ ) corresponds under this isomor- 

phism to the inertia group of’v relative to K(p). 
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Given valuations z’ and u on a field K one says that v is jiner than u, and that u 

is courser than v, if 0, C O,,. When this happens, 0,./m, is a valuation ring on I?,,. 

We denote the corresponding valuation by VJU. Its residue field is I?,. Moreover, for a 

fixed valuation u on K, the map v H v/u is an order-preserving bijection between the 

refinements of u and the valuations on K, (the partial order being “finer than”; cf. [ 1, 

Ch. VI, Section 4.11). The valuation v is p-henselian if and only if both u and v/u are 

p-henselian [2, Lemma 1.31. For valuations v,u on K such that v is finer than u one 

has a short exact sequence of ordered abelian groups 

0 + r,l, + r,. --f r, ---f 0, 

and fL.ju is an isolated (i.e., convex) subgroup of r,. [l, Ch. VI, Section 4.31. Using 

the right-exactness of @Z/p and the convexity of K.;, we obtain the exact sequence 

0 -+ rc,ulP + ~VlP + TulP + 0. (*I 

There is an order-preserving bijection between the prime ideals of a valuation ring 

0, and the coarsenings of v; it is given by p w u, where 0, is the localization (O,.), 

of 0,. at p [ 1, Ch. VI, Section 4.1, Proposition 11. 

A valuation v on a field K has rank 1 if it has no proper coarsenings other than 

the trivial valuation; equivalently, K. embeds in R as an ordered group [ 1, Ch. VI, 

Section 4.5, Proposition 71. It is often possible to reduce to such valuations by means 

of the following “slicing” technique: 

Proposition 2.3. Let (K, v) he a p-henselian jield such that char K = 0, char I?,. = p, 
and pP C K. There exists a p-henselian valuation u on K with residue jeld E such 

that: 

(i) u is coarser than v; 

(ii) char E = 0; 
(iii) pp C E; 

(iv) y(K)” ZT(“’ XI C’(E) naturally; 
(v) E is p-henselian with respect to a valuation w ofrank 1 such that charE,,=p; 

(vi) r,lp is u quotient of K./p; 
(vii) IJp is a subquotient of TJp; 

(viii) rank(GK(p)) = m,(T,) + rank(GE(p)). 

Proof. Denote the collection of all prime ideals p in 0, with p E p (resp., p $! p) by 

A+ (resp., A-). We have m,. E A+ and 0 E A-. Moreover, A- U A+ is totally ordered 

by inclusion [ 1, Ch. VI, Section 4.1, Corollary to Proposition 11. Consequently, A+ 
contains a minimal element pf and A- contains a maximal element p.. Let uf, u- 

be the coarsenings of v corresponding to p+,p-, respectively. Note that up is coarser 

than u+. We check the assertions with u = u-, E = K,, = KU-, and w = ut/up. 

Assertion (i) is trivial, and the p-henselianity of u- and w follows from the preced- 

ing remarks. Next we have l/p~ (O,),- = O,- and I/p6 (O,.),,, =O,+. This shows 

that char E # p and char l?,. = char I?,+ = p. In particular we get (ii). 
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Also, (iii) follows from (ii), and (iv) follows from Proposition 2.2, (ii) and (iii). 

To see that w has rank 1 use the natural order-preserving bijections between 

(1) valuations on E which are coarser than v/u-; 

(2) valuations on K which are finer than U- and coarser than v; 

(3) prime ideals in 0, containing p-. 

Since there are no prime ideals between p. and p+, there is no non-trivial valuation 

on E which is strictly coarser than w = u+/u-, as desired. 

(vi) is immediate from (*) above. 

To prove (vii) use (*) to obtain that T,,./p is a subgroup of I-,, /p and that r,,+/p is 

a quotient of T,jp. 

Finally, denote the maximal elementary p-abelian quotients of GK(P) and GE(~) by 

GK[p] and GE[p] respectively. Then rank(GK(p))=rank(GK[p]) and rank(GE(p)) = 

rank(GE[p]) [21, I-37, Proposition 251. But by (iv), GK[~] ” ZFPCr,’ x GE[~], so (viii) 

follows. 0 

The following is a pro-p version of the Hensel-Rychlik lemma for p-henselian fields. 

Lemma 2.4. Let (K, v) be u p-henselian valued ,jield of characteristic # p such that 

pp C K. Then 1 + p’m,. C KP. 

Proof. Let 0 # a E m,, and consider the polynomial f(X) = ( 1 + paX)P - 1 - p2a. We 

have .f’(X) = p2a[- 1 +X + uX2g(X)] for some polynomial g(X) E O,[X]. Since f(X) 

splits completely in K(p), so does h(X) = - 1 +X + aX2g(X). Moreover, v(h( 1)) > 0 

and v(h’( 1)) = 0. The p-henselianity of (K, v) therefore yields b E K such that h(b) = 0. 

Then ,f(b)=O, i.e., 1 + p2a=(l +pab)pEKP. 0 

3. Maximal pro-p Galois groups 

In this section we compute the structure of the finitely generated groups GK(~) where 

(K, v) is a p-henselian field of characteristic 0 containing pp such that char K,, = p. We 

first consider the case where v has rank 1. As a starting point we record the following 

result which is implicit in [18, Kor. 2.71; note that the assumption there that (K, v) 

is henselian is actually not needed in the proof (since it is not needed in Lemma 2.1 

above). 

Proposition 3.1 (Pop). Let K be a valued jield of’ characteristic 0 such that (KX : 

(K x )p) < 30. Let v he a valuation on K with char I?,. = p. Then I?,. is perjkct. !f’ in 

addition v has rank 1 then either: 

(a) &. Z Z and K,- is finite; or 

(b) r,. = pl-.. 

Accordingly, our computation for valuations of rank 1 will break into cases (a) and 

(b) of Proposition 3.1. We start with the easier case (a). Denote the p-adic valuation 

on 0, by up. 
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Proposition 3.2. Let (K, v) be u p-henseliun ,field of churacteristic 0. Suppose that 

r,. E Z and that K, is a jinite extension of F,,. Let (K*, v*) be the completion of 

(K, a). Then: 

(a) GK* (p) S GK( p) by restriction. 

(b) (K”, v*) is u ,finite extension qf (Cl,, v!,). 

(c) Ij pP e K* then GK(~) is a free pro-p group. 

Proof. By the p-henselianity, ResK* “K(~)z’ * is the unique prolongation of v to K” n 

K(p). As v*/v is immediate, so is ResK. n Q~)v*/v. Moreover, since f,. E 7 this exten- 

sion is defectless [ 1, Ch. VI, Section 8.5, Corollary 11. It follows that K = K* n K(p). 

Therefore [1 1, Lemma 2.31 implies (a). 

Now (K*)r* SK, and &.. 2 Z. By the universal property of the ring % ‘(Kr) of 

Witt vectors over K, [22, Ch. II, Section 5, Theorem 41, O,.* is a free module of 

finite rank over ?P*(Kr). The quotient field K* of O,.- is therefore a finite extension 

of the quotient field of “#‘(Kc), hence also a finite extension of Q,. Furthermore, 

O,.* n Q, is a valuation ring on QP containing ZP = YP(K,.) n Q, and not containing 

l/p. Consequently, ZP = 0,. n Q,. This proves (b). 

Assertion (c) now follows from a result of Safarevii: ([19, 21, 11-30, Theorem 31). 

0 

For the case &. = pT,. we first need the following technical lemma: 

Lemma 3.3. Let (K,v) be u valued ,fieM such that (KX : (KX)P)<30 and K,. =I?:. 

There exists 0 <I. E &, such thut .for every II E U,. one can $nd w E U,. satisfying 

v(wP ~ u) > i,. 

Proof. Let R be a system of representatives for the cosets of U,./U,!‘. By Lemma 2.1, 

IRI < 00. Since I?,: = (I?(? )P, for every a E R we can find w, E U,? such that the residues 

a, W, of a, w,, respectively, satisfy $t,” = a. Thus i, = min{v(w: - a) 1 a E R} > 0. 

Now given u E U,. we can write u = az P for some a E R and some z E U,.. Let 

w = w,z. We have v(wP - u) = v(w,P - a) > 1. 0 

Recall that if charK#p and ,u,,CIK then KX/p”H’(G~(p),Z/p) (see e.g. [8, 

(1.7)]). In particular, (KX : (KX)P)<~ if and only if GK(~) is finitely generated [21, 

I-38, Corollary]. 

Proposition 3.4. Let K be u ,field of churucteristic 0 containing pP and such that 

OK is jinitely generated. Let u be II p-henselian valuation on K satkfyiny char I?, 

= p and r,. = pT,,. Then GK(~) is u jLee pro-p group. 

Proof. 

Case I: v has rank 1. Let L/K be a cyclic extension of degree p and let N : L + K 

be the norm map. Let E be the unique prolongation of v to L. By the p- 
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henselianity, 

so pfp = pr,.. Since r: is torsion-free this implies r,. = Tc. 

By [25, p. 725, Remark] it suffices to show that N(L)= K. By Proposition 3.1, 

I?,. = f?:. Hence, in light of Lemma 2.1, KX = (1 + lq)(KX )P. It therefore suffices to 

show that 1 + in,. C N( 1 + ntc). 

Fix 8x EL with zJ’ E K and L = K(a). After dividing M by an appropriate element of 

K, we may thus assume that t?(a) = 0. Let 0 < /z E I-,. be as in Lemma 3.3. 

Now take a E 1 + ntV and assume that a e N( 1 + ml:). We construct inductively 

sequences 61, bz,. . . E m,. and ci,c2,. . . E 1 + m; such that for every n, 

t’(bn+l> 2 v(b) + A a=(1 +b,)N(c,). 

First we take 61 = a - 1 and cl = 1. Suppose that b,,,c,, have already been defined. 

Necessarily, b, # 0. Use the p-divisibility of c. to choose 0 # rr, E nrr such that v(b,) = 

pv(n,) and let un = b,/(n,r)J’. Then u, E U,. By the choice of /? there exists w, E U,. 

such that a(w: + u, ) > i.. We define 

b 
(WfyywnP + &I) 

n+’ = 1 - (7r,w,c()P ’ 
c,+1 = c,( 1 - n,w,cc). 

Then 

v(b,+,)=pv(~,)+v(w,P+un)>v(b,)+/!>O 

and c,,+i E 1 + nti. Furthermore, 

I + b, = 1 + (rc,,c~)~u, =(1 + b,+,)[l - (rr,w,c~)~]. 

But X” - (x,w,~)P = &EGa,(L,,lo(X - x,w,cr(~)). In particular, 1 - (rr,w,~)P = 

N( 1 - rc,,w,c(). Therefore 

completing the construction. 

Since u has rank 1, the group G embeds in R. As 0 <i we therefore have v(b,) > 

2v( p) for n sufficiently large. Then 1 + 6, E (K’ )P by Lemma 2.4. Moreover, ( 1 + 

in,.) n (K’ )P = (1 + mu)” by Lemma 2.1. It follows that 1 + b, E ( 1 + m,.)P. Conse- 

quently, a = ( 1 + b,)N(c,) E N( 1 + m,-), contradiction. 

Cusr II: 0 arbitrary. Let u, E and w be as in Proposition 2.3. Thus char E = 0, 

pp 2 E, and w is a p-henselian valuation of rank 1 on E with residue characteristic 

p. By condition (viii) of Proposition 2.3, GE(~) is finitely generated. Furthermore, 

by conditions (vi) and (vii) of Proposition 2.3 and the assumptions, r, = pr, and 

r, = pr’,. By condition (iv), Gig GE(p). Case 1 (applied with respect to (E, w)) 

implies that this is a free pro-p group. 0 
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Corollary 3.5. Let K he a,field ojchuructeristic 0 containing u,, and such thut Gk(p) 
is,finitely generated. Let v be a p-henseliun valuation on K rend suppose that K,. = K:) 

and r, = pT,. Then Gk(p) is a jree pro-p group. 

Proof. When char I? = p this follows from Proposition 3.4. When char K,. # p 

the assumptions imply that p, C K,, and G,, (p) = 1, so we are done by Proposition 

2.2. 0 

Combining Propositions 3.1, 3.2, and 3.4 we obtain: 

Corollary 3.6. Let K be a jield ojcharucteristic 0 containing uP and such that GK(~) 

is jinitely generated. Let v be a p-henselian valuation on K qf rank 1 and irtith 
char I?,. = p. Then either: 

(a) r,. Z Z, K,; is jinite, the completion (K*, v*) of (K, v) is CI jinite extension of 
(Qn,, up;,>, and Res: %(K*) + ‘3(K) is an isomorphism; or 

(b) r,. = p&, I?,. is perject, and Gk(p) is u free pro-p group. 

We now come to the first characterization theorem: 

Theorem 3.7. Let 3 be a jinitely generated cyclotomic pro-p pair. The jollo\cing 
conditions ure equivalent: 

(a) There exists a p-henselian culued,field (K, v) such that v bus rank 1, char K = 0, 
char I?,. = p, up 2 K, ctnd Y(K) E 9; 

(b) either 32 Y(K*) ,for some jinite extension K* of QP(pLp), or %E(F,U) .for 
some $nitely generated ,free pro-p group F und u continuous homomorphism 0: 

F + 1 + pZ,,. 

Proof. (a) + (b): This follows from Corollary 3.6. 

(b) 3 (a): If 9 2 9(K*) for some finite extension K* of Q&,,) then (a) is clear. 

Next suppose that 5’s (F, 0) with F and f? as in (b). Let Ko be the inertia field 

of Q,(,u~) relative to (Q&t,,))(p). The Galois extension Qep(pp- )/QJ,(~~) is totally 

ramified [22, Ch. IV, Proposition 171. Hence Ko and QJppX) are linearly disjoint 

over Q,,(pu,). Moreover, it follows from [22, Ch. IV, Proposition] again that the map 

XQ,(,+): GQ~~~,,)(P) + l+pZr is surjective. By the linear disjointness, ~~~ : GK,(~) 4 1+ 

pZP is also surjective. 

Now take a subfield KI of Ko(uLp = )/Ko such that Im(XK, ) = Im(0). Thus ZK, in- 

duces an isomorphism Gal(K&,,-)/K,) G Im(U). Let Y be the rank of Im(U) 

(by the structure of 1 + p&,, 05~52). Choose elements CT~, 1 < iL r, of GK, (p) 
whose restrictions to K&r’-: ) generate Gal(Ka(pp= )/Kl ). Set I= rank(F) and observe 

that 1 >r. By local class field theory (cf. [6, Proposition 1.31 or [5, Proposition 2.3]), 

GK(,(P) is a free pro-p group of countable rank. We can therefore choose o,.+I, . . . , o/ 

E GaWdPWGd~,- 1) such that (al, . . . , ~1) is a free pro-p group of rank 1. For the 

fixed field K of (01,. . , 0,) in Ko( p) we have Im(%K ) = Im( 0). Lemma 1.1 therefore 

implies that g(K)E(F,O). 0 
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For valuations of arbitrary rank we have: 

Theorem 3.8. The ,following conditions on a ,finitely generuted cyclotomic pro-p pair 

97 ure equivalent: 

(a) 9% Y(K) ,for some p-henseli~n valued jield (K, v) such that char K = 0, 

char I?,. = p and F,, C K; 

(b) 9 ” ZF >a%‘, lyhere m is c1 non-negative integer, und hyhere either 3 ” %(K* ) 

,for some,finite extension K” of Q,(u,), or 3s (F,g) f or some jinitely generated free 

pro-p group F and a continuous homomorphism 0 : F + 1 + pZt,. 

Proof. (a)+(b): Let (K, v) be as in (a), take u,E,w be as in Proposition 2.3. Then 

m = m,(T,,) < cc, GE(~) is finitely generated, and 9?‘(K) ” Zr x9(E). By Theorem 3.7, 

%=9(E) is as in (b). 

(b) + (a): Theorem 3.7 yields a p-henselian valued field (E, w) such that char E = 0, 

char,!?,. = p, up &E, and 9(E)” 3. Set r = Z” and order it lexicographically with 

respect to the usual ordering on Z. Let K = E((T)) be the field of all formal power 

series x = CYEr a$ with a, E E and with {y E r / a, # 0) well-ordered. When a # 0 

we define U(X) = min{y E r / a;. # 0). We also set u(O) = oc. Then (K, u) is henselian 

with K,, Z E and r,, = r. By Proposition 2.2, 

Let L’ be the unique valuation on K which is finer than u and such that v/u = ~1; it is 

p-henselian and I’?,. =I?,. has characteristic p (see Section 2). 0 

4. Absolute Galois groups 

In this section we determine the structure of the finitely generated pro-p absolute 

Galois groups of henselian fields with residue characteristic p. This structure is some- 

what simpler than that of the maximal pro-p Galois groups, as given in Theorem 3.8. 

For a pro-p group G let H’(G) =H’(G,Z/p) be the ith pro-p cohomology group, 

with Z/p considered as a trivial G-module. For a field K we abbreviate H’(K) = 

Hi(G~(p)). We first need two computational facts. 

Lemma 4.1. Let (K, v) be a p-henselian valued field such that charl?,. # p, up C K, 

dimIF,, H’(K) 2 3, and H*(K) ” Z/p. Then mP(K,) = 0. 

Proof. Let d = dirnEp H’(Ko), m = m,(c.) and 1 =m(m - 1)/2 (when m is an infinite 

cardinal number, 1 =m). By [23, Theorem 3.6 and Remark 3.141, 

H’(K)” HI&) 8 HO@,.)“, 

H*(K)” H2(KJ @ H’(K,.)” 8 HO(&)‘. 
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Taking F,,-dimensions and observing that H”(K1,) ” Z/p we obtain that d + m 2 3 and 

md + 15 1. This can happen only when m = 0. 0 

Given a field K we denote its absolute Galois group by GK and its algebraic closure 

by I?. 

Proposition 4.2. Let (K, v) be a henseliun field such thut Gk is u pro-p group qf 
jinite rank > 3 and H2(K) ” Z/p. Then char K, # p und mr( r,) = 0. 

Proof. As H2(K) Z Z/p we have char K # p by [21, 11-4, Proposition 31. Since 

[K(up) : K] is prime to p and GK is pro-p necessarily p,, C: K. By [21, l-38, Corollary], 

dirnFg H’(K)> 3. In light of Lemma 4.1 it suffices to show that char K,, # p. 

Suppose that char K,. = p (whence char K = 0). Proposition 2.3 yields a p-henselian 

valuation u on K and a p-henselian valuation NJ of rank I on E =I?, such that 

char E = 0, uLp C E, and 9?(K) ” i@‘) X??‘(E). But by Lemma 4.1 again (applied with 

respect to (K,u)), m,(T,) = 0. Thus 9(K)? 9(E). As GK is pro-p, the p-henselian 

field (K, u) is in fact henselian. Therefore there is a natural epimorphism GK + GE, 

implying that GE is pro-p and G 2 G K - E. Consequently, GE is not a free pro-p group 

[21, l-37, Corollary 21. Corollary 3.6 now implies that (E, W) embeds inside a finite 

extension (E*,w*) of (QrJ,n,,). By Krasner’s lemma, 5 = GE* =i?E*. It follows that 

Res : GE’ + GE is injective. However GE is a pro-p group while GE* is not. We thus 

obtain the desired contradiction. 0 

Theorem 4.3. The follo~~ing conditions on a cyclotomic pro-p pair 9 are equivalent: 

(a) There exists a henselian valued field (K, a) .such that GK is a finitely generated 

pro-p group, char I?,. = p, and Y(K) ” 9; 

(b) 9 ” ZF x (F, 8) for some non-negative integer m, a finitely generated free pro-p 

group F, and a continuous homomorphism H : F + 1 + pRt,. 

Proof. (a)+(b): If GK is a finitely generated free pro-p group then (b) holds with 

m = 0 and (F, 19) = Y(K). So suppose that GK is not a free pro-p group. As in the 

proof of Proposition 4.2, char K = 0 and pp C K. 

Let u, E =I?, and w be as in Proposition 2.3. Then rnJT,)<m and GE(~) is finitely 

generated. As GK is pro-p, so is GE, whence (E, w) is henselian. Applying Proposition 

4.2 with respect to (E, w) we obtain that GE cannot be a pro-p group of finite rank 

23 such that H2(E)” Z/p. In particular, it is not of the form G,*(p), with K* a 

finite extension of a,,(~~) [21, 11-30, Theorem 41. It follows from Theorem 3.7 that 

C!?(E)” (F,8) with F, 0 as in (b). Then 9” .Zp(r,’ M(F, 0). 

(b)=+(a): For 9 as in (b) Theorem 3.8 yields a p-henselian valued field (K,v) 

such that char K = 0, char K,. = p, up C K and 99” Y(K). In fact, in the construction 

there, v is henselian. Let 6 be a prolongation of v to !?. Since GK(~) is a free pro-p 

group this epimorphism has a homomorphic section s : GK(~) + GK. Let K’ be the 

fixed field in k of the image of s. Then GK~ is a finitely generated pro-p group 
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and Res ??(K’ ) + Y(K) is an isomorphism. Consequently, 9( K' ) E 3. Since (K, ResK 6) 

is henselian so is its algebraic extension (K’, ResKjv”). Furthermore, the residue field 

of (K’, ResKfi?) is an algebraic extension of K,,, hence has characteristic p. This 

proves (a). 0 

In a similar manner one obtains: 

Theorem 4.4. The following conditions on u cyclotomic pro-p pair 9 are equivalent: 
(a) There exists a henselian valued field (K, v) such that GK is LI ,finitely generated 

pro-p group, char K,. = p, v has runk 1, and 9?(K) S 9; 

(b) 9 “(F, 0) for some finitely generated free pro-p group F und II continuous 
homomorphism 0 : F ---f 1 f plz,. 

Proof. (a) + (b): As in the proof of Theorem 4.2 we may assume that char K = 0 and 

pp E K. By Proposition 4.2 and [21, 11-30, Theorem 41, GK cannot be isomorphic to 

GK*(~) for any finite extension K* of O,(p,). By Theorem 3.7, 9 is as in (b). 

(b) + (a): This can be shown precisely like the corresponding part of the proof of 

Theorem 4.3, using in the proof Theorem 3.7 instead of Theorem 3.8 (note that an 

algebraic extension of a valued field of rank 1 also has rank 1 [l, Ch. VI, Section 8.1, 

Corollary 11). 0 

5. Applications 

5’. 1. Ram$cation groups 

Recall that the ramification group of a Galois extension (L, u)/(K, v) of valued fields 

consists of all cr E Gal(L/K) such that a(x)/x E 1 + m, for all 0 #x E L. When K a 

finite extension of QD, and L = K(p), it follows from local class field theory that the 

ramification group of the canonical valuations is a free pro-p group [5, Proposition 2.31. 

The following result extends this fact. 

Theorem 5.1. Let K be a field of characteristic 0 contuininy uLp and such that Gk( p) 

is ,finitely generated. Let v be a p-henselian valuation on K of rank 1. Then the 
rum$cation group of v relative to K(p) is a free pro-p group. 

Proof. In an arbitrary Galois extension of valued fields with residue characteristic I> 0 

the ramification group is pro-l; when the residue characteristic is 0, this group is trivial 

[7, Theorem 20.181. Therefore, if in our case char K, # p then the ramification group of 

v in the pro-p extension K(p)/K is trivial. We may thus assume that char K, = p. Then 

the ramification group coincides with the inertia group of v in K(p)/K [7, Theorem 

20.181. In light of Corollary 3.6 we may also assume that (K, v) C (K*, v*) for some 

finite extension (K*,v*) of (Q,,v,) containing pLp such that Res: GK*(~) -+ GK(~) 
is an isomorphism and v*/v is immediate. Let r, T* be the ramification groups of 
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(K,v),(K*,u*) relative to K(p),K*(p), respectively. One has a natural commutative 

diagram of group extensions: 

1-T * 
- GA,*(~) - GE?(~) - 1 

1-T - G&) - GE, (P) Al. 

Since the middle vertical map is an isomorphism, so is the left vertical map. But as 

remarked above, T* is a free pro-p group. 0 

5.2. Finitely generated Demuskin groups as pro-p Galois groups 

Recall that a pro-p group G is a Demuskin group if H*(G) S Z/p and the cup- 

product U : H’(G) x H’(G) -+ H*(G) is non-degenerate. For example, if K is a finite 

extension of a,@,,) then GK(~) is a pro-p Demuskin group, by local class field theory 

[21, U-30, Theorem 41. It is an open problem to characterize the pro-p Demuskin groups 

of finite rank > 3 which can be realized as GK(~) for some field K of characteristic 

# p containing pp, say (cf. [17, p. 339; 9, Remark 5.51). The following result may 

shed some light on this question. 

Proposition 5.2. Let G be a pro-p group of finite rank > 3 such that H’(G) ” ZJp. 

The following conditions are equivalent: 

(a) G % Gk(p) for some p-henselian field (K, v) such that char K = 0, char K, = p, 

and uLp C K; 

(b) GE G,.(p) for some finite extension K* of Q,(uP). 

Proof. (a)+(b): We have dirnEp H’(K)=rank(G)>3 [21, I-38, Corollary]. It follows 

from Proposition 2.3 and Lemma 4.1 that Gk(p)” G&p) for some field E of charac- 

teristic 0 containing pp which is p-henselian with respect to a valuation w of rank 1 

satisfying char E, = p. Now G ?Z G&p) is not a free pro-p group [21, I-32, Corollary]. 

Corollary 3.6 therefore shows that GE(~) g GK* (p) with K* as in (b). 

(b) + (a): Immediate. 0 

Question 5.3. Let K be a field such that Gk(p) is a pro-p Demuskin group of finite 

rank 23. Is K necessarily p-henselian with respect to a valuation having residue 

characteristic p? 

Remark 5.4. (a) In light of Proposition 5.2, an affirmative answer to Question 5.3 

would imply that the pro-p DemuSkin groups of finite rank >3 which occur as GK(P) 
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for some field K of characteristic # p containing pp are precisely the groups GK* (p), 

where K* is a finite extension of ‘L.i?&Lp). 

(b) In light of Proposition 4.2, an affirmative answer to Question 5.3 would also 

imply that pro-p DemuSkin groups of finite rank >3 do not occur as absolute Galois 

groups of fields. The question whether this is indeed the case was posed to me by 

Jochen Koenigsmann. Note however that pro-p DemuSkin groups of countable rank do 

occur as absolute Galois groups (cf. [13, Theorem 5; 17,161). 

(c) There exist fields K with GK(~) a pro-p DemuSkin group of countable rank 

which are not p-henselian with respect to any valuation with residue characteristic p. 

In fact, Minai: and Ware construct in [ 16, Remark 2.6(i)] a field K of characteristic 0 

such that GK = GK(~) is a pro-p DemuSkin group of countable rank and K does not 

contain any henselization of Q with respect to its p-adic valuation. Hence K cannot 

be (p-)henselian with respect to a valuation as above. 

5.3. Elementary type Witt rings 

We conclude by an application to the theory of quadratic forms. Here we fix p = 2 

and denote the Witt ring of a field K of characteristic f2 by W(K). For the basic 

notions of the category of abstract Witt rings we refer to [15]. An abstract Witt ring 

is said to have elementary type if it can be constructed in finitely many steps from 

the abstract Witt rings Z, Z/2, Z/4, and the Witt rings of the finite extensions of Qz 

by means of the two standard constructions in that category, namely, direct products 

and extensions. The long-standing “elementary type conjecture” predicts that if (KX : 

(KX )2)<oo then W(K) has elementary type. Our final result proves this conjecture in 

an important test-case: 

Theorem 5.5. Let (K, v) be a 2-henselian field of characteristic 0 such that char K, = 2 

and (KX : (KX)2)<w. Then W(K) has elementary type. 

Proof. We combine the methods of [9, lo] with the results of Section 3. Proposition 

2.3 gives a 2-henselian valuation u on K such that E =I?, has characteristic 0 and 

is 2-henselian with respect to a valuation w of rank 1 with residue characteristic 2. 

Then W(K) is the extension W(E)[T,/2T,] of W(E) by the elementary abelian 2-group 

r,,/2r, [12, Section 121. Furthermore, by condition (vii) of Proposition 2.3, the latter 

group is finite and G&2) is finitely generated. It thus remains to show that W(E) has 

elementary type. 

By Corollary 3.6 one of the following cases holds: 

Case (I): r, g Z, the completion (E*, IV*) of (E,w) is a finite extension of (&, v2), 

and Res: 3(E*) -3(E) is an isomorphism. By [24, Corollary 2.51 this implies that 

W(E)% W(E*), and we are done. 

Case (II): GE(~) is a finitely generated free pro-2 group. In this case we take subex- 

tensions El,. . . ,E,, of E(2)l.E such that GE(~) = G~,(2)*2.. .*2G~~(2) and GE,(~)” Z2, 

i=l , . . ,n. Then W(E) is the direct product of W(E, ),. , W(E,,) in the category of 
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abstract Witt rings [9, Remark 3.51. Finally, for each 1 <i<n either W(E;) Z Z/4 or 

W(E;)“Z/2[2/2] [9, Table 5.11, completing the proof. 0 
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