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1 Einleitung

Sei p eine fixierte Primzahl.

Ziel der Masterarbeit ist es, zu zeigen, dass die Vervollstdndigung einer tief ver-
zweigten Erweiterung eines lokalen Korpers perfektoid ist, und dass umgekehrt
eine separable Erweiterung eines lokalen Korpers, deren Vervollstandigung perfek-
toid ist, tief verzweigt ist.

Ein perfektoider Korper ist ein nichtarchimedisch bewerteter vollstandiger Korper
K (mit Bewertungsring o ), sodass die Bewertung nichtdiskret ist und (o /pox )P =
ox /pog gilt.

Unter tief verzweigten Erweiterungen verstehen wir in dieser Masterarbeit sepa-
rable Erweiterungen F/F' eines lokalen Korpers F', die ”so sehr verzweigt” sind,
dass sich endliche separable Erweiterungen F'/F in gewisser Weise so verhalten
wie unverzweigte endliche Erweiterungen lokaler Korper. Zum Beispiel gilt fiir die
Spurabbildung Trz/z(mz) = mz (wobei mz beziehungsweise mz das maxima-
le Ideal von oz beziehungsweise or bezeichnet), und es gilt fiir den Modul der
Kéhler-Differentiale €2, _, /o = 0.

Wenn wir F als abzéhlbare Vereinigung endlicher Teilerweiterungen F),/F mit
F, C F,41 schreiben kénnen (das ist zum Beispiel der Fall, wenn F' = Q, ist),
dann finden wir ein ng und eine endliche Erweiterung F}, /Fy,, sodass F' = FF}
und, wenn wir F) := F, F,,, fiir n > ng setzen, [F), : F,| = [F': F] gilt. Wir kénnen
dann die Differente Dpr /g, betrachten. Wenn nun F /F tief verzweigt ist, dann
wird die Bewertung der Differente v/(Dp ), ) mit wachsendem n beliebig klein. Die
Verzweigung der F), wird sozusagen von den F,, "aufgegessen”.

Tief verzweigte Erweiterungen wurden zuerst von Coates und Greenberg in |16] fiir
F = Q, (oder eine endliche Erweiterung von @Q,) definiert, und in [8] von Fesenko
auf separable Erweiterungen von beliebigen lokalen Korpern mit perfektem Rest-
klassenkorper verallgemeinert. Noch allgemeiner ist die entsprechende Definition
von Gabber und Ramero in [17], die einen nichtarchimedisch bewerteten Kérper K
tief verzweigt nennen, wenn fiir einen separabel-algebraischen Abschluss K*? von
K der Modul der Kahler-Differentiale €2, .., /o, = 0 ist. In dieser Masterarbeit be-
trachten wir separable Erweiterungen eines lokalen Koérpers und halten uns an die
Definition von Coates/Greenberg beziehungsweise Fesenko, zeigen aber im dritten
Kapitel, dass diese mit der Definition von Gabber/Ramero im Fall einer separablen
Erweiterung eines lokalen Korpers iibereinstimmt.

Eine weitere in diesem Zusammenhang interessante Klasse von Koérpererweiterun-
gen sind arithmetisch proendliche Erweiterungen F/F eines lokalen Korpers. Sie
wurden von Wintenberger in [21] definiert und beschreiben Erweiterungen, bei de-
nen G%Gr offen in G fiir alle u > —1 ist, wobei G beziehungsweise G r die abso-
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lute Galoisgruppe von F' beziehungsweise F und G% die u-te Verzweigungsgruppe
von G bezeichnen. Arithmetisch proendliche Erweiterungen sind tief verzweigt,
die Umkehrung gilt jedoch nicht.

Uberblick

Im ersten Kapitel werden einige grundlegende Begriffe eingefithrt und Sétze ge-
nannt beziehungsweise bewiesen, die im weiteren Verlauf der Arbeit ben6tigt wer-
den. Dabei geht es vor allem um Verzweigungstheorie; wir werden unter anderem
die Differente und die Verzweigungsgruppen einer endlichen Erweiterung lokaler
Korper definieren und einige damit zusammenhédngende Sétze beweisen.

Im zweiten Kapitel werden tief verzweigte Erweiterungen eingefiithrt und einige
ihrer Eigenschaften bewiesen. Wir werden das Verhalten einer unendlichen Erwei-
terung eines lokalen Koérpers F' oft durch endliche Teilerweiterungen beschreiben,
sodass wir die verzweigungstheoretischen Resultate aus dem ersten Kapitel benut-
zen konnen. Die Beweise sind oft eher technischer Natur und laufen héufig darauf
hinaus, das Verhalten von zyklischen Erweiterungen von Primzahlgrad zu betrach-
ten und dann zu benutzen, dass die Trégheitsgruppe einer endlichen Erweiterung
lokaler Korper auflosbar ist.

Im dritten Kapitel zeigen wir, dass die Vervollstdndigung einer tief verzweigten
Erweiterung F/F perfektoid ist. Dazu orientieren wir uns am Vorgehen von Gabber
und Ramero in [17]. Anstatt dabei wie in [17] in der Kategorie der Fast- 0 ~-Moduln
zu arbeiten (das ist die Kategorie der oz-Moduln lokalisiert an der vollen Unterka-
tegorie der oz-Moduln, die vom maximalen Ideal mz annuliert werden), fithren wir
die Beweise mit konkreten Rechnungen in der Kategorie der o r-Moduln, ohne viel
Kategorientheorie zu benétigen. Wir werden sehen, dass fiir eine endliche separable
Erweiterung F’/F mit Spurabbildung Trz » der Homomorphismus

TrF s 0F — Home (07, 05),
Y (@ = Tep r(ay))

fast surjektiv ist, das heiflt, der Kokern wird von mx annuliert. Die Differente ei-
ner endlichen Erweiterung lokaler Korper L/K ist der Annulator des Kokerns des
entsprechenden Homomorphismus’ 77,/x. Wenn nun wie im obigen Beispiel die Be-
wertung der Differente I/(’DFT/L /F,) beliebig klein, der Annulator des entsprechenden
Kokerns also immer grofler wird, erhalten wir ”im Grenzwert”, dass der Kokern
von 7x 7 fast null ist. Darauf aufbauend zeigen wir, dass die Vervollstandigung F
perfektoid ist.

Im vierten Kapitel zeigen wir, dass separable Erweiterungen eines lokalen Koérpers
F/F, deren Vervollstdndigungen perfektoid sind, tief verzweigt sind. Dies erreichen
wir, indem wir wie in [18] und [12] zeigen, dass es eine Kategoriendquivalenz zwi-
schen perfektoiden Korpern von Charakteristik 0 und solchen von Charakteristik
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p gibt. Wir definieren zunéchst den Tilt eines perfektoiden Korpers von Charak-
teristik 0. Im Anschluss konstruieren wir den ”Untilt” eines perfektoiden Korpers
von Charakteristik p. Dabei benutzen wir Witt-Vektoren, die wir am Anfang des
Kapitels kurz einfithren. Wir zeigen, dass Tilten und Untilten invers zueinander
sind und dass sich beides mit endlichen Erweiterungen vertréagt.

Fiir einen perfektoiden Korper mit Charakteristik p erhalten wir dann unser ge-
wiinschtes Resultat durch eine einfache Rechnung, und durch die Kategoriendqui-
valenz erhalten wir dasselbe Ergebnis fiir Charakteristik 0.

Im finften Kapitel gehen wir schliefSlich auf arithmetisch proendliche Korperer-
weiterungen ein und zeigen, dass diese tief verzweigt sind, die Umkehrung jedoch
nicht gilt.

Danksagung

Zuerst mochte ich mich bei meinem Betreuer Herrn Prof. Dr. Peter Schneider fiir
das interessante Thema und die hilfreiche und engagierte Betreuung bedanken.
Ein besonderer Dank geht an Ivan Fesenko fiir das Beantworten meiner Fragen zu
seinem Paper [3].

Des Weiteren mochte ich Marten Bornmann sowohl fiir die Hilfe bei fachlichen
Fragen als auch fiir sein offenes Ohr bei nicht-fachlichen Problemen, die eine Mas-
terarbeit mit sich bringt, danken. Ebenso mdochte ich meiner Mentorin Anna Weif3
fiir ihre Unterstiitzung und ihre Ermutigungen danken. Marius Kley und Martin
Liidtke danke ich fiir das Korrekturlesen. Auflerdem danke ich meinem Freund Tim,
meinem Bruder Fabian und meinen Eltern fiir ihre Unterstiitzung.

1.1 Notation und grundlegende Voraussetzungen

Alle Ringe seien kommutativ und mit 1.

Unter einem lokalen Koérper verstehen wir einen nichtarchimedisch diskret bewerte-
ten Korper, der beziiglich der durch die Bewertung induzierten Topologie vollstan-
dig ist und dessen Restklassenkorper perfekt ist.

Wenn K ein nichtarchimedisch bewerteter Korper ist, dann bezeichnen wir den Be-
wertungsring von K mit 0, das maximale Ideal mit mg und den Restklassenkoérper
von K mit K.

Die Restklassenkorpercharakteristik aller bewerteten Korper sei grundsétzlich gleich
der fixierten Primzahl p.

Sei im Folgenden F' ein lokaler Korper (sofern nicht explizit anders definiert) und
F9 ein fixierter algebraischer Abschluss von F' und F*% C F¥9 der separabel-
algebraische Abschluss von F in F%9. Da F vollstindig und damit henselsch ist,
kénnen wir die Bewertung auf F' eindeutig zu einer Bewertung v auf den algebrai-
schen Abschluss F*9 von F fortsetzen.
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Sei o = {x € F|v(z) > 0} der Bewertungsring von F' mit maximalem Ideal
mp = {x € F|v(z) > 0} und 7 ein Primelement von of.

Alle betrachteten separablen Korpererweiterungen von F' seien in F*¢P.

Wenn L/F eine endliche Erweiterung ist, definieren wir vy, := e(L/F) - v, wobei
e(L/F) den Verzweigungsindex von L/F bezeichne.

Wenn I C op ein Ideal im diskreten Bewertunsgring oy ist, bezeichnen wir mit
v(I) = v(a) die Bewertung eines Erzeugers a von I. Weiterhin bezeichnen wir mit
F., beziehungsweise L,,, = LF,, die maximalen unverzweigten Teilerweiterungen
von F*P | F beziehungsweise F'*P /L. Die kanonische Fortsetzung von v auf die Ver-
vollsténdigung Lun beziiglich v bezeichnen wir ebenfalls mit v.

Die Vervollsténdigung eines algebraischen Abschlusses von Q,, bezeichnen wir mit

C,.
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In diesem Kapitel geht es um einige Grundlagen, die im weiteren Verlauf benutzt
werden. Unter anderem definieren wir die Differente. Auflerdem werden Verzwei-
gungsgruppen und damit zusammenhédngende Begriffe eingefiihrt.
Wir setzen in diesem Kapitel grundsatzlich voraus, dass alle betrachteten Kérperer-
weiterungen separabel sind, es sei denn, es handelt sich um Vervollstdndigungen von
Korpern, wobei diese durch das Symbol ™ gekennzeichnet werden.

2.1 Spur und Differente

Tief verzweigte Korpererweiterungen sind (in dieser Masterarbeit) unendliche Er-
weiterungen eines lokalen Korpers, die wir aber dennoch anhand endlicher Teiler-
weiterungen beschreiben wollen. Dafiir benttigen wir das folgende Lemma.

Lemma 2.1.1 (V, §4, Lemma 6 in [20]). Seien F'/F/F Koérpererweiterungen,
wobei F'/F endlich sei. Dann finden wir eine endliche Erweiterung E/F in F/F,
fiir die eine endliche, zu F iber E linear disjunkte Erweiterung E'/E existiert, die
ebenfalls separabel ist und denselben Grad wie F'/F hat und sodass F' = FE' gilt.
Ist F'/F galoissch, konnen wir E so wdihlen, dass E'/E galoissch ist.

Beweis. Da F/F eine algebraische Erweiterung ist, konnen wir F als Vereinigung
der endlichen Teilerweiterungen E/F von F/F schreiben. Sei ey, ...,eq4 eine Basis
von F'/F, [F': F] = d. Schreibe

d
e ej = z TijkCk mit z;, € F.
k=1

Sei E/F eine endliche Erweiterung, sodass die x5, in E liegen. Wir definieren E’ :=
Eleq, ..., eq]. Dann erfillt E’ die geforderten Bedingungen, wobei die Separabilitét
daraus folgt, dass die Elemente ey, ...,e4, da F'/F nach Voraussetzung separabel
ist, separabel {iber F sind. Aulerdem ist F/FE separabel. Also ist F'/E separabel.
Damit ist auch E’/FE separabel.

Sei nun zusitzlich F'/F galoissch. Sei o € Homg(E', F%9) ein Homomorphismus.
Da F'/F galoissch ist und wir o F-linear auf F’ fortsetzen konnen, gilt o(E’) C
F'. Wir finden also Elemente z; € F mit o(e;) = Zle rie;. Wenn wir Fy =
Elz1,...,xz4) und E} := Eiley, ..., eq] setzen und mit oy die Ej-lineare Fortsetzung
von o auf E{ bezeichnen, gilt o1(E]) = E}. Wir finden also durch Vergréfiern von E
eine endliche Erweiterung Fs/FE in F/F, sodass Ef = Fsleq, ..., e4] eine galoissche
Erweiterung von Es ist, die ebenfalls die sonstigen Bedingungen aus dem Lemma
erfiillt. O
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Bemerkung 2.1.2. Seien F'/F/F Erweiterungen, wobei F'/F endlich sei, und E/F
sei eine endliche Erweiterung in F/F. Wenn E die Bedingungen aus Lemma
erfiillt, sagen wir, dass F'/F dber E definiert ist. In dieser Situation bezeichnen
wir den Korper, der die geforderten Bedingungen aus dem obigen Lemma erfiillt,
stets mit E’. Wenn F'/F galoissch ist, gehen wir grundsitzlich davon aus, dass
auch E'/FE galoissch ist.

Bemerkung 2.1.3. Wenn F'/F iiber E definiert ist, dann auch iiber jeder endlichen
Erweiterung L/F in F/F, wobei wir von L' = LE’ ausgehen konnen.

Im Folgenden definieren wir die Differente einer endlichen Erweiterung lokaler
Korper.
Sei dazu zunéchst R ein Ring und M ein endlich erzeugter freier R-Modul.

Lemma 2.1.4. Der Homomorphismus, der durch
WM/R M ®pg HomR(M R) — HOmR(M M)
TR (Y= p(y)),
induziert wird, ist ein Isomorphismus von R-Moduln.

Beweis. Seimy, ..., mg eine Basis von M und sei } 7 (;®@p;) € M®@grHompg(M, R)
ein Element im Kern von wj, /R wobei x; = Zﬁlzl r;;m; mit bestimmten Elementen
rij € R sei. Dann gilt fiir alle y € M

T
-

zj;(y)

<.
Il
—

Il
M:

Z Tij mz (pj )
d
Z (rigmi - Y)))

i=1

= ; Z rijpi(y

i=1

<.
I

I
<.
I
L

S|

Damit folgt Y7 rij¢;(y) = 0 fiir alle 0 < i < d, also Y (2; ® ¢;) = Yf(m; ®
27 rijps) = 0. Also ist wyy g injektiv.
Wenn ¢ € Homp(M, M) ein beliebiges Element ist, dann ist Z 1 ¥(m;) @4, wobei
p; fiir 1 <4 <d durch

A )1, fallsi =y,
pilmj) = {O, sonst
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definiert wird, ein Urbild von v, denn es gilt wM/R(Z‘ijzl P(m;) ® i) (my) = (m;)
fiir alle 1 < j < d, und ein Element aus Homg (M, M) wird durch die Bilder der m;
eindeutig bestimmt. O

Definition (Evaluationsabbildung). Die Evaluationsabbildung evyg wird defi-
niert durch

evyi/r : M ®p Homg(M, R) — R,
z® g p(x).

Definition (Spur). Wir definieren die Spur von M iiber R von einem Homomor-
phismus ¢ € Hompg (M, M) durch

tra/r () = (evag/r © w&l/R)(SO)a

und die Spur von M {iiber R eines Elements x € M durch

Try/p(z) == tr(pe),
wobei p,; durch M >y +— x -y € M gegeben sei (u, ist die Multiplikation mit z).

Sei nun L/F eine endliche Erweiterung von Grad d = [L : F] und Tr = Try /p
die Spur von L/F.

Lemma 2.1.5. Sei ¢ € Homp (L, L) ein Homomorphismus. Sei (e;); eine Basis
des F-Vektorraums L. Stelle ¢ beziiglich (e;); als Matriz A = (a;;);; dar. Dann gilt

trp p(e) =3 aii-
Beweis. Bs gilt wy(p) = iy ¢(er) © pi = Sy (S aije;) © i, wobei g;

durch
() 1, fallsi =j
i(ej) =
PRGN 0, falls § 2

definiert ist. Es gilt ev(Zgzl(Z;l:1 aje;) ® ;) = 5:1(2?:1 aijpi(e;)) = Zgzl G-
O

Lemma 2.1.6. Tr ist nicht ausgeartet und wir haben einen Vektorraumisomorphis-
mus

T:L— Homp(L, F),
der durch x — (y — Tr(zy)) definiert ist.

Beweis. Tr stimmt nach Lemma mit der in [4] definierten Spur iiberein. Die
Aussage des Lemmas stimmt nun mit Satz 7 in [4, Kapitel 4, Abschnitt 7] iiberein,
wobei wir beachten, dass L/F nach Grundvoraussetzung separabel ist. O
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Sei x € oy, ein Element aus dem Bewertungsring von L. Es gilt, da F' henselsch
ist, v(z) = v(o(x)) fur alle 0 € Homp(L, F*P), und mit der strikten Dreiecksun-
gleichung folgt Tr(x) € op. Wir erhalten einen Homomorphismus

TL/F t01, — HOIHUF(OL,OF),

z = (y— Tr(xy)).
Lemma 2.1.7. 77,/p ist injektiv.

Beweis. Angenommen, es gibe ein x € oy, sodass Tr(zy) = 0 fir alle y € o, gilt, es
aber ein z € L gibt, sodass Tr(zz) # 0 ist. Dann wéhlen wir ein w € mp \ {0} mit
wz € or,. Dann gilt w - Tr(zz) = Tr(wzz) = 0, Widerspruch. Damit gilt Tr(zy) = 0
fiir alle y € L. Da die Spur nicht ausgeartet ist, folgt = 0. 0

Bemerkung 2.1.8. Wir definieren
o7 :={x € L|Tr(zy) € op fir alle y € 0r.}.

Sei e1, ..., ey, eine 0p-Basis von o7, (und damit auch eine F-Basis von L). Sei e, ..., e},

die duale Basis von L/F beziiglich Try,p. Es gilt o} = ejop + ... + e;0r. Wegen
or, C o} gilt min;{r(e])} < 0. Wir setzen wir a := ﬂ;mmi{y(e:)}. Dies héngt nicht

von der gewédhlten Basis ab.

Definition. Wir definieren die Differente von L/F als
DL/F:a~oL:{x€L: xo7, Cop}.

Lemma 2.1.9 (III, § 4, Proposition 8 in [20]). Seien L/E/F endliche Erweiterun-
gen. Dann gilt

Dr/r =Dr/e - Dg/r-

Lemma 2.1.10 (sieche Lemma 2.6 aus [|16]). Seien F'/F/F Kirpererweiterungen,
wobei F' | F endlich sei. Sei E1/F eine endliche Erweiterung in F/F, sodass F'|F
tber Ey definiert ist. Dann gilt fir alle endlichen Erweiterungen Eo/Ey in F/F

v(Dgy/E,) < v(Deiy/E,)-

Beweis. Seid:= [F' : F|. Jede E1-Basis aq, ..., aq von Ej ist auch eine Ey-Basis von
E} = FE5E}, denn da die aq, ..., ag linear unabhéngig iiber F sind, sind sie erst recht
tiber Fy linear unabhingig, und auflerdem gilt [EY : Eo] = [E] : E1]. Seien x1, ..., x4
eine Basis von o B als og,-Modul und i, ..., yq eine Basis von o B als og,-Modul.
Die Diskriminante dp;/p, := Normp: /g, (D /p,) ist gleich dem von det(o; (7))?
erzeugten Ideal in op,|'], wobei o1, ...,04 die verschiedenen Einbettungen von Ff in
F#eP  die E; festlassen, seien. Es gilt

1
v(Dpy/B,) = EV(5E;/E1)- (2.1)

!siehe z.B. [20, III, § 3].

10
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Analoges gilt fiir Fy, wobei wir die Ey linearen Fortsetzungen eines o auf EY eben-
falls mit o bezeichnen.
Wir definieren die d x d-Matrix A = (a;;), sodass x; = Zzzl a;iryx fir a;; € op,
gilt. Dann gilt

det((a;(2:)))? = det(A)det((o, (yi)))?.

Da a;, € og, fir alle ¢, k gilt, haben wir

v(dm;/m,) = v(0Ey/E,)-
Die Behauptung folgt nun aus (2.1)). O
Lemma 2.1.11. Die Abbildung
Tjox : 07, — Homy, (01, 0r),
y — (z — Tr(zy))
ist ein Isomorphismus von or,-Moduln, wobei wir Hom,, (or,,0r) via a - ¢ = (z —
p(ax)) fir a,xz € of, und ¢ € Hom,,,(or,0p) als or,-Modul betrachten.

Beweis. Die Injektivitit folgt analog zum Beweis von Lemma [2.1.7}

Sei ¢ € Hom,,, (0r,,0r). Da oy, ein freier op-Modul vom Rang [L : F] ist, kénnen
wir ¢ zu einer F-linearen Abbildung ® : L — F' fortsetzen. Wegen Lemma [2.1.6]
finden wir ein y € L, sodass ®(x) = Tr(xy) fiir alle z € L gilt. Dann ist y ein Urbild
von ¢, und nach Definition von o7 liegt v in o7 . O

Lemma 2.1.12 (Tag 0BWO in [3]). Sei L/F eine endliche Kéorpererweiterung und
Dy,r die Differente. Dann gilt

DL/F = ADHOL(COkeI'(TL/F)).

Beweis. Es gilt Dy p = {x € oy, | 0} C or}. Das Element 1 € oy, wird unter dem
Isomorphismus Tj,» aus Lemma [2.1.11jauf Tr geschickt, das heifit es gilt 7] 02(0 L) =
or, - Tr. Somit gilt
DL/F = {.%' € L’ .’EOE - UL}
={z €og|r-Hom,,(or,0r) C oy - Tr}
= Ann,, (Coker(7y/r)).

2.2 Verzweigungsgruppen

In diesem Abschnitt werden grundlegende Resultate {iber Verzweigungsgruppen ge-
nannt und teilweise bewiesen. Diese stammen grofitenteils aus [20, Kapitel IV und
V], [15, Kapitel 11, § 10], [9, Chapter III].

Sei L/F eine endliche Galois-Erweiterung und G = Gal(L/F') die zugehorige Ga-
loisgruppe. Die Gruppe G operiert auf oy,. Sei x ein Erzeuger von oy, als o p-Algebra
(siehe |20, III, §6, Proposition 12]).

11
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Lemma 2.2.1. Sei o € G und sei i > —1 eine ganze Zahl. Dann sind folgende
Bedingungen dquivalent:

i+1,
L

(i) o operiert trivial auf dem Qotienten o, /m’"™;
(ii) vr(o(a) —a) > i+ 1 fir alle a € op;
(iii) vr(o(x) —x) > i+ 1.
Beweis. Die Aquivalenz von (i) und (ii) ist klar. Andererseits wird o,/ m’ als op-
Algebra von dem Bild von x unter der Projektion pri:op —or/ mZL+1 erzeugt. Also
operiert o genau dann trivial auf or,/m5™, wenn vy (o(x) — 2) > i + 1 gilt, denn
dann gilt pr;(x) = o(pri(x)). O

Definition (Verzweigungsgruppen in unterer Nummerierung). Sei ¢ > —1 eine
ganze Zahl. Wir definieren die ¢-te Verzweigungsgruppe in unterer Nummerierung
G; als die Menge der o € G, die die dquivalenten Bedingungen von Lemma [2.2.1
erfiillen.

Lemma 2.2.2. Die GG; bilden eine absteigende Sequenz von normalen Untergruppen
von G. Es gilt G; = {1} fir geniigend grofes i.
Beweis. Es gilt firoc € G;und 7 € G

1

vp(r oo or(a) — a) = v (r o (0 0 7(a) — 7(a)) = vi(0 0 7(a) — 7(a) 2 i + 1,

denn 7(a) € oy, fiir alle a € of,. Alsoist 7' oo o7 € G; fiiralle 7 € G und ¢ € G,

das heifit G; ist eine normale Untergruppe von G. Es ist klar, dass die Sequenz der

G, absteigend ist. Wenn i > sup{v(o(z)) — x)} fir o # id gilt, ist G; trivial nach

Eigenschaft (iii) aus Lemma deswegen gilt G; = {1} fiir geniigend grofes

i O
Sei 0 € G. Dann definieren wir eine Funktion auf G durch

ig(o) =vp(o(x) — ).

Es ist ig(0) eine ganze Zahl > 0, wenn o # id gilt; fir o = id ist ig(0) = co. Es
gilt

iglo) > i+ 1< 0€G,.
Lemma 2.2.3. Sei H eine Untergruppe von G. Dann gilt

Beweis. Das Lemma folgt direkt aus Bedingung (i) in Lemma O
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2.2 Verzweigungsgruppen

Satz 2.2.4 (IV, § 1, Proposition 3 in [20]). Sei H eine normale Untergruppe von
G. Dann gilt fir jedes o € G/H

iq/u(o) = (Ll/E) > ialn),

TH=0
wobei E der Fixkdrper von H ist.

Korollar 2.2.0.1 (IV, § 2, Korollar zu Proposition 3 in [20]). Sei H = G; fiir ein
1> —1. Dann gilt

Gu/H, uw<i
={1}, u>i.

Bemerkung 2.2.5. Sei L/F eine endliche Erweiterung und sei F, die maximale
unverzweigte Teilerweiterung von F*?/F. Dann ist F,,L = L, die maximale
unverzwelgte Teilerweiterung von F*/L (siehe [9, II, Proposition 3.4]). Es sind

F,,, und Lun wieder lokale Korper. Aulerdem gilt Lun = FunL siehe |20, II, § 3,
Theorem 1].

(G H). = {

Lemma 2.2.6. Sei L/F total verzweigt. Dann ist ﬁ/ﬁm galoissch und die
Verzweigungsgruppen von L/F stimmen mit denen von LFun/}AWun iberein.

Beweis. Da L/F total verzweigt ist, sind L und F, linear disjunkt iiber F. Al-
80 ist Lyn/Fun galoissch mit Galoisgruppe Gal(Lun/Fun) = Gal(L/F). Nach [20,
11, §3 Corollary 4] ist auBlerdem Lun/Fun galoissch und es gilt Gal(Lyy/Fupn) =
Gal(Lyy/ Fun) Wenn 77, ein Primelement von oy, ist, dann ist 77, auch ein Primle-

ment von or,,,. Da mr,,, dicht in m liegt, ist 7z, ebenfalls ein Primelement von

o7 . Die Erweiterung Lun / F ist total verzweigt, also wird die o -Algebra 0y

von 7y, erzeugt. Sei o € Gal(f/un / ﬁun) ein beliebiges Element und ¢’ ein Urbild von
o in Gal(L/F) unter dem Isomorphismus der Galoisgruppen. Dann gilt o), = o
und damit o(rz) = o'(7r), also
vi(o'(r) — ) = e(L/F)v(o'(mp) — m)
= e(iun/ﬁun)y(a(ﬂL) —7L)
= VEW(J(TrL) — 7).
O

Fiir eine reelle Zahl u > —1 bezeichnen wir mit G, die Verzweigungsgruppe G;,
wobei ¢ die kleinste ganze Zahl > w ist.

Lemma 2.2.7 (IV, § 2, Proposition 4 in [20]). Es gilt

o0

v(Duyr) = Y in(o) = 3 (#G; — 1) = /T(#Gu ~1)du

o#id i=0 -

13



2 Verzweigungstheorie
Bemerkung 2.2.8. Da G; = {id} fiir geniigend groBe i gilt, ist #G; — 1 = 0 bezie-
hungsweise der Integrand in der obigen Formel ist null fiir gentigend grofle u.

Beweis. Sei x ein Erzeuger von oy, als op-Algebra und sei f das Minimalpolynom
von z {iber F'. Dann gilt nach [20, I1I, § 7, Proposition 14] Dy /p = (f'(z)). Es gilt
f(X) =Meq(X —o(x)) und

f(@) = ozia(z — o(2))
und damit

ve(Dryr) = vi(f'(x)) = Y ve(o(e) — @)

o#id
=Y i #(Gi—1\ Gi)
i=0

_ ij:z (#Gio1 — 1) — (G — 1))
= (#Go— 1)+ (#G1 — 1) + (#G2 — 1) +

2.3 Die Funktionen ¢ und ¢

Sei zunéchst wie im vorherigen Abschnitt L/F eine endliche Galois-Erweiterung
und G = Gal(L/F) die zugehorige Galoisgruppe. Die folgenden Resultate stammen
grofitenteils aus [20, IV, § 3].

Wir definieren

wenn u > 0,

U, wenn — 1 <u <0.

p(u) = pr/p(u) = {fo (GO Gt
Sei m eine positive ganze Zahl mit m <« < m + 1. Dann gilt
o) = ——(#G1 4 ... + #Gp + (u— m)#Gry1).
#Go

Lemma 2.3.1 (IV, § 3, Proposition 12 in [20]). (i) Die Funktion ¢ ist stetig, stiick-
weise linear, streng monoton steigend und konkav.

(ii) Es gilt ¢(0) = 0.

(iii) Seien ¢ und | die Rechts beziehungsweise Linksableitung von ¢. Dann gilt

on(u) = ¢y(u) = (Go 5 falls w nicht ganzzahlig ist, und ¢)(u) = (GozlGu)’

oh(u) = m falls u ganzzahlig ist.

14



2.3 Die Funktionen ¢ und ¢

Die Funktion ¢ : [—1,00) — [—1, 00) ist ein Hombomorphismus. Wir bezeichnen
die Umkehrfunktion von ¢ mit ¢ := v p.

Lemma 2.3.2 (IV, § 3, Proposition 13 in [20]). (i) Die Funktion 1 ist stetig, stiick-
weise linear, streng monoton steigend und konver.

(ii) Es gilt ¥(0) = 0.

(iii) Wenn v = v(u) gilt, dann gilt 1y(v) = Tpﬁu) und ¢;.(v) = sO’Tl(U)'

(iv) Wenn v ganzzahlig ist, dann auch u = ¥ (v).

Definition (Verzweigungsgruppen in oberer Nummerierung). Sei L/F' eine endli-
che galoissche Erweiterung lokaler Kérper und G := Gal(L/F'). Dann ist

Gv = Gw(v)
beziehungsweise fiir v = ¢(u)

G*W =G,
die v-te Verzweigungsgruppe in oberer Nummerierung.

Bs gilt G7!' = G, G° = Go und GV = {id} fiir geniigend groBes v. Die Kenntnis
von GV ist dquivalent zur Kenntnis von G, und es gilt

W(v) = /OU(GO . G dw.

Lemma 2.3.3 (IV, §3, Lemma 3 in [20]). Es gilt p(u) = 5t Yge Inf(ic(0), u+
1) —1.

Beweis. Sei 6(u) = ﬁ Y weqInf(ig(o),u + 1) — 1 die durch die rechte Seite der
Gleichung definierte Funktion. Dann ist 0 stetig und stiickweise linear, und es gilt
0(0) = 0.

Wenn m < u < m + 1 fiir eine ganze Zahl m gilt, dann ist 6'(u) gleich der Anzahl
der o € G mit ig(c) > m + 2 multipliziert mit ﬁ, also

9/('11,) — #Gm+1 _ 1
#Go (Go: Gm+1)
Damit gilt 8" = ¢/, also stimmen beide Funktionen tiberein. O

Sei nun H eine normale Untergruppe von G und E C L der Fixkorper von H.
Lemma 2.3.4 (Herbrands Theorem). Gilt v = ¢ /p(u), soist G,H/H = (G/H),

Satz 2.3.5 (III, § 3, Proposition 15 in [20]). Die Funktionen ¢ und v erfillen die
folgenden Gleichungen:

PL/F = YPE/F°¥PL/E
und

@ZJL/F = ¢L/E o ¢E/F—

15



2 Verzweigungstheorie

Beweis. Sei u > —1 keine ganze Zahl. Die Ableitung der Funktion pg/r o7 /p an
der Stelle u ist nach der Kettenregel

(ve/roer/p) () = Ogrp() - ¢ p(u)
mit v = ¢ /p(u). Damit gilt mit Lemma
(pe/popLp) (u) = (F#(G/H)v/ep/r) - (#Hu/er/p)
= #Gu/er)r = ¢p r(u).
Die Formel fiir v folgt daraus. O
Satz 2.3.6. Sei H eine normale Untergruppe von G. Dann gilt
(G/H)" =G"H/H
fir alle v > —1.

Beweis. Es gilt

(G/H)" = (G/H)a, wobei & = /p(v).
Nach Lemma gilt (G/H), = GuH/H, mit w =y ,p(r) = ¥r/p(v) nach Satz
2375 Damit gilt G, = G". O

Bemerkung 2.3.7. Fiir eine unendliche Galoiserweiterung F/F mit Galoisgruppe G
konnen wir nun aufgrund von Satz [2.3.6|

G" = lim Gal(E/F)"

definieren, wobei E die Menge der endlichen Galoiserweiterungen in F/F durch-
lauft.

G" ist eine abgeschlossene normale Untergruppe von G. Im Fall F = F*P bezeich-
nen wir den Fixkérper von G% mit F®). Insbesondere ist F(*) /F galoissch.

Bemerkung 2.3.8. Sei F/F die maximale unverzweigte Teilerweiterung von L/F.
Es gllt wL/F = wL/E (¢] wE/F = ¢L/E Mit Lemma fOlgt wL/F = ¢Zun/ﬁun

Lemma 2.3.9 (Lemma 2.1 in |16]). Sei L/F eine beliebige endliche Erweiterung.
Dann gilt

1

vi(Dy)p) = /_O:1— CrErro (2.2)

Beweis. Sei M/F eine endliche galoissche Erweiterung mit L C M. Da die Diffe-
rente multiplikativ ist, gilt Dys/p - D/ = Dpyyr und damit

vm(Dryr) = v (Puyyr) — vm (Dagyr)- (2.3)
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

Setze G = Gal(M/F) und sei H die Untergruppe von G, die L festldsst. Nach
Lemma gilt

o(Dagyr) = [ #G - i, vy(Page) = [ G- D
und damit, nach ({2.3),

1 oo
D =— G; — #H;)di. 2.4
viDuir) = iy L, G~ #H) 24)
Wir zeigen nun, dass die rechte Seite von ([2.2)) zu (2.3) dquivalent ist. Sei ¢ > —1.
Dann ist L N F® der Fixkérper von G*H, und es gilt

[L:LNFY) = #(G'H)/#H = #(G*/(G' N H)). (2.5)

Sei i = ¢pr/p(t). Nach Lemma gilt, wenn ¢ nicht ganzzahlig ist, pp/p(t) =

ﬁgé Auflerdem gilt nach Lemma G; N H = H;. Durch die Variablensubsti-

tution i = ¢y p(t) erhalten wir somit aus (2.5, dass die rechte Seite von (?2.2)
gleich

> #H, #Gy

e(L/F)/_1 (- e igta (2.6)
ist. Wegen #Go = e(M/F) =e(M/L)-e(L/F) ist gleich (2.4)). O

2.4 Zyklische total verzweigte Erweiterungen von
Primzahlgrad

Sei L/F eine total verzweigte galoissche Erweiterung und G = Gal(L/F') zyklisch
von Primzahlgrad [. Sei m ein Primelement von L. Sei ¢ € G ein Erzeuger von G
und setze s = s(L/F) :=i(o) — 1. Die Verzweigungsgruppen von L/F' sehen dann
folgendermafien aus:

G=Gy=..=G,,
{1} == G5+1 = ...

Es gilt s # 0 genau dann, wenn [ gleich der Restklassenkérpercharakteristik p ist.
Fir die Funktion ¢ = ¢/ gilt

Y(z) = {x v=e (2.7)

s+l(x—s) x>s.

Lemma 2.4.1 (V, §3, Lemma 3 in [20]). Fir die Differente Dy gilt vi,(Dr/r) =
(s+1)(1—-1)

Beweis. Folgt direkt aus Lemma [2.2. O
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2 Verzweigungstheorie

Lemma 2.4.2 (V, §3, Lemma 4 in [20]). Es gilt Trp/p(mz) = mp, wobei r =
[(s+1)(I—=1)/1+1/1] = s+ 1+ [—s/l] gilt. (Hierbei bezeichnet [x] die grofite ganze
Zahl < z.)

Beweis. Da die Spur op-linear ist, ist Try,/p(mz) ein Ideal in op. Sei r € N eine
natiirliche Zahl. Nach |20, Chapter III, Proposition 7] gilt Trz,/p(mz) C m} genau
dann, wenn

my, C m - D;}F = mlgf(sﬂ)(l*l)
gilt (wobei die Gleichheit aus Lemma folgt), das heiit wenn r < ((s 4+ 1)(I —
1)+ 1)/ ist. O

Sei ab jetzt L/F eine beliebige endliche Erweiterung.

Lemma 2.4.3. Wenn L/F galoissch ist, konnen wir L/F als Turm von Teilerwei-
terungen F = Fy C Fy C ... C F; C ... C F,, = L schreiben, wobei Fy /F unverzweigt
und Fi11/F; total verzweigt und zyklisch von Primzahlgrad fir i > 1 ist.

Beweis. Nach [15, Kapitel II, §7] finden wir einen Teilkorper F, sodass Fj/F un-
verzweigt und L/F} total verzweigt ist. Nach |20, Kapitel IV, §1, Korollar zu Pro-
position 2] ist die Galoisgruppe von L/F; die Tragheitsgruppe Gy = Gal(L/F)jy.
Diese ist nach |20, Kapitel IV, §2, Korollar 5 zu Proposition 7] auflésbar. Damit
besitzt Go eine Normalreihe Go 2 G(1) 2 ... 2 Gy 2 G(ig1) 2 - 2 {1}, deren
Faktoren zyklisch von Primzahlordnung sindEL woraus das Lemma folgt. O

Bemerkung 2.4.4. Wir konnen die Funktion ¢, die wir bisher nur fiir eine galois-
sche Erweiterung definiert haben, auch fiir eine beliebige endliche Erweiterung (die
allerdings nach Grundvoraussetzung separabel sein soll) definieren. Dazu sei L/F
eine endliche Erweiterung und L'/F eine endliche Galois-Erweiterung mit L C L'.
Dann definieren wir

Yr)r=$r/LoYrr.

Analog koénnen wir ¢y /p = ¢r//p © ¢/ definieren. Nach Satz sind diese
Definitionen unabhangig vom gewéhlten L' und 1y, sr und o/ erfillen dieselben
Transitivitdtsformeln wie die entsprechenenden Funktionen im galoisschen Fall.

Bemerkung 2.4.5. Sei L/F eine endliche Erweiterung, wobei wir F' = F,,, anneh-
men. Dann ist L/F total verzweigt. Sei L™ die normale Hille von L tiber F.
L™/F ist ebenfalls total verzweigt. Seien G = Gal(L"/F) und H = Gal(L"/L).
Dann erhalten wir wie im obigen Lemma eine Folge von Korpererweiterungen
F=FCF C..CF C..CF,=1L" wobei Fi;11/F; total verzweigt und
zyklisch von Primzahlgrad fiir ¢ > 0 ist, da wir wie im obigen Lemma gesehen eine
Normalreihe G = Go 2 G1) 2 ... 2 G 2 Gig) 2 - 2 {1}, deren Faktoren

%Siehe z.B. [4, 5.4, Satz 7).
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

zyklisch von Primzahlordnung sind, haben.
Der Index von G(;;1)H in Gy H teilt #G;)/G(i11), was man wie folgt sieht: Es
gilt

#(G o H/G ) - #(Guy/G i)
#G i) H/G (i)

Wir haben Isomorphismen G;) H/G ;) = H/H N G;), und aulerdem einen surjek-
tiven Homomorphismus H/H NG (i4.1) — H/H NG ;). Damit ist #(G ;) H/G ;) ein
Teiler von #(G(HI)H/G(HI))

Dann ist GH O G(l)H D ... D G(i)H D) G(i+1)H D ... O H ecine Reihe von
Untergruppen von G, wobei der Index von G 1)H in G;)H fir i > 0 eine Prim-
zahl oder gleich 1 ist. Wir erhalten damit einen Turm von Koérpererweiterungen
F = Fy C Fl Cc ... C FZ Cc .. C Fn = L, sodass Fiﬂ/ﬁ’i total verzweigt von
Primzahlgrad oder trivial ist.

#(GoyH/Gu)H) =

Bemerkung 2.4.6. Sei E/F die maximale unverzweigte Teilerweiterung von L/F.
Es gilt nach Bemerkung W Y p =YL= d)fun JBan = d)fun o Wegen Bemer-
kung [2.4.5] und Satz [2.3.5] wird es im Folgenden héufig ausreichen, das Verhalten
der Funktion ¢ fiir zahm verzweigte und wild verzweigte Erweiterungen von Prim-
zahlgrad zu betrachten.

Bemerkung 2.4.7. Wenn der Restklassenkorper von F' endlich ist, dann ist die Ga-
loisgruppe einer endlichen galoisschen Erweiterung L/ F auflosbar (siehe [20, IV, § 2,
Corollary 5 zu Proposition 7]). In diesem Fall miissen wir nicht zu lokalen Kérpern
mit algebraisch abgeschlossenem Restklassenkorper tibergehen, sondern erhalten
mit analogem Beweis wie in Bemerkung fiir eine endliche Erweiterung F/F
einen Turm aus zyklischen Erweiterungen von Primzahlgrad.

Lemma 2.4.8 (siehe III, Proposition 3.3 in [9]). Sei L/F eine endliche Erweite-
rung.

(i) Wenn L/F unverzweigt ist, gilt 1, p = id.
(ii) Wenn L/F zahm verzweigt mit e(L/F) :=1 ist, gilt

r x<0,
wL/F(x) - {lx z > 0.

(iii) Wenn L/F total verzweigt von Grad p ist, gilt

x x <s(L"/LYHIY,

Yiyr(@) = {3<Ln/Lt)(1 —p)lt+pr x>s(L"/LYHITY,

wobei L™ die normale Hiille von L/F, L' die maximale zahm verzweigte Tei-
lerweiterung von L™/F und | := e(L™/L) den Verzweigungsindex von L"/L
bezeichne.
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2 Verzweigungstheorie

Beweis. Sei L/F unverzweigt und sei L™ die normale Hiille von L/F. Sie E/F die
maximale unverzweigte Teilerweiterung von L"/F. Dann gilt ¢pn/p = Yrn/p =
Ypn/L, also Yp p = ppnjp 0 Ypn p = id.

Sei zunéchst L/ F total verzweigt von Primzahlgrad | # p. Nach Bemerkung 6n—
nen wir 0.B.d.A. F = ﬁ’m und L = Eun annehmen. Dann enthélt F' eine primitive
[-te-Einheitswurzel ¢ (siehe [20, IV, §4, Proposition 16]). Sei a € L ein Element mit
F(a) = L. Dann gilt @' € L und a ist Nullstelle des Polynoms X' —a! € F[X]. Nach
[4, 4.8, Satz 3] ist nun L/F galoissch, also insbesondere eine zyklische verzweigte
Erweiterung von Primzahlgrad [ # p, und die Behauptung folgt damit aus . Fiir
eine beliebige zahm verzweigte Erweiterung L/F benutzen wir Bemerkung m
Wenn schliefllich L/F' total verzweigt von Grad p ist, dann ist [L" : L] teilerfremd
zu p. In der Tat: Wenn a € L ein Element mit F'(a) = L ist, dann sei f € F[X] das
Minimalpolynom von a. Die normale Hiille L™ von L/F ist der Zerfallungskorper
von f iiber F. Wenn f(X) = (X — a)g(X) ist, dann ist L™ der Zerféllungskorper
von g iiber L. Da der Grad von g gleich p—1 ist, ist der Grad der Korpererweiterung
[L™: L] < (p—1)!, also teilerfremd zu p.

Damit ist L™ /L zahm verzweigt. Es gilt dann [ = e(L"/L) = e(L!/F). Wir berech-
nen fur z >0

Yrp(x) = prn/n oY p(x)
=1/1-Yn/p(z)
=1/l Ypn/pe(Preyp()
= 1/1-tpn/pe(l- ),

woraus die Behauptung mit der Formel fiir den galoisschen Fall (2.7]) folgt. O

Lemma 2.4.9. Sei L/F eine endliche Erweiterung. Dann gilt
(i) Y1 F ist stetig, stiickweise linear, streng monoton steigend und konvex.
(i) Die Steigungen von WL/F sind ganzzahlig.

(i) Es gilt ¢¥pp(z) < e(L/F)z fir alle x > —1.

Beweis. Nach Definition gilt ©7,/p = @rn/, © Y0 p, wobei L™ die normale Hiille
von L/F sei.

Da ¢/ und ¢pn ) p stetig, streng monoton steigend und stiickweise linear sind, gilt
selbiges auch fiir 17, p. Die restlichen Aussagen folgen aus Lemma @l zusammen

mit Bemerkung O

Bemerkung 2.4.10. Fiir eine endliche galoissche Erweiterung L/F mit Galoisgruppe
G sagen wir, dass L/F einen unteren Sprung an der Stelle u fiir eine Zahl u > —1
hat, wenn G, # Gu4+1 gilt. Analog hat L/F einen oberen Sprung an der Stelle
u > —1, wenn G% # G fiir alle € > 0 gilt.
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

Lemma 2.4.11. Sei F'/F eine zyklische total verzweigte Erweiterung von Grad p.
Sei L/F eine zu F'/F linear disjunkte endliche Erweiterung. Dann gilt

S(F,L/L) S ’l]Z)F/L/F/(S(F//F)).
(Dabei setzen wir, falls F'L/L unverzweigt ist, s(F'L/L) =0.)

Beweis. Zur Veranschaulichung:

Fr——F'L
F L
Es gilt nach Lemma [2:3.5]
Ypp)p=Yrp oY p =YLLoY F- (2.8)

Wir nehmen zunéchst an, dass L/F galoissch ist. Dann ist auch F'L/F galoissch,
und wir setzen G = Gal(F'L/F),H = Gal(F'L/L) und I = Gal(F'L/F").

Fall 1

Wir nehmen an, dass L/F unverzweigt ist. Aufgrund der Multiplikativitét des Ver-
zweigungsindex’ und da [F'L : L] = p gilt, ist auch F'L/F’ unverzweigt. Dann ist
d)L/F = 1/}F’L/F’ = id. Mit fOlgt ¢F’L/L = ¢F’/Fa und somit

S(F'L/L) = s(F'|F) = w0 (s(F [ F))

Fall 2

Wir nehmen an, dass L/F total verzweigt von Primzahlgrad [ # p ist. Dann gilt
Yr/r(z) = |-z nach Lemma [2.4.8 und ebenso g /m () = [ - 2 fiir > 0, denn
ahnlich wie oben sieht man, dass F'L/F’ total verzweigt von Grad [ ist. Also gilt
nach Lemma 2.3.5]

U bpryp(x) = Ve e (Y p() = Ypp p(z) = e (o) fir z > 0.
Der Graph von gy r(lx) hat also einen Knick an der Stelle z = s(F'/F), das
heifit

S(F'L/L) =1-s(F'/F) = ¢prpp (s(F'/F)).

Fall 3

Wir nehmen an, dass L/F total verzweigt von Grad p ist.

Fall 38} Wir nehmen an, dass s(L/F) < s(F'/F) gilt. Dann hat F'L/F zwei ver-
schiedene untere Spriinge 0 < s1 < s3. In der Tat:

3Der Beweis stammt aus |11].
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2 Verzweigungstheorie

Es gilt Gal(L/F) = G/H und Gal(F'/F) = G/I. Die Erweiterung F'L/F hat min-
destens einen unteren Sprung, da andernfalls G, = {1} fiir alle u > 0 gelten wiirde.
Aber aus s(L/F) < s(F'/F) (d.h. s(F'/F) > 1) folgt Gal(F'/F)* = G*I/I # {1}
fir u < 1, also auch G* # {1} und damit G,, # {1}. Also hat F'L/F mindestens
einen unteren Sprung.

Angenommen, F'L/F hat genau einen unteren Sprung an der Stelle s. Da dann
nach Lemma m der Sprung von L/F durch den Sprung von F'L/F bestimmt
wird, folgt s(L/F) = s. Analog hat F'/F einen Sprung bei s(F'/F) = s, was ein
Widerspruch zur Voraussetzung s(F'/F) < s(L/F) ist. Insbesondere sind F'L/L
und F'L/F’ wieder total verzweigt.

Wir setzen nun H' = Gy, 41 und K’ = F'L¥'. Dann gilt nach Korollar

Gal(K'/F) i<
Gal(K'/F); = | SIE) i< s,

{1} i> sy
Sei K" /F eine von K'/F verschiedene Erweiterung in F'L/F von Grad p. Dann
sind K” und K’ linear disjunkt. Setze H” = Gal(F'L/K"). Dann gilt F'L = K'K"
und G ist ein semidirektes Produkt von H' und H”. Fiir ein Element o aus H' gilt

ig (o) =ig(o) = s9 + 1.

Sei g € G\ H". Wir kénnen o¢ = o1 0 09 mit o1 € H' und o9 € H” schreiben, das
heifit o1 = og o 051 € ooH"” N H'. Damit ist ogH” N H' nichtleer. Die Gruppe H’
enthélt, nach Definition und da LF’/F genau zwei untere Spriinge hat, sdmtliche
Elemente ¢ € G mit ig(0) = s2 + 1. Also haben wir insgesamt p solcher Elemente.
Der Index von H” in G ist ebenfalls p. Da die Nebenklassen o H” disjunkt sind,
enthilt oo H” N H' somit genau ein Element 7. Fiir die ibrigen Elemente o € o9 H”

gilt ig(0) = s1 + 1. Somit gilt nach Satz

82—81_‘_1.

i (oojn) = ;«p ) (s D)+ (52 1) = 51+

Damit gilt s(K"/F) = s1 + %. Da F'/F und L/F Erweiterungen von Grad
p in F'L/F sind, folgt aufgrund von s(L/F) < s(F'/F) somit s; = s(L/F) und
S(F'[F) = s(L/F) + 2=2%E) a0

s2=s(L/F) +p(s(F'/F) = s(L/F)) = ¢rp(s(F'/F)).

Damit kénnen wir nun s(F'L/L) und s(F'L/F") berechnen: Es gilt aufgrund von
Lemma [2.2.3 {s(F'L/L), s(F'L/F')} = {s1,s2}. Wire s(L/F) = s; = s(F'L/L),
hétte wegen Yprp r nur einen Knick, also hétte LF'/F nur einen unteren
Sprung, was aber nicht der Fall ist. Also gilt s(F'L/L) = so und damit s(F'L/F") =
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

s1. Es gilt schlieBlich

s(F'L/L) = pp(s(F'L/L))
= Ypip (U r(s(F'/F)))
= T/JF/L/F’ (%Z)F//F(S(F,/F))
=Yg p (s(F'/F))

und

S(F'L/F') = g (s(F'L/F")) =Ygy (s(L/F)),

wobei die erste Gleichheit aus s(F'L/F’) < s(F'L/L) folgt.

Fall 3b

Wir nehmen an, dass s(L/F) = s(F'/F) gilt. Dann gilt ¢,/p = ¢p/p und @7)p =
¢pr)p- Weiterhin kénnen wir s(F'/F) < s(F'L/L) annehmen, da die Behauptung
andernfalls klar ist. Insbesondere konnen wir davon ausgehen, dass sowohl F'L/L
als auch F'L/F’ total verzweigt sind.

Es gilt

Vppp (s(F')F) 4+ 1) = g p(op p(s(F'/F) + 1))
=Yg (ryp (@ p(s(F'/F) 4+ 1)))
= gL (s(F'/F) +1)
=s(F'/F) + 1,

wobei die letzte Gleichheit aus s(F'/F) < s(F'L/L) (d.h. s(F'/F)+1 < s(F'L/L))
folgt. Aulerdem gilt

Ypp p (s(F')F)) + 1 =g p (e p(s(F'/F)) + 1
(s(F'/F))+1
= Ypp L (Yp/n(s(F'/F))) +1
=g ((s(F'/F)) +1
=s(F'/F)+1,

=YpL/F

wobei die letzte Gleichheit wieder aus der Annahme s(F'/F) < s(F'L/L) folgt.
A]SO gllt ¢F’L/F’(S(F//F) + ].) = Q]Z)F/L/F/(S(F//F)) + 1.
Weiterhin gilt
{1} = Gal(F'/F)gprypy+1 = (G/Dsrr/pys1 = Gy (s(7 10y +1) 1 /1
das heifit

G o (s(F P41 = G i (s /)41 € 1 (2.9)
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2 Verzweigungstheorie

Wir zeigen nun, dass

Hy s or s )41 = G (s )41 VH = {15

gilt. Daraus folgt direkt s(F'L/L) < ¢prp/pi(s (F’/F))
Sei also o € G¢F,L o (s(F/F))+1 N H. Dann gilt nach o€ HNI. Aber da G ein
semidirektes Produkt von H und [ ist, folgt o = id.

Fiir eine beliebige endliche galoissche Erweiterung L/F folgt das Lemma schlief3-
lich per Induktion mit Lemma [2.4.3] und der Transitivitdt von 1.
Sei nun L/F eine beliebige endliche Erweiterung. Nach Bemerkung (2 und 2
und da 1 transitiv ist, reicht es wieder aus, unverzweigte Erwelterungen Erwelte—
rungen von Primzahlgrad [ # p und Erweiterungen von Grad p zu betrachten (wenn
F’ und Lun nicht mehr tUber qu linear disjunkt sind, gilt, da F),, /Fun galoissch
ist, F}, F! n C Ly und die Behauptung ist klar).
Fiir unverzwelgte Erweiterungen kénnen wir genauso wie im galoisschen Fall argu-
mentieren. Fir eine verzweigte Erweiterung L/F von Primzahlgrad [ # p kénnen
wir aufgrund von Lemma ebenfalls wie im galoisschen Fall argumentieren.
Wenn letztendlich L/F verzweigt von Grad p ist, dann betrachten wir die normale
Hiille L™ von L/F. Dann gilt [L" : L] = d fir ein d mit p t d, d.h. L™/L ist zahm
verzweigt. Sei [ := e(L"/L). Dann gilt, indem wir das Lemma auf die Erweiterun-
gen F'L/L und L™/L anwenden, s(F'L/L) = 1/l - s(F'L™/L™), und auBerdem ist
Ypip e = 1/1pr o) pr. Damit folgt die Behauptung durch Anwenden des Lemmas
auf die Erweiterung L"/F. O

Bemerkung 2.4.12. Seien F'/F und L/F wie in Lemma wobei wir zusatzlich
vorraussetzen, dass wir L/F als Twrm F = Fy C F; C ... C F; C ... C L schreiben
konnen, wobei die Fjy1/F; zyklische total verzweigte Erweiterungen von Grad p
seien. Wir fordern zusétzlich, dass s(F'/F) > s(Fj+1/F;) fir alle ¢ > 0 gilt. Dann

gilt s(F"L/L) = $pp p(s(F'/F)).

Beweis. Wir benutzen Fall 3a aus dem Beweis von Lemma 2.4.11] und Induktion
nach i zusammen mit der Transitivitdt von ¢ (Lemma [2.3.5)). ]

Bemerkung 2.4.13. In der Situation von Lemma [2.4.17] gilt
e(F'L/F'") <e(L/F).

Beweis. Wenn L/F unverzweigt ist, dann gilt aufgrund der Multiplikativitdt des
Verzweigungsindex’ und da [F'L : L] = pist, e(F'L/L) = pund e(F'L/F') =1 < p.
Wenn L/F total verzweigt von Primzahlgrad [ # p ist, folgt e(F'L/F') =1 =
e(L/F). Wenn L/F total verzweigt von Grad p ist, dann gilt, da dann [F'L : F] = p?
gilt, e(F'L/F") € {1, p}, also ebenfalls e(F'L/F") < e(L/F).
Sel L/ F' eine beliebige endliche Erweiterung. Nach Bemerkung - 2.4.5] konnen wir
Luyn/ Fun als Turm von zykhschen Erwelterungen von Primzahlgrad Fy, = Ly C
I[LC...CL,C..C Lun schreiben, wobei Fuan—l entweder linear disjunkt zu
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

L; iiber L,y oder in L; enthalten ist (denn ﬁ{mLi_l /L;—1 ist galoissch). Es gilt
e(Lyn/Fun) = e(L/F) und ebenso fir e(F'L/F"). Damit folgt die Behauptung. [J

Bemerkung 2.4.14. Wenn F' ein lokaler Kérper von Charakteristik 0 ist, dann ist
F' eine Erweiterung von @Q, von endlichem Verzweigungsindex. Da die Restklas-
senkorpercharakteristik von F' nach Voraussetzung gleich p ist, gilt v(p) > 0, die
Einschrinkung von v auf Q ist also zur p-adischen Bewertung dquivalent. Der Ab-
schluss von Q in F ist also Q,. Der Verweigungsindex von F'/Q, ist endlich, da die
Bewertung auf F' diskret ist.

Satz 2.4.15 (siehe Chapter III, Section 2, Proposition 2.5 in [9]). Sei f(X) =
XP — X —«a € F[X] ein Polynom mit « ¢ op und p{vr(a). Auflerdem sei vp(a) >
—pe(F/Qp)/(p — 1), falls char(F) = 0. Dann hat f(X) eine Nullstelle X, sodass
L = F()\) eine zyklische verzweigte Erweiterung von Grad p tber F ist. Auflerdem

gilt s(L/F) = —vp(a).

Beweis. Das Polynom f(X) zerfdllt nicht vollstindig iiber F' in Linearfaktoren,
denn wire A € F' eine Nullstelle von f(X), dann wére vp(a) = vp(AWP — \) =
min{prrp(\),vr(A\)} = prrp(\) mit vp(A) € Z, was der Voraussetzung p 1 vp(«)
widerspricht.

Sei A eine Nullstelle von f(X) in F*P (da f(X) separabel ist, finden wir eine solche).
Setze L = F(\) und

gY)=A+Y) = (A+Y)-a=Y"+ (f)AYPl + .t ( b 1))\p1Y—Y.
p—
Wenn char(F') = p ist, dann ist L/F eine zyklische Erweiterung von Grad p (siche
4.8, Theorem 5 in [4]).
Wenn char(F') = 0 ist, dann gilt aufgrund der Voraussetzung —pe(F/Q,)/(p—1) <
vr(a) = vp(AP — ) = prp(X) und damit fir 0 <i<p-—1

m@ X) = e(L/F><VF<<§’>> +vp(A))
> e(L/F)(e(F/Qy) +vr(\))
> e(L/F)(e(F/Qy) — ie(F/Qy)/ (p— 1))

> 0.

Also gilt g(Y) € op[Y]. Esist g(Y) = YP — Y diber L. Da g(Y) = Y? - Y =
Y (Y —1)-...-(Y —p—1) iiber L vollstindig in paarweise verschiedene Linearfaktoren
zerfallt, zerfillt ¢g(Y) aufgrund des Henselschen Lemmas iiber oy vollstdndig in
Linearfaktoren. Damit zerfallt f(X) tiber L vollstédndig in Linearfaktoren. Da f(X)
nicht iiber F' in Linearfaktoren zerfillt, ist L/F' also eine zyklische Erweiterung von
Grad p.

Sei nun o € Gal(L/F) ein Erzeuger von Gal(L/F'), sodass o(A) — A eine Nullstelle
von ¢(Y) ist, die kongruent zu 1 modulo (7p) ist. Dann gilt vp(o(\) — A) = 0.
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2 Verzweigungstheorie

Wenn p { vp(a), dann folgt aus pr(\) = vp(W — A) = vip(a) = e(L/F)vp(a), dass
e(L/F) = p gilt, also ist L/ F total verzweigt. SchlieBlich gilt s(L/F) = v (c(\)/A—
1)=vi(c(A\) =) —vr(N) = —v(A\) = —vi(a)/p = —vr(a). O
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3 Tief verzweigte Korpererweiterungen

Wir setzen auch in diesem Kapitel grundsédtzlich voraus, dass alle betrachteten
Korpererweiterungen separabel sind, es sei denn, es handelt sich um Vervollstandi-
gungen von Koérpern, wobei diese durch das Symbol ™ gekennzeichnet werden.

3.1 Definition und einige Eigenschaften

In diesem Abschnitt werden wir tief verzweigte Erweiterungen definieren und einige
dquivalente Charakterisierungen nennen und beweisen. Dabei orientieren wir uns
an [8]. Die folgenden Resultate stammen urpiinglich fiir den Fall F' = Q,, aus |16].

Satz 3.1.1 (siehe Theorem 1.1 in [8]). Fir eine Erweiterung F/F sind dquivalent:

(i) Fiir jedes m > —1 und jedes € > 0 existiert eine endliche Erweiterung E/F
in F, sodass Vg p(m)/e(E/F) < ¢ gilt.

(ii) Fiir jede zyklische total verzweigte Erweiterung F'/F von Primzahlgrad und
jedes € > 0 existiert eine endliche Teilerweiterung E/F in F/F, sodass F'|F
iber E definiert ist und s(E'/E)/e(E/F) < € gilt.

(iii) Fir jede endliche Erweiterung F'/F und jedes € > 0 existiert eine endliche
Erweiterung E/F in F/F, sodass F'|F iiber E definiert ist und v(Dg/ /) < €
gilt.

(iv) Fiir jede endliche Erweiterung F'/F gilt Trpr(mzp) = mg.

Bemerkung 3.1.2. Wenn (i) fir eine Erweiterung F/F gilt, dann auch fir F'/F
und F/M, wobei F'/F eine Erweiterung und M/F eine endliche Erweiterung in
F/F seien. Wenn L/E/F endliche Erweiterungen sind und ¢g/p(m)/e(E/F) < €
gilt, dann gilt auch ¢, /p(m)/e(L/F) < e.

Beweis der Bemerkung. Die erste Aussage ist klar.
Sei M/F eine endliche Erweiterung in F/F und seien n > —1 und £ > 0 beliebig.
Wir finden ein m > —1 mit n = 9j;/p(m). Sei E/F eine endliche Erweiterung mit
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3 Tief verzweigte Korpererweiterungen

Yg/p(m)/e(E/F) < e, dann gilt mit Lemma

Yupm(n)/e(ME/M) = Yypn(yyr(m))/e(ME/M)

) Yye/p(m)/e(ME/F)
) Yyve/EWE/p(m))/e(ME/F)

[F)-e(ME/E) - ¢p/p(m)/e(ME/F)
)-e(ME/E)-¢-e(E/F)/e(ME/F)
)

Das zeigt die zweite Aussage.
Seien L/E/F endliche Erweiterungen. Dann gilt nach Lemma und Lemma
2.4.9

VY p =Yrpo Ve < e(L/E)Yg)p.

Gilt also Y g/p(m)/e(E/F) < ¢ fiir ein m > —1 und ein € > 0, dann gilt, da der
Verzweigungsindex multiplikativ ist, auch

Yryp(m)/e(L/F) < e(L/E)/e(L/F) - ¢Yp/p(m)
= Yp/p(m)/e(E/F)
<e.

O

Bemerkung 3.1.3. Seien E/F eine endliche Erweiterung, E'/F eine zyklische ver-
zweigte Erweiterung von Primzahlgrad und L/E eine zu E’/E linear disjunkte
endliche Erweiterung:

E'——F'L

E L
Es gelte s(E'/E)/e(E/F) < ¢ fur ein € > 0. Dann gilt

s(E'L/L)/e(L/F) < pp/(s(E'/E))/e(L/F)
< e(E'L/E")s(E'/E)/e(L/F)
<e(L/E)s(E'/E)/e(L/F)
<e(L/F)e/e(L/F)

:57

wobei die erste Ungleichung aus Lemma und die dritte Ungleichung aus
Bemerkung [2.4.13] folgt. Es gilt s(E'L/L)/e(L/F) < s(E'/E)/e(E/F) ist. Daraus
folgt, dass, wenn F/F Eigenschaft (i) erfiillt und F}/F eine endliche Erweiterung
in F/F ist, F/F) ebenfalls (ii) erfillt.
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Bemerkung 3.1.4. Wenn F/F Eigenschaft (i) erfiillt, dann gilt e(F/F) — oo, das
heifit es gibt fiir jedes n € N eine endliche Erweiterung E/F in F/F, sodass
e(E/F) > n gilt. In der Tat: Angenommen, es gébe ein n, sodass e(E/F) < n
fiir alle endlichen Erweiterungen E/F in F/F gilt. Dann wére, da ¢g,p(m) > m
fiir alle m > —1 gilt,

vg/p(m)/e(E/F) = m/n

fir alle endlichen Erweiterungen E/F in F/F und alle m > —1, was Eigenschaft
(1) widerspricht.

Eigenschaft (i) impliziert ebenfalls e(F/F) — co. Angenommen, es géibe ein n wie
oben, dann sei E/F eine endliche Erweiterung in F/F mit

e(E/F) =max{e(L/F)|L/F endliche Erweiterung in F/F'}.

Dann gilt fir alle endlichen Erweiterungen L/FE in F/F aufgrund der Multipli-
kativitidt des Verzweigungsindex’ e(L/E) = 1. Sei F'/F eine zyklische verzweigte
Erweiterung von Primzahlgrad und seien Lo /L/FE beliebige endliche Erweiterungen
in F/E, wobei wir 0.B.d.A. davon ausgehen, dass F'/F iiber E und damit auch
tiber L und Ly definiert ist. Dann gilt s(L'/L)/e(L/F) = s(L4/Ls)/e(Ls/F) =
s(E'/E)/e(E/F) (siche Lemma Fall 1). Wegen Bemerkung kann nun
(i) nicht gelten.

Insbesondere ist F nichtdiskret bewertet.

Bemerkung 3.1.5 (siehe Lemma 2.12 in |16]). Wenn F/F Eigenschaft (ii) erfiillt,
existiert fiir jedes n € N eine endliche Erweiterung E/F, sodass p"|e(E/F) gilt. In
diesem Sinn ist F/F unendlich wild verzweigt.

Beweis der Bemerkung. Angenommen, es existiert ein n, sodass p" die maxima-
le p-Potenz ist, die e(E/F) fiir eine endliche Erweiterung E/F in F/F teilt. Sei
F'/F eine endliche Erweiterung und E/F eine endliche Erweiterung in F/F, sodass
p"le(E/F) gilt und F'/F iber E/F definiert ist. Dann sind alle endlichen Erwei-
terungen L/FE in F/F zahm verzweigt, und wie im Beweis von Lemma sieht
man, dass s(E'L/L)/e(L/F) = s(E'/E)/e(E/F) gilt. Das ist ein Widerspruch zu
Eigenschaft (7). O

Bemerkung 3.1.6. Wenn (i7) fiir eine Erweiterung F/F gilt und £/F eine zyklische
verzweigte Erweiterung von Grad p ist, dann gilt (i7) auch fir £/F.

Beweis der Bemerkung. Wenn S ein lokaler Korper ist und 7/S sowie R/S line-
ar disjunkte zyklische verzweigte Erweiterungen von Grad p sind, dann folgt aus
s(R/S) < s(T'/S) aus Lemma 2.4.11], Fall 3a, s(RT/R) = ps(T/S) — (p—1)s(R/S)
sowie s(RT/T) = s(R/S). Wenn s(R/S) = s(T/S) ist, gilt unter Benutzung von
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3 Tief verzweigte Korpererweiterungen

Lemma 2.4.17]

s(RT/R) < Ypr/r(s(T/S))
= Yrr/s(s(T/9))
= Yrr/r(YR/5(s(T/9))
= Yrr/r(s(T/S),

und durch Anwenden von ¢pp/ g folgt, da prp/r(s(RT/R)) = s(RT/R) gilt und
¢ rr/rR Monoton steigend ist, s(RT/R) < s(T'/5).
Sei nun & € (0,(2p(p — 1))~ ). Sei E/F eine endliche Erweiterung in F/F. Wir
nehmen an, dass £/F nicht (i7) erfiillt. Dann gibt es eine zyklische verzweigte Er-
weiterung M /L von Grad p und ein & > 0, sodass fiir jede endliche Erweiterung
P/F in L/F, sodass M/L iiber P definiert ist, s(P'/P)/e(P/F) > &' gilt. Seie > 0
das Infimum aller s(QP'/Q)/e(Q/F), wobei Q/F eine endliche Erweiterung in £/F
ist. Indem wir P falls notig vergréfiern, kénnen wir annehmen, dass fiir alle solche
Q die Gleichung ¢ < s(QP'/Q)/e(Q/F) < ce gilt, wobei c eine reelle Zahl mit
1 <c<pund (c—1)e < p~! —p~2 ist. AuBerdem kénnen wir annehmen, dass P/E
eine zyklische total verzweigte Erweiterung ist, die zu F/FE linear disjunkt ist.
Sei R/E eine zyklische total verzweigte Erweiterung von Grad p mit s(R/E) >
pe(E/F)/(p—1) und s(R/E) # s(P/E). Eine solche finden wir mit Satz[2.4.15 und
indem wir in Charakteristik 0 falls nétig F' durch eine geeignete endliche Erweite-
rung Iy /F in F/F ersetzen, sodass e(F/Q,) hinreichend grof wird, also sodass die
Differenz pe(E/Qp)/(p — 1) — pe(E/F1)(p — 1) mindestens 5 betragt und wir somit
eine ganze Zahl pe(E/F1)(/p —1) < s < pe(E/Qp)/(p — 1) finden, die ungleich
s(PEF;/EFy) ist und nicht von p geteilt wird. F/F erfillt (i) genau dann, wenn
F/Fy dies tutH
Dann sind R/E und P/E linear disjunkt. Es gilt aulerdem s(RP/P) > s(R/E).
Wir nehmen an, dass R/ FE eine Teilerweiterung von F/E ist. Falls dann s(RP/P) >
s(P'/P) gilt, ist s(RP'/RP)/e(RP/F) < p~'s(P'/P)/e(P/F), was ein Wider-
spruch zu ¢ < p ist. Andererseits folgt aus s(RP/P) < s(P’'/P) aber
(c—1)e > s(P'/P)/e(P/F) — s(RP'/RP)/e(RP/F)

= (1-p~")s(RP/P)/e(P/F)

>(1—p ) pt

=p ' —p %
was der Wahl von ¢ widerspricht. Dabei folgt die letzte Ungleichung aus

s(RP/P) - s(R/E) pe(E/F) 1 1

e(P/F) = ¢(PJF) ~ (p—)e(P/F) p—1_p

Also ist R/E zu F/FE linear disjunkt.
Wir finden eine endliche Erweiterung K/FE in F/F, sodass s(KR/K)/e(K/F) < 6

m Folgenden schreiben wir weiterhin £ und F' anstatt EF; und Fi.
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gilt, indem wir (ii) auf FR/F anwenden. Setze V := KP. Durch Ubergang zu
lokalen Korpern mit algebraisch abgeschlossenem Restklassenkorper (siehe Lemma
kénnen wir die Erweiterung V/P mit Lemma als Turm von verzweigten
Erweiterungen P;1/P;,1 < i < n, von Primzahlgrad schreiben (dabei ist P = P}
und P, = V). Wir kénnen dabei 0.B.d.A. davon ausgehen, dass alle diese Erwei-
terungen von Grad p sind. AuBlerdem gehen wir davon aus, dass eine verzweigte
Erweiterung K;/K in F/K von Grad p existiert, und setzen P,1; = PK;. Wir
kénnen beide Annahmen machen, da Eigenschaft (ii) fir F/F gilt und indem wir
E falls notig durch eine endliche zahm verzweigte Erweiterung von E in F/F erset-
zen (nach Lemma Fall 2, sind die Voraussetzungen an S(R/FE) und s(P/E)
dann weiterhin erfiillt).

Wir bezeichnen mit P/, die normale Hiille von P;;;/P; und mit P} ; die maxi-
male zahm verzweigte Teilerweiterung von PP, /P;. Wir setzen I; = e(P}/P;) =
e(P/Pi+1), si := s(P,/Pt) und s, = s(RP;/P;) (falls RP; = P ist, set-
zen wir s, = 0). Es ist [; teilerfremd zu p und es gilt nach Lemma Fall 2,
S(RP/1/P/1y) =1li - sj und siy = s(RP\ /Pl ) /.

ry RP}
P, ——— RP}
P=D RP

Falls nun s1 > 13 - 8} =11 - s(RP/P) gilt, ist

s1/e(P/F) > 1 - s} /e(P/F)
> 1y s(R/E) [e(P[F)
>l -pe(E/F)/((p— 1)e(P/F))
> 11 /p,

also s1/(Lie(P/F)) > 1/p.

Wenn hingegen s; < 18] ist, gilt l1s5 = s(RPy/Py) = plis) — (p — 1)s1, also
sy =psh —(p—1)/l1 - s1. Wenn nun ein 2 < m < n existiert, sodass s; < Il;s} fiir
i <m—1und s, > lys,, gilt, dann ist

m—2 4

.S _1_4
s =D s = (p—1) Y pif =
i=0 v

31



3 Tief verzweigte Korpererweiterungen

Dann berechnen wir

m—2 4
m— m— p : Sm— —i
= s /0" (p - 1) Y DSt
i=0 v
m—2 pi s 1 1
/ P F — / m—1 _ 1 m—1 . m—1—1 .

m—2

, e - B . Sm—1—i
& $1/e(P/F) = s}, /e(Pn/F) + (p—1)/p ;%Mdgmkﬂﬂ

= s, /e(Pn/F) + Z l; - 821111/}—')

Damit folgt

s Sm s(R/E)
o ); lie(Pi/F)+lm'e(Pm/F) T pre(E/F)
also
m (R/E) _l'n—lL
;lz €P/F p e(E/F)+p ;li-e(Pi/F)
_ i s(R/E) S s
7 (E(E/F)+;li-e(B/F))
1 pelE/F)
7 G heE/F)
—pt. P
p—1
1
P
p

Wenn andererseits s; < [;s; fiir alle i < n gilt, dann ist

n—2

sp=p""1s1 — (p—1) D) p'[lisn-1-i < e(Py/F) -6,
i=0

wobei die Ungleichung aus
sp/e(Po/F) = s(VR/V)/e(Pn/F) < s(KR/K)/e(K/F) <
folgt. Wir haben s} = s,,/p" ! + (p — 1)/p"* 122 p'/li - Sp—1-;. Wir erhalten

n—1

=Y aEym T2 preEE)

i=1 li
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3.1 Definition und einige Eigenschaften

und wegen § < (2p(p —1))7! gilt

Nl S _ s(R/E)
(1-p 1);m+(2p(p—l)) l_ma

also
n—1 S; B n—1 S; S(R/E) -
IS 1 1 . )
; Le(P/F) =" (; ey eEm)) ~ G =)
n—1
-1 Sq 1 _ 1
o ; Le(PJF) T p—1 2p(p—1)
1 1 2p—1

> —_ =

p—1 2p(p—-1) 2p(p—1)

1 2p—-1 1
> -

Tp 201 9

Insgesamt erhalten wir also

R L

i— ZZG(PZ/F)

Nun setzen wir P/ = P;P' und r; = s(P//F;). Wenn s; > l;r; fir ein 1 <i < n ist,
dann gilt s(PJ,P'/P}\ ) < l;ry, also 141 < 75

Py —— P, P
P/, —— P/, P
P PP’

Daraus folgt 7;11/e(Py1/F) < p~'r;/e(P;/F). Das ist ein Widerspruch zu ¢ < p.
Wenn andererseits s; < [;r; fir alle 1 <4 < n gilt, haben wir r;11/e(Pj11/F) =
ri/e(Pi/F) — (1 —p~Ys;/(Lie(P;/F) fiir alle i. Daraus folgt

(c = 1)e > s(P'/P)/e(P/F) = s(Ppy1/Pnt1)/e(Pos1/F)
—(1=—p! - S
(1-p );li'e(Pi/F>

1

>(p-1p2=pt-p=

Das ist ebenfalls ein Widerspruch zur Wahl von c. Also muss Eigenschaft (i¢) fiir
L/F gelten. O
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3 Tief verzweigte Korpererweiterungen

Bemerkung 3.1.7. Unter der Annahme, dass (i) nicht gilt, finden wir eine endliche
Erweiterung M/F in F/F und ein m > —1, sodass ME/M@) = e(E/M) fur alle
endlichen Erweiterungen £/M mit £ C F und x > ¢y;/p(m) gilt.

Beweis der Bemerkung. Wenn (i) nicht gilt, gibt es ein € > 0 und ein m > —1,
sodass

Ypp(m)/e(E/F) > ¢

fiir jede endliche Erweiterung E/F in F/F gilt. Da ¢g/p(z) < 0 fir <0 ist, gilt
m > 0.

Sei 0.B.d.A. ¢ = inf{d|¢p,p(m) = de(E/F) und E/F endlich}. Sei M/F eine
endliche Erweiterung in F/F mit ¢/ p(m) = 'e(M/F) fiir ein ¢’ > ¢. Fiir eine
endliche Erweiterung L/M gilt

Yryp(m) = ¥p i (arr(m))
<e(L/M) - prp(m)
— e(L/M)-& - e(M/F)
— e(L/F) ¢,

das heiBt es gilt ¢ /p = €"e(L/F) mit einem ¢ < " < &’. Wir wéhlen M nun so
groB, dass €' /e < p gilt.

Da fiir zahm verzweigte endliche Erweiterungen E /M nach Lemma sowieso
(s /M(a:) = e(E/M) fiir x > 0 gilt, betrachten wir verzweigte Erweiterungen von
Grad p.

Sei also E/M eine verzweigte Erweiterung von Grad p mit F C F. Wenn E" die
normale Hiille von E/M und E' die maximale zahm verzweigte Teilerweiterung
von E™/M bezeichnen und [ := e(E!/M) ist, gilt nach Lemma Vem(r) =

1/l - bgnpi(lx). Falls s := s(E"/E') < Yaryp(m) - 1ist, ist Yg/ar bei Yarp(m)
differenzierbar und es gilt 1%, M (Yar/r(m)) = p. Andernfalls gilt

e-e(E/F) < wE/F(m)
= ¢E/M(¢M/F(m))
=1/l Ygn gl - Yarr(m))
=1/l-1-Ypryr(m)
=" e(M/F),

also

e-e(E/F) <e(M/F)é
s e(E/M) <€/e
sSp<édle

34



3.1 Definition und einige Eigenschaften

Dies ist ein Widerspruch, also gilt ¢/, /M(w my/r(m)) = p.

Sei dann Ej/FE eine verzweigte Erweiterung von Grad p mit Ey C F. Wir er-
halten mit analoger Argumentation wie oben, dass ¢, / g(x) = e(E1/E) fir x >
VYe/r(m) =Yg (Yayr(m)) gilt. Mit der Kettenregel fiir Ableitungen erhalten wir

Vg, v (x) = e(Br /M) fiir @ > 9y p(m).
Fiir eine beliebige endliche Erweiterung £/M in F/F benutzen wir Lemma
und Bemerkung [2.4.6] Dabei beachten wir, dass, wenn

gilt, selbiges auch fﬁrA Zwischenkorper von Eun / Fun gilt. In der Tat: Wenn L ein
Zwischenkorper von E,,, /Fyy, dann gilt

VByse © Vi, M) = V5, 5, (1)
>e- e(Eun/ﬁun)

Wiére nun %/ﬁ (m) < ee(L/Fy,), dann wiire

O B (M) =Yg 0 5 (m)
< e(Bun/L) vy, (m)
<e-e(Bu/L)-e(L/Fy)
=c- e(Eun/ﬁm)

Wir kénnen also zu Eun / M\un iibergehen und erhalten mit analoger Argumentation
wie oben (und Induktion)

T;Z),E/M(x) = %gw/ﬁw
— o(E/M)

fiir alle endlichen Erweiterungen E/M mit £ C F und z > ¢y IR (

(Y r(m). Wir kénnen dabei M auch durch eine beliebige endliche Erweiterung
M, /M in F/F ersetzen.

m) =

O

Beweis von Satz[3. 11 (i) = (i1):

Sei F'/F eine zyklische total verzweigte Erweiterung von Primzahlgrad [ und
Ey/F eine endliche Erweiterung, sodass F'/F iiber Ey definiert ist. Da F'/F
verzweigt ist, ist auch E{|/Ey verzweigt. Nach Bemerkung [3.1.2] gilt (¢) ebenfalls
fiir die Erweiterung F/Ey. Sei also E/Ey eine endliche Erweiterung in F/FEy mit
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3 Tief verzweigte Korpererweiterungen

EB/E,(T)/€ o) <efirm=s o) und ein € > 0. Dann gilt fir =
Vg B, (m)/e(E/Ey) <& f (Ey/Eo) und 0.D It fiir £/ = EE),

s(E'/E)/e(E/F) < $p g (s(Ey/Eo))/e(E/F)
= Vg/gy, (Ve /5, (s(Eo/ Eo)))/e(E/F)
= Vg g, (s(E)/Eo))/e(E/F)
=Y e(WE/B (s(Ey/ Eo)))/e(E/F)
< e(E'/E) - Yp/p,(s(Ey/Ev))/e(E/F)
<l-e/e(Eo/F),
wobei die erste Ungleichung aus Satz folgt. Mit Bemerkung folgt (i7).
(13) = (4):
Wir nehmen an, dass (i) nicht gilt. Dann gibt es ein m > 0 und ein € > 0, sodass
Yg/p(m)/e(E/F) > ¢ fur alle endlichen Erweiterungen E/F gilt. Nach Bemerkung

finden wir eine endliche Erweiterung M/F in F/F, sodass w%/M (x) = e(E/M)
fiir alle endlichen Erweiterungen £/M mit £ C F und alle x > 95/ p(m) gilt.

Behauptung. Es existiert ein Turm von Erweiterungen M = Ly C L1 C ... C
L,—1 C L, fir n > 1, wobei die L;/L;_y zyklische, verzweigte Erweiterungen von
Grad p sind und

S(Ln/Lnfl) > ¢Ln,1/F(m)
gilt.

Beweis der Behauptung. Wir wiahlen in Charakteristik p eine geeignete Artin-Schreier-

Erweiterung L; /Lo (siche Satz [2.4.15)).

In Charakteristik 0 wahlen wir, wenn wir L; 1 bereits konstruiert haben, ein Ele-
ment o € L;_1, sodass v, ,(a) nicht von p geteilt wird und das

pe(Li—1/Qp)/(2p —2) < —vp, () <p-e(Li—1/Qp)/(p—1)

erfiillt. Dabei vergréflern wir M falls notig, um mithilfe von Bemerkung die
Existenz eines solchen Elements sicherzustellen. Sei A eine Nullstelle von XP —X —a.
Wir setzen L; = L;_1(\) Dann gilt nach Satz[2.4.15

$(Li/Li-1) = —vi,_,(a) 2 p-e(Li-1/Qp)/(2p — 2).
Siehe auch Abbildung .
Wenn nun ¢, ,/p(m) > s(Li/Li-1) gilt, dann ist mit aus Kapitel 1
Y r(m)/e(Li/Qp) = r, 1, (br,_ /r(m))/e(Li/Qp)

= (s(Li/Li-1) + p(¥r,_,/r(m) — s(Li/Li-1)))/e(Li/Qp)
= ((L=p)s(Li/Li-1) +p¥r,_,/r(m))/(pe(Li-1/Qp))
= ((1 = p)s(Li/Li1)/p+ Y1, ,yr(m))/e(Li—1/Qp)
<,y r(m)/e(Li-1/Qp) — 1/2.

36
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Iterativ erhalten wir (falls es kein j < i mit ¢y, /p(m) < s(L;j/L;j_1) gibt)
Yr, p(m)/e(Li/Qp) < daryp(m)/e(M/Qp) —if2
S Y, p(m) < e(Li/Qp) - (Yaryp(m)/e(M/Qy) —i/2)
& Pr,p(m) < p'(aryp(m) —e(M/Qp) - i/2).

Wir wéhlen n so grof3, dass

pe(M/Qyp)/(2p —2) > Ypyyp(m) — (n — 1)e(M/Qp)/2
gilt. Dann ist (falls es kein j <n mit ¢y, /p(m) < s(L;/Lj-1) gibt)
$(Ln/Ln-1) = pe(Ln-1/Qp)/(2p — 2)
=p"e(M/Qy)/(2p - 2)
> p" " (Wagyr(m) — (n = 1)e(M/Qy)/2)
> ¢L7L_1/F(m>-
O

Behauptung. Sei E/M eine endliche Erweiterung in F/F. Dann ist EL,/EL,_;
total verzweigt von Grad p und es gilt

S(ELn/ELn_l) = wELn_l/Ln_l(S(Ln/Ln_l)). (31)
E EL; ELiw .—— EL,_y EL, (3.2)
M =Ly L; Li o™ Ly L,

Beweis der Behauptung. Wenn E /M zahm verzweigt ist, ist auch EL,_1/L,—1
zahm verzweigt und folgt wie im Beweis von Lemma (Fall 1 und 2).
Sei E/M eine verzweigte Erweiterung von Grad p.

Wir kénnen davon ausgehen, dass EL,_1/L,—1 (und damit auch EL;/L; fiir i <
n — 1) total verzweigt ist. Wenn das nicht der Fall ist, ist EL,,_1/L,_1 unverzweigt
und die Behauptung ist klar. Wir kénnen insbesondere annehmen, dass EL; linear
disjunkt zu L;41 iiber L; fiir alle ¢ < n — 1 ist, da andernfalls K L,,_1 = L, und
EL, = L, gilt.

Sei E™ die normale Hiille von E iiber M und E'/M die maximale zahm verzweigte
Teilerweiterung von E™/M. Der Grad [E™ : E] ist teilerfremd zu p. Deswegen ist
E™/E? eine zyklische verzweigte Erweiterung von Grad p. Da EL;/L; total ver-
zweigt von Grad p ist, gilt selbiges, da der Verzweigungsindex multiplikativ ist

37



3 Tief verzweigte Korpererweiterungen

und weil E'L;/L; zahm verzweigt ist, auch fiir L;E"/L;E! fiir i < n — 1. Setze
| :=e(E'/M) = e(E"/E). Nach Wahl von M gilt, wenn x > v/ p(m) ist,
e(E/M) = ¢ p(x)
= (¢pn/B 0 YEnm) (2)
= w/E”/M(x)/la

wobei die Differenzierbarkeit von ¢gn /s an der Stelle z folgt daraus, dass ¢p/y =
Y/ - 1/1 an der Stelle x differenzierbar ist. Es folgt

e(E" /M) = ign pr(x)
= (Ypn gt © Yt ) (2)
= Vi g (Wp () - 1,

wobei Ygn /gt an der Stelle Y /p(z) = lz differenzierbar ist, da ¢ gn/nr = Ypn /g 0
g/ an der Stelle z differenzierbar ist.

Also gilt %E"/Et (Vg m(x)) = e(E™/E') und damit s(E"/E") < gt p(m).

Wir zeigen jetzt per Induktion nach 4, dass s(Ln, 1E"/L, 1E") < ¢p,  pr/p(m)
gilt:

Wenn wir Lemma [2:4.11] auf das Quadrat

EY — L1 E™

Et—— LE!
anwenden, erhalten wir folgende Abschétzung:
S(LLE" /L1 E") < ¥p, /g0 (s(E"/EY))

= tr, pn g (s(E"/EY))

< Yr,pnyp(YE (M)

=Y, gr/p(m)

= V1, mn/y Bt (Y, peyr(m)).
Anwenden von ¢, gn/r, gt auf beide Seiten ergibt, da ¢p, gn/r, pi(v) = o fiir
x < s(L1E™/L1E") gilt und da ¢, gn /1, gt monoton steigend ist, s(L1 E"/L1E*) <
Y, gtyp(m). Gelte s(Li 1 E"/Li 1E") <1y, | gt/p(m) nun fir ein i < n —1. Dann
gilt
(s(Li_1E™/L; _1E"))
(wLi_lE”/Li_lEt(S(LiflEn/LiflEt)))
s(Li—1E™/L;—1E"))

Yr,  gtyp(m))

S(LiE" | LiE") < tbp,pn/prr,_,
=Yr,En/L;,_1En
=, En /L, Bt (
<Yr.en/n_ Bt

= Yp,pn/p(m)

=Y, pn/L, 5t (Yr,pt/p(Mm)).
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Anwenden von ¢, gn/p,pt ergibt nun wieder s(L;E"/L;E') < v, pr/p(m). Das
zeigt s(Lp 1 E"/Ln 1 E") <4, gtyp(m).

Dann gilt nach Konstruktion von L,,/L,_1

$(Ln1E" /Ly 1E") <4p,  pryp(m)
=L 1B/ Lyy VL, /p(M)
=1, /p(m)
<l-s(Ln/Lp-1)
= s(Ly,E' /L, 1 E").

Wir wenden Lemma Fall 3a auf das Quadrat

L,E! L,E"

L, 1E*——1L,_E"
an. Es folgt, dass L, E™/L,_1E™ total verzweigt von Grad p ist und dass
S(LnE" /Lyt E™) = ¥, gn /1, 5t ($(Ln E* [ Ly -1 EY))
= Yr, L, B (S(LnE' /Ly, 1 EY))
= p, /1 5 (VL B /L, Bt (S(LnE' /Ly E")),

gilt. Damit folgt durch Anwenden von ¢y, gn/r, _, gn,

S(E"Lyn/E"Ln-1) = Ygnp, /6, 15t (S(LnE' /Ly E")).
Daraus folgt

l-S(ELn/ELn_1) = s(E" L/ E"Ln_1)
= Vpnr, /Ly 1B (S(LnE' /Ly 1 EY))
= gL, 1 /Ln 1 (PLn 1Bt L 2 (S(LnE' /Ly 1 EY)))
= Vpniy_yjin it ($(LnE' /Ly 1 E") /1)
= @DEnLn,l/Ln,l(s(Ln/Ln—l))
=1 Ygr, 1 /in i (8(Ln/Ln-1)),

also

S(ELn/ELn-1) = Y51, /6n_1(8(Ln/Ln-1)).

Sei E/M eine beliebige endliche Erweiterung wie in der Behauptung. Nach Bemer-
kung finden wir einen Turm von Koérpererweiterungen

~

J/\Iun :M() CM C...CM; gMi+1 c.. ng :Euna
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3 Tief verzweigte Korpererweiterungen

sodass M;1/M; total verzweigt von Primzahlgrad ist.

Eun EyLpq— By L,
M ML, 4 ——— ML,
M, ML, | ——— ML,

e T MOLn—l = z\‘/n—l,un - MOLn = f/n,un

Mun
e(Eun/M,y) fiir alle z > Yayr(m) =Yg JF (m). Insbesondere folgt mit der Ket-
tenregel fiir Ableitungen wMi+1/M¢ (x) = e(Mit+1/M;) fur x > @Z)M_/ﬁ (m). AuBer-

Nach Bemerkung|2.2.6(gilt Y5 0 = ¢ I und somit T/’jg Jii (x) =e(E/M) =

dem gilt S(Ln/Ln—l) = S(f/n,un/f/n—l,un) und 77Z)LTL,1/F = ¢Zn71 un/ﬁun Wir kénnen
(zunéchst im Fall ¢ = 1) obige Argumentation wiederholen und erhalten

S(Man/Man_l) - /l/}Man—l/MunLnfl (S(Ln/Ln_l))

Gilt nun fur ein 7

S(MiLn/MiLn—l) = wMiLn—l/MunLn—l (S(Ln/Ln—l))7

dann ist

s(M;Lyp/M;Ly,—1) = wMiLn—l/ﬁunLn—l(S(Ln/Ln_l)
> UM L1/ un L (Yr,_,/r(m))
S T )T v I L))
- wMiLn,l/ﬁun (m).
Wir haben also einen Turm von Koérpererweiterungen M; C M;L, C ... C M; L, C

M;L,,, sodass M;L,,/M;L,,_1 zyklisch und verzweigt von Grad p mit s(M; L, /M;L,,_1) >

Vorr JF (m) ist und M;L;/M;L;_1 zyklisch und verzweigt von Grad p oder tri-
vial ist fiir j <n .

Dann sehen wir analog wie oben und per Induktion nach i, dass s(M;41Ly—1/M;Ly,—1) #
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s(M; Ly /M;L,_1) fiir alle i gilt. Daraus folgt, dass M;1Ly,/M;1L,—1 total ver-
zweigt (und nicht trivial) ist.
Es gilt auBlerdem mit analoger Argumentation wie oben und weil ¢ transitiv ist

s(Mis1Ln/Mip1Ln—1) =¥y, g (8(En/Ln-1))
und insbesondere

S(EunLn/EunLnfl) — wﬁunLn71/2n71 un (S(Ln/Lnfl))

Damit folgt die Behauptung aus Bemerkung O
Mit (3.1]) gilt nun
S(ELn/ELp-1) =YpL, /L, (8(Ln/Ln-1) (3:3)

> VBLy /Ly WL,y p (M)
=vYpL,_,/r(m)
> Yg/p(m).
Insgesamt ist £’ := FL, eine total verzweigte galoissche Erweiterung von Grad p

iiber £ := FL,_1 (verzweigt, da fiir alle endlichen Erweiterungen E/F in F/F die
Erweiterung E'L, /EL,_1 verzweigt ist). Es gilt

S(ELn/ELn1)/e(ELn1/F) 2 Ypr, /r(m)/e(ELy—1/F)
> Ypp(m)/e(ELy-1/F)
>¢e/e(EL,—1/E)
>e/p"L.

Damit gilt (¢¢) nicht fiir £/F nach Bemerkung Aus Bemerkung folgt,
dass (i7) nicht fiir F/F gilt.

(13) = (iv):
Zunichst gehen wir von einer zyklischen total verzweigten Erweiterung F'/F von
Primzahlgrad [ aus. Sei € mz. Wir finden eine endliche Erweiterung E/F, sodass
F'/F iber E/F definiert ist und « € E’ gilt. Sei E/F eine endliche Erweiterung,
iber der F'/F definiert ist und die

[(s(E2/E2) + 1)1 — 1) + 1)) /1] /e(Ea/F) < v()

erfiillt. Eine solche existiert wegen (i7), Bemerkung und da e(F/F) — oo gilt.
Dann ist F/F auch iiber dem Kompositum E FEs definiert mit (EEs)" = E’E,. Nach
Bemerkung und da der Verzweigungsindex multiplikativ ist, gilt

[(s(E'E2)/EE>) +1)(1 = 1) + 1)/1]/e(EEy/F) < v(z).
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Aufgrund von Lemma folgt nun = € Tr(pp,y/EpE,(M(EE,y) und damit z €
Trzr(mp).

Sei nun F'/F eine beliebige endliche galoissche Erweiterung. Falls eine endliche
Erweiterung E/F, iiber der F'/F definiert ist, existiert, sodass E'/E unverzweigt
ist, ist auch E)/Fj5 fiir alle endlichen Erweiterungen Ey/F unverzweigt, und da fir
eine unverzweigte Erweiterung E’'/F und ein Primelement 7g von E' und E

TI'E//E(WEUE’) = WETI‘E//E(UE’) = TEp0p =—mg

gilt, folgt Trz ) r(mz) = mz. Wir kénnen also aufgrund der Transitivitit der Spur
0.B.d.A. davon ausgehen, dass E’/FE total verzweigt ist.

Dann finden wir nach Lemma eine Teilerweiterung E'/E{, in E'/E, sodass
E'/E{, zyklisch von Primzahlgrad ist. Es ist F'/FE zyklisch von Primzahlgrad
und verzweigt. Nach Bemerkung [3.1.2 gilt Eigenschaft (i) fiixr FE(/F, also, wie
gerade gesehen, auch (iv), das heift Trzrg (mp) = mzg, . Im néchsten Schritt
finden wir eine zyklische Erweiterung von Primzahlgrad Ej/E] in E’/E. Dann
ist auch E{F/E{F zyklisch und total verzweigt von Primzahlgrad und es gilt
Trg 7/ F(mg F) = mp £

Iterativ und aufgrund der Transitivitit der Spurabbildung erhalten wir Trz /7 (mz/)
mgr.

Fiir den Fall, dass ' /F nicht galoissch ist, betrachten wir die normale Hiille 7™ von
F' iiber F. Dann ist F"/F" eine endliche Erweiterung und es gilt Trpn /r(mzn) =
mz und Trzn 7 (mzn) = mz nach Bemerkung und dem oben Gezeigten. Da
die Spurabbildung transitiv ist, folgt

TI']://]:(ITI].‘/) = Tr]://]:(Tr}-n/]:/(m]:n)) = Tr]:n/]:(m]:/) =mgr.

(iv) = (i1):

Angenommen, (i) gilt nicht. Sei F'/F eine zyklische verzweigte Erweiterung von
Primzahlgrad. Dann existiert ein € > 0, sodass s(E'/FE)/e(E/F) > ¢ fiir alle endli-
chen Erweiterungen E/F, iiber denen F'/F definiert ist, gilt. Es gilt Trz/z(mp) =
UTrgr g(mer), wobei die Vereinigung iiber alle endlichen Erweiterungen £/F, so-
dass F'/F iiber E/F definiert ist, geht. Wir finden also fiir alle x € Trz/z(mz)
eine endliche Erweiterung E/F, sodass F'/F iber E/F definiert ist und z €
Trgs/p(mp) gilt. Nach Lemma gilt mit s := s(E'/E) und | := e(E'/E)

v(Trpyp(mp)) = (s(E'/E) + 1+ [=s/l])/e(E/F)
>(s+1+(=s—=14+1)/1)/e(E/F)
= (s(1=1/1) + 1/1)) [e(E/ F)
(1=1/0) +1/(0 - e(E/F))
(1—1/0).

Damit gilt v(z) > (1 — 1/1) fiir alle z € Trr/z(mz). Da die Bewertung auf F
nichtdiskret ist, folgt Trz,z(mz/) # mz, Widerspruch zu (iv).

>e€
> €
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3.1 Definition und einige Eigenschaften

Fiir eine zyklische verzweigte Erweiterung F'/F von Primzahlgrad folgt (ii:) dhn-
lich wie im Beweis fiir (ii) = (iv) aus Lemma [2.4.1]

Sei F'/F eine galoissche endliche Erweiterung und gelte (ii). Sei E/F eine endliche
Erweiterung in F/F, sodass F'/F iiber E definiert ist. Sei E = Fy C ... C E; C
... € E' ein Turm von Teilerweiterungen wie in Lemma das heifit Ey/FE ist
unverzweigt und F;.1/FE; ist total verzweigt von Primzahlgrad fir ¢ > 1. Setze
Fi = FE;. Dann ist F;y1/F; zyklisch von Primzahlgrad fir ¢ > 1. Siehe Abbil-
dung (3.4). Nach Bemerkung [3.1.2] gelten Bedingung (i) und damit Bedingung (ii)
auch fur F;/F. Wir finden also wie oben gesehen fiir jedes € > 0 eine endliche
Erweiterung L in Fi/F, sodass Fa/F; iiber L definiert ist und v(Dy/ /) < e gilt.
(Dabei konnen wir davon ausgehen, dass Fa/F; verzweigt ist, da wir andernfalls
eine endliche Erweiterung L in F;/F finden, sodass F2/F; iiber L definiert ist und
L'/ L unverzweigt ist. Aber die Bewertung der Differente einer unverzweigten Er-
weiterung ist sowieso gleich 0.)

Wir kénnen dabei 0.B.d.A. von £ C L und L' = LE, ausgehen (indem wir L, falls
notig, vergrofern, siehe Lemma. Setze L = FNL. Dann ist L / L unverzweigt
und Fo/F ist iiber L definiert mit LE> = L'. Aufgrund der Multiplikativitit der
Differente und da v(Dy ;) = 0 ist, gilt v(D g, 1) <e.

Iterativ und mit Lemma erhalten wir fiir jedes € > 0 eine endliche Teilerwei-
terung E/F in F/F, iiber der F'/F definiert ist und fiir die v(Dpr/p) < € gilt. Fiir
eine beliebige endliche Erweiterung F'/F folgt die Behauptung aus dem Ubergang
zur normalen Hiille von F'/F und der Multiplikativitdt der Differente.

F (3.4)
F
e
Fi
/
F LE'
LE,
/
L
L E’
By
e
Eq
/
E
|
F
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3 Tief verzweigte Korpererweiterungen

(idd) = (i) :
Sei F'/F eine zyklische verzweigte Erweiterung von Primzahlgrad [. Falls (i:) nicht
gilt, gibt es ein € > 0, sodass fiir alle endlichen Erweiterungen E/F in F/F, iiber
denen F'/F definiert ist, s(E'/E)/e(E/F) > € gilt. Dann gilt fiir die Differente von
E'/E nach Lemma [2.4.1]

v(Dgryg) = ve/(Dpyg)/e(E' [ F)
= (s(B'/E) + 1)(1 = 1)/(e(E/F)I)
=s(E'/E)/e/E/F)-(1=1/)+1/e(E/F)- (1 -1/1)
>e-(1=1/1)+1/e(E/F)-(1—1/1).

Das ist das ein Widerspruch zu (47).
O

Definition. Ein Erweiterung F/F heifit tief verzweigt, wenn sie die dquivalenten
Bedingungen aus Satz erfiilllt. (Dabei setzen wir, den Voraussetzungen fiir
dieses Kapitel entsprechend, selbstverstandlich voraus, dass F/F separabel ist.)

Definition. Eine Erweiterung F/F hat endlichen Fihrer, wenn F C FM) fiir ein
m > —1 gilt. (Dabei ist F' (m) der Fixkérper der m-ten Verzweigungsgruppe G'% der
absoluten Galoisgruppe von F.)

Bemerkung 3.1.8. F/F hat genau dann endlichen Fiihrer, wenn F"/F endlichen
Fiihrer hat, wobei F™ die normale Hiille von F/F sei. In der Tat: Wenn F* C F(™)
gilt, dann ist sicherlich auch F € F(™. Andersherum ist F(™ /F galoissch; wenn
also F C F(™ gilt, dann auch F* C F(™),

Lemma 3.1.9 (Lemma 2.8 in |16]). Wenn F/F nicht endlichen Fiihrer hat, finden
wir fir jedes m € [—1,00| und jede natiirliche Zahl d eine endliche Erweiterung
E/F in F/F mit [E: ENFM™)] > d.

Beweis. Wir zeigen zunéchst, dass F/F N F (m) eine unendliche Erweiterung ist.
Wenn dies nicht der Fall wére, kénnten wir F als Kompositum von F N F(™) mit
einer endlichen Erweiterung E/F schreiben. Es gilt aber E C F™) fiir ein m/, also
wire F C FM") fiir ein m” , was ein Widerspruch zur Voraussetzung ist.

Wir finden also fiir jedes d € N ein Element 2 € F, dessen Grad iiber F N F(™)
mindestens d betréigt. Dann gilt [F(z) : F(z) N F™)] > d. O

Lemma 3.1.10 (siehe Proposition 2.4 und 2.9 in [16]). Sei F/F eine Korperer-
weiterung. Dann sind dquivalent:

(i) F/F ist tief verzweigt.
(i) F/F hat unendlichen Fihrer.

(iii) Fiir jedes € > 0 existiert eine endliche Erweiterung E/F in F/F mitv(Dg/p) >
€.
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Beweis. (i) = (ii):
Sei F/F tief verzweigt. Wir nehmen an, dass F/F' endlichen Fiihrer hat. Dann exis-
tiert ein m > —1, sodass F C F(m) gilt. Seien E/F eine endliche Teilerweiterung
von F/F und E" die normale Hiille von E/F in F™. Dann gilt Gal(E"/F)" =
{id}, und damit ist, wenn wir m falls notig etwas vergréBern, um Differenzierbar-
keit sicherzustellen, w%n/F(m) = e(E™/F) und ij/F(m) = gp%n/E(wEn/F(m)) :
w’En/F(m) = e¢(E/F). Das ist ein Widerspruch zu Eigenschaft (i) aus Satz
denn dann gilt fiir alle n > m, da der hochste obere Sprung von E/F' kleiner oder
gleich m ist,
Vg/p(n)/e(E/F) = m/e(E/F)+n—m.

(11) = (4):
Wir zeigen Eigenschaft (iii) aus Satz
Sei F'/F eine endliche Erweiterung. Wir kénnen annehmen, dass F'/F galoissch
ist; falls nicht, konnen wir zur normalen Hiille von F’/F {ibergehen und die Multi-
plikativitat der Differente ausnutzen.
Sei E/F eine endliche Erweiterung in F/F, sodass F'/F iiber E definiert ist. Sei

E(™) wieder die von Gal(F*?/E)™ festgelassene Erweiterung von E. Sei L/E eine
endliche Erweiterung in F/F. Dann gilt wegen der Multiplikativitdt der Differente

v(Dry) = v(Pryg) — v(Dr/E) (3.5)
und wegen Lemma [2.3.9]
1 1

uahULy:euwpq—{Kj(wZIMWEM”]_LU:L”WEmﬂde. (3.6)

Da E'/FE eine endliche Erweiterung ist, gibt es ein mg, sodass E' C E (mo) oilt, Wir
zeigen nun, dass

L :L'NnE™]=[L:LNE™] fir alle m > mg (3.7)

gilt. Wenn ({3.7)) gilt, dann ist der Integrand in (3.5)) gleich 0 fiir m > mg und es gilt

3 mo 1 1
v(Dryp) = e(E/F) 1 /_1 ([L : LN EMm) B [L/:L'n E(m)])dm
S

|
T LnEm ™

Es gilt LN EM™ C LN EM™) fir m < mo und damit
V(Dpy) < (mo +1)/(e(E/F)[L : LN EM™)).

Wegen Lemma folgt daraus, dass F/F tief verzweigt ist.
Um (3.7]) zu zeigen, setzen wir

R(m):=LNE™_  R(m):=LnE™.
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3 Tief verzweigte Korpererweiterungen

Da E(™) galoissch iiber F ist, sind L und E(™ linear unabhingig iiber R(m). Al-
so gilt [L : R(m)] = [LR'(m) : R'(m)]. Es gilt LR(m)" C L'. Andererseits gilt
E' C EM™) fiir m > mg. Damit gilt L' = E'L C R'(m)L. Das zeigt . Damit ist
F/F tief verzweigt.

(1) & (idd):

Wir zeigen, dass F/F genau dann endlichen Fiihrer hat, wenn es ein 9 > 0 gibt,
sodass v(Dg ) < € fiir alle endlichen Erweiterungen E/F in F/F gilt.

Sei F C F(™) fiir ein m > —1. Dann gilt ECF (m) fiir alle endlichen Erweiterungen
E/F in F/F, und aus Lemma folgt, dass v(Dg, ) beschrinkt ist.

Andersherum sei v(Dg/p) < €o fiir ein g9 > 0 und alle endlichen Erweiterungen
E/F in F/F. Sei E/F eine endliche Erweiterung in F/F, sodass E ¢ F(™ fiir ein
m > 0 (falls es derartige m und E/F nicht gibt, ist die Behauptung klar). Dann
folgt aus Lemmau(DE/p) > m/2, denn es ist [E : ENF(™)] > 2. Also existiert
ein m > 0, sodass E C F(™ fiir alle endlichen Erweiterungen E/F in F/F gilt. [

Beispiel. Sei Qp,, die Erweiterung von Q,, die durch Adjungieren einer primiti-
ven n-ten Einheitswurzel entsteht, mit n = p™ fiir eine natiirliche Zahl m. Dann
ist Qpe = U, Qp,n tief verzweigt, denn nach [20, IV, §4, Proposition 18] gilt
Gal(Qp,,/Qp)™ ! # {1}. Das zeigt, dass Qe unendlichen Fiihrer hat.

Beispiel. Sei (pl/p”)nzl eine Folge in leg mit (p'/P)P = p und (p'/P" )P = pl/P
fir n > 2. Sei

n—1

Fo:=Qy(p?") und  F:=Qy(p"*") = | Fu.

n>1

Dann ist f(X) = X?" — p das Minimalpolynom von p'/?" {iber Qp. Da f(X) ein
Eisenstein-Polynom ist, ist F;,/Q, total verzweigt. Es gilt [F}, : Q,] = p™. AuBerdem
ist p"v(p'/P") = v((P/P")P") = v(p) = 1, also ist v(p'/P") = 1/p™.

Damit ist p'/P" ist ein Primelement von F,. Deswegen gilt Of, = Zp[pl/pn]. Nach
20, 11T, §6, Corollary 2 zu Lemma 2] gilt Dg, /g, = (f'(p'/P")) = (pn - pP" =D 1/P"y,
also v(Dp, /q,) = n+1—1/p". Damit gilt v(Dp, /q,) =2 00 Also ist F/Q, tief
verzweigt.

3.2 Bezug zur Definition aus [17]

In diesem Abschnitt wollen wir begriinden, warum die Definition einer tief verzweig-
ten Erweiterung eines lokalen Kérpers mit der entsprechenden Definition aus [17]
iibereinstimmt. Abgesehen davon, dass wir so einen alternativen Beweis fiir Satz
im fiinften Kapitel bekommen (siehe Satz[5.4.8)), werden wir diese Eigenschaft

tief verzweigter Erweiterungen nicht mehr benutzen.

Sei im Folgenden R ein Ring, A eine R-Algebra und B eine A-Algebra.
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3.2 Bezug zur Definition aus |17]

Definition. Sei M ein B-Modul. Eine A-Deriwvation von B in M ist ein A-Modul-
homomorphismus d : B — M mit

d(bc) = bdc + cdb fiir alle b,c € B.

Die Menge dieser Derivationen bildet einen B-Modul, den wir mit Der (B, M)
bezeichnen.

Lemma 3.2.1. Es existiert bis auf eindeutige Isomorphie genau ein B-Modul Qp /4
zusammen mit einer A-Derivation dg;a = d : B — (p/a, sodass fir jede A-
Derivation d' : B — M in einen B-Modul M genau eine B-lineare Abbildung
J:Qpa — M, sodass das Diagramm

d/

Qp/a

B M

kommutiert, existiert.
Beweis. [4, 7.4 Satz 2] O
Qp/a heiit der Modul der Kdhler-Differentiale von B iiber A.

Korollar 3.2.0.1. Sei M ein B-Modul. Dann ist die Abbilldung

Homp(Q2p/4, M) — Dera(B, M)
J = fodp/a

ein Isomorphismus von B-Moduln.

Satz 3.2.2. Sei f : B — C ein Homomorphismus von A-Algebren. Dann ist die
Sequenz

C @ Qp/a— Qcja LS Qc/p — 0,
die durch y ® dp/a() Sy - deja(f(x)), doya(z) A dcp(z) gegeben ist, evakt.
Beweis. [4, 7.4, Satz 5] O

Definition (Definition 6.6.1 aus [17]). Sei (F,v) ein bewerteter Kérper und vgsep
eine Bewertung auf einem separabel-algebraischen Abschluss F*P von F, die v
fortsetzt. Dann heifit F tief verzweigt, wenn fiir den Modul der Kéhler-Differentiale
Q = 0 gilt.

orsep/0F

Bemerkung 3.2.3. Die Definition hdngt nicht von der Wahl der Fortsetzung vrsep ab:
Sei Ve, eine weitere Fortsetzung von v auf F7*% und seien orser beziehungsweise
O’fsep die zugehorigen Bewertungsringe. Dann existiert nach [1, Theorem 3.2.15] ein
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3 Tief verzweigte Korpererweiterungen

o € Gal(F*P/F) mit o(ogser) = 0'recp,. Wir erhalten mit Satz die exakte

Sequenz
0-(0]:567’) ®U]:sep QU]:Sep/o]_. — QO’(O]:S&p)/U]__ — QU(U}-S&p)/O}_SEP =

Wenn also (2 = 0 gilt, dann auch Q4 =0.

U_Fsep/o}_ U]:SEP)/O]__
Wir wollen also zeigen, dass diese Definition im Falle einer Erweiterung eines

lokalen Korpers mit der Definition aus [8], die wir benutzen, iibereinstimmt.

Wir betrachten die Kategorie R-Alg.Morph, deren Objekte Homomorphismen
A — B von R-Algebren sind; wenn dann A" — B’ ein weiterer Homomorphismus
von R-Algebren ist, dann besteht ein Morphismus von A — B nach A’ — B’ aus
Homomorphismen von R-Algebren ¢ : A — A’ sowie ¢ : B — B’ sodass das
Diagramm

A——B

o)
A ——= P

kommutiert.

AuBlerdem haben wir die Kategorie R-Alg.Mod, die aus Paaren (A, M) besteht,
wobei A eine R-Algebra und M ein A-Modul ist. Die Morphismen in R-Alg.Mod
sind Paare (¢, f) : (A, M) — (B, N), wobei ¢ : A — B ein Homorphismus von R-
Algebren ist und f: B®4 M — N ein Homomorphismus von B-Moduln ist (dabei
wird B ® 4 M mittels Multiplikation auf dem linken Faktor zu einem B-Modul).
Wir kénnen €2 als Funktor von R-Alg.Morph nach R-Alg.Mod auffassen: Sei
A — B ein Objekt in R-Alg.Morph. Diesem ordnen wir das Paar (B,{Qp/4) zu.
Wenn A’ — B’ ein weiteres Objekt in R-Alg.Morph ist und wir einen Morphismus
zwischen A — B und A’ — B’ haben, das heifit Homomorphismen von R-Algebren
P : A— A sowie ¢ : B — B’, sodass das Diagramm

A——B

o e

A ——-s P

kommutiert, dann ordnen wir diesem Morphismus den Morphismus (¢, f) zu, wobei
f als Komposition des Homomorphismus’ B’ ®p Qp/4 — Qp//4 aus Satz mit
dem Homomorphismus 2p/4 — Qpr/ar, dprjax — dprygx definiert wird.

Seien (B;);c;r R-Algebren mit einer gerichteten Indexmenge I und sodass wir fiir
i < j eine Inklusion B; — B; haben. Sei B = hﬂz B; = |U; B;. Aulerdem sei M;
fur alle ¢« > 1 ein B;-Modul. Seien (v, fi;) : (B, M;) — (Bj, M;) Morphismen
in R-Alg.Mod fir i < j, wobei ¢;; : B; — B, die Inklusion sei, und sodass die
fij : Bj ®p, M; — Mj folgende Bedingungen erfiillen:
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3.2 Bezug zur Definition aus |17]

(i) fi =id,

Dann bilden die ((B;, M;)); ein induktives System. AuBerdem haben wir Homomor-
phismen von B-Moduln

= idp® fij
B®Bi ]\4Z — B®Bj Bj ®Bi Mz B—];J B®Bj Mj.

Dadurch bekommen wir ein induktives System (B ®p, M;); von B-Moduln und
konnen in der Kategorie der B-Moduln den Kolimes lim (B ®@p, M;) bilden.

Lemma 3.2.4. Dann gilt in R-Alg.Mod

lim(B;, M;) = (B, lim(B @p; M;)).
7 7

Beweis. Wir haben Abbildungen (vj,u;) : (Bj, M;) — (B,ligi(B ®p, M;)), die
gegeben sind durch die Inklusion ¢ : B; — B, und durch die Abbildungen u; :
B®p, Mj — hgll(B ®p; M;), die mit dem Kolimes in der Kategorie der B-Moduln
kommen. Dann gilt u; = u; o f;; fiir ¢ < j, da wir die Morphismen im induktiven
System (B ®p, M;); entsprechend definiert haben.

Sei nun (S, N) ein Objekt in R-Alg.Mod mit Abbildungen (v, g;) : (B;, M;) —
(S, N) (also Homomorphismen ¢; : B; — S und g; : S®p, M; — N), die mit den f;;
und den ¢;; vertraglich sind. Dann haben wir einen eindeutigen Homomorphismus
1 : B — S aufgrund der universellen Eigenschaft von B = th(BZ) in der Kategorie
der kommutativen Ringe mit 1, und einen eindeutigen Homomorphismus

K3 K3

g:S®p hg(B ®pB, M;) = hg(s ®p B ®p, M;) = hﬂ(s ®p, Mi) = N,

indem wir die universelle Eigenschaft von hﬂZ(S ®p B®p, M;) in der Kategorie der
S-Moduln benutzen. Durch die g; bekommen wir ndmlich Homomorphismen von
S-Moduln

g S®p Bog, M; > S®p, M; % N,

und dadurch ein induktives System in der Kategorie der S-Moduln. Es gilt nach
Konstruktion (;, g;) = (1, g)o (¢, u;). Somit erfiillt hgz(B , B®p, M;) die universelle
Eigenschaft des Kolimes.

O

Seien (A;)ier und (B;)ier R-Algebren mit Inklusionen 4; — A; und B; — B;
fir « < j und mit A; C B;, und A = |J; A; sowie B = |J; B;. Wir definieren
ein induktives System in R-Alg.Mod. durch Paare (B;,{p,/4,) und Abbildungen
(BhQBi/A,') — (BjagBj/Aj) flir ¢+ < j, wobei Bj X B, QBi/Ai — QBj/Aj durch die
Komposition

Bj ®p, Qp,ja, = QB /a; — QB /a5
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3 Tief verzweigte Korpererweiterungen

wobei der erste Homomorphismus aus der exakten Sequenz (Satz[3.2.2) kommt und
der zweite Homomorphismus durch Qp. /4, = Qp /4., dp; /4,2 — dp, 4,z definiert
ist, gegeben ist.

Lemma 3.2.5. Es gilt

lim(B;, Qp,/4,) = (B, Qp/a)-

)

Beweis. Nach Lemma gilt li_mH(BZ-,QBi/Ai) = (B,ligi(B ®p,; ,/4,)). Wir

zeigen nun, dass li Z( B ®p, Qp,/4,) als B-Modul zu Qp,4 isomorph ist.
Sei M ein B-Modul. Wir haben Isomorphismen von B-Moduln

12

@(HomB(B ®p,; OB, /4, M))

(2

i (HOHlBi (QB«;/AZ" M))

Homp (lim(B @5, Qp,/4,), M)
%

12

1E

im(Der 4, (B;, M))

12
TET -

~

12
O

erg(B, M).

(Dabei werden Homp, (2p,/4,, M)) beziehungsweise Der4,(B;, M) durch b - ¢ :=
(= bp(z)) fiir ¢ € Homp, (2p, /4,, M)) beziehungsweise b - f := (z +— bf(x)) fiir
f € Dery, (B, M) zu B-Moduln.)

Das Lemma folgt nun aus Lemma [3.2.7] O

Satz 3.2.6. Sei L/E eine endliche Erweiterung, wobei E eine Erweiterung von F
ist, sodass die Bewertung auf E diskret ist, wp sei ein Primelement von op und
Dy/E sei die Differente von L/E. Dann wird der or-Modul Qg /5, von dy, /0,71
erzeugt und Dy, ist der Annulator des or,-Moduls

oL/op"

Beweis. [20, III. §7, Proposition 14] O
Lemma 3.2.7 (Lemme 4 in [10]). Seien E/L/F endliche Erweiterungen. Aus Satz
[5.2.3 erhalten wir einen kanonischen Homomorphismus

a:o0p Qo QUL/UF — QOE/UF

y® doL/opx = ydOE/OFx'

Dieser ist injektiv. Insbesondere ist fiir jedes Element w € Qy, /., mit Annulator
Ann(w) der Annulator des Bildes von 1 ® w das Ideal o - Ann(w).

Beweis. Da wir E/L als E/Ey/L mit Ey/L unverzweigt und E/Ej total verzweigt
schreiben konnen, reicht es aus, unverzweigte und total verzweigte Erweiterungen
zu betrachten.

Zunéchst sei E/L unverzweigt. Sei 0 # w € Q,, ,,. ein beliebiges Element und sei
7z ein Primelement von oz. Dann kénnen wir w nach Satz als w = ady, /o, 7L
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3.2 Bezug zur Definition aus |17]

schreiben mit einem a € oy, und es gilt v(Ann(w)) = v(Dr/p) — v(a). Es ist
a(l®w) = adg/pTr € Qqp /0., und da 77, auch ein Primelement von o ist, gilt
fiir ein b € o genau dann bad, /o, 71, = 0, wenn v(ba) > v(Dgr) = v(Dyrr) gilt,
denn da E/L unverzweigt ist, gilt v(Dg/p) = v(Dr /). Also ist v(Ann(a(1®w))) =
v(Drr) — v(a) und es gilt Ann(a(l ® w)) = og - Ann(w).

Sei nun E/L total verzweigt von Grad n, sei g ein Primelement von op und sei
f(X) = X"+ a, 1X" ! + ... + ap das Minimalpolynom von 7g iiber L. Dann
ist f ein Eisenstein-Polynom und 75 = —ag ist ein Primelement von or. Sei 0 #
w e

o1, /op €N beliebiges Element. Dann koénnen wir wie oben w nach Satz als
w = ad,, /o, 7L schreiben mit einem a € oy, und es gilt v(Ann(w)) = v(Dy,/p)—v(a).

Es gilt n, = 7, + an_lﬂ%fl + ...a17g und damit

daE/oFﬂ'L = (a1 + 2a97p + ... + mr%fl) ‘doE/oFﬂ'E = f/(T('E)daE/oFTFE.

Also gilt a(1®@w) = f'(7g)ad,, /o, TE, und fiir ein b € op ist genau dann ba(1®w) =
0, wenn v(bf'(7g)a) > v(Dg/p) gilt. Da nach Satzfﬁr das von f'(7g) erzeugte
Ideal (f'(ng)) = Dgyy, gilt und aufgrund der Multiplikativitdt der Differente ist
ba(l ® w) genau dann 0, wenn v(b) > v(Dr,p) — v(a) = v(Ann(w)) gilt, woraus
wieder Ann(a(l ® w)) = Ann(w) - og folgt. O

Seien F/F eine Erweiterung und E/L/F endliche Erweiterungen in F/F.
Lemma 3.2.8. Jeder torsionsfreie o y-Modul ist flach.

Beweis. Jedes endlich erzeugte Ideal I C or ist bereits ein Hauptideal. In der
Tat: Sei I von Elementen x1,...,x, € or erzeugt und sei 1 < iy < n so, dass
v(xi,) = max{v(x;)|1 <1i < n} gilt. Dann erzeugt x;, bereits I. Das Lemma folgt
nun aus [5, I, §2, 4, Proposition 3.ii|. O

Wir haben wegen Lemma [3.2.7) die Inklusion
OE ®0L Ql’L/l’F - QOE/l’F

und damit wegen Lemma [3.2.8] auch einen injektiven Homomorphismus von o gsep-

Moduln
O fpsep ®0L QUL/UF = 0 fpsep ®0E (O3 ®0L QC‘L/UF — Ofsep ®0E QUE/UF'

Damit erhalten wir durch Ubergang zum Kolimes iiber alle endlichen Erweiterungen
E/F auf der rechten Seite einen injektiven Homomorphismus
OFsep ®0L QUL/UF — Q

OFsep/UF'

Wenn wir nun auf der linken Seite den Kolimes tiber alle endlichen Erweiterungen
E/F in F/F bilden, bekommen wir einen injektiven Homomorphismus

hﬂ(ﬂpsep ®0E QoE/oF) — QoFSEP/"F'
E
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3 Tief verzweigte Korpererweiterungen

Auflerdem gilt

lig(olrse?’ Rop QoE/oF) = hg(OFsep Qoy 0F Qop QOE/UF)
E E

= OFsep ®0]_. %ﬂ(ﬂf ®UE QUE/OF)
E
= Ofsep ®0]—‘ QO]:/UF‘

‘Wir kénnen also sowohl €2
von ()

or/op alsauch €, als 0y - beziehungsweise o z-Untermodul

auffassen. Im Folgenden setzen wir d := d

OFsep/OF OFsep/UF'

Sei F,;,, die maximale unverzweigte Teilerweiterung von F*?/F.

Bemerkung 3.2.9. Fiir eine Erweiterung F/F gilt Q =Q . Dies

folgt aus Satz

Sei a € opser ein beliebiges Element, und sei L/Fy, eine endliche Erweiterung,
sodass a € L ist. Sei 7, ein Primelement von o7,. Dann ist o7, ein freier Modul von
Rang n = [L : F,,] iiber op,, mit Basis 1,7z, ...} " (siehe [20, ITI, §6, Lemma
3]). Wir finden also ein eindeutiges Polynom f € op,, [X] mit f(77) = a und von
Grad kleiner als n. Nun setzen wir

6(a) = min{v(f'(rz)) — v(Drr,,),0}.

U]:Fun/oF UFFun/oFun

A

Wenn da # 0 ist, ist auch d,, /., a # 0 und es gilt —v(Ann(d,, /oy, a)) =
v(f' (7)) —v(Dr/r,,) = d(a). Wenn L'/ F,, eine weitere endliche Erweiterung mit
a € L' ist, gilt aufgrund von Satz |3.2.7|

orLr’ - AHH(dL/FunCl) = Ann(dL’L/Funa)

=0rr - AI’lIl(dL//FunCL).

Also ist §(a) in diesem Fall unabhéngig von der Wahl von L.

Wenn da = 0 gilt, ist auch d,, jo, @ =d,,, /0, a=0und es gilt 5(a) = 0.

Damit definiert ¢ eine Funktion 6 : 0pser — (—00, 0.

Bemerkung 3.2.10. Fir x,y € opser gilt xdy = 0 genau dann, wenn v(z)+0(y) > 0

ist.

Lemma 3.2.11 (Lemma 2.2. in [2]). Seien x,y € opser zwei Elemente mit 6(x) <
d(y). Dann gibt es ein z € op,, [z, y] mit zdz = dy.

2Wir haben die Differente nur fiir lokale Kérper definiert, die insbesondere vollstindig sind.
Aber fir endliche Erweiterungen von Fy, gelten dieselbe Definition und alle hier benétigten
Eigenschaften.

3In Lemma gehen wir eigentlich von einem vollstdndigen Koérper aus, diese haben wir im
Beweis allerdings nicht benutzt. Abgesehen davon gilt fiir einen Homomorphismus A — B von
R-Algebren Qprjar =2 A’ ®4 Qpya, wobei A" eine A-Algebra und B’ = B ® A’ ist (siehe |7,
Proposition 16.4]). © vertrégt sich hier also mit Vervollstidndigen.
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3.2 Bezug zur Definition aus |17]

Beweis. Sei m = mp,, [z, ein Primelement in op, [, und seien hi, hy € op, . [x]
Polynome, sodass = hi(7) und y = ho(w) gilt. Dann ist de = h}(7)dr und
dy = hby(m)dr. Falls §(y) = 0 ist, dann gilt dy = 0 und wir kénnen z = 0 wéhlen.
Wenn §(y) < 0 ist, dann gilt

d(z) = v(hi(m)) + d(m) < v(hy(m)) + () = d(y).
Also kénnen wir z = hy(7)/h} () € 0, , [2,y] Wihlen. O

Satz 3.2.12 (Theorem 2.2. in |2]). Sei F/F eine Korpererweiterung mit Fy, C F.
Dann sind die folgenden Bedingungen dquivalent:

(i) F/F ist tief verzweigt (im urspringlichen Sinn).
(ii) 0(oF) ist unbeschrinkt.

(iii) Fir jede Erweiterung F'|F gilt Q =0.

0]://0}‘

() Fiir jede Erweiterung F'|F gilt Qo _, o, = 0F - Q

of/oFun :

Beweis. Man sieht an Eigenschaft (iii) aus Lemmal[3.1.10} dass (i) zu (i) dquivalent
ist. Dabei benutzen wir, dass fiir eine endliche Erweiterung E/F fiir die Differente
v(Dg/r) = v(Dg/k,) gilt, wobei Ey/F die maximale unverzweigte Teilerweiterung
von E/F ist (siehe [20} III, § 5, Theorem 1]). Dann sehen wir an der Definition der
Differente, dass v(Dg/r) = v(Dg,,/F,,) gilt.

Gelte (i1). Sei x € oz fir eine Erweiterung F'/F. Dann existiert ein y € or, sodass
0(y) < o(x) gilt. Wegen Lemma finden wir ein z € oz mit de = zdy €
0F Loy /op,, » also gilt (iv).

Gelte (iv). Wir nehmen an, dass 6(0r) beschrankt ist. Dann gibt es ein N € N,
sodass —N < inf{d(a)|a € or} gilt. Dann gilt WgQOF/OFm = 0 (fiir ein Primelement
7 von o). Fiir ein @ € opsep mit §(a) < —N gilt 7¥Nda # 0, also ist da ¢
opser - {2y /o, Widerspruch.

Um zu sehen, dass (i) zu (iv) dquivalent ist, betrachten wir eine Erweiterung
F'/F und erhalten nach Satz die exakte Sequenz

ENY) — 0.

0]:/ ®0-7: Qof/oFun O.F//aFun - Qo]:’/o]:

Da das Bild von f gleich oz - Qg /o, ~ ist, ist (444) dquivalent zu (iv).

O]

Lemma 3.2.13. Sei F/F eine Korpererweiterung und F'/F eine endliche Erwei-

terung. Dann gilt o/, @0, =0

0.7:’/0}- OF/Fun/U.FFun'

Beweis. Sei L/F eine unverzweigte endliche Erweiterung, und sei E//F eine endliche
Erweiterung in F/F, sodass F'/F iiber E definiert ist. Dann haben wir die exakte

Sequenz (siehe Satz [3.2.2))

0=o0p171 @0y, Q2 —Q — Q — 0,

UEL/OE OE/L/OE UE/L/UEL
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3 Tief verzweigte Korpererweiterungen

wobei EL/E unverzweigt ist, woraus (2 = 0 folgt. Also gilt Q2

QUE’L/UEL :
Auflerdem haben wir die exakte Sequenz

UEL/UE UE/L/UE

0= oprL ®oy QOE,/OE—>Q — Q =0,

Op/L/oE 0p/L /g

wobei Q, /., = 0 gilt, da E'L/E’ unverzweigt ist. Aufierdem ist der Homomor-
phismus 0g/z, ®o,, Qo /op = Loy, jop injektiv aufgrund von Lemma Also

haben wir einen Isomorphismus og/p ®,,, €2 — Q. jop und damit gilt

0p/0E
0F'L Qo QUE//OE = QoE/L/oEL'

Wir betrachten nun den Kolimes iiber alle endlichen unverzweigten Erweiterungen
L/F: liﬂ(oE/L, Qo Jopr)- Nach Lemma [3.2.5) gilt
L

im(opr, o, jop) = (OB Funs Qo forp,, )
L

Es gilt

1

hg(OE/L, QUE/L/UEL)

U_H;(UE% 0F'L Qo QOE//UE)
I L

12

(OE,Fun7 hﬂ'(oE/Fun ®0E’L ORI ®0E/ QOE,/OE))
L

I

(OE,Fun’ hﬂ(oE/Fun ®0E’ QOE//UE))
L

1

(0B Fups OB/ Fypy R0y Qoo )-

Also gilt insgesamt QOE’Fun/OEFun =05 Py Qo Loy fop-
Dann gilt fiir den Kolimes tiber alle endlichen Erweiterungen E/F in F/F

hﬂ(oElFuvﬂ QUE’Fun/UEFun) = hAl(OE/Fun, OE/Fun ®°E’ QUE//OE)
E E

= (Of’Fun?hg(o}-/Fun ®°E’Fun OF Fun QF QOE//OE))
E

I

(O.F,Fun7liﬂ(0]:/Fun ®El QOE’/OE))
E

12

(O.F/Fun7lig(0]:/Fun ®0]:/ O‘F/ ®El QUE//UE))
E

12

(OF Py OF oy @0y i (07 @pr Qo /6,))
E

12

(Uf,FurU O-F/Fun ®0]:/ QO}'I/U]—‘)'
Wegen Lemma gilt

hﬂ(UE/Fun, QOE’Fun/OEFun) = (OF/Fun7 QU}"Fun/O}_Fun)’
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3.2 Bezug zur Definition aus |17]

also insgesamt

(U-F/Fuwﬂ QU]:/Fun/U]-‘Fun) = (O-FlFun7 O-F/Fun ®0]:/ QU]://U]—‘)?
woraus die Behauptung folgt. O

Wenn F/F eine Korpererweiterung ist, dann ist F/F genau dann tief verzweigt,
wenn FF,,/F tief verzweigt ist, wie man an Lemma sieht: Wenn F/F tief
verzweigt ist, dann klarerweise auch FF,,,/F. Wenn hingegen F/F nicht tief ver-
zweigt ist, dann existiert ein m > 0, sodass F C F(™) gilt. Aber wegen F, C
FO c ™) ist damit auch FF,, C F™).
Andererseits zeigt das vorherige Lemma, dass QU}"Fun Jorr,, = 0 genau dann gilt,
wenn 0r g, @r Qo /0, = 0 ist. Aber da die Inklusion 0z — 0rp,, als lokaler
flacher Homomorphismus von lokalen Ringen treu-flach ist (siehe [3, Tag 00HR]),
ist dies genau dann der Fall, wenn €2, _, /,. = 0 gilt. Nach [17, Theorem 6.3.23] (und

Lemma [3.2.5) ist dies dquivalent zu =0.

OFsep/U]-‘
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4 Tief verzweigt impliziert perfektoid

Sei in diesem Kapitel F/F eine tief verzweigte Erweiterung. Nach Bemerkung
ist die Bewertung v auf F nicht diskret. Wir bezeichnen das maximale Ideal des
Bewertungsrings or = {z € Flv(z > 0} mit m = mzr = {z € Flv(x) > 0}.

Wir werden in diesem Kapitel einige "Fast-Begriffe” (fast null, fast injektiv, Fast-
Isomorphismus etc.) definieren und einige Resultate aus der kommutativen Algebra
in diesen Kontext iibertragen. Anschliefend zeigen wir, dass der Homomorphismus
7,5 fast surjektiv ist. Darauf aufbauend beweisen wir, dass die Inklusion fast
schwach étale ist, woraus wir schliefllich folgern, dass der Frobenius auf o ﬁ/po =
surjektiv ist.

4.1 Fast kommutative Algebra

Lemma 4.1.1. Es gilt m®> = m. Dariiber hinaus lisst sich jedes Element € € m als
Produkt zweier Elemente aus m schreiben.

Beweis. Die Inklusion m? C m ist klar.
Andersherum sei € € m\ {0} beliebig. Da die Bewertung nichtdiskret ist, finden wir
ein & € m mit v(e') < v(¢), also gilt £/¢/ € m und damit e = ¢’ - £/&’ € m?. O

Bemerkung 4.1.2 (Remark 2.1.4 in [17]). Es gilt m ®,, m = m. In der Tat: Die
Inklusion m — o induziert eine Injektion m ®,, m — M ®,, 07, ® y — xy. Das
Bild ist m? = m.

Definition (2.1.3. aus [17]). (i) Sei M ein ox-Modul. Dann heit M fast null,
wenn mM = 0 gilt.

(ii) Sei N ein weiterer or-Modul und sei f : M — N ein Modulhomomorphis-
mus. Dann heifit f fast injektiv, wenn mKer(f) = 0, und fast surjektiv, wenn
mCoker(f) =0 gilt. Wenn f fast surjektiv und fast injektiv ist, heiit f Fast-
Isomorphismus.

Lemma 4.1.3 (Remark 2.1.4.(i) in [17]). Ein ozr-Modul M ist genau dann fast
null, wenn m ®,,. M = 0 ist.

Beweis. Sei m ®,, M = 0. Wir haben einen surjektiven Homomorphismus m ®; .
M — mM,e®m — em, also ist mM = 0. Umgekehrt sei mM = 0. Da m? = m gilt,
ist damit m ®,, M =m ®,, mM = 0. O
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4 Tief verzweigt impliziert perfektoid

Lemma 4.1.4 (Remark 2.1.4.(i) in [17]). Seien M und N zwei oxr-Moduln. Ein
Homomorphismus f: M — N ist genau dann ein fast injektiv beziehungsweise fast
surjektiv, wenn id® f : m®o, M — m®,, N injektiv beziehungsweise surjektiv ist.

Beweis. Wir zeigen die Aussage fiir einen Fast-Isomorphismus f; die Aussagen fiir
fast injektive beziehungsweise fast surjektive Homomorphismen ergeben sich direkt
aus dem Beweis.

Sei f: M — N ein Fast-Isomorphismus. Wir haben die exakte Sequenz

0 — Ker(f) = M — N — Coker(f) — 0.

Das Ideal m ist nach Lemma ein flacher o r-Modul. Damit ist auch die indu-
zierte Sequenz

0= m®,, Ker(f) > m®, M > m®,, N = m®,, Coker(f) =0

exakt.

Nach Lemma ist m ®,, Ker(f) = m ®,, Coker(f) = 0, also ist id ® f :
m®e, M — m®,, N ein Isomorphismus.

Sei umgekehrt id ® f : m ®,, M — m &, N ein Isomorphismus. Dann gilt m ®, .
Ker(f) = m ®,, Coker(f) = 0, denn wir kénnen, da m flach ist, sowohl Kern als
auch Cokern von m ®,, M — m ®,, N mit m ®,, Ker(f) bzw. m ®,, Coker(f)
identifizieren. Also gilt auch mKer(f) = mCoker(f) = 0 nach Lemma O

Die folgenden Resultate sind Fast-Versionen von allgemeinen Sétzen {iber flache
und schwach étale Homomorphismen, vergleiche z.B. [3, Tag 092A].
Sei f : A — B ein Homomorphismus von oz-Algebren. Dann wird B durch f zu
einer A-Algebra. Wenn I C A ein Ideal ist, bezeichnen wir mit I B = BI das von [
erzeugte Ideal in B.

Definition. Sei f: A — B ein Homomorphismus von or-Algebren. Dann heifit f
fast flach, wenn fiir jeden injektiven Homomorphismus g : M — N von A-Moduln
der Kern der induzierten Abbildung

BasM— BN
fast null ist.

Lemma 4.1.5. Seien A und B zwei 0 x-Algebren. Dann ist f : A — B genau dann
fast flach, wenn m ®, . B ein flacher A-Modul ist.

Beweis. Seig: M — N ein injektiver Homomorphismus von A-Moduln. Wir haben
die exakte Sequenz

0— Ker(id®g) > B®a M — B®4 N.

'Der Beweis stammt aus [6].
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4.1 Fast kommutative Algebra

Nach Lemma [3.2.8] ist auch die induzierte Sequenz
0= m®,, Ker(id®g) > m®,, BOAM -m®,, Ba N

exakt. Wenn f : A — B fast flach ist, wird Ker(id ® g) von m annuliert, und mit
Lemma folgt m ®, . Ker(id ® g) = 0. Wenn andererseits m ®,,. B ein flacher
A-Modul ist, dann ist wieder nach Lemma m ®,, Ker(id ® g) = 0, also ist
f: A — B fast flach. O

Bemerkung 4.1.6. Wenn f : A — B fast flach ist und g : M — N ein fast injektiver
Homomorphismus von A-Moduln ist, dann ist die induzierte Abbildung B&®4 M —
B ®4 N fast injektiv.

Lemma 4.1.7. Seien A — B sowie B — C fast flache Homomorphismen von
or-Algebren. Dann ist auch die Komposition A — B — C' fast flach.

Beweis. Sei h: M — N ein injektiver Homomorphismus von A-Moduln. Wir haben
die exakte Sequenz

0— Ker(idg ® h) = Boa M 28" Bo, N.
Nach Lemma ist die induzierte Sequenz
0= m®,, C®pKer(idg ®h) = m®,, C ®p B&s M - m®,, C®p BN
exakt, also ist auch die Sequenz
0—=>m®,, CepKer(idp®@h) > m®,, C®4 M —>m®,, C®4N
exakt. Weiterhin gilt m ®,, Ker(idp ® h) = 0, da B ein fast flacher A-Modul ist.
Deswegen ist m ®,, C ®,, Ker(idp ® h) = C ®,, m ®,, Ker(idp ® h) = 0. Wir

haben den kanonischen surjektiven Homomorphismus

0=m®,, C®,Ker(idp ® h) > m®,, C @p Ker(idp ® h)
TRYRXK 2~ TRYR 2.

Also gilt m®, . C ®@pKer(id®@ h) = 0. Damit haben wir einen injektiven Homomor-
phismus

d@id®@h:m®,, C®4M - m,, C®4N.

Somit ist nach Lemma der Homomorphismus id®h : C®4 M — C®4 N fast
injektiv, woraus die Behauptung folgt. O

Lemma 4.1.8 (Basiswechsel). Sei A — B ein fast flacher Homomorphismus von
or-Algebren. Wenn ¢ : A — A’ ein Homomorphismus von ox-Algebren ist, dann
ist A" - B®y A’ fast flach.
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4 Tief verzweigt impliziert perfektoid

Beweis. Sei f: M — N ein injektiver Homomorphismus von A’-Moduln. Dann ist
f auch als Homomorphismus von A-Moduln injektiv. Wir haben das kommutative
Diagramm von A-Moduln

By Aoy ML Bo, Aoy N

El lg

Die Behauptung folgt, da A — B fast flach ist. O

Definition (Fast schwach étale Algebren). Sei ¢ : A — B ein Homomorphismus
von ox-Algebren. Dann heifit ¢ fast schwach étale, wenn B ein fast flacher A-Modul
ist und wenn B auflerdem ein fast flacher B ® 4 B-Modul ist, wobei B durch die
Multiplikationsabbildung p : B ®4 B — B,z ® y — a2y zu einem B ® 4 B-Modul
wird.

Lemma 4.1.9. Sei A eine ox-Algebra. Sei ¢ : B — C ein Homomorphismus von
fast schwach étalen A-Algebren. Dann ist ¢ fast schwach étale.

Beweis. Wir schreiben ¢ : B — C als Komposition von B - C ®4 B,z — 1 ® x,
mit C®4 B — C,x ® y — x - ¢(y). Der erste Homomorphismus ist fast flach nach
Lemma denn er ist der Basiswechsel von A — C durch A — B.

Um zu sehen, dass auch der zweite Homomorphismus fast flach ist, betrachten
wir den Basiswechsel des fast flachen Ringhomomorphismus’ B ® 4 B — B be-
ziiglich des Ringhomomorphismus’ B ® 4 B — C ®4 B: Der Homomorphismus
C®s B — B®pg,p (C ®4 B) ist nach Lemma fast flach, und wir haben
einen Isomorphismus von A-Moduln

B ®pg,B (C®aB)=C,
b1 ® c® by — p(b1ba) - c.

Also ist auch C ® 4 B — C fast flach, und aus Lemma [£.1.7] folgt, dass ¢ : B — C
fast flach ist.

Der kanonische Homomorphismus C' ®4 C — C ®p C ist surjektiv. Damit gilt
CRpC®cep,cC®pC=Co®pC,alsoist C®pC ®cg,cC®pC = C®pC fast
flach. Da auch C® 4 C — C fast flach ist, ist C®pC — C fast flach (denn wenn wir
X=C®4CundY = C ®p C setzen, haben wir Y Qyg,v (C ®x M) =C @y M
fiir einen Y-Modul M). O

Lemma 4.1.10. Sei f : A — B ein Homomorphismus von ox-Algebren. Dann sind
folgende Bedingungen dquivalent:

(i) f ist fast flach und fir einen A-Modul M folgt aus m ®,, B®a M =0 schon
m®e, M =0;
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4.2 T ist fast surjektiv

(i) f ist fast flach und fir jedes echte Ideal I von A folgt aus m ®,, B/BI =0
schon m ®,, A/I =0.

Beweis. Es gilt B/BI = B®4 A/I, also gilt (i) = (ii). Gelte nun (ii) und sei M
ein A-Modul, sodass m ®,, B ®4 M = 0 gilt. Wenn M # 0, dann existiert ein
Element 0 # x € M. Sei I C A der Annulator von . Wir haben die Inklusion
A/I = Az — M. Da f: A — B fast flach ist, ist die induzierte Abbildung

M ®o, B4 A/I=m®,, B/BI - m®,, By M=0

injektiv, also gilt m ®,, B/BI = 0. Mit (ii) folgt m ®,, Az = m ®,, A/I =0 fur
beliebiges x € M, das heifit m ®,, M = 0, also gilt (i). O

Bemerkung 4.1.11. Wir nennen einen Homomorphismus f : A — B von 0r-Moduln,
der die dquivalenten Eigenschaften von Lemma [4.1.10| erfallt, fast treu-flach.

4.2 7 ist fast surjektiv

Sei fiir den Rest des Kapitels F'/F eine endliche Erweiterung von Grad d mit
F' C Fsep,

Lemma 4.2.1. Es existieren fir jedes € € my \ {0} Elemente ey, ...,eq € 05, die
eine F-Basis von F' bilden und sodass der Kokern der Inklusion @;e;0F — oz
von € annuliert wird.

Beweis. Sei ¢ € m'\ {0}. Wéhle eine endliche Erweiterung E/F in F/F so, dass
F'/F iiber E definiert ist und v(Dgr/p) < v(e) gilt. Sei ey, ..., ¢4 eine op-Basis von
og. Dann ist eq,...,eq auch eine F-Basis von F’, denn da eq, ..., eq eine op-Basis
von 0py ist, ist es eine E-Basis von E’, und es gilt 7/ = FE' und [E' : E] = [F' : F].
Sei €7, ..., €} die duale Basis von E’/E unter der Spurabbildung, das heifit es ist

. 1, fallsi =j
Tremleics) = {0, falls i .
Sei y € oz beliebig. Schreibe y = > a;e; fiir bestimmte a; € F. Es gibt ein
a € or \ {0}, sodass a - e; € oz fiir alle 1 <14 < d gilt, und es ist v(a) = v(Dp/g)
nach Definition der Differente. Wir haben Trz//z(y-a-e}) € oF fiir alle i = 0, ..., d,
andererseits ist Trr/z(y - a-€]) = a-q; fiir alle i = 0,...,d, das heifit a - a; € or.
Der Kokern der Inklusion ¢ : @e;0r — ox wird also von 4 fiir alle § € mz mit
v(0) > v(a) annuliert. Da e € m\ {0} beliebig war, folgt die Behauptung. O

Bemerkung 4.2.2. Diese Aussage gilt auch ohne die Voraussetzung "tief verzweigt",
siche Proposition 6.3.8. in [17].
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4 Tief verzweigt impliziert perfektoid

Beispiel (Example 4.9 in |19], Example 2 in [13]). Sei p # 2. Wir setzen F :=
Qp(p'/?P*) und F' := F(p'/?) sowie F, = Q,(p'/?") und F = F,(p'/?). Dann
wird o nach dem Lemma von Bezout als op,-Algebra von pl/2P" erzeugt, und
die Differente ist nach [20, III, §6, Corollary 2] das Ideal (p'/?"). Der Kokern der
Inklusion

0]:@]?1/2p 0F — 0F

wird von p*/2P" annuliert.

Das folgende Lemma zeigt, dass der Homomorphismus

TI=TF/F0F — HOInO}.(O]:/,OJ:)

y— (& Trp (ey)),
fast surjektiv ist.

Lemma 4.2.3. Es gibt fir jedes ¢ € mz \ {0} und jedes ¢ € Hom,,(07/,0F)
ein ze € oy, sodass Trr r(2ey) = ep(y) fir alle y € oF gilt, das heifit es gilt
e - Coker(7) = 0.

Beweis. Seien ¢ € Hom, (07 ,07) und € € mz \ {0} beliebig. Wir finden nach
Lemma Elemente €1,e0 € mrx mit € = €1 - €9. Betrachte €1 - . Wir finden
nach Lemma eine F-Basis ey, ...,eq € 07 von F', sodass fiir alle z € o7 das
Element €; - in P, e;0r liegt. Dann setze €1 - ¢ fort zu einer F-linearen Abbildung
® : F' — F. Das geht, da man fiur jedes y € oz eindeutige by,...,by € 0F mit
€1y =y ; be; findet.

Da F/F tief verzweigt ist, finden wir eine endliche Erweiterung £/ F in F/F, sodass
F'/F iiber E definiert ist und sodass v(Dg//g) < v(e2) gilt. Wegen Lemma
kénnen wir £9 € mg annehmen.

Da Trz/ 7 nicht ausgeartet ist, gibt es ein x € F " mit

O (y) = Tr(xy) fiir alle y € F'. (4.1)

Sei €], ..., ¢, eine E-Basis von E’ (und damit eine F-Basis von F'). Schreibe z =
> aje; mit a; € F. Definiere Ey := Elay, ..., aq]. Dann ist F'/F iiber Ey definiert
mit E) = E'laq, ..., aq]. Nach Lemma [2.1.10] ist

v(DPgy ;) < v(Dpryp) < v(e). (4.2)

Es gilt Tr(zy) = Trpy /g, (zy) € B fiir alle y € E5. Damit folgt &1 - ¢(y) € opy fiir
alley €o Bl das heif}t es ist

€1 PR, S HOIHUE2 (OEE,OEQ).

Wegen 1' und Lemma|2.1.12|ist g3 € AnnaE,2 (Coker (g /1,)), das heifit wir finden

ein z. €0 B mit

€ Ploy, (y) =ez-¢e1- Plog (y) = Trpy/p, (2ey).
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4.3 oF — 0Fsep ist fast schwach étale

Aufgrund der Injektivitdt der Abbildung TR, B, 8ilt €2 - & = 2, und aufgrund von
(.1) gilt

e-p(y) = Tr(zey) fiir alle y € 07.
Also erfiillt z. die gewiinschte Eigenschaft. O

Bemerkung 4.2.4. Hier ist der wesentliche Punkt, an dem die Voraussetzung “tief
verzweigt” eingeht. Alles Weitere funktioniert unter Benutzung der Aussage des
vorherigen Lemmas; die Voraussetzung “tief verzweigt” wird nicht mehr explizit
benutzt.

4.3 or — ors» ist fast schwach étale
Wir definieren einen (o0z-linearen) Homomorphismus o durch

005 ®o, Hom,, (07, 07) — Hom, , (05, 0F)
x® ¢ (Y play))

Dadurch wird Hom, (077, 07) zu einem o0z-Modul.
Der Homomorphismus 7 = 77,7 : 07 — Home, (07, 05) ist op-linear, denn fiir
Elemente @,y,b € op gilt b- (7(x))(y) = (7(2))(by) = Trz/x(bay) = (7(bx))(y).

Sei e € m\ {0}. Wir wihlen wie in Lemma Elemente e;, sodass der Kokern
der Inklusion @, e;jor — 0z von ¢ annuliert wird. Dann ist die Abbildung

We : @62'0]: Rar HOmg}_(@ €i0F,0F) — Homof(@ eio]:,@eiof),
i i i i

TR (Y= o(y))

ein Isomorphismus von or-Moduln, da @, e;or ein endlich erzeugter freier or-
Modul ist (Lemma [2.1.4)).

Lemma 4.3.1 (vgl. Lemma 2.4.29 in [17]). Der Homomorphismus

W oF Qox HomUF(O}-/,O}') — HOH’IU}-(U}‘/,U}‘/),
@@ (Y- o(y)

ist fast injektiv.

Beweis. Nach Lemma gibt es fur jedes € € m \ {0} Elemente e; € 0z, sodass
der Kokern der Inklusion ¢ : @, e;07 — oz von € annuliert wird. Wir haben also
Abbildungen

0]:/'_€>@61'0]:—L>0]:/, (4.3)

)
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4 Tief verzweigt impliziert perfektoid

deren Komposition ¢ -id, ,, ist. Es gilt zudem

0f/®g];HOmU]_-(@ €i0F,0F) = 0]:/®0f@ e 0F = @eio]:/ = Homof(@ €i0F,0F).
% %

%

Wir betrachten nun das kommutative Diagramm

fi f2
0F @ Homg (057, 0F7) —— 07 ®,, Hom, (D, €i0r, 0F) — 07 ®,, Hom, (05, 05)

wl lg lw

9
Homof(op,of/) : Homof(@i e;0r, 0]:/) Homof(op,op)

Dabei werden die waagerechten Homomorphismen durch induziert; ihre
Komposition ist also Multiplikation mit €.
Sei z € Ker(w). Dann gilt g1 (w(x)) = 0, d.h. wegen Kommutativitit des Diagramms
auch fi(x) =0 und damit 0 = fa(fi(x)) = ¢ - x. Also gilt ¢ - Ker(w) = 0.
O

Sei e = €1-&2 € mz \ {0} beliebig und sei id, , die Identitit auf 0. Wegen Lem-
ma [4.2.1] finden wir geeignete e;, sodass der Kokern der Inklusion @, e;or — 0z
von €1 annuhert wird.

Wir finden ein eindeutiges Element 651 = 7;@f; € D; ei0rRoHom, - (D; €i0F, 0F)
mit we, () = id@i cior-

Setze f; fort zu einer F-linearen Abbildung F; : 7' — F. Dann gilt €1-F;(0£) C or.
Sei Gy =222 ® €1 Fjo, € 05 R0y Hom, , (0, 07). Dann gilt fiir b € oz

CEl Zx] €1F|0f/ )
= ij jlo}" €1b)
= Zl‘j . fj Elb) = E1b,
J
das heifit es gilt w((;,) = €1 -ido, -
Wir versehen Hom, ;- (07, 0 7/) durch ((z®y)-¢)(2) := z-¢(yz) mit einer 05 @, . 05~
Modulstruktur, und w sowie w, sind diesbeziiglich linear.
Wir haben die Multiplikationsabbildung p : 07 ®,, 07 — 07/, die durch z®@y

xy induziert wird. p ist ein or-Algebrenhomomorphismus. Setze I := Ker(u).
Das Tensorprdoukt 0z ®,, Hom, (07, 07) wird durch

0F ®0]: OFr X OF ®0]: HOI’HOJ_-(O}‘/,U]-‘) — 0 ®0_7: Homg]_-(ﬂ}‘/,ﬂ}‘),
(a®b,x®p)— ax by

zu einem 0x ®,, 0x-Modul.
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4.3 oF — 0Fsep ist fast schwach étale

Lemma 4.3.2 (vgl. Claim 4.1.16 in [17]). Es gilt ea- I - (-, = 0 und o(¢;,) =
g1 TI‘]://]:.

Beweis. Wir berechnen fir by, by, b3 € 07.
w((b1 ® b2) - G, ) (b3) = ((b1 ® b2) - w(Ce,))(b3) = €1 - bibabs.

Es gilt damit fiir alle Elementartensoren y = y; ® y2 € 05 ®, 07 und alle z € 0 z:

w(y - ;) (2) = (11 ®y2) - w((e)(2))

= &1 Y1Y2%

= w((u(y) @ 1) - ¢,)(2).
Da wir jedes Element aus 07 ®,, 07 als Summe von Elementartensoren schreiben
konnen und w ein Homomorphismus ist, folgt w(y - ¢, )(z) = 0 fir alle y € I =
Ker(u), das heiit y - {,, liegt im Kern von w. Der Homomorphismus w ist fast
injektiv nach Lemma[4.3.1} also wird der Kern von w insbesondere von €9 annuliert.
Das zeigt die erste Gleichheit.
Bezeichne mit tr., die Spurabbildung auf Hom, . (P, e;0r, P; e;0r), definiert als
Komposition

tre, :=evg © w;ll.
Dabei bezeichnet ev,, die Evaluationsabbildung

evg, - @610}' Qor HOHIOF(@ €;0F, 0]:) — 0F,

(2 (2
r® > p(x).
Dann gilt Tr, Y er07(T) = tre, (ue) fir x € P, e;07, wobei Tr = Tr) 77 die Spurab-
bildung von F'/F bezeichnet, denn wir konnen die Homomorphismen g, tre, , we,
und ev,, alle F-linear auf die jeweiligen Moduln fiir 7’/ F fortsetzen und erhalten

dadurch die jeweiligen Homomorphismen fir F'/F.
Wir berechnen nun fiir b € oz

o(C)(b) = (3w ® e1Fyo,,)(B)
= Zgle\UF’<$jb)
J

=ev((1®b)-¢y)

= tre, (we, (1 @ e1b) - &)
= tre, (1 ® e1b) - we, (&)
= tre, (1 ®e1b) - idgy c,0,)
=g - Tr(b).
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4 Tief verzweigt impliziert perfektoid

o7 wird durch g und 0 ®,, 07 wird durch z ® 2’ -y ® ¥’ = 2y ® 2y’ zu einem
(o= ®0_7: OJ:I—MOdul.
Nach Lemma |4.2.3| wird der Kokern von 7 von m annuliert, deswegen und wegen
Lemma [3.2.8 kénnen wir
ee = (ido,, ® 7 (g2 Cy) € 05 oy 0F

definieren.

Es gilt 7o p =00 (idy,, ® 7), also wegen Lemma T(1(es))(b) =1 - g9 - Tr(b)
fiir alle b € 0z, und somit

ples) = ere2 =, (4.4)
denn 7 ist injektiv. Auflerdem ist
I-e.=0, (4.5)

denn es gilt (id,,, @ 7)(z - ec) = - (ido, ® 7)(ec) = 0 fiir alle x € I, da sowohl
7 als auch id,,, oz-linear sind, und wegen Lemma @ Der Homomorphismus

idy,, ® 7 ist injektiv, da oz ein flacher o r-Modul ist, also folgt z - e = 0.

Wir definieren die Abbildung (vgl. Proposition 3.1.4. in [17])
Ue : OF — (V=] ®0]__ o0x
e (1®x).

Die Abbildung u. ist ein Homomorphismus von 0z ®,, 0z-Moduln, denn wir
berechnen fiir x,y,z € oz

(Y z) - ec(1®z) —e(1®@xyz) = e(y @ zx) — e(1 ® xyz)
=e(y®zr—1®axyz)
=(y®zr —1®xyz)e.
= 0.

Die letzte Gleichheit folgt daraus, dass y ® zx — 1 ® zyz in I liegt (siehe (4.5))).
AuBlerdem gilt pou. =¢-id : 07 — 0z nach (4.4)).

Lemma 4.3.3. Der Homomorphismus (i : 05 Qo 05 — ox ist fast flach.

Beweis. Setze C := 0 Qo 05.
Sei ¢ € m\ {0} beliebig und sei g := idg ® f. Sei f : M — N ein injektiver
Homomorphismus von C-Moduln. Betrachte das kommutative Diagramm

id
ox ®CM;®f>0]:/ ®Rc N

u5®idi \Lugéi)id
h C®c M 7 C®cN
N®idi J{u@id

or ®CMT®JC>0]:/ ®CN
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4.3 oF — 0Fsep ist fast schwach étale

Sei z € Ker(id® f). Dann liegt u. ®id(z) im Kern von g. Damit folgt u. ®id(z) =
0, denn g ist injektiv. Somit ist auch h(x) = p®id(ue ®id(x)) = 0. Aber h(z) = ex,
also wird x von € annuliert. O

Damit und mit Lemma [3.2.8] folgt, dass die Inklusion oy — oz fast schwach
étale ist.

Lemma 4.3.4. Die Inklusion 0rser @, 05ser — 0sep ist fast flach.

Beweis. Schreibe F*¢P als Vereinigung der endlichen separablen Teilerweiterungen
Fi/F, i € I fiir eine gerichtete Indexmenge I, fiir die F; C F; gilt, wenn ¢ < j ist.
Sei M ein oFser @, 0Fsep-Modul. Seien fiir j > ¢

fl] . O Fsep ®07:i®”]—'07:i M — 0 Fsep ®07:j®"]:0]:j M,

rTR@Mmr—=T@®m

die kanonischen Homomorphismen zwischen den Tensorprodukten. Diese bilden ein
induktives System (von or-Moduln).

Behauptung. Dann gilt 0 rser ®g roep @, 0psep M = cOlim(0Fser ®oz @07, M).
7 1 1

Beweis der Behauptung. Wir haben mit den f;; kompatible kanonische surjektive
Homomorphismen

Uj; + O Fsep ®0~7:i®°]:0~7:i M — 0 Fsep ®0]__S€p®0}_0}.sep ]\4-7

rTRmMmir—= T X m.

Seien t; : 0Fser®, 7,0 r0F, M — T mit den f;; kompatible Homomorphismen in ein
Testobjekt T'. Dann definiere ¢ : 0 rser ®, Fsep®a 50 ssep M — T folgendermaflen: sei 2®
Y € 0Fser Qo rsep@q popsep M, alS0 ISt QY € 0Fscr ®ox, @0 p0r, M (d.h. wir betrachten
das Tensorprodukt von x und y iiber or, ®,, 0F, anstatt tiber orser @y, 0Fsen).
Dann sei ¢(x®y) = t;(x ®y). Dann ist ¢ ein wohldefinierter Homomorphismus, und
es gilt t; = c o u;. Auerdem ist ¢ eindeutig mit dieser Eigenschaft. O

Sei g : M — N ein injektiver Homomorphismus von 0 rsep-Moduln. Wir miissen
zeigen, dass die induzierte Abbildung

ld ® g : 0]-—5510 ®0]:sep®g]_.0]:sep M — 0.7:367’ ®0]:sep®n]_.0]:sep N

fast injektiv ist. Wir betrachten das kommutative Diagramm

. id®g .
COlilm(O]_‘sep ®0]:i®“}'0]:i M) —_— Colilm(O]:sep ®0]:i Qo x0F, N)
UJT ’U,jT
(id®g);

0 Fsep ®0}—j®°}—0}—j M —> O Fsep ®g}—j®o}_g}-j N
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4 Tief verzweigt impliziert perfektoid

Sei x € Ker(id ® ¢g). Wir finden ein Urbild w in 0zsep R, @007, M unter u;, wobei
wir j so grof§ wahlen, dass u € Ker((id ® g);) ist. Dann wird 4 von m annuliert,
denn die Komposition 0r, ®or 07, — 0F; — 0rser der Mutiplikationsabbildung
0F; ®or 0F; — 0x; mit der Inklusion or;, — orser ist als Komposition von fast
flachen Homomorphismen fast flach, also ist ozser ein fast flacher or;, ®,, or;-
Modul. Also wird auch x von m annuliert. O

Insgesamt sehen wir, dass 0 — o0rsep fast schwach étale ist, denn or — 0Fsep ist
flach (0 zsepr ist ein torsionsfreier 0 z-Modul und damit schon flach), und wir haben
gezeigt, dass 0Fser Qg 0Fser — 0xser fast flach ist.

4.4 Frobenius ist surjektiv
Sei b € ox \ {0} ein Element, sodass 0 < v(b) < v(p) gilt.

Lemma 4.4.1. Der Frobenius 0xsep /b0 psep —> 0 Fsep /b0 psep, T — xP, ist surjektiv.

Beweis. Nach [18, Lemma 1.4.26] liegt F* dicht in F%. Sei x € ogser und
e > v(b). Das Urbild des e-Balls B.(z) unter der Potenzierung mit p ist offen,
da Polynome stetig sind. Damit finden wir ein y € F*°P, sodass v(y? — x) > ¢ gilt,
also gilt y € 0sep. Dann gilt y? = x mod (b). O

Definition (siehe Definition 3.5.8. in [17]). Sei f : A — B ein Homomorphismus
von or/bor-Algebren. Wir definieren A,y als A aufgefasst als 07 /boz-Algebra via

0]:/b0]: gl 0]:/170]:—)/1,

und analog definieren wir By,,). Hierbei sei ® der Frobenius auf ox /por.

Seien ® 4 beziehungsweise @ der Frobenius auf A beziehungsweise B. Dann heif3t
f invertierbar bis auf ®™ fiir ein m € N, wenn ein Homomorphismus (von Ringen)
f': B — A existiert, sodass das Diagramm

p— 1 A

]

o;/bo;wof/bof

kommutiert und f o f' = ®% und f'o f = O} gilt.

Lemma 4.4.2. Seien f : A — B und g : B — C Homomorphismen von ox/bor-

Algebren. Seien f und g o f bis auf ®™ invertierbar. Dann ist auch g invertierbar
bis auf ®>™.
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4.4 Frobenius ist surjektiv

Beweis. Sei f’ ein Inverses von f bis auf ®” und b’ ein Inverses von h := g o f bis
auf ®™. Setze ¢’ := ® o f o h'. Dann berechnen wir

gog =go®Fofoh =dFodH.
(Beachte, dass g o ®'5 = & o g gilt.) Weiterhin berechnen wir auf &hnliche Art
gog=®dFofohog=foh ogod}
— fohogofof =fodfof
= fof odW=d"ocdn
O

Lemma 4.4.3 (vgl. Theorem 3.5.13(i) in [17]). Sei f : A — B ein fast schwach
étaler surjektiver Homomorphismus von ox/bor-Algebren. Wenn f bis auf ®™ in-
vertierbar ist, dann ist f ein Fast-Isomorphismus.

Beweis. (Wir haben auf A und B durch die Projektion o — o0x/bor eine or-
Modulstruktur.)

Zunachst zeigen wir, dass fiir einen A-Modul M mit m ®,, B ®4 M = 0 schon
m®,, M = 0 gilt, das heifit f ist fast treu-flach. Nach Lemma koénnen wir
0.B.d.A. M = A/I fiir ein Ideal I C A annehmen, also miissen wir zeigen, dass aus

M®,, B/BI =m®,, Bs A/l =0
schon
m®e, A/l =0

folgt. Da A — B fast schwach étale ist, ist auch die induzierte Abbildung f : A/I —
B/BI fast schwach étale (Basiswechsel von A — B beziehungsweise B®4 B — B
beztiglich A — A/I). Sei also

f ist invertierbar bis auf ®™, dasselbe gilt fiir f. Damit ist der Homomorphismus
U A/I — (A/I)p, fast null, also m@ﬁ/I(A/I) = 0. Bs gilt also e’ - 1 = 0 fiir
alle e € m, wobei 1 € A/I. Aber da die Bewertung auf oz nicht diskret ist, gilt
e-1=0 fiir alle ¢ € m, also mA/I = 0.

Wir zeigen nun, dass f fast injektiv ist:

Die Inklusion ¢ : Ker(f) — A ist injektiv, damit ist auch

M Qe B®aKer(f) > m®,, B4 A=Zm®,, B
injektiv, denn f : A — B ist fast flach. Das Bild dieser Abbildung ist
Im(id ®id ® ¢) = m ®,, Ker(f)B = 0.

Wir konnen es aufgrund der Injektivitdt nach Kap. I, §2.3, Remark 2 in [5] mit
m ®,, B ®a Ker(f) identifizieren, d.h. m ®,, B ®4 Ker(f) = 0. Also folgt m ®, .
Ker(f) =0. O
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4 Tief verzweigt impliziert perfektoid

Die Inklusion o7 — 0rsep ist fast schwach étale nach Abschnitt 3.1. Dann ist auch
der durch die Projektion induzierte Homomorphismus 0 /bor — 0ser /b0 Fsep fast
schwach étale, denn der Homomorphismus

0]—‘/b0]—‘ — Ufsep/bﬂ}‘SEP

entspricht dem Basiswechsel von oy — 0 rsep beziiglich der Projektion o — 0r/bor
und der Homomorphismus

0Fser /bOFser g, ho OFser [bOFser — 0Fsen [bOFser
entspricht dem Basiswechsel von ozser ®,, 05ser — 0Fser beziiglich
0Fsep Koy OFsep —> 0 Fsep /bO]:sezz ®u}-/bo]: 0 Fsep /bO]:sep.
Beide Homomorphismen sind also fast flach nach Lemma

Setze A := orx/bor und B := 0xsep /borser. Wir betrachten das kommutative
Diagramm

%

A—=-= A(m)
! lfm)

B ——= B

Dabei bezeichnet f,,) den Homomorphismus f : A — B aufgefasst als Homo-
morphismus zwischen den oz /boz-Algebren A(,,) und B, beziiglich der iiber den
Frobenius erhaltenen Skalarmultiplikation.

Das kommutative Diagramm

(bm
A > Af)
o
B
BHB@AA(m)

ist ein Pushout-Diagramm (in der Kategorie der kommutativen Ringe mit 1),
wobei o durch a — 1 ® a und 3 durch b — b ® 1 gegeben sind (dann gilt oo O} =
B o f). Darum es existiert ein eindeutiger Homomorphismus h, sodass folgendes
Diagramm kommutiert:

oy
A Am) (4.7)
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4.4 Frobenius ist surjektiv

Wir zeigen, dass h ein Fast-Isomorphismus ist (vgl. Theorem 3.5.13(ii) in [17]):
h ist surjektiv, denn ® g ist nach Lemma surjektiv.
Ay = B®a Ay, ist fast Schwach étale (Basiswechsel von A — B bezliglich A 24
A(m), vergleiche Lemma [4.1.8). A(,,) — By, ist ebenfalls fast schwach étale, denn
die A()- Algebrastruktur von B, entspricht der von B als A-Modul. Also ist nach
Lemma h fast schwach étale. Wir betrachten weiterhin die Homomorphismen

id
B B®<I> B®AA(m)—>B()

idp @@’} ist invertierbar bis auf @™ durch B&a Ay = B = B®4,,,) Am), 1QY
T
Die Komposition der beiden Abbildungen ist ®%, also ist A nach Lemma [4.4.2]

invertierbar bis auf ®>™. Also ist h fast injektiv nach Lemmam Damit ist h ein
Fast-Isomorphismus.

Lemma 4.4.4. Sei B := 0xsep /b0 gser und A := ox/bor. Dann gilt mCoker(P4) =
0.

Beweis. Betrachte das folgende (nichtkommutativdzb Diagramm:

A

pra

f f(1)
B(l

4449.coker«pB)",ff

B@aAn)

Coker(® 4)

i

Dabei definiere den oz-Modulhomomorphismus k. : B1) — B ®4 A(j) durch
r — ey, wobei y € B®4 A(y) ein Urbild von x unter & ist. Da h fast injektiv ist,
ist k. wohldefiniert.
Es existiert ein eindeutiger Homomorphismus g : B ®4 A,y — Coker(®4) mit
goa =prg und go 8 = 0, da das Diagramm kokartesisch ist. Definiere ¢ als
Komposition

pe =g o k..

?man konnte auch sagen: fast kommutative
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4 Tief verzweigt impliziert perfektoid

Dann gilt . o f(1) = epra, denn es gilt goa = pry und k. o f1) = ea. Es
gilt gof = 0 und k. o @ = €03, also p. 0 Pp = go k. o Pgp = goef = 0.
Damit kénnen wir die Pushout-Eigenschaft des unteren Quadrates benutzen (wir
betrachten das untere Diagramm nun als Pushout von 0 z-Moduln). Es existiert also
ein eindeutiger Modulhomomorphismus v, : Coker(®p) — Coker(®4), sodass das
entsprechende Diagramm kommutiert. Es gilt 1. o prp = ¢ und ¢c o f(1) = epra,
also Y- oprp o f(1) = epra.

Es ist Coker(®p) = 0, also prp = 0, also eprg = 0, also gilt eCoker(®4) = 0. Da
e € m\ {0} beliebig war, folgt mCoker(®4) = 0. O

Lemma 4.4.5 (vgl. Proposition 6.6.6. in [17]). Der Frobenius ist auf 0z/poz sur-
jektiv.

Beweis. Wahle ein e € m\ {0} mit v(b) > v(eP). Wir finden nach Lemma fir
jedes © € or ein y € or mit eP - x — y? € bor. Daraus folgt, dass der Frobenius
auf 0r/(b- e P)or surjektiv ist. Sei b; € or ein Element mit 0 < v(b;) < v(b) und
seien Fil{(02/poz) beziehungsweise Filj(02/po) die bi-adische bzw. b)-adische
Filtrierung auf o ﬁ/ poz. Die durch die Filtrierungen auf o Jg/ poz induzierte Grup-
pentopologie ist dieselbe wie die Bewertungstopologie. Die Bewertungstopologie ist
die eindeutige Gruppentopologie auf oz, sodass die Mengen U, := {z € 02| [z| < v}
ein Fundamentalsystem von offenen Umgebungen der 0 bilden. Auf o z /po z hat man
dann die Quotiententopologie. Die durch Fil} (o f./ po f) induzierte Topologie ist die
eindeutige Gruppentopologie, sodass die Mengen b - o f/ poz ein Fundamentalsys-
tem der 0 bilden (analog fiir Fil}(0z/poz)). Dann bilden die offenen Mengen des
einen Fundamentalsystems auch ein Fundamentalsystem der 0 in der jeweils ande-
ren Topologie.

Man rechnet nach, dass der Frobenius einen Morphismus von filtrierten abelschen
Gruppen definiert, und der assoziierte Morphismus von graduierten abelschen Grup-
pen surjektiv ist. (Die assoziierte graduierte Gruppe zur bj-adischen Filtrierung
gr(oz/poz) ist gegeben durch

r(02/poz) = b} - (05/poz) /07t - (02/poz)

gr(oz/poz) = Par,(0z/poz)

Analog fiir die b}-adische Filtrierung.) Dann folgt die Behauptung aus |5, Kap. III,
§2, Nr. 8, Kor.2]. (Dabei benutzt man, dass obige Topologien iibereinstimmen.)
O

Bemerkung 4.4.6. In Charakteristik 0 ist der Frobenius auf oﬁ/pof = ox/por und
in Charakteristik p auf 02/po > = 02 surjektiv.

Definition (Perfektoider Korper). Sei K ein nichtdiskret bewerteter vollstdndiger
Korper, sodass der Frobenius auf o /(p) surjektiv ist. Dann heiit K perfektoid.

Wir erhalten nun den folgenden Satz:
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4.4 Frobenius ist surjektiv

Satz 4.4.7. Sei F' ein lokaler Korper und F/F eine tief verzweigte Erweiterung.
Dann ist die Vervollstindigung F perfektoid.
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5 Perfektoid impliziert tief verzweigt

5.1 Witt-Vektoren

Zunéichst gehen wir auf strikte p-Ringe und Witt-Vektoren ein, die wir im weiteren
Verlauf benttigen werden.

Definition (Strikter p-Ring). Ein strikter p-Ring R ist ein p-torsionsfreier, be-
ziiglich der p-adischen Topologie vollstdndiger und hausdorffscher Ring, sodass der
Restklassenring R/(p) perfekt ist.

Lemma 5.1.1 (II, §4 Lemma 1 in [20]). Sei R ein Ring. Wenn x = ymod (p) fiir
Elemente x,y € R gilt, dann gilt fir alle n >0

mod (p" ).

Beweis. Wir beweisen die Aussage per Induktion nach n. Der Fall n = 0 ist klar.
Wir schreiben 2P = y?" ' 4+ p" -z fiir n > 1 und ein z € R. Dann gilt mit der
binomischen Formel

p—1

=y (p) yP" (=D pnisi g e p
—\i
i=1

Daraus folgt das Lemma, denn p teilt alle Binomialkoeffizienten, und es gilt pn >
n+ 1. O

Lemma 5.1.2 (Lemma 1.1.4. in [12], siehe auch II, §4, Prop. 8 in [20]). Sei R ein
perfekter Ring (das heif$t der Frobenius ist bijektiv) mit Charakteristik p und S ein
p-adisch vollstindiger hausdorffscher Ring. Sei pr : S — S/(p) die kanonische Pro-
jektion und t : R — S/(p) ein Ringhomomorphismus. Dann existiert eine eindeutige
multiplikative Abbildungt : R — S mit prot = t. Es gilt t(z) = 2P" mod (p"*) fiir
alle n € N und alle x € S mit pr(z) =t(zP").

Beweis. Wir setzen
Un(Z) := {zP" | z ist Urbild von £(zP ") unter pr: S — S/(p)}.

Die U, bilden eine absteigende Sequenz. Wenn zP",y?" € U,(Z) zwei Elemente
sind, gilt z = y mod (p), also nach Lemma 2P" = 9P" mod (p"*t1), das heifit
es gilt 2P" — yP" € (p"*1). Sei (un)n eine Folge mit u, € U,(Z). Da S vollstindig
ist, konnen wir ¢(Z) := lim,u, definieren. Das ist wohldefiniert. Die so definiert
Abbildung kommutiert mit p-Potenzierung, denn wenn & = y? gilt, dann wird U, (y)
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5 Perfektoid impliziert tief verzweigt

durch Potenzieren mit p in U, (Z) abgebildet. Durch Ubergang zum Grenzwert folgt
t(y)? = t(z). Die Abbildung ¢ ist eindeutig, was man wie folgt sicht: Sei t' : R — S
eine weitere Abbildung, die mit p-Potenzierung kommutiert und die pr ot/ = ¢
erfiillt. Dann gilt, da R perfekt ist, #'(z) = ¢/(zP" ")P" und pr(t'(zP" ")) = t(zP ).
Also liegt #/(z) in U, () fiir alle n, woraus die Eindeutigkeit von ¢ folgt. Auflerdem
folgt N, Un(z) = t(Z).

Die Multiplikativitdt von t folgt schliellich daraus, dass xy eine p™-te Potenz ist,
wenn x und y p"-te Potenzen sind. O

Definition (Teichmiiller-Abbildung). Sei in der Situation von Lemma R=2S5.
Dann hat die Projektion pr : R — R/(p) einen eindeutigen multiplikativen Schnitt
[]: R/(p) — R, die Teichmiiller-Abbildung.

Bemerkung 5.1.3. Jedes x € R hat eine eindeutige Darstellung als konvergente
Reihe >0 p"[Zn] mit Elementen z,, € R/(p). In der Tat: wir finden ein Zo mit
x—[Zo] = 0 mod (p). Schreibe dann = = [Zg]+ pz1. Analog finden wir ein Z;, sodass
x = [Zo] + pZ1 + pxy gilt. Tterativ erhalten wir eine Reihe Y02 p"[%,], die gegen
x konvergiert. Die Eindeutigkeit ist klar.

Lemma 5.1.4 (Lemma 1.1.6. in [12]). Sei R ein strikter p-Ring, S ein p-adisch
vollstindiger Ring und pr : S — S/(p) die kanonische Projektion. Seit : R/(p) — S
eine multiplikative Abbildung, sodasst = prot ein Ringhomomorphismus ist. Dann
definiert

Ty p"En]) =3 p"tF) (30,31, € R/(p)) (5.1)
n=0 n=0
einen eindeutigen Homomorphismus T : R — S, sodass T o [-]| =t gilt.

Beweis. Wir zeigen per Induktion, dass fiir jede natiirliche Zahl n durch T eine
additive Abbildung R/(p™) — S/(p"™) induziert wird.

Fiir n = 1 ist das klar, da pr ot ein Homomorphismus ist. Wir nehmen an, dass die
Behauptung fiir ein n > 1 stimmt. Sei x = [Z]| +px1,y = [y] + py1,2 = [2] +pz1 € R
mit z +y = z. Dann ist t(zP ") +¢(y? ") ein Urbild von £(2P" ") = t((z + )P ") =
t(zP" ") + (g ") unter pr, also gilt nach Lemma

t(z) = (@ ")+ t(g ")) mod (")

und analog
B= @)+ )T mod ().
Es folgt
T([#]) — T(@) — T([3) = () ~ @) ~ tG)  mod (")
= <p>t<xy ) mod (). (5
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5.1 Witt-Vektoren

1. 1 /p" .o .
Es gilt E(pi ) €Z fiir i =1,...,p" — 1. Deswegen gilt
e = I 7 W
- -y == Y @ ) mod (p").
p i1 P\ ?
Aufgrund der Induktionsannahme erhélt man durch Anwenden von 7" und Multi-
plizieren mit p
p"—-1 pn N N
pT(21) = pT (1) = pT(y1) = — D (i)ﬂﬂp g mod ("), (5.3)
i=1
Da T'(x) = T([z]) + pT(x1) gilt (ebenso fiir y und z), folgt aus ((5.2) und (5.3))
T(z) = T(x) —T(y)=0  mod (p"™).
Damit ist T additiv. Da ¢ multiplikativ ist, ist auch T" multiplikativ. O

Satz 5.1.5. Sei R ein perfekter Ring von Charakteristik p. Dann existiert ein ein-

deutiger strikter p-Ring W (R) mit W(R)/(p) = R.
Beweis. Siehe |20, II, § 5, Theorem 5. O

Sei nun (Xo, ..., Xp, ...) eine Sequenz von Unbestimmten. Wir betrachten die fol-
genden Polynome ( Witt-Polynome):

@y = Xo,
(I)l = Xé) +PX1,

1=n X
o, =Y p'XI =XI + . +p" X,
1=0

Setze Z' = Z[p~']. Dann kénnen wir die X; als Polynome in den ®; mit Koeffi-
zienten in Z' ausdriicken:

Xo=®9, Xi=p '® -},
Sei (Yp, ..., Y, ...,) eine andere Sequenz von Unbestimmten.

Satz 5.1.6. Fir jedes F' € Z[X,Y] existiert eine eindeutige Sequenz (¢o, ..., n, ---)
in Z[Xoy ooy Xy ooy Yo, o0, Yoo o], sodass

D, (0, -y Py --.) = F(Pr(Xo, ...), (Yo, ...)) firn >0

gilt.
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5 Perfektoid impliziert tief verzweigt

Beweis. Siehe 20, II, § 6, Theorem 6]. O

Wir betrachten nun die Polynome
FX,)Y)=X+Y, HX,Y)=X-Y, und G(X,Y)=XY.

Wir bezeichnen die Polynome ¢y, ..., @n, ..., die gemifl Satz F beziehungs-
weise H beziehungsweise G zugeordnet werden, mit Sy, ..., Sy, ..., beziehungsweise
Dy, ..., Dy, ... beziechungsweise Py, ..., Py, ....

Sei R ein Ring und a = (ag, ..., an,...) und b = (bg, ..., by, ...) Elemente aus RN.
Dann definieren wir

a+b=(So(a,b),..., Sy(a,b),...)
a-b=(Pya,b),..., P,(a,b),...)

Satz 5.1.7 (II, § 6, Theorem 7 in [20]). Durch die so definierte Addition und
Multiplikation wird RN zu einem kommutativen Ring mit 1, dem Ring der Witt-
Vektoren mit Koeffizienten in R. Wir bezeichnen diesen Ring mit W(R).

Beweis. Sei a = (ag, ..., an, ...) € RY ein Witt-Vektor. Wir haben die Abbildung

®, : W(R) — RY,
(@Qy ooy Ay -..) = (Po(a), ..., Pp(a),...).

Diese ist ein Ringhomomorphismus nach Definition der S,, bzw. P,. Wenn p in R
invertierbar ist, dann ist W, ein Isomorphismus. Dann ist W (R) ein kommutativer
Ring mit Einselement (1,0,...). Wenn der Satz fiir einen Ring R gilt, dann auch
fiir jeden Teilring und Quotienten. Er gilt fiir jeden Polynomring der Form Z/[T,],
damit fiir alle Ringe R, denn durch Z[Tnca] — A,T, — « wird ein surjektiver
Ringhomomorphismus definiert, sodass wir R als Quotienten von Z[T},] schreiben
konnen. O

Satz 5.1.8. Sei R ein perfekter Ring von Charakteristik p und H der strikte p-Ring
mit Restklassenring R. Dann ist die Abbildung

W(R) — H,
(6‘07 ceey ai, ) —> Zpl[a/l]p71
=0

ein Ringisomorphismus. Insbesondere ist W(R) ein strikter p-Ring mit Restklas-
senring R.

Beweis. Siehe [20, II, § 6, Theorem 8§]. O
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5.2 Tilting

5.2 Tilting

Wir wollen nun den Tilt eines perfektoiden Korpers von Charakteristik 0 definieren.
Dazu halten wir uns an die Vorlesung ”Galois Representations and (¢, I')-modules”,
die 2015 von Peter Schneider in Miinster gehalten wurde ([18]).

Sei fiir den den Rest des Kapitels K ein perfektoider Kérper mit char(K) = 0.
Sei die Bewertung v auf K so normalisiert, dass v(p) = 1 gilt. Durch |z| := p~¥(*)
wird eine nichtarchimedische multiplikative Norm auf K definiert.

Wir definieren einen Ring o0y als projektiven Limes iiber die Quotienten ox /(p),
wobei die Abbildungen zwischen den oy /(p) durch Potenzieren mit p gegeben sind:

0pch 1= 1£1 0K /PoK
()P

= {(xo mod pog, ..., x; mod pog, ...) € (0 /pog )"0 |2} = 2; mod pog}.

Bemerkung 5.2.1 (siche Remark 1.4.4 in [18]). Da Potenzierung mit p ein Endomor-
phismus von o /(p) als Fp-Algebra ist, ist 0 eine Fp-Algebra. Diese ist perfekt.

Beweis. Sei v = (xg mod pog, ..., x; mod pog,...) € 0pp. Falls 2P = 0 ist, dann ist
x; = a¥ | = 0 mod pog fiir alle i > 0. Andererseits sei

/P = (z1 mod pog, ...,x; mod pog, ...).

Dann gilt (z'/7)P = 2. O

Bemerkung 5.2.2. Wir konnen Lemma 5.1.2] und [5.1.4] auf die Projektion auf den

ersten Eintrag 0 = 6 : o0, = limog/(p) — ox/(p) anwenden und erhalten
<_

eine multiplikative Abbildung 0x = 6 : 05, — 0k sowie einen Homomorphismus

O =0 : W(ogs) — ok (siehe auch (18, Lemma 1.4.18]).

Bemerkung 5.2.3. Wir konnen 6 auch etwas konkreter angeben (siehe [18, Abschnitt
1.4)):

Sei x = (z¢ mod pog, ...,x; mod pog,...,) € 0p» ein beliebiges Element. Wir wéh-
len fiir jedes i > 0 einen Représentanten x; € 0. Dann gilt =¥ 41 = x; mod pog

. i+1 .
und somit nach Lemma [5.1.1 fo =z i+1

7

P mod p

0. Damit existiert der Limes

p
%

0(x) := Zlggox e 0K

Wenn y; € ok andere Elemente mit y; = z; mod pog sind, dann gilt nach Lemma
yiZ = ZU?Z mod p*Tlog. Damit ist limi%ooyfl = limiﬁooxfl. Es folgt, dass
Opv — 0K,
x— 0(x)
eine wohldefinierte multiplikative Abbildung ist, sodass 6(x) = x¢p mod pog gilt.
Damit ist # die eindeutige multiplikative Abbildung aus Lemma, [5.1.2
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5 Perfektoid impliziert tief verzweigt

Lemma 5.2.4. Die Abbildung
limog S 0
O
(xg..., Tjy ...) — (zomod pog, ..., z; mod pog, ...)
ist eine multiplikative Bijektion mit Inversem z — (0(z), ..., 0(z/7"), ....).
Beweis. Analog wie Lemma 1.4.5 in [18]. O
Lemma 5.2.5. Die Abbildung
[+l s ogs = Rxo
z = [0(z)|
ist ein nichtarchimedischer Absolutbetrag. Auflerdem gilt
(i) logslo = lox].
(7i) xog, C yogs gilt fir alle z,y € 0y genau dann, wenn |z|, < |y, ist.
(iii) My = {x € 0y : ||, < 1} ist das einzige mazimale Ideal in 0.

(iv) Sei z € o0y ein Element mit |z|, = |p|. Dann induziert die Projektions-
abbildung (zomodpogk,...,z;mod pok,...) — xo + pox einen Ringisomor-
phismus 0y /20, = 0x/pok. Insbesondere gibt es einen Isomorphismus
UKb/me = oK/mK.

Beweis. Analog wie Lemma 1.4.6 in [18]. O
Nach dem vorherigen Lemma ist oy, ein Integritatsbereich. Sei z € oy ein

Element mit |z|, = |p|. Wir bezeichnen den Quotientenkorper von oy, mit K.

Wir kénnen jedes Element aus K° als —mw mit © € o0 und m > 0 schreiben.

Die Funktion | - |, setzt sich per Multiplikativitit auf K fort und definiert einen
nichtarchimedischen Absolutbetrag auf K”. Es gilt nach vorherigem Lemma |K| =
| K|, und oy ist der Bewertungsring von K”. Wir nennen K° den Tilt von K.

Satz 5.2.6. K’ mit | - |, st ein perfekter und vollstandiger nichtarchimedisch be-
werteter Korper von Charakteristik p.

Beweis. Analog wie Proposition 1.4.7 in [1§]. O

Lemma 5.2.7 ( siehe Lemma 1.4.18 in [18]). Der Homomorphismus

CF W(UKb) — 0K
an[in] — an‘g(fn)
n=0 n=0

ist surjektiv.
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5.2 Tilting

Beweis. Da K perfektoid ist, finden wir fiir jedes x € ox ein Element yy € 0y der
Form yp = (z mod pog,...). Dann gilt  — 8(yo) = x2 - p fir ein z9 € 0x. Induktiv
finden wir Elemente z,, € ox und y, € 0xs, sodass z, — 0(yp) = Tpy1 - p fir alle
n > 1 gilt. Dann gilt

=Y p"0(yn) = 0> p"[yal).
n=0 n=0
O]

Sei nun K9 ein algebraischer Abschluss von K und Kalg seine Vervollstandigung
(dabei setzen wir | - | eindeutig auf K9 und kanonisch auf K9 fort) . Alle im Fol-
genden betrachteten perfektoiden Kérper in Charakteristik 0 seien Zwischenkorper
von K9 /K sofern nichts anderes gesagt wird.

Lemma 5.2.8 (siehe Remark 1.4.1 in [18]). K99 st algebraisch abgeschlossen.
Insbesondere ist K9 perfektoid.

Beweis. Wir nehmen an, dass eine nichttriviale endliche Erweiterung E/K9 exis-
tiert. Wir finden einen Erzeuger x dieser Korpererweiterung in op. Der ganze Ab-

schluss von 03, in E stimmt mit op tberein. Damit ist = ganz tber 05,,. Da
074, ganzabgeschlossen ist, liegen die Koeffizienten des Minimalpolynoms P(X) =
X%+ a4 1 X% + . 4+ ap von x in 0 atg- Sei A die Menge der Nullstellen von
P(X). Wir wéhlen eine reelle Zahl 0 < r < min{|a’ — a||a # o in A} sowie
Elemente b; € 0pay fir 0 < i < d, sodass |b; — a;| < r? ist. Das Polynom
Q(X) == X4+ by 1 X4 + ... + by € 0gae[X] hat eine Nullstelle b € 0xa, (da

0 atg ganzabgeschlossen ist, liegen alle Nullstellen in 0aiy). Dann gilt
P(b) = P(b) — Q(b) = (ag—1 — bg_1b¥"1 + ... + (ag — by), also |P(b)| < r¢.
Andererseits haben wir
P(b) =Tyea(b - d),
also
1> |PO)] = (min{lb - a'| o € A} = b — c]f

fiir ein ¢ € A. Daraus folgt |b — ¢| < 7. Nach Krasners Lemma (siche zum Beispiel
[18, Remark 1.4.1]) gilt nun ¢ € K®9(b) = K. Das ist ein Widerspruch. O

Bemerkung 5.2.9 (siehe 24.14 und 24.15 in [14]). Wenn (F) |-|) ein nichtarchimedisch

bewerteter Korper von Charakteristik p ist, dann ist die Vervollstdndigung eines
algebraischen Abschlusses F99 algebraisch abgeschlossen.
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5 Perfektoid impliziert tief verzweigt

Beweis der Bemerkung. Wir konnen mit demselben Beweis wie in Bemerkung

folgern, dass die Vervollstdndigung eines separabel-algebraischen Abschlusses F'$¢P
von F' separabel-algebraisch abgeschlossen ist. Dann ist F'seb aber schon algebraisch
abgeschlossen, denn sei a € F*? \ {0} cin Element und o das eindeutige Element
in einem algebraischen Abschluss von F/S\ep, das o = a erfiillt. Wir miissen zeigen,
dass v in F5°P liegt. Sei dazu t € F5¢P \ {0} ein Element mit || < 1 und f,(X) :=
XP — "X — a. BEs gilt limp 00 fn(X) = X? — a. Es ist fI(X) = t", also ist f,
separabel. Damit zerfallt f,, iiber F'*¢P in Linearfaktoren. Wir kénnen annehmen,
dass |a| < 1 gilt, also erfiillt mindestens eine Nullstelle «,, von f,, auch |a,| < 1.
Daraus folgt |a? — a| — 0 fiir n — oo. Aber dann ist (ay), eine Cauchy-Folge
mit Grenzwert «, da die Nullstellen eines Polynoms stetig als Funktionen in den
Koeffizienten sind. O

Seilen K C L1 C Ly C Kalg perfektoide Korper. Es gilt o7, Npor, = por,. Damit
ist die natiirliche Abbildung oy, /por, < or,/por, injektiv, also konnen wir L in
natiirlicher Weise als Unterkérper von L) betrachten.

Lemma 5.2.10 (siehe Lemma 1.4.10 in [18]). Es ist (K®9)" algebraisch abgeschlos-
sen.

Beweis. Sei P(X) = X9 + m(d_l)Xd_l + ..+ x(0) € o(l?alg)b[X] ein normiertes
irreduzibles Polynom mit d > 1. Wir zeigen, dass dann schon d = 1 gilt, indem wir

eine Nullstelle von P(X) in 0 Ratgys konstruieren. Wenn z(;y = (2,0, .-, Zj i, .-.) ist,

dann haben wir eine Familie von Polynomen P;(X) = X? + J:d_uXd_l + ...+ 2z

N 0701, /PO 70y [X]. Sei B C 054, /P074,,[X] die Menge der Nullstellen von F;(X).

Da K9 algebraisch abgeschlossen ist, sind alle diese B; nichtleer.. Auflerdem gilt
B 1 C B firalled > 0. Es ist B := l&n () B; genau die Menge der Nullstellen von

P(X) in O(I?alg)

Wir wihlen fiir alle i > 0 ein normiertes Polynom P;(X) in o Ratg[X], das modulo

PO, gleich P(X) ist. Sei A; C 074, die Menge der Nullstellen von Pi(X), die

nichtleer ist, da Kalg algebraisch abgeschlossen ist (da o Ralg

liegen alle Nullstellen in 07,,,). Wir setzen 4; := {apd_1 mod po~,, |a € Aiya_1}.
Nach Konstruktion gilt A; € B;. Wir wollen nun zeigen, dass A;,; C A; gilt. Sei

dazu a € AHd Dann ist

,. Wir miissen also zeigen, dass B nichtleer ist.

ganzabgeschlossen ist,

P’L-‘rd—l(ap mOd po[?u.lg) = Pl+d(a mOd po[?alg)p = 07

also Piyq_1(aP) € PO7a,- Es ist P 1(X) = HbeAier,l(X — b)™ mit geeigneten
myp > 1. Daraus folgt

(aP — b)™ € po~

HbGAi+d—1 Kalg®

Damit erfiillt mindestens einer der d Faktoren a? — b € p/%o Nach Lemma

erhalten wir a?” — bP" ' € PO aiys AlSO

(a'p mOd po]?alg)p = bpd_l mod pof?alg S Az

[/(\'alg'
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5.3 Untilting

Wir wollen zeigen, dass @(_)p A; C B nichtleer ist. Dazu bemerken wir, dass wir
fiir alle ¢ > 0 eine absteigende Sequenz von nichtleeren Teilmengen

2
p p
Ai 2 Ay 2 Ay 2

haben. Da A; endlich ist, wird diese Sequenz stabil, das heifit wir finden ein j(i) > 0,
sodass

Y- (O RY VIO N R
A= Aje = Aiggan = -
gilt. Wir kénnen die j(i) so wahlen, dass i1 + j(i1) < ig + j(i2) gilt, wenn i1 < iy
ist. Dann haben wir j(i + 1) — j(i) + 1 > 0. Wir berechnen
/ L piGEDEL OGO pi)
(Air))” = Arjirn = Ao +Gen-io+) = Aivie = A
fiir alle ¢ > 0. Damit ist @(.)p A; D @ (yp Al # (), denn die Abbildungen im rechten
projektiven Limes sind surjektiv. O

5.3 Untilting

In diesem Abschnitt definieren wir den "Untilt” eines perfektoiden Korpers von
Charakteristik p und zeigen, dass Tilten und Untilten invers zueinander sind.

Im Folgenden sei op der Bewertungsring eines perfekten Korpers F' von Cha-
rakteristik p mit multiplikativer nichtarchimedischer Norm | - |,, beziiglich derer F
vollstéandig ist, das heifit F ist ein perfektoider Korper von Charakteristik p (dabei
ist die Wertegruppe des Betrags dicht in R, weil F' perfekt ist).

Lemma 5.3.1. Die Polynome Sy (Xo, X},..., X2" Yy, Y?, ..., YP") sind homogen
von Grad p". Die Polynome S, (Xo,0, ...,0, Y0,0, ...,0) sind aufferdem durch Xo+ Yo
teilbar (in Z[Xo, Yo)).

Beweis. Wir zeigen die Aussage per Induktion nach nE

Setze S, = Sn(Xo, o0 X, Yo, 0o, Vi) 1= S (X0, XV, oo, XE* Yo, YE, . YP).
Es gilt So(Xo,Yo) = Xo + Yo, also gilt die Behauptung fiir n = 0.

Gelte die Behauptung fiir n — 1 fiir ein beliebiges n. Es gilt

P"Sn = (X0, .oy XP) + @,(Yo, oo, Y ) — @, 1(SE, ..., SP_))
= XV " XE Y YR S TSR

'Der Beweis stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewéhlte Themen zu (¢, ')-Moduln” in Miinster gehalten hat.
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5 Perfektoid impliziert tief verzweigt

Die Behauptung folgt damit aus der Induktionsvoraussetzung.

Setzen wir X1 = ... = X,, =Y; = ...Y,, =0, haben wir
S, = Xé’n + Yopn - Sg" — =TSP
= (Xo+Y0)-( > Xg¥§) =85 —..—p" S,
i+j=p"—1

und wir folgern ebenfalls per Induktion nach n, dass S,(Xj,...,0,Yp,...,0) durch
Xy + Yy teilbar ist.
O

Lemma 5.3.2 (siche Lemma 1.7.2 in [12]). Sei r € (0, 1]. Die Abbildung
(|- 17 : W(or) = [0,1],
> 0" [En] = supyso {7 Eal}
n=0
definiert eine multiplikative Norm auf W (og), beziiglich derer W (op) vollstandig
1st.

Beweis. E|Es ist klar, dass ||z||, = 0 fiir z € W (o) genau dann gilt, wenn x = 0 ist.
Um die strikte Dreiecksungleichung zu zeigen, betrachten wir Elemente x = Y07 o p"[Z5,]
und y = 372 p"[Un] aus W(op). '
Fiir ein Monom g = X - ... - Xi»Y{° - ... - YJ» € Z[Xo,..., Xn, Y0, ..., Yy] mit
Zo—|—+ln—|—]0+—|—jn :pn gﬂt

PO T iy = O I IR BT i
< Lo (P |Zm p) ™ I, o (1" [im )
< max{| |||, ’|y|‘r}i0+~~-+in+j0+--~+jn

= max{||z[|r, [ly[l:}""-
Aufgrund von Lemma [5.3.] folgt
S (T0, Y, T 50y B s B )y < max{[[]]r, [[yll 37"
und damit
180 (T0, 2, T 0y T s T )P |y < max{[allr, 1yl -

Also gilt

' —n

[l + yllr = suppso {1 [Sn (@0, T, s T, G0y T s T )P 1o}

< max{||z||,, ||y||+}-

*Der Beweis stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewéhlte Themen zu (¢, ')-Moduln” in Miinster gehalten hat.
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Nun sei zunachst r < 1.

Wir zeigen die Multiplikativitiat: Seien x = > 02 o p"[x,] und y = Y 07 o p"[yn] aus
W (or) beliebig. Falls zy = 0 gilt, ist klarerweise ||zy||, = 0 < ||z||» - ||y||. Sei
also xy # 0, also auch ||zy||, # 0. Es gibt daher ein N € N mit "V < ||zy||,. Wir
berechnen

xy = ip” > [ZiYm]
n=0

l+m=n

= > @) N Y 0N Y [l

l+m<N n>N I+m=n

Setze a: =35 N D" Y pmen [Tilm] = Yopto p"[an] fiir bestimmte a, € op.
Da (r"|an|,)n eine Nullfolge ist, gibt es ein ng, sodass ||a[|, = sup, > {r"|an|s} =
770 @, |, gilt. Es folgt

HPNCLH?" = TnO+N|ano+N|b <rV< |[zyl]:-
Aufgrund der Dreiecksungleichung gilt dann

lzyllr = llzy — pVally < maxgmen{llp* " (217wl }
= maxpmen {7 [Tl - 7" Gmls }
< maxien{r!|Zil,} - maxpmen{r™|gmls }
= [l - |[yll--

Andersherum seien z = Y02 p"[Z,] und y = Y02 p"[yn] Elemente aus W(op)
mit z,y # 0. Wir finden, da (r"|Zyl,)n>0 bezichungsweise (r"|yy|,)n>0 Nullfolgen
sind, minimale Indizes i, j, sodass ||z||, = r%|Z;], und ||y||, = r7|y;|, gilt. Setze

o= p"Ea] und g =D p"[ynl.
n=t n=j

Dann gilt ||2'||, = ||z]|, und ||¢/||» = ||y||». Wir schreiben 2’y = ¢ = 0%  p"[én].
Esgilt ¢, =0 flirn <i+j —1und ¢y = 7; - y;. Also ist

2"y |lr = 4|23 - gl = [l - [yl (5.4)
Aufgrund der Minimalitat von 4 gilt

i—1

|z = a'|lr = || Y P [Enlllr < |2l = [2]]-
n=0

Analog gilt ||y — ¢'||» < ||y||r, und es folgt mit den vorangehenden Resultaten
llzy = 2"y llr = [I(x = 2")y + 2" (y = /) [I»
< max{||(z — 2yl [12"(y — )l }

< max{[[(z — 2 [lyllr, [l || (y = »)I}
<l - {1yl
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5 Perfektoid impliziert tief verzweigt

Mit der Dreiecksungleichung und (j5.4)) erhalten wir
lzyllr = [|(zy — 2"y") + 2'Y[l; = l2"Y [l = |2l - [1y]]:-

Insgesamt erhalten wir

Hzyllr = llll - [yl

Um die Vollstindigkeit zu zeigen, sei (z()); eine Cauchy-Folge in W (op) beziiglich
|| - || mit Elementen z() = $7°° p”[a?g)].

Zuerst zeigen wir, dass die Abbildung [-] stetig ist: Seien x,y € W (op). Die
Aussage von Lemma gilt analog auch fiir die D,,, also gilt

_n’

||[SEO] - [gO]HT < Tnsupn{’Dn(jO)O7 ~-')O7g0) '”70)]7

< r"sup{|zo — %ol! }.

b}

Da die rechte Seite fiir |Zg — yo|, — 0 gegen 0 konvergiert, folgt die (gleichmafige)
Stetigkeit von [].

Nun zeigen wir per Induktion iiber n, dass (a_:g ))i fiir alle n eine Cauchy-Folge in o
beziiglich | - |, ist. Der Ringhomomorphismus @ ist Lipschitz-stetig, da klarerweise
[|Po(2)|]r < ||z|| gilt. Damit bildet &y Cauchy-Folgen auf Cauchy-Folgen ab. Das
zeigt die Behauptung fiir n = 0.

Wir nehmen an, dass die Behauptung fiir alle n < N fiir ein beliebiges festes N gilt.

Da op vollstiandig ist, gibt es fiir alle n < N ein Element Z,, € op, gegen das (fgf))

)

konvergiert. Da [-] stetig ist, konvergiert ([:i,(f)]), gegen [Z,] fir n < N. Damit gilt

13" P = 3 p"[Eallle < maxaen{[[Z0] = [Zalll} — 0.

n<N n<N
Also konvergiert (3, < N[:a(f )])Z beziiglich || - ||, gegen >, < y[¥5] und ist damit ins-

besondere eine Cauchy-Folge. Sei € > 0. Dann finden wir ¢, j, sodass

le® =2} = (| 3 p @@+ 3 p"el - 3 5 - 3 p e
<e

gilt. Es folgt aufgrund der strikten Dreiecksungleichung (fiir geniigend grofe ', j')
0o , 0o ,
1> P = ]l <
n>N n>N

Damit ist (302 p”[fﬁf)])z eine Cauchy-Folge und wie im Induktionsanfang folgt,
dass (ig\lf) +1)i eine Cauchy-Folge ist.

Damit existiert fiir alle n ein Grenzwert z,, € o von (9555 ))i.
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5.3 Untilting

Wir zeigen nun, dass dann (3, p"” [zﬁf)])l beziiglich || || gegen > o2 p"[Zn] kon-

vergiert. Dazu sei € > 0 beliebig. Wir finden wegen r» < 1 ein N € N mit rV < e.
Es gilt dann

1Y p D)= S pr(aall) < 7N <
n>N n>N

Aufgrund von Stetigkeit konvergiert ([@S)])z gegen [z,] fir alle n € N. Damit gilt
1> 2" @] = D " [Ealllr < maxaen{||[Z0] - @alll;} — 0,
n<N n<N el

und damit fiir gentigend grofles ¢

1> p @] = 3 p Eallle < max{]] > p @] = > pr @l || Y 2 ED] = Y " (E]ll )
n=0 n=0 n<N n<N n>N n>N

<e.
Also konvergiert (3°0° ,p" [9255)])1 beztiglich || - ||, gegen > o2 o p"[ZTn].

Sei nun r € (0, 1] beliebig. Sei x = > 7> p"[Zn] € W(or) ein beliebiges Element.
Da (0,1] — [0,1],7 — r™|Z,|, fiir alle n stetig und monoton steigend ist, ist auch
(0,1] — [0,1],7 > ||x||, stetig und monoton steigend. Es gilt insbesondere ||z||; =
;LII%"ZL'|IT Damit folgen die noch nicht gezeigten Behauptungen fiir r = 1. O

Definition (Definition 1.4.3 in [12]). Ein Element b = >0, p"[Zy] heifit primitiv,
wenn |Zol, = p~* und Z; € o} gilt.

Definition (Definition 1.4.4 in [12]). Ein Element x = > 02 p"[Z,] heiit stabil,
wenn |z,|, < |Zo|, fiir alle n gilt.

Lemma 5.3.3. E|Sez' x € W(op) stabil und z € W(op) primitiv. Dann gilt fir alle
y e Wiop)

|z +yzll =[]l
Beweis. Sei im Folgenden r = p~ 1.
Da x stabil ist, gilt ||z||, = ||z||1. Falls ||yz||» # ||z||;, folgt mit der strikten Drei-

ecksungleichung
iy = lflr <max{|[z[|, [[yz]l;} = [|z + yz[l: < [lz+yz[h.

Wir nehmen also ||yz||, = ||z||, an. Da z primitiv ist, gilt ||z||, = r und somit
l|1z][1 =1 > ||2]|. AuBerdem ist ||y|[1 > [|y||,. Damit gilt

Hyzlle = 1yl - [l2ll > MMyl -zl = lyzll- =[]l = [|2[]-

3Das Lemma stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewéhlte Themen zu (¢, ')-Moduln” in Miinster gehalten hat.
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5 Perfektoid impliziert tief verzweigt
Damit erhalten wir mit der Dreiecksungleichung

|z + y2lly = max{][z[[1, [lyz[l1} = [lyz|ls > [|2[ly = [|=]],-

Lemma 5.3.4 (Lemma 1.4.7. in [12]). Sei z € W(op) primitiv. Dann finden wir
fiir jede Aquivalenzklasse von W(oF)/(z) einen stabilen Reprisentanten.

Beweis. Schreibe z = [z] + pz1 mit 23 € W(op)*. Sei x € W(or) und setze xy = x.
Sei x; = > 720" [z1,] ein zu £ modulo z kongruentes Element aus W (or). Setze
11 =Yoo DT pt1] und x4 = 7 — xl,lzl_lz. Dann ist 2,1 ebenfalls kongruent
zu x modulo z. Es gilt auBlerdem

Tyl =T — T2 2
= —m12; (2] + p21)
=x — $l,131_1[§] — DpT1

= [Z1,0] — w121 '[2].

Wir nehmen an, dass es ein [ gibt, sodass |z, |, < p|Z;ol, fiir alle n > 0 gilt. Dann
gilt ||zl < max{||[Zroll[1,p7" - |lzr1lli} = 710,

Es gilt |.’fl+1’0 p = \il,g+2a‘;l71(21_1)\b = max{\a_:lyolb,p_l\a_cl,l b} = |fl,0|b~ Also ist x4
ein stabiler Reprasentant der Kongruenzklasse von = modulo z.

Angenommen, ein solches [ existiert nicht. Dann gilt aufgrund von Lemma [5.3.2

1

sup, {|Zi4 1.0l } <2 sup, {|Tinl}

fir alle > 0, also ||z;||1 — 0 fiir [ — oo und

lziaz ' Ellh = lZ10] — 2]k
< max{|[|[Zy,0]|[1, [|zi41]]1}
< p~'sup, {|Zinls}

—1—1
< — 0.
=P l—o0

Da W (or) beziiglich || - ||; vollstindig ist, konvergiert die Summe Y5, ;127 "
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5.3 Untilting

somit beziiglich || - ||; gegen ein y € W (or). Da Multiplikation mit z stetig ist, gilt

[o.¢]
yz = (Z aclylzl_l) -z
1=0

=S (e - (2] 4 p2)

N
Il
=)

([Fziazr " + pag)

M

N
I
o

M

([Z1,0] — 2141 + p11)

=]

Il

— e~

| =1+ pros + [T1] — 22 +prig+ ..

&8

wobei die letzte Gleichheit aus [z;] + px;; = ; folgt. Damit ist 0 ein stabiler
Représentant der Kongruenzklasse von x modulo (z). O

Lemma 5.3.5 (Lemma 1.4.9. aus |12]). Ein stabiles Element x € W (o), das durch
ein primitives Element z teilbar ist, ist schon gleich 0.

Beweis. Sei x € W(op) ein stabiles, durch ein primitives Element z teilbares Ele-
ment. Setze y = x/z und z = > 0% ( p"[Z,] bzw. y = > 02 o " [Yn] sowie z = [Z] +p21
mit z; € W(op)*. Wir schreiben

(z —p21y) = (2y — p21y) (5.5)
=(z2—p21)-y
=[z]-y.
Wir zeigen nun per Induktion nach n, dass
|Gnly = " Zol,  fiirallen >0 (5.6)

gilt. Das beweist die Behauptung, denn es ist g, € op fiir alle n > 0, d.h. |y,], <1

fiir g, # 0. Deswegen ist (5.6 nur moglich, wenn x = 0 gilt.

Wir zeigen (5.6): Wir gehen von Zg # 0 aus. Fiir n = 0 gilt aufgrund von (5.5|)
[Gols = 127" Zol, = plZol,-

Sei N € N eine beliebige feste natiirliche Zahl und sei die Behauptung fiir alle

n < N gezeigt. Es gilt

z—pzy = p"[E)—p- Q0" D [FEnr1- %)
n=0

n=0 l+m=n
oo oo
=Y p"Ea] = D "D (Bt )

= i_o:pn[i’"] - ipn( > [Zmsr-wl)

n=1 l+m=n—1
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5 Perfektoid impliziert tief verzweigt

Es gilt aufgrund von (5.5) und der Induktionsvoraussetzung
Nz gnsalllh = lZvea + Y. Zmsr - %] + Rl
l+m=n—1
wobei R € W(or) ein Element mit kleinerem Betrag als
NZner+ Y, Zmer-Gllh = 1ENei+ Y. Zmgr - Gt = [N
l+m=n—1 l+m=n—1
ist. Also gilt ||[z - yni1]ll1 = |yny, und da ||[Z]||1 = p~! gilt, folgt die Behauptung.
0

Korollar 5.3.0.1 (Corollary 1.4.10 in [12]). Sei z € W(op) primitiv und seien
x,y € W(op) stabil und kongruent modulo z. Dann gilt |Zo|, = |Yols,-

Beweis. Schreibe w = x — y. Es gilt aufgrund der strikten Dreiecksungleichung
|wn |, < max{|zol,, [yo|,} fiir alle n nach Lemmal[5.3.2] Angenommen, es gilt |zo|, #
lyoly, dann ist |wpl, = max{|zoly,|yols} > 0, also ist w stabil, Widerspruch zu
Lemma [5.3.5 ]

Lemma 5.3.6. Das Produkt zweier stabiler Elemente a,b € W (o) ist stabil.
Beweis. Sei ab =Y p"[¢y]. Dann gilt

ol = laols - [bol, = [lally - [[bllx = [lab]|1.
Also ist ab stabil. O

Bemerkung 5.3.7. Ein Element = = Y 02 ([Z,] € W (oF) ist genau dann eine Einheit,
wenn ®o(z) = zo € op eine Einheit ist.

Beweis der Bemerkung. Wenn x eine Einheit ist, dann auch ®y(z), da @ ein Ring-
homomorphismus ist. Andersherum sei g = ®(z) eine Einheit in 0. Dann ist [Zo]
eine Einheit in W (or) mit multiplikativ Inversem [Zo] ™' = [Z,']. Wir schreiben
x = [Zo] + pxy fiir ein x; € W(op). Dann ist, da W(op) p-adisch vollstandig ist,
das multiplikativ Inverse von [Z,'] -2 = 1 + p[Z, ]x1 durch die geometrische Reihe

! S P (= [75 )"

1 (=plzg 1) 55
gegeben. Damit folgt die Behauptung. O

Lemma 5.3.8. Ein Element v = Y o2 o[Zn] € W(or) ist genau dann stabil, wenn
es gleich einer Finheit multipliziert mit einem Teichmiiller-Lift ist.

Beweis. Sei y € op. Es gilt [y] - > p"[Zn] = X p"[yzy], da [-] multiplikativ ist.
Wenn z = [y] - e fiir ein e = Y72 p"[én] € W(op)™ ist, dann gilt wegen €y € o7,
dass |Z|, = |yel, = |yl, > |yen|, fiir alle n > 0, d.h. x ist stabil.

Andersherum sei x stabil. Wegen |Zg|, > |Z], ist Z,, durch Zg teilbar fir alle n > 0,
also gilt = = [Z]-([1]+ X021 p"[Zn/Z]. Dabei ist [1]+> 02 p"[Z,/Z] eine Einheit. [
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Nun betrachten wir wieder einen perfektoiden Zwischenkorper K C L C Kl

Lemma 5.3.9 (siche Lemma 1.4.19 in [18]). Wir betrachten den Homomorphismus
©r : W(o;,) — or. Dann erzeugt jedes primitive Element, das im Kern von ©p, :
W(o,) — or, liegt, schon Ker(©p).

Beweis. Sei z = Y 02 4p"[zn] € W(0;,) ein primitives Element mit ©(z) = 0.
Dann gilt klarerweise z - W(o0;,) C Ker(Op).
Sei x = Y02 op"[zn] € W(o;) ein Element im Kern von ©. Dann gilt 0 =

O1(x) = 1. (70) + P(S52, P 101 (7)). Daraus folgt [zol, = 101, (70)]| < |p] = |3l
Damit gibt es ein y € 0;, mit g = zy und es gilt * — z[y] = 0. Somit ist Ker(0) C
2W (o) +pW(ops).

Sei nun a € Ker(0p) irgendein Element. Dann finden wir Elemente ay,by € W (o;,)
mit a = zbg+pa;. Wegen z-W (0’ ) C Ker(0y) gilt a; € Ker(©r). Wir erhalten nun
induktiv Folgen (by,)n>0 in W(o;,) und (an)n>1 € Ker(0©r) mit a,, = zb, + pan1.
Da W(o;») nach Lemma p-adisch vollsténdig ist, konvergiert b = > "2 p"by,
in W(o;,) und erfiillt a = zb, woraus Ker(©r) C z2W (o;,) folgt. O

Bemerkung 5.3.10 (Corollary 1.4.14 in [12]). Es existiert ein primitives Element
z € Ker(©p : W(o;,) — 0r), sodass Ker(0) nach Lemma von z erzeugt

wird.

Beweis. L und L° haben dieselbe Wertegruppe, darum finden ein z € o 7» it
0.(2)| = |z], = p~!. Dann ist () durch p teilbar (in oz). Da O, surjektiv ist,
finden wir ein z; € W(o,) mit Or(z1) = —0r(2)/p. Dann gilt |OL(z1)| = | —
0r.(2)/p| = 1. Damit ist z; € W(o»)*, denn andererseits wére |0 (z1)| < 1. Dann
ist z = [Z] + pz1 das gesuchte Element, denn es gilt O (z) = Or([2]) + pOL(21) =
0r(2) —0r(z) = 0. O

Sei nun z ein primitives Element im Kern von O : W(og,) — o0x. Dann er-
zeugt z den Kern von ©g und ebenso den Kern von Oy, : W(o;,) — oy, fiir einen
perfektoiden Zwischenkérper K C L C K alg , da z auch im Kern von Oy, liegt. Sei
im Folgenden © = ©7,,, und 0 =63,

Wir haben das kommutative Diagramm

=
o
z
N
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5 Perfektoid impliziert tief verzweigt

=z-W(op) gilt.

Das Argument in Bemerkung [5.3.9 zeigt, dass Ker(@f{amW(oF))

Wir erhalten also ein kommutatives Diagramm

)
W(O([?alg)b)/zw(o([?alg)b) —>0

y

[?alg

W(op)/zW(oF) -
| N
Wi(ogs)/2W (o) 0K

Dabei sind die waagerechten Pfeile Isomorphismen.

Satz 5.3.11 (siehe Theorem 1.4.13 in [12]). Sei W, := W (or)/zW (oF) und sei
x € W,. Wir finden einen stabilen Reprisentanten y =Y o> op"[yn] € W(or) und
definieren |z|" := |yo|,. Dann gilt

(i) || ist eine multiplikative Norm auf W, beziglich derer W, wvollstindig ist.
(ii) FEs gibt einen Isomorphismus W, /(p) = op/(2).

(iii) Der Ring W, ist der Bewertungsring eines perfektoiden Kérpers von Charak-
teristik Q.

Beweis. Zu (i):

Nach Korollar ist | - | eine wohldefinierte Funktion von W, nach [0,1]. Au-
Berdem gilt |W,|" = |op|,, denn es ist |[y] mod (2)|" = |y|, fir y € op.

Da jedes Element x € W, \ {0} einen stabilen Reprisentanten y # 0 hat, gilt
r=0«|z|'=0.

Um die strikte Dreiecksungleichung zu zeigen, seien 2/,y’ € W(op) stabile Repra-
sentanten von Elementen x,y € W,. Dann gilt nach Lemma [5.3.3] fiir einen stabilen
Représentanten ' + 1y’ + az von = + y

" +¢|[1 = ||z’ + ' +az —az||1 > ||[2' + ¥ + az|]1.
Damit ist
lz+yl" = ||z + ¥ +azly < |2+ '||1 < max{]|2/||1,|]y/]|1}

s b
= max{|zg|", [56/"}

= max{[y/’, [x|'},

wobei die vorletzte Gleichheit aus der Stabilitiat von z’ und v’ folgt.

Als néchstes zeigen wir die Multiplikativitdt: Seien a,b € W, zwei Elemente mit
stabilen Reprasentanten o', b € W(op). Dann ist nach Lemma auch a'b’ stabil,
also ein stabiler Reprasentant von ab. Es gilt

|abl” = lagbol, = lagls - [Bols = lal’ - [B]"
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Jetzt zeigen wir die Vollstandigkeit: Da W (or) ein Integritétsbereich ist, haben wir
die exakte Sequenz

0— W(or) 3 W(or) — W, — 0.

Sei € W(op) ein Element mit zz € pW(or). Dann ist die Reduktion modulo
p zx = Z - Z gleich 0. Da z primitiv ist, ist z # 0, also folgt, da o nullteilerfrei
ist, z = 0, d.h. x € pW(op). Per Induktion und wegen p # 0 in W(op) folgt
x € p"W(op), wenn zz € p"W(op) gilt. Damit haben wir fiir alle m > 1 die
exakte Sequenz

0 — W(op)/p™W(or) 3 W(or)/p"W(oF) — W, /p"W, — 0.

Da die Projektionen W(op)/p"W(op) — W(op)/p"W(op) fiir n > m surjektiv
sind, bekommen wir eine exakte Sequenz

0 lim W (op) /p™W (o) 5 lin W (op) /p" W (05) — lim W /p™ W — 0.

Wir erhalten das kommutative Diagramm

0 W(OF) < W(OF) W, 0

: : |

0——1lim W(op)/p"W(op) —=lim W(or)/p"W(op) —=lim W./p"W.—=0

Da W (or) p-adisch vollstandig ist, gilt W(op) = @W(op)/me(oF), deswegen
sind die mittleren senkrechten Homomorphismen Isomorphismen, also ist auch die
Abbildung W, — l'ngz /p"W, ein Isomorphismus. Damit ist W, p-adisch voll-
standig.

Um zu zeigen, dass W, beziiglich | - | vollstdndig ist, zeigen wir weiterhin, dass
|z|" < |p|" Aquivalent ist zu z € (p) fir ein x € W,:

Wenn z im von p erzeugten Ideal liegt, gilt |z|" < |p|, da | - |" multiplikativ ist.
Andersherum sei |z|" < |p|’. Sei y = Y72 40" [yn] ein stabiler Repréasentant der
Aquivalenzklasse von x. Dann gilt ||, = |z|' < |p|. Da p + az = az mod (p) fiir
alle a € W(op) gilt, ist |p|’ < p~! nach der Definition eines primitiven Elements.
Deswegen gilt |go], < p~! = |Z|,. Wir finden also ein b € o mit 4y = bZy. Dann
gilt y — z - [b] € pW (op), also = € pW,.

Zu (14):

Nach Satz[5.1.5 gilt W (op)/(p) = op. Damit gilt

W2/(p) = (W(or)/(2))/(p) = W(or)/(z,p) = W(or)(p, [2]) = 0r/(2).

Wir haben also einen Isomorphismus W./(p) — or/(2), > 0o p"[Zn] + (p,2) —
Zo + (Z). Insbesondere ist der Frobenius auf W, /(p) surjektiv.
Zu (vi1):

‘ /

’ /
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W, ist nach (i) ein Integritétsbereich. Wenn x = >~ p"[Zn] und y = > 02 o p" [Un]
stabil sind und |zo|, < |yol, gilt, dann ist x durch y teilbar in W (or) (dies folgt aus
Lemma [5.3.8)). Damit ist W, ein Bewertungsring. Der Quotientenkérper Quot(W,,)
hat Charakteristik 0, denn wir haben den Ringhomomorphismus é|Wz W, —

0 und K9 hat Charaktersitik 0. 0

]/(\'alg’

Wir setzen oy := O(W,). Sei z € W, ein Element mit stabilem Représentanten
y = 00" (i) € Wop). Dann gilt [8(z)] = 6y + (2))] = | 50 5"0(5)| =
10(%0)] = |yol, = |z|". Aus dem vorherigen Satz folgern wir, dass op: der Bewer-
tungsring eines perfektoiden Korpers F* := Quot (o) mit K C F# C K9 ist.

Wir berechnen nun den Tilt von F* (siehe [18, Proposition 1.4.23]):
Seixcop Co

(Ratay+ Wir schreiben
z = (xo mod poz,y, .. Ti MOd PO, ...) € 0(Ratgy = @Ugazg/pogazg-

Es ist (6(z) modpops, ..., 0(z'/?") mod po g, ...) ein Element in 0(pzyo- Als Element
in 0 Ralg), betrachtet, ist

(0(z) mod po .45 - H(ml/pl) mod poz,;,,--.) = (¥o mod poz,;., ..., ¥ mod POy, .-

also gleich x. Damit gilt op C 0(ptys-

Sei umgekehrt = € 0y - Wir benotigen das folgende Lemma:

Lemma 5.3.12. Die Abbildung

@oF %T#HIOF/(E),
()P ()P
(20, ey Tiy ...) — (zgmod (2), ..., x; mod (2), ...)

ist ein Ringisomorphismus.
Beweis. Siehe Lemma 1.4.22 aus [18§]. O

Mit Lemma [5.3.12| und dem Isomorphismus op: /pop: = W, /(p) = op/Zop kon-

nen wir

z = (0(x0) mod pops:,...,0(x;) mod pogy,...) € 0 psy, = T&nopﬁ/popu
Ok

3 L — . ~ .. ~ p o ..
mit Elementen z; = (zo; mod poz,,, ..., ij mod pog,,,...) € 0F, sodass Tii =T

fiir alle j > 0 gilt, schreiben. Dann gilt fiir alle ¢,j > 0

p ~
P41 mod po

p = P —
Lip1; =Lij =2 Ralg s
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also
(T p’ R : p R
T = (iligloa:io mod po ., ,Zliglomw mod po s, ---)
— (T P N : pi R
= (Zliglo Tip mod oz, .. z>1]1?—l>oo Ty mod pog,,, )
= (200 mOd PO,y -, Tjo MO POy, .
=T9 €0F.

Also gilt O(Fu)b Cop.

Satz 5.3.13. Wir haben eine Bijektion

Perfektoide Korper K C L C KU o Vollstindige und perfekte Korper K’ CFC (f“lg)|7
b
(L[ D) = (L] 15),
(F% ] ]) < (B 1))

12

F. Umgekehrt haben wir einen Isomorphismus W (o;,)/(2)

Beweis. Es gilt (F*)’ =
‘=1L O

or, also gilt (L°)

5.4 Kompatibilitat mit endlichen Erweiterungen

Lemma 5.4.1 (Remark 1.4.25 in [18]). Sei F' ein perfektoider Korper von Charak-
teristik p. Wenn F algebraisch abgeschlossen ist, dann auch F*.

Beweis. Sei E/F* eine nichttriviale endliche Erweiterung. Sei z € op ein Ele-
ment mit F¥(z) = E. Da op der ganze Abschluss von oy in E ist und z da-
mit ganz iiber oy ist, hat das Minimalpolynom P(X) von x Koeffizienten in op;.
Sei d > 2 der Grad von P(X). Da F* vollstindig und damit henselsch ist, ha-
ben alle Nullstellen von P(X) in einem algebraischen Abschluss von F* denselben
Betrag. Da F* perfektoid ist, finden wir ein normiertes Polynom Q(X) € or[X],
sodass Q(X) und P(X) dasselbe Bild in op:/pop:[X] = or/(2)[X] haben. Es gilt
B(Q(X)) = P(X) mod (p).

Da F algebraisch abgeschlossen ist, hat Q(X) eine Nullstelle o € o Das Element
y1 := 0(a) € op erfiillt dann 0 < |P(y1)| < p~' = |p|.

Es gilt |op:| = |oFp|,, und da F' algebraisch abgeschlossen ist, hat jede reelle Zahl
aus |op|, eine d-te Wurzel. Damit finden wir ein ¢; € op mit |c1|? = |P(y1)| < p~ '
Das Polynom P;(X) := ¢;%P(¢; X + 1) ist normiert und irreduzibel von Grad d.
Der konstante Koeffizient von P;(X) hat nach Konstruktion den Betrag 1, also ha-
ben auch alle Nullstellen den Betrag 1, da alle Nullstellen denselben Betrag haben.
Damit gilt P;(X) € 0z:[X]. Das Polynom P;(X) hat damit dieselben Eigenschaften
wie das Polynom P(X). Wir kénnen also mit P;(X) analog verfahren und erhalten
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5 Perfektoid impliziert tief verzweigt

induktiv Sequenzen (yp)n>1 und (¢n)n>1 in 0¢ und eine Sequenz von irreduziblen
normierten Polynomen (P, ),>0 von Grad d in op:[X]. sodass gilt

Py =P, eyl = |Pu_1(yn)| <p ! und Py(X) = ¢, 9P, 1(caX +y,) fiir alle n > 1.

Damit gilt

|P(c1...Coyn1 + CloeCr1Yn + . + c1yo +y1)| < p " Pu(yns1)| < p~ (D

fiir alle n > 1. AuBerdem gilt |c;...c;| < p~¥/¢ fiir alle 4 > 1. Damit folgt, dass
(o]
Ci= Z(H?:_llci)yn
n=1

in 054 konvergiert und eine Nullstelle von P(X) ist, was einen Widerspruch zur
angenommenen Irreduzibilitiat von P(X) darstellt.

Es gibt keinen echten algebraisch abgeschlossenen und vollstédndigen Unterkorper
von K™, Daraus folgt F# = K und somit F = (K%9)". O

Seien K C K71 C Ky C K9 zwei perfektoide Korper. Wenn Kg / Kk{ eine echte
endliche Erweiterung ist, dann ist K3 nicht algebraisch abgeschlossen (siehe [4, 6.3,
Satz 2]), also ist auch K nicht algebraisch abgeschlossen. Dann ist o € Aut(K2/K7)
stetig, denn andernfalls wiirde durch = — |o(z)| eine nicht zu | - | &quivalente Norm
definiert werden, was aber |1, Theorem 4.4.1] widerspricht. Aulerdem folgt aus [15,
I1, Satz 3.3], dass o den Betrag erhélt.

Sei Ky/K; eine Erweiterung perfektoider Korper in Charakteristik 0, sodass
K3/K} endlich ist. Wir erhalten einen Homomorphismus
Aut(Ko/K7) — Aut(K5/K?)

O'I—>O'b,

wobei wir 0 (z9 mod pog,, ..., z; mod pok,, ...) := (o (x) mod pox,, ..., o(2;) mod pog,, ...)
fir x = (rgmodpok,,...,z;modpog,,...) € O setzen. Dabei gilt (c”(x)) =

limi o0 () = 7(8(x)), also o (2)], = 18(0 ()] = o(6(x))| = [0(2)] = |21,
Weiterhin definieren wir durch

o(Y_p"[@a)) = D p"o(zn)]
n=0 n=0
eine Aut®™ (K35 /K?)-Operation auf W(ng).

Lemma 5.4.2 (Lemma 1.6.1. aus [18]). Sei K3/K} endlich. Der Homomorphismus
@K2 : W(OKg) — 0K, erfdllt

Ok (0" (w)) = 7(Ox, (x))
fir alle 0 € Aut(Ko/K1) und alle x =Y 02 o p"[Zn] € W(UKS)'
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5.4 Kompatibilitdt mit endlichen Erweiterungen

Beweis. Sei o € Aut(K3/K;). Dann gilt

01 (@ (3 " En])) = Ora( > 0 Eal)) = 3 90 (0 (20)
n=0 n=0 n=0
S o0 () = o3 Pk ()
n=0 n=0
= (O3 p"]))-
n=0

Dabei folgt die dritte beziehungsweise vierte Gleichheit aus der Stetigkeit von o
zusammen mit Bemerkung [5.2.3] O

Lemma 5.4.3 (siche Proposition 1.6.2. aus [18]). Sei K3/K; eine Erweiterung
perfektoider Kérper, sodass Kg/KE endlich ist. Dann ist der Homomorphismus

Aut(Kz/K1) — Aut(K3/K?)

O"—>O'b

bijektiv.

Beweis. Um die Injektivitéit zu zeigen, sei o” die Identitéit. Es operiert o” als Iden-
titat auf W (o Kg)‘ Lemma und die Surjektivitdt von O, implizieren, dass ein

Urbild o von ¢” schon die Identitét ist.
Nun zeigen wir die Surjektivitdt. Das Element z € Ker(Og,) ist ein Erzeuger von
Ker(Og, ). Die Operation von Aut(K5/K3) auf W(ng) lasst z fest. Das fithrt zu

einer Operation auf W(ng)/zW(ng) = o0k, und damit auf K. Die so definierte
Operation von Aut(K3/K?3) auf oy, lisst W(ng)/zW(ng) = o, fest. Wir erhal-

ten damit einen Automorphismus of von K», der K, festlisst. Damit haben wir
einen Homomorphismus

Aut(K5/K?) — Aut™(Ky /K1)

oot
Nach Definition gilt
O, ([o(x)]) = o*(O K, ([z])) fiir alle & € 0.
Wir miissen zeigen, dass (o)’ = o gilt. Fiir jedes
r = (xomod pog,, ..., tn, mod pog,, ...) € 0
gilt

Tn = Ok, (/7") = Ok, ([z'/P"]) mod (p)
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5 Perfektoid impliziert tief verzweigt

und damit
z = (O, ([z]) modpog,, ..., Ok, (['/P"]) mod pog,, ...). (5.7)

Nun kénnen wir berechnen:

o(x) = (O, ([o(x)]) mod pog,, ..., @KQ([a(m)l/pi]) mod pog,, ...)
= (04 (Ok, ([z])) mod pox,, ..., ot (O k, ([z"/7'])) mod pox, , ...)
= (6"’ (O, ([z])) mod pog, , ..., Ok, ([z/7']) mod pox,, ...))
= (") (x).

O]

Lemma 5.4.4 (Lemma 1.6.3. in [18]). Seien K1 C Ky zwei perfektoide Korper
in Charakteristik 0, sodass K3/K} eine endliche Galoiserweiterung ist. Dann ist
Ky /K, eine endliche Galoiserweiterung, und die Abbildung

Gal(K2/K1) — Gal(K3/K7),

O”—>O’b

ist ein Isomorphismus.

Beweis. Nach Lemma ist der Homomorphismus Aut(Ky/K;) — Gal(K5/K3)
bijektiv. AuBlerdem ist der Isomorphismus Ok, : W (o K )/zW (o K ) — 0k, dquiva-
riant fiir die Aktion dieser beiden Gruppen. Wir bekommen also ein kommutatives
Diagramm

@ u
W(ng)/zW(ng)Gal(K'z’/K?) K 0;“(2‘5(K2/K1)

QT c

W(“K?)/ZW(UKE) on 0K,
1

Dabei sind die waagerechten Pfeile Isomorphismen.
Andererseits haben wir die exakte Sequenz

0— W(UKg) L) W(OKZ) — W(OKE)/ZW(OKS) — 0,

und damit die exakte Sequenz

0 —s W(ng)Gal(Kg/Kb N W(OKS)Gal(KZ/KD . (W(OKE)/ZW(OKE))Gal(KZ/K?)
s Y (Gal(K/K2), W(o,,))
b/ gch
Es gilt W (o) S0 KD = W (o ") = W(o,). Nach [20, VIT, §2, Cor.
2
1] wird Hl(Gal(Kg/Kk{),W(ng)) durch die Ordnung von Gal(K3/K}) annuliert.
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5.4 Kompatibilitdt mit endlichen Erweiterungen

Die Gruppe H'(Gal(K5/K?), W(UK;)) ist ein Zp—Modul Da in Z, alle Primzah-
len bis auf p invertierbar sind, wird H'(Gal(K3/K?}), W (o Kg)) von einer p-Potenz
annuliert. Zusammengenommen ergibt sich, dass der Kokern des linken senkrech-
ten Pfeils in obigem Diagramm von einer p-Potenz annuliert wird und damit auch
der Kokern des rechten senkrechten Pfeils. Geht man zu den Quotientenkorpern
iiber, erhilt man also K = Kf ut(K2/K1) Nach Artins Theorem ist damit K,/ Ky
galoissch mit Galoisgruppe Aut(Ky/K7). O

Satz 5.4.5 (Proposition 1.6.8. in |18]). Es gilt:
(i) Jede endliche Erweiterung K1 /K ist perfektoid.

(ii) Wenn K1 perfektoid ist, dann ist K1/K genau dann endlich, wenn K /K’
endlich ist. In diesem Fall gilt [K, : K] = [K} : K.

Beweis. Setze F := K”. Sei F®9 der algebraische Abschluss von F in (f(\ alg)> Dann
ist F%9 die Vereinigung aller endlichen galoisschen Teilerweiterungen F»/F. Nach
[18, Remark 1.6.4] ist jedes derartige F vollstdndig und perfekt, also perfektoid. Da-
mit ist Fy = Kg damit der Tilt eines eindeutigen perfektoiden Korpers Ko/ K. Nach
Lemma [5.4.4]ist K5/K endlich und galoissch und es gilt Gal(K2/K) = Gal(Fy/F).
Alle Zwischenkorper von F5/F' sind nach |18, Remark 1.6.4] perfektoid, also Tilts
von perfektoiden Zwischenkérpern von Ko /K. Wegen des Isomorphismus’ der Ga-
loisgruppen sind alle Zwischenkérper von Ko/K perfektoid. Sei KP¢'f die Verei-
nigung aller solcher endlichen Galoiserweiterungen Ks/K Damit ist jede endliche
Erweiterung K; /K mit K; C K per f perfektoid, denn sie ist in einem K5 enthalten.
Aufgrund von Lemma und Galoistheorie gilt [K; : K] = [K? : K”].

Die Vervollsténdigung von K- rerf ist ein perfektoider Korper, dessen Tilt Fal9 g,
Da Flg perfektoid und algebraisch abgeschlossen ist, gilt F Falg — (K Kalg ).

Da K9 der eindeutige Koérper mit Tilt F Falg ist, folgt Kperf = Kalg Da K9 al-
gebraisch iiber K ist und K vollstindig ist, erhilt jedes o € Gal(K%9/KPerf) den
Betrag und ist somit stetig. KP¢"/ liegt dicht in Kperf = Falg , also auch in K9,
Damit ist jedes o € Gal(K™9/KPerf) die Identitit und es gilt KPer/ = K9,

Also ist jede endliche Erweiterung K;/K perfektoid und es gilt [K; : K| = [K? :
K’]. Wenn andersherum K perfektoid und K3 /K” endlich ist, dann ist K? in einem
F5 enthalten und K ist im entsprechenden Korper Ko enthalten. ]

Satz 5.4.6 (Theorem 1.6.4. in [12]). Sei L eine endliche Erweiterung von K. Dann
ist die Spur Tr : mp, — mg surjektiv.

Beweis. Sei zundchst L/K galoissch.

Nach Lemma @ ist L ebenfalls perfektoid. Wir betrachten K’ und L’. Wegen
Perfektheit von K’ ist L’ eine endliche separable Erweiterung von K”. Darum
finden wir ein u € my, \ {0}, sodass uoy, C Tr(my,) gilt. Da der Frobenius nach

Voraussetzung surjektiv ist, konnen wir u durch u?~ " ersetzen fiir alle n € N. Also

0,0 ist eine Z,-Algebra, also auch W (o), siehe |18, Proposition 1.1.8].
2 2
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5 Perfektoid impliziert tief verzweigt

ist Trpp /peo : Mpp — My surjektiv.

K ist nicht diskret bewertet, deshalb finden wir ein t € myx mit p~! < |[t| < 1. Da L
eine endliche separable Erweiterung von K ist, finden wir eine positive natiirliche
Zahl m, sodass (p/t)"mg C Tr(mp) gilt. Sei * € mg. Wir finden ein Element

(z mod pog,...,x; mod pog,...) € mg,. Wegen Lemma und Satz ist
L’ /K" galoissch.
Wir finden ein y = (yo mod poy, ..., y; mod por,...) € m;, mit

(z mod poy,...,z; mod por,...) = TrLb/Kb(y)

= > I

o€Gal(L/K)

= > o’ ((yo mod poy, ...,y; mod poy, ...))
seGal(L/K)

= (U(yO) mod p0L7---7U(yi) mod poLa"‘)v
o€Gal(L/K)

wobei wir den Isomorphismus zwischen den Galoisgruppen Gal(L’/K”) = Gal(L/K)
benutzen (Lemma [5.4.4). Anwenden der Projektion oy, — 0x/(p) ergibt

r = Trp k(vo) mod (p),

wir finden also ein a € ox mit x = Trp,/x(y0) + pa. Dann gilt, indem wir dasselbe
Verfahren wiederholen,

= Trp k(o +p/t-y) + (0/t)*(Trpk (y") + pa”)
= Trp /i (yo +p/t-y + (p/t)*y") + (p/t)° - ta”

fiir bestimmte Elemente 3/, y” € my, und @/, a” € ox. Wir konnen iterativ so verfah-
ren, bis schliefllich der letzte Summand in (p/t)"mg und damit im Bild der Spur
liegt.

Daraus folgt € Tr(my) und damit die Behauptung.

Fiir eine beliebige endliche Erweiterung L/K betrachten wir die normale Hiille L™
von L iber K und wenden das bereits bewiesene auf L"/L und L"/K an und
benutzen die Transitivitdt der Spurabbildung. O

x = Trp, k(yo0) + pa
= Trp/r(yo) +p/t - ta
= Trp k (vo) +p/t(Trp k (y') + pa’)
= Trpx(y0) + Trryxc(p/t - ¥) + (p/t)? - ta!
(
(

Bemerkung 5.4.7. Aus dem ersten Teil des Beweises ist ersichtlich, dass die Aussage
des vorherigen Satzes auch fiir perfektoide Kérper von Charakteristik p gilt.

Korollar 5.4.0.1. SeiA}' eine separable Erweiterung eines lokalen Korpers, sodass
die Vervollstandigung F perfektoid ist. Sei F'/F eine separable endliche Erweite-
rung. Dann gilt Trz r(mp) = mz.
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Beweis. Sei zundchst F'/F galoissch. Sei z ein Element mit F(z) = F'. Dann
gilt 7/ = F(z), denn einerseits gilt klarerweise F(z) C F', und andererseits gilt
F' CF (x) und F (x) ist vollstandig und die Bewertung von F' setzt die Bewertung
auf F eindeutig auf F(z) fort, also gilt F(z) = F'. Also ist F'/F eine endliche
separable Erweiterung. Sei o € Gal(F'/F) ein beliebiges Element. Wir konnen
o per (gleichméafiger) Stetlgkelt zu einem F- Automorphismus von F' fortsetzen.
Andererseits gilt ord Aut(}"/]-") [.7:’ F]<[F :F]=ord Gal(F'/F), also ist die
Abbildung Gal(F’/F) — Aut(F'/F) ein Isomorphismus, F'/F ist galoissch und es
gilt Tr]__,/]__( y) = Trp 7 (y) fir alle y € F.

Es ist 77 als endliche Erweiterung von F ebenfalls perfektoid.
Sei zunéchst char(F) = 0, und sei z € mx ein beliebiges Element. Wir finden wegen
Satz [5.4.6{ ein yo € 05, mit = Trj;,/ﬁ(yo). Da F’ dicht in F' liegt, finden wir ein

y € o mit |yo — y| < |pl, also gilt

T = TI']__,/]_—( ) TI']_‘//]:(y) mOd (p)

Wir erhalten durch dhnliche Argumentation wie im obigen Beweis die Surjektivitit
der Spur.

Sei nun char(F) = p. Sei b € mz ein Element mit 1 > [b] > 0. Wir finden ein
t € mg mit [b| < |t| < 1 und eine natiirliche Zahl m mit (b/t)"mz C Trz r(mz)
(da F'/F nach Voraussetzung separabel ist). Sei 2 € mz. Wir finden aufgrund der
Dichtheit von F’ in F’ und wegen Bemerkung [5.4.7] - 7l ein Elements y € mz mit

T = TI“]__,/]_.( ) TI‘]://]:(y) mod (b)’

und ahnlich wie im Beweis von Satz im Fall char(F) = 0 folgern wir die
Behauptung.

Wenn F'/F nicht galoissch ist, kénnen wir wieder zur normalen Hiille von F'/F
iibergehen und die Transitivitdt der Spur ausnutzen. 0

Wenn also F/F eine separable Erweiterung des lokalen Korpers F ist, sodass
die Vervollsténdigung von F perfektoid ist, dann ist F/F tief verzweigt. Wenn F
ein perfektoider Zwischenkérper von C,/Q, ist, dann ist F N leg tief verzweigt,
denn jeder vollstandige Zwischenkérper von C,/Q, ist die Vervollstdndigung einer
algebraischen Erweiterung von Q,, (siehe Proposition 1.6.6 in [18]).

Alternativ kann man auch wie folgt argumentieren:

Satz 5.4.8. [Theorem 1.6.2 in [12]] Wenn L/K eine endliche Erweiterung ist,
dann ist =0.

or/oK

Beweis. Wir zeigen zunéchst, dass es ein z € oy, gibt, sodass z - Q2
Dazu betrachten wir die exakte Sequenz (Lemma [3.2.2)

= 0 gilt.

or/oK

QK/UK ®KL — QL/OK — QL/K — 0.
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5 Perfektoid impliziert tief verzweigt

Nach [7, Proposition 16.9] gilt Qg /o, = K ®og Qo jo,c = 0. AuBerdem ist Qy, /i = 0,
da L/K separabel ist. Also ist 0 = Qp /o, = L ®0o, Qo /0,c, Wobei wir wieder |7,
Proposition 16.9] benutzen. Nun kénnen wir aus [5, I, § 2.11, Proposition 13] folgern,
dass fiir alle z € oy, ein v € o, \ {0} existiert, sodass v - dz = 0 gilt.

Sei nun e, ...,eq € 07, eine Basis von L/K. Dann finden wir ein ¢ € oz, \ {0}, sodass
t-or, C Pe;ox gilt (siche den Beweis von Lemma . Wir wéhlen ein u, sodass
u-de; =0 fiir alle ¢ = 1, ..., d gilt. Dann ist z := tu das gesucht Element.

Da K und damit auch L perfektoid sind, finden wir fiir alle z € o; Elemente
Y,z € 01, sodass x = y? + pz gilt. Dann haben wir

dr=p-dy? 1 +p-dz,

also gilt Q2 =p-Q und iterativ folgt fiir alle natiirlichen Zahlen n

or/ox or /oK

Q =p"-Q

or /oK or/ox"

Wir finden ein n, sodass z|p™, und die Aussage folgt mit dem ersten Teil des Be-
weises.

Wenn F eine separable Erweiterung eines lokalen Korpers ist, dessen Vervollstan-
digung F perfektoid ist, und F'/F eine endliche separable Erweiterung ist, konnen
wir in Charakteristik 0 analog argumentieren, denn es gilt, da 7' dicht in der Ver-
vollstdndigung F! liegt, 0z, /po 7 = op /por. In Charakteristik p wahlen wir ein
Element b € mx \ {0}. Dann ist der Frobenius surjektiv auf o]?,/bof, = oz /bog
und wir kénnen dhnlich wie im ersten Teil des Beweises argumentieren. O
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Sei F/F eine Erweiterung, F C F*?. Wir bezeichnen die absoluten Galoisgrup-
pen von F' beziehungsweise F mit Gp = Gal(F*P/F) bezeihungsweise Gr =
Gal(F*°? /F). Die folgende Definition stammt aus [21].

Definition (Arithmetisch proendlich). Die Erweiterung F/F heiit arithmetisch
proendlich (APF), wenn die Gruppe G%Gr fiir alle u > —1 offen in G ist.

Lemma 6.0.1. Unendliche arithmetisch proendliche Erweiterungen sind tief ver-
zweigt. Die Umkehrung gilt jedoch nicht.

Beweis. Sei F/F eine unendliche APF-Erweiterung. Wenn es ein u € [—1, 00) gébe,
sodass F C F®) gilt, dann wire G%Gr = G r nicht mehr von endlichem Index in
Gr. Insbesondere hat F/F unendlichen Fithrer und ist damit nach Lemma
tief verzweigt.

Andersherum ist die Restklassenkorpererweiterung von F/F notwendigerweise end-
lich (denn andernfalls wire G%G# nicht von endlichem Index in Gr). Wenn man
eine Erweiterung eines lokalen Korpers mit unendlicher Restklassenkorpererweite-
rung mit einer tief verzweigten Erweiterung kompositioniert, erhélt man eine Er-
weiterung, die tief verzweigt, aber nicht arithmetisch proendlich ist. Zum Beispiel
ist das Kompositum von Qp(pl/poo) mit der maximal unverzweigten Erweiterung
von Q, iiber Q, tief verzweigt, aber nicht arithmetisch proendlich. O

Sei im Folgenden F/F eine unendliche Erweiterung, F C F*P. Setze B := {b €
R% | G%JFEG]: # G%Gx}. Das ist die Menge der Spriinge von F/F.

Lemma 6.0.2. Wenn F/F APF ist, dann ist B diskret und unbeschrinkt.

Beweis. B ist diskret, denn andernfalls gébe es unendliche viele Spriinge < n fiir
eine reelle Zahl n und G'+:Gr hétte keinen endlichen Index in GF.

Angenommen, B wire endlich. Dann giibe es ein z € R, sodass GLGr = GR °Gr =
Gr fir alle € > 0 gelten wiirde (ndmlich z = maxB). Dann wére aber der Index von
G%Gr in G nicht mehr endlich, was ein Widerspruch zur Voraussetzung ist. [

Das folgende Beispiel ist eine tief verzweigte Erweiterung M von Qy,, deren Menge
der Spriinge B dicht in [0, 00) liegt. Insbesondere ist sie nicht APF.

Beispiel (Ch. IV, Sect. 6, Exercise 10 in [9]). Sei M die maximale abelsche Erweite-
rung der maximalen abelschen Erweiterung der maximalen abelschen Erweiterung
von Q. Dann liegt die Menge der Spriinge B dicht in [0, c0).
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Beweis. [[] Sei r/n eine rationale Zahl mit p { n. Wir konstruieren eine endliche
Erweiterung L/Q, in M, die einen oberen Sprung an der Stelle 7/n hat. Dann hat
auch M/Q, einen Sprung an der Stelle r/n.

Sei Ly := Qp(¢) mit einer primitiven n-ten Einheitswurzel (. Dann ist Ly/Q,, unver-
zweigt von Grad m, wobei m die kleinste natiirliche Zahl ist, sodass p™ = 1 mod n
(siehe |15, V, § 6, Satz 6.3]). AuBlerdem ist Lo/Q, abelsch.

Dann definieren wir L; := Lo(p'/™) durch Adjungieren einer n-ten Wurzel von p.
Diese Erweiterung ist total verzweigt von Grad n. Da p { n gilt, ist sie zahm ver-
zweigt. Da L eine primitive n-te Einheitswurzel enthélt, ist L;/Lo nach [4, 4.8,
Satz 3] zyklisch.

Drittens sei Lo/L; eine total verzweigte abelsche Erweiterung, die einen oberen
Sprung bei r hat (siehe 20, IV, § 4, Proposition 18]). Dann ist Ly/Q), eine endliche
Erweiterung in M, und es gilt

V1)@ = VLo/L1 © VL1 /Lo © VLo/Q, (T/7)
=Yr,,(n-1/n)
=, /r, (1)

Da Ly/Ly einen oberen Sprung an der Stelle r hat, folgt, dass L2/Q), einen oberen
Sprung an der Stelle /n hat.

Bezeichne mit K die Vervollstindigung der maximalen unverzweigten Erweiterung
von Qp. Dann ist MK /K eine tief verzweigte Erweiterung mit trivialer Restklas-
senkorpererweiterung, die nicht APF ist. ]

Lemma 6.0.3 (Proposition 2.3 in [§]). Wir nehmen an, dass der Restklassenkorper
von F' endlich ist. Sei F/F eine Galoiserweiterung mit endlicher Restklassenkdr-
pererweiterung. Dann ist F/F genau dann arithmetisch proendlich, wenn F/F tief
verzweigt ist und die Menge der Springe B diskret ist.

Beweis. Wenn F/F APF ist, dann ist F/F tief verzweigt nach Lemma Nach
Lemma [6.0.2] ist die Menge der Spriinge diskret.

Andersherum sei B diskret und F/F' tief verzweigt. Dann ist B zusitzlich unbe-
schréankt. Wir zeigen, dass fiir n > 1

(Gal(F/F)’ : Gal(F/F)bn+1) < pf

gilt, wobei p/ die Kardinalitit des Restklassenkorpers von F ist.

Sei zunédchst M/F eine endliche Galoiserweiterung mit zwei aufeinanderfolgenden

oberen Spriingen u; und ug. Wir bezeichnen die Fixkérper von Gal(M/F)%! bezie-
hungsweise Gal(M/F)"? mit K; beziehungsweise K.

Wir finden ganze Zahlen v; und vy mit u1 = ¥p/p(v1) beziehungsweise uy =
Yar/p(v2). Dann stimmt Gal(M/F)"? = Gal(M/F),, mit Gal(M/F'),, 41 iiberein.

Nach [20, IV, §2, Proposition 6 und 7] gibt es eine Injektion von Gal(M/F'),, /Gal(M/F)y, +1

'Der Beweis stammt aus einem Post auf math.stackexchange.com, siehe http://math.
stackexchange.com/questions/2116442
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in die multiplikative oder in die additive Gruppe des Restklassenkorpers M von M.
Daraus folgt, dass der Grad der Erweiterung Ko/Kj nicht grofier als die Kardina-
litdt von M sein kann.

Sei nun E,, der Fixkérper von Gal(F/F) fiir n > 1 und Ey := F. Wir wollen per
Induktion iiber n zeigen, dass

[En-l—l : En] < Pf

gilt. Fiir n = 0 stimmt das aufgrund der Voraussetzung an die Restklassenkorperer-
weiterung.

Nach Induktionsannahme ist [E, : F| < co. Wahle einen Turm von endlichen Er-
weiterungen Fj/F, sodass F = U; Fj gilt. Dann finden wir fir jedes n ein j, sodass
E, C Fj gilt und b, und b, 41 zwei aufeinanderfolgende Spriinge in der oberen Num-
merierung von Gal(F;/F') sind. Alle Spriinge b,, von Gal(F/F') sind obere Spriinge
von endlichen galoisschen Teilerweiterungen, da B nach Voraussetzung diskret ist.
Dann sind E,, bzw. E,, 1 N Fj die Fixkorper von Gal(F;/F)’ bzw. Gal(Fj/F)bn+1.
Wie bereits im ersten Teil des Beweises gesehen, gilt dann [E,11 N Fj : E,] < pl.
Damit gilt auch [E,41 : E,] < ¢/, da wir F; vergréBern kénnen und dieselbe Un-
gleichung erhalten. O

Beispiel. Wir betrachten die Erweiterung Qpe /Q,, die durch Hinzufiigen der p™-ten
primitiven Einheitswurzeln fiir alle n € N entsteht. Diese Erweiterung ist abelsch,
tief verzweigt und total verzweigt. Auflerdem ist die Menge der Spriinge diskret, da
die oberen Spriinge sémtlicher endlicher Teilerweiterungen L/Q, natiirliche Zahlen
sind (siehe [20, V, § 7, Theorem 1]). Damit ist Qp~/Q, APF.
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