
Tief verzweigte
Erweiterungen und
perfektoide Körper

Masterarbeit
zur Erlangung des akademischen Grades

Master of Science

Westfälische Wilhelms-Universität Münster
Fachbereich Mathematik und Informatik

Betreuung:
Prof. Dr. Peter Schneider

Eingereicht von:
Anna Verena Edenfeld

Münster, März 2017





Inhaltsverzeichnis

1 Einleitung 3
1.1 Notation und grundlegende Voraussetzungen . . . . . . . . . . . . . 5

2 Verzweigungstheorie 7
2.1 Spur und Differente . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Verzweigungsgruppen . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Die Funktionen ϕ und ψ . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad . . . . . 17

3 Tief verzweigte Körpererweiterungen 27
3.1 Definition und einige Eigenschaften . . . . . . . . . . . . . . . . . . . 27
3.2 Bezug zur Definition aus [17] . . . . . . . . . . . . . . . . . . . . . . 46

4 Tief verzweigt impliziert perfektoid 57
4.1 Fast kommutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 τ ist fast surjektiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 oF → oFsep ist fast schwach étale . . . . . . . . . . . . . . . . . . . . 63
4.4 Frobenius ist surjektiv . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Perfektoid impliziert tief verzweigt 75
5.1 Witt-Vektoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Tilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Untilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Kompatibilität mit endlichen Erweiterungen . . . . . . . . . . . . . . 95

6 Arithmetisch proendliche Körpererweiterungen 103

Literatur 107

1





1 Einleitung

Sei p eine fixierte Primzahl.
Ziel der Masterarbeit ist es, zu zeigen, dass die Vervollständigung einer tief ver-
zweigten Erweiterung eines lokalen Körpers perfektoid ist, und dass umgekehrt
eine separable Erweiterung eines lokalen Körpers, deren Vervollständigung perfek-
toid ist, tief verzweigt ist.
Ein perfektoider Körper ist ein nichtarchimedisch bewerteter vollständiger Körper
K (mit Bewertungsring oK), sodass die Bewertung nichtdiskret ist und (oK/poK)p =
oK/poK gilt.
Unter tief verzweigten Erweiterungen verstehen wir in dieser Masterarbeit sepa-
rable Erweiterungen F/F eines lokalen Körpers F , die ”so sehr verzweigt” sind,
dass sich endliche separable Erweiterungen F ′/F in gewisser Weise so verhalten
wie unverzweigte endliche Erweiterungen lokaler Körper. Zum Beispiel gilt für die
Spurabbildung TrF ′/F (mF ′) = mF (wobei mF ′ beziehungsweise mF das maxima-
le Ideal von oF ′ beziehungsweise oF bezeichnet), und es gilt für den Modul der
Kähler-Differentiale ΩoF′/oF

= 0.
Wenn wir F als abzählbare Vereinigung endlicher Teilerweiterungen Fn/F mit
Fn ⊆ Fn+1 schreiben können (das ist zum Beispiel der Fall, wenn F = Qp ist),
dann finden wir ein n0 und eine endliche Erweiterung F ′n0/Fn0 , sodass F ′ = FF ′n0
und, wenn wir F ′n := FnFn0 für n ≥ n0 setzen, [F ′n : Fn] = [F ′ : F ] gilt. Wir können
dann die Differente DF ′n/Fn

betrachten. Wenn nun F/F tief verzweigt ist, dann
wird die Bewertung der Differente ν(DF ′n/Fn

) mit wachsendem n beliebig klein. Die
Verzweigung der F ′n wird sozusagen von den Fn ”aufgegessen”.
Tief verzweigte Erweiterungen wurden zuerst von Coates und Greenberg in [16] für
F = Qp (oder eine endliche Erweiterung von Qp) definiert, und in [8] von Fesenko
auf separable Erweiterungen von beliebigen lokalen Körpern mit perfektem Rest-
klassenkörper verallgemeinert. Noch allgemeiner ist die entsprechende Definition
von Gabber und Ramero in [17], die einen nichtarchimedisch bewerteten Körper K
tief verzweigt nennen, wenn für einen separabel-algebraischen Abschluss Ksep von
K der Modul der Kähler-Differentiale ΩoKsep/oK

= 0 ist. In dieser Masterarbeit be-
trachten wir separable Erweiterungen eines lokalen Körpers und halten uns an die
Definition von Coates/Greenberg beziehungsweise Fesenko, zeigen aber im dritten
Kapitel, dass diese mit der Definition von Gabber/Ramero im Fall einer separablen
Erweiterung eines lokalen Körpers übereinstimmt.
Eine weitere in diesem Zusammenhang interessante Klasse von Körpererweiterun-
gen sind arithmetisch proendliche Erweiterungen F/F eines lokalen Körpers. Sie
wurden von Wintenberger in [21] definiert und beschreiben Erweiterungen, bei de-
nen GuFGF offen in GF für alle u ≥ −1 ist, wobei GF beziehungsweise GF die abso-
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1 Einleitung

lute Galoisgruppe von F beziehungsweise F und GuF die u-te Verzweigungsgruppe
von GF bezeichnen. Arithmetisch proendliche Erweiterungen sind tief verzweigt,
die Umkehrung gilt jedoch nicht.

Überblick
Im ersten Kapitel werden einige grundlegende Begriffe eingeführt und Sätze ge-
nannt beziehungsweise bewiesen, die im weiteren Verlauf der Arbeit benötigt wer-
den. Dabei geht es vor allem um Verzweigungstheorie; wir werden unter anderem
die Differente und die Verzweigungsgruppen einer endlichen Erweiterung lokaler
Körper definieren und einige damit zusammenhängende Sätze beweisen.

Im zweiten Kapitel werden tief verzweigte Erweiterungen eingeführt und einige
ihrer Eigenschaften bewiesen. Wir werden das Verhalten einer unendlichen Erwei-
terung eines lokalen Körpers F oft durch endliche Teilerweiterungen beschreiben,
sodass wir die verzweigungstheoretischen Resultate aus dem ersten Kapitel benut-
zen können. Die Beweise sind oft eher technischer Natur und laufen häufig darauf
hinaus, das Verhalten von zyklischen Erweiterungen von Primzahlgrad zu betrach-
ten und dann zu benutzen, dass die Trägheitsgruppe einer endlichen Erweiterung
lokaler Körper auflösbar ist.

Im dritten Kapitel zeigen wir, dass die Vervollständigung einer tief verzweigten
Erweiterung F/F perfektoid ist. Dazu orientieren wir uns am Vorgehen von Gabber
und Ramero in [17]. Anstatt dabei wie in [17] in der Kategorie der Fast- oF -Moduln
zu arbeiten (das ist die Kategorie der oF -Moduln lokalisiert an der vollen Unterka-
tegorie der oF -Moduln, die vom maximalen Ideal mF annuliert werden), führen wir
die Beweise mit konkreten Rechnungen in der Kategorie der oF -Moduln, ohne viel
Kategorientheorie zu benötigen. Wir werden sehen, dass für eine endliche separable
Erweiterung F ′/F mit Spurabbildung TrF ′F der Homomorphismus

τF ′/F : oF ′ → HomoF (oF ′ , oF ),
y 7→ (x 7→ TrF ′/F (xy))

fast surjektiv ist, das heißt, der Kokern wird von mF annuliert. Die Differente ei-
ner endlichen Erweiterung lokaler Körper L/K ist der Annulator des Kokerns des
entsprechenden Homomorphismus’ τL/K . Wenn nun wie im obigen Beispiel die Be-
wertung der Differente ν(DF ′n/Fn

) beliebig klein, der Annulator des entsprechenden
Kokerns also immer größer wird, erhalten wir ”im Grenzwert”, dass der Kokern
von τF ′/F fast null ist. Darauf aufbauend zeigen wir, dass die Vervollständigung F̂
perfektoid ist.

Im vierten Kapitel zeigen wir, dass separable Erweiterungen eines lokalen Körpers
F/F , deren Vervollständigungen perfektoid sind, tief verzweigt sind. Dies erreichen
wir, indem wir wie in [18] und [12] zeigen, dass es eine Kategorienäquivalenz zwi-
schen perfektoiden Körpern von Charakteristik 0 und solchen von Charakteristik
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1.1 Notation und grundlegende Voraussetzungen

p gibt. Wir definieren zunächst den Tilt eines perfektoiden Körpers von Charak-
teristik 0. Im Anschluss konstruieren wir den ”Untilt” eines perfektoiden Körpers
von Charakteristik p. Dabei benutzen wir Witt-Vektoren, die wir am Anfang des
Kapitels kurz einführen. Wir zeigen, dass Tilten und Untilten invers zueinander
sind und dass sich beides mit endlichen Erweiterungen verträgt.
Für einen perfektoiden Körper mit Charakteristik p erhalten wir dann unser ge-
wünschtes Resultat durch eine einfache Rechnung, und durch die Kategorienäqui-
valenz erhalten wir dasselbe Ergebnis für Charakteristik 0.

Im fünften Kapitel gehen wir schließlich auf arithmetisch proendliche Körperer-
weiterungen ein und zeigen, dass diese tief verzweigt sind, die Umkehrung jedoch
nicht gilt.

Danksagung
Zuerst möchte ich mich bei meinem Betreuer Herrn Prof. Dr. Peter Schneider für
das interessante Thema und die hilfreiche und engagierte Betreuung bedanken.
Ein besonderer Dank geht an Ivan Fesenko für das Beantworten meiner Fragen zu
seinem Paper [8].
Des Weiteren möchte ich Marten Bornmann sowohl für die Hilfe bei fachlichen
Fragen als auch für sein offenes Ohr bei nicht-fachlichen Problemen, die eine Mas-
terarbeit mit sich bringt, danken. Ebenso möchte ich meiner Mentorin Anna Weiß
für ihre Unterstützung und ihre Ermutigungen danken. Marius Kley und Martin
Lüdtke danke ich für das Korrekturlesen. Außerdem danke ich meinem Freund Tim,
meinem Bruder Fabian und meinen Eltern für ihre Unterstützung.

1.1 Notation und grundlegende Voraussetzungen
Alle Ringe seien kommutativ und mit 1.
Unter einem lokalen Körper verstehen wir einen nichtarchimedisch diskret bewerte-
ten Körper, der bezüglich der durch die Bewertung induzierten Topologie vollstän-
dig ist und dessen Restklassenkörper perfekt ist.
Wenn K ein nichtarchimedisch bewerteter Körper ist, dann bezeichnen wir den Be-
wertungsring vonK mit oK , das maximale Ideal mit mK und den Restklassenkörper
von K mit K̄.
Die Restklassenkörpercharakteristik aller bewerteten Körper sei grundsätzlich gleich
der fixierten Primzahl p.

Sei im Folgenden F ein lokaler Körper (sofern nicht explizit anders definiert) und
F alg ein fixierter algebraischer Abschluss von F und F sep ⊆ F alg der separabel-
algebraische Abschluss von F in F alg. Da F vollständig und damit henselsch ist,
können wir die Bewertung auf F eindeutig zu einer Bewertung ν auf den algebrai-
schen Abschluss F alg von F fortsetzen.
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1 Einleitung

Sei oF = {x ∈ F | ν(x) ≥ 0} der Bewertungsring von F mit maximalem Ideal
mF = {x ∈ F | ν(x) > 0} und πF ein Primelement von oF .
Alle betrachteten separablen Körpererweiterungen von F seien in F sep.
Wenn L/F eine endliche Erweiterung ist, definieren wir νL := e(L/F ) · ν, wobei
e(L/F ) den Verzweigungsindex von L/F bezeichne.
Wenn I ⊆ oL ein Ideal im diskreten Bewertunsgring oL ist, bezeichnen wir mit
ν(I) = ν(a) die Bewertung eines Erzeugers a von I. Weiterhin bezeichnen wir mit
Fun beziehungsweise Lun = LFun die maximalen unverzweigten Teilerweiterungen
von F sep/F beziehungsweise F sep/L. Die kanonische Fortsetzung von ν auf die Ver-
vollständigung L̂un bezüglich ν bezeichnen wir ebenfalls mit ν.
Die Vervollständigung eines algebraischen Abschlusses von Qp bezeichnen wir mit
Cp.
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2 Verzweigungstheorie
In diesem Kapitel geht es um einige Grundlagen, die im weiteren Verlauf benutzt
werden. Unter anderem definieren wir die Differente. Außerdem werden Verzwei-
gungsgruppen und damit zusammenhängende Begriffe eingeführt.
Wir setzen in diesem Kapitel grundsätzlich voraus, dass alle betrachteten Körperer-
weiterungen separabel sind, es sei denn, es handelt sich um Vervollständigungen von
Körpern, wobei diese durch das Symbol ̂ gekennzeichnet werden.
2.1 Spur und Differente
Tief verzweigte Körpererweiterungen sind (in dieser Masterarbeit) unendliche Er-
weiterungen eines lokalen Körpers, die wir aber dennoch anhand endlicher Teiler-
weiterungen beschreiben wollen. Dafür benötigen wir das folgende Lemma.
Lemma 2.1.1 (V, §4, Lemma 6 in [20]). Seien F ′/F/F Körpererweiterungen,
wobei F ′/F endlich sei. Dann finden wir eine endliche Erweiterung E/F in F/F ,
für die eine endliche, zu F über E linear disjunkte Erweiterung E′/E existiert, die
ebenfalls separabel ist und denselben Grad wie F ′/F hat und sodass F ′ = FE′ gilt.
Ist F ′/F galoissch, können wir E so wählen, dass E′/E galoissch ist.
Beweis. Da F/F eine algebraische Erweiterung ist, können wir F als Vereinigung
der endlichen Teilerweiterungen E/F von F/F schreiben. Sei e1, ..., ed eine Basis
von F ′/F , [F ′ : F ] = d. Schreibe

ei · ej =
d∑

k=1
xijkek mit xijk ∈ F .

Sei E/F eine endliche Erweiterung, sodass die xijk in E liegen. Wir definieren E′ :=
E[e1, ..., ed]. Dann erfüllt E′ die geforderten Bedingungen, wobei die Separabilität
daraus folgt, dass die Elemente e1, ..., ed, da F ′/F nach Voraussetzung separabel
ist, separabel über F sind. Außerdem ist F/E separabel. Also ist F ′/E separabel.
Damit ist auch E′/E separabel.
Sei nun zusätzlich F ′/F galoissch. Sei σ ∈ HomE(E′, F alg) ein Homomorphismus.
Da F ′/F galoissch ist und wir σ F-linear auf F ′ fortsetzen können, gilt σ(E′) ⊆
F ′. Wir finden also Elemente xi ∈ F mit σ(ei) =

∑d
i=1 xiei. Wenn wir E1 :=

E[x1, ..., xd] und E′1 := E1[e1, ..., ed] setzen und mit σ1 die E1-lineare Fortsetzung
von σ auf E′1 bezeichnen, gilt σ1(E′1) = E′1. Wir finden also durch Vergrößern von E
eine endliche Erweiterung E2/E in F/F , sodass E′2 = E2[e1, ..., ed] eine galoissche
Erweiterung von E2 ist, die ebenfalls die sonstigen Bedingungen aus dem Lemma
erfüllt.
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2 Verzweigungstheorie

Bemerkung 2.1.2. Seien F ′/F/F Erweiterungen, wobei F ′/F endlich sei, und E/F
sei eine endliche Erweiterung in F/F . Wenn E die Bedingungen aus Lemma 2.1.1
erfüllt, sagen wir, dass F ′/F über E definiert ist. In dieser Situation bezeichnen
wir den Körper, der die geforderten Bedingungen aus dem obigen Lemma erfüllt,
stets mit E′. Wenn F ′/F galoissch ist, gehen wir grundsätzlich davon aus, dass
auch E′/E galoissch ist.
Bemerkung 2.1.3. Wenn F ′/F über E definiert ist, dann auch über jeder endlichen
Erweiterung L/E in F/F , wobei wir von L′ = LE′ ausgehen können.

Im Folgenden definieren wir die Differente einer endlichen Erweiterung lokaler
Körper.
Sei dazu zunächst R ein Ring und M ein endlich erzeugter freier R-Modul.

Lemma 2.1.4. Der Homomorphismus, der durch

ωM/R : M ⊗R HomR(M,R)→ HomR(M,M),

x⊗ ϕ 7→ (y 7→ x · ϕ(y)),

induziert wird, ist ein Isomorphismus von R-Moduln.

Beweis. Seim1, ...,md eine Basis vonM und sei
∑n
j=1(xj⊗ϕj) ∈M⊗RHomR(M,R)

ein Element im Kern von ωM/R, wobei xj =
∑d
i=1 rijmi mit bestimmten Elementen

rij ∈ R sei. Dann gilt für alle y ∈M

0 =
n∑
j=1

xjϕj(y)

=
n∑
j=1

((
d∑
i=1

rijmi) · ϕj(y))

=
n∑
j=1

(
d∑
i=1

(rijmi · ϕj(y)))

=
d∑
i=1

mi(
n∑
j=1

rijϕj(y)).

Damit folgt
∑n
j=1 rijϕj(y) = 0 für alle 0 ≤ i ≤ d, also

∑n
j=1(xj ⊗ ϕj) =

∑d
i (mi ⊗∑n

j rijϕj) = 0. Also ist ωM/R injektiv.
Wenn ψ ∈ HomR(M,M) ein beliebiges Element ist, dann ist

∑d
i=1 ψ(mi)⊗ϕi, wobei

ϕi für 1 ≤ i ≤ d durch

ϕi(mj) =
{

1, falls i = j,

0, sonst
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2.1 Spur und Differente

definiert wird, ein Urbild von ψ, denn es gilt ωM/R(
∑d
i=1 ψ(mi)⊗ϕi)(mj) = ψ(mj)

für alle 1 ≤ j ≤ d, und ein Element aus HomR(M,M) wird durch die Bilder der mi

eindeutig bestimmt.

Definition (Evaluationsabbildung). Die Evaluationsabbildung evM/R wird defi-
niert durch

evM/R : M ⊗R HomR(M,R)→ R,

x⊗ ϕ 7→ ϕ(x).

Definition (Spur). Wir definieren die Spur von M über R von einem Homomor-
phismus ϕ ∈ HomR(M,M) durch

trM/R(ϕ) := (evM/R ◦ ω−1
M/R)(ϕ),

und die Spur von M über R eines Elements x ∈M durch

TrM/R(x) := tr(µx),

wobei µx durch M 3 y 7→ x · y ∈M gegeben sei (µx ist die Multiplikation mit x).

Sei nun L/F eine endliche Erweiterung von Grad d = [L : F ] und Tr = TrL/F
die Spur von L/F .

Lemma 2.1.5. Sei ϕ ∈ HomF (L,L) ein Homomorphismus. Sei (ei)i eine Basis
des F -Vektorraums L. Stelle ϕ bezüglich (ei)i als Matrix A = (aij)i,j dar. Dann gilt
trL/F (ϕ) =

∑
aii.

Beweis. Es gilt ω−1
L/F (ϕ) =

∑d
i=1 ϕ(ei) ⊗ ϕi =

∑d
i=1(

∑d
j=1 aijej) ⊗ ϕi, wobei ϕj

durch

ϕi(ej) =
{

1, falls i = j

0, falls i 6= j

definiert ist. Es gilt ev(
∑d
i=1(

∑d
j=1 aijej)⊗ϕi) =

∑d
i=1(

∑d
j=1 aijϕi(ej)) =

∑d
i=1 aii.

Lemma 2.1.6. Tr ist nicht ausgeartet und wir haben einen Vektorraumisomorphis-
mus

T : L→ HomF (L,F ),

der durch x 7→ (y 7→ Tr(xy)) definiert ist.

Beweis. Tr stimmt nach Lemma 2.1.5 mit der in [4] definierten Spur überein. Die
Aussage des Lemmas stimmt nun mit Satz 7 in [4, Kapitel 4, Abschnitt 7] überein,
wobei wir beachten, dass L/F nach Grundvoraussetzung separabel ist.
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2 Verzweigungstheorie

Sei x ∈ oL ein Element aus dem Bewertungsring von L. Es gilt, da F henselsch
ist, ν(x) = ν(σ(x)) für alle σ ∈ HomF (L,F sep), und mit der strikten Dreiecksun-
gleichung folgt Tr(x) ∈ oF . Wir erhalten einen Homomorphismus

τL/F : oL → HomoF (oL, oF ),
x 7→ (y 7→ Tr(xy)).

Lemma 2.1.7. τL/F ist injektiv.

Beweis. Angenommen, es gäbe ein x ∈ oL, sodass Tr(xy) = 0 für alle y ∈ oL gilt, es
aber ein z ∈ L gibt, sodass Tr(xz) 6= 0 ist. Dann wählen wir ein w ∈ mF \ {0} mit
wz ∈ oL. Dann gilt w ·Tr(xz) = Tr(wxz) = 0, Widerspruch. Damit gilt Tr(xy) = 0
für alle y ∈ L. Da die Spur nicht ausgeartet ist, folgt x = 0.

Bemerkung 2.1.8. Wir definieren

o∗L := {x ∈ L |Tr(xy) ∈ oF für alle y ∈ oL}.

Sei e1, ..., en eine oF -Basis von oL (und damit auch eine F -Basis von L). Sei e∗1, ..., e∗n
die duale Basis von L/F bezüglich TrL/F . Es gilt o∗L = e∗1oF + ... + e∗noF . Wegen
oL ⊆ o∗L gilt mini{ν(e∗i )} ≤ 0. Wir setzen wir a := π

−mini{ν(e∗i )}
F . Dies hängt nicht

von der gewählten Basis ab.

Definition. Wir definieren die Differente von L/F als

DL/F = a · oL = {x ∈ L : xo∗L ⊆ oL}.

Lemma 2.1.9 (III, § 4, Proposition 8 in [20]). Seien L/E/F endliche Erweiterun-
gen. Dann gilt

DL/F = DL/E · DE/F .

Lemma 2.1.10 (siehe Lemma 2.6 aus [16]). Seien F ′/F/F Körpererweiterungen,
wobei F ′/F endlich sei. Sei E1/F eine endliche Erweiterung in F/F , sodass F ′/F
über E1 definiert ist. Dann gilt für alle endlichen Erweiterungen E2/E1 in F/F

ν(DE′2/E2) ≤ ν(DE′1/E1).

Beweis. Sei d := [F ′ : F ]. Jede E1-Basis a1, ..., ad von E′1 ist auch eine E2-Basis von
E′2 = E2E

′
1, denn da die a1, ..., ad linear unabhängig über F sind, sind sie erst recht

über E2 linear unabhängig, und außerdem gilt [E′2 : E2] = [E′1 : E1]. Seien x1, ..., xd
eine Basis von oE′1 als oE1-Modul und y1, ..., yd eine Basis von oE′2 als oE2-Modul.
Die Diskriminante δE′1/E1 := NormE′1/E1(DE′1/E1) ist gleich dem von det(σj(xi))2

erzeugten Ideal in oE1
1, wobei σ1, ..., σd die verschiedenen Einbettungen von E′1 in

F sep, die E1 festlassen, seien. Es gilt

ν(DE′1/E1) = 1
d
ν(δE′1/E1). (2.1)

1siehe z.B. [20, III, § 3].

10



2.2 Verzweigungsgruppen

Analoges gilt für E2, wobei wir die E2 linearen Fortsetzungen eines σ auf E′2 eben-
falls mit σ bezeichnen.
Wir definieren die d × d-Matrix A = (aik), sodass xi =

∑d
k=1 aikyk für aik ∈ oE2

gilt. Dann gilt
det((σj(xi)))2 = det(A)2det((σj(yi)))2.

Da aik ∈ oE2 für alle i, k gilt, haben wir

ν(δE′1/E1) ≥ ν(δE′2/E2).

Die Behauptung folgt nun aus (2.1).

Lemma 2.1.11. Die Abbildung

T|o∗L : o∗L → HomoF (oL, oF ),
y 7→ (x 7→ Tr(xy))

ist ein Isomorphismus von oL-Moduln, wobei wir HomoF (oL, oF ) via a · ϕ := (x 7→
ϕ(ax)) für a, x ∈ oL und ϕ ∈ HomoF (oL, oF ) als oL-Modul betrachten.

Beweis. Die Injektivität folgt analog zum Beweis von Lemma 2.1.7.
Sei ϕ ∈ HomoF (oL, oF ). Da oL ein freier oF -Modul vom Rang [L : F ] ist, können
wir ϕ zu einer F -linearen Abbildung Φ : L → F fortsetzen. Wegen Lemma 2.1.6
finden wir ein y ∈ L, sodass Φ(x) = Tr(xy) für alle x ∈ L gilt. Dann ist y ein Urbild
von ϕ, und nach Definition von o∗L liegt y in o∗L.

Lemma 2.1.12 (Tag 0BW0 in [3]). Sei L/F eine endliche Körpererweiterung und
DL/F die Differente. Dann gilt

DL/F = AnnoL(Coker(τL/F )).

Beweis. Es gilt DL/F = {x ∈ oL | xo∗L ⊆ oL}. Das Element 1 ∈ oL wird unter dem
Isomorphismus T|o∗L aus Lemma 2.1.11 auf Tr geschickt, das heißt es gilt T|o∗L(oL) =
oL · Tr. Somit gilt

DL/F = {x ∈ L | xo∗L ⊆ oL}
= {x ∈ oL|x ·HomoF (oL, oF ) ⊆ oL · Tr}
= AnnoL(Coker(τL/F )).

2.2 Verzweigungsgruppen
In diesem Abschnitt werden grundlegende Resultate über Verzweigungsgruppen ge-
nannt und teilweise bewiesen. Diese stammen größtenteils aus [20, Kapitel IV und
V], [15, Kapitel II, § 10], [9, Chapter III].
Sei L/F eine endliche Galois-Erweiterung und G = Gal(L/F ) die zugehörige Ga-
loisgruppe. Die Gruppe G operiert auf oL. Sei x ein Erzeuger von oL als oF -Algebra
(siehe [20, III, §6, Proposition 12]).

11



2 Verzweigungstheorie

Lemma 2.2.1. Sei σ ∈ G und sei i ≥ −1 eine ganze Zahl. Dann sind folgende
Bedingungen äquivalent:

(i) σ operiert trivial auf dem Qotienten oL/m
i+1
L ;

(ii) νL(σ(a)− a) ≥ i+ 1 für alle a ∈ oL;

(iii) νL(σ(x)− x) ≥ i+ 1.

Beweis. Die Äquivalenz von (i) und (ii) ist klar. Andererseits wird oL/m
i+1
L als oF -

Algebra von dem Bild von x unter der Projektion pri : oL → oL/m
i+1
L erzeugt. Also

operiert σ genau dann trivial auf oL/mi+1
L , wenn νL(σ(x) − x) ≥ i + 1 gilt, denn

dann gilt pri(x) = σ(pri(x)).

Definition (Verzweigungsgruppen in unterer Nummerierung). Sei i ≥ −1 eine
ganze Zahl. Wir definieren die i-te Verzweigungsgruppe in unterer Nummerierung
Gi als die Menge der σ ∈ G, die die äquivalenten Bedingungen von Lemma 2.2.1
erfüllen.

Lemma 2.2.2. Die Gi bilden eine absteigende Sequenz von normalen Untergruppen
von G. Es gilt Gi = {1} für genügend großes i.

Beweis. Es gilt für σ ∈ Gi und τ ∈ G

νL(τ−1 ◦ σ ◦ τ(a)− a) = νL(τ−1 ◦ (σ ◦ τ(a)− τ(a))) = νL(σ ◦ τ(a)− τ(a)) ≥ i+ 1,

denn τ(a) ∈ oL für alle a ∈ oL. Also ist τ−1 ◦ σ ◦ τ ∈ Gi für alle τ ∈ G und σ ∈ G,
das heißt Gi ist eine normale Untergruppe von G. Es ist klar, dass die Sequenz der
Gi absteigend ist. Wenn i ≥ sup{νL(σ(x))− x)} für σ 6= id gilt, ist Gi trivial nach
Eigenschaft (iii) aus Lemma 2.2.1; deswegen gilt Gi = {1} für genügend großes
i.

Sei σ ∈ G. Dann definieren wir eine Funktion auf G durch

iG(σ) = νL(σ(x)− x).

Es ist iG(σ) eine ganze Zahl ≥ 0, wenn σ 6= id gilt; für σ = id ist iG(σ) = ∞. Es
gilt

iG(σ) ≥ i+ 1⇔ σ ∈ Gi.

Lemma 2.2.3. Sei H eine Untergruppe von G. Dann gilt

Hi = Gi ∩H.

Beweis. Das Lemma folgt direkt aus Bedingung (i) in Lemma 2.2.1.

12
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Satz 2.2.4 (IV, § 1, Proposition 3 in [20]). Sei H eine normale Untergruppe von
G. Dann gilt für jedes σ ∈ G/H

iG/H(σ) = 1
e(L/E)

∑
τH=σ

iG(τ),

wobei E der Fixkörper von H ist.

Korollar 2.2.0.1 (IV, § 2, Korollar zu Proposition 3 in [20]). Sei H = Gi für ein
i ≥ −1. Dann gilt

(G/H)u =
{
Gu/H, u ≤ i
= {1}, u ≥ i.

Bemerkung 2.2.5. Sei L/F eine endliche Erweiterung und sei Fun die maximale
unverzweigte Teilerweiterung von F sep/F . Dann ist FunL = Lun die maximale
unverzweigte Teilerweiterung von F sep/L (siehe [9, II, Proposition 3.4]). Es sind
F̂un und L̂un wieder lokale Körper. Außerdem gilt L̂un = F̂unL, siehe [20, II, § 3,
Theorem 1].

Lemma 2.2.6. Sei L/F total verzweigt. Dann ist L̂Fun/F̂un galoissch und die
Verzweigungsgruppen von L/F stimmen mit denen von L̂Fun/F̂un überein.

Beweis. Da L/F total verzweigt ist, sind L und Fun linear disjunkt über F . Al-
so ist Lun/Fun galoissch mit Galoisgruppe Gal(Lun/Fun) ∼= Gal(L/F ). Nach [20,
II, §3, Corollary 4] ist außerdem L̂un/F̂un galoissch und es gilt Gal(Lun/Fun) ∼=
Gal(L̂un/F̂un). Wenn πL ein Primelement von oL ist, dann ist πL auch ein Primle-
ment von oLun . Da mLun dicht in m

L̂un
liegt, ist πL ebenfalls ein Primelement von

o
L̂un

. Die Erweiterung L̂un/F̂un ist total verzweigt, also wird die o
F̂un

-Algebra o
L̂un

von πL erzeugt. Sei σ ∈ Gal(L̂un/F̂un) ein beliebiges Element und σ′ ein Urbild von
σ in Gal(L/F ) unter dem Isomorphismus der Galoisgruppen. Dann gilt σ|L = σ′

und damit σ(πL) = σ′(πL), also

νL(σ′(πL)− πL) = e(L/F )ν(σ′(πL)− πL)
= e(L̂un/F̂un)ν(σ(πL)− πL)
= ν

L̂un
(σ(πL)− πL).

Für eine reelle Zahl u ≥ −1 bezeichnen wir mit Gu die Verzweigungsgruppe Gi,
wobei i die kleinste ganze Zahl ≥ u ist.

Lemma 2.2.7 (IV, § 2, Proposition 4 in [20]). Es gilt

νL(DL/F ) =
∑
σ 6=id

iL(σ) =
∞∑
i=0

(#Gi − 1) =
∫ ∞
−1

(#Gu − 1)du.
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2 Verzweigungstheorie

Bemerkung 2.2.8. Da Gi = {id} für genügend große i gilt, ist #Gi − 1 = 0 bezie-
hungsweise der Integrand in der obigen Formel ist null für genügend große u.

Beweis. Sei x ein Erzeuger von oL als oF -Algebra und sei f das Minimalpolynom
von x über F . Dann gilt nach [20, III, § 7, Proposition 14] DL/F = (f ′(x)). Es gilt
f(X) = Πσ∈G(X − σ(x)) und

f ′(x) = Πσ 6=id(x− σ(x))

und damit

νL(DL/F ) = νL(f ′(x)) =
∑
σ 6=id

νL(σ(x)− x)

=
∞∑
i=0

i ·#(Gi−1 \Gi)

=
∞∑
i=0

i · ((#Gi−1 − 1)− (#Gi − 1))

= (#G0 − 1) + (#G1 − 1) + (#G2 − 1) + ...

2.3 Die Funktionen ϕ und ψ
Sei zunächst wie im vorherigen Abschnitt L/F eine endliche Galois-Erweiterung
und G = Gal(L/F ) die zugehörige Galoisgruppe. Die folgenden Resultate stammen
größtenteils aus [20, IV, § 3].
Wir definieren

ϕ(u) := ϕL/F (u) =


∫ u
0

dt
(G0:Gt) , wenn u ≥ 0,

u, wenn − 1 ≤ u ≤ 0.

Sei m eine positive ganze Zahl mit m ≤ u ≤ m+ 1. Dann gilt

ϕ(u) = 1
#G0

(#G1 + ...+ #Gm + (u−m)#Gm+1).

Lemma 2.3.1 (IV, § 3, Proposition 12 in [20]). (i) Die Funktion ϕ ist stetig, stück-
weise linear, streng monoton steigend und konkav.

(ii) Es gilt ϕ(0) = 0.

(iii) Seien ϕ′r und ϕ′l die Rechts- beziehungsweise Linksableitung von ϕ. Dann gilt
ϕ′r(u) = ϕ′l(u) = 1

(G0:Gu) , falls u nicht ganzzahlig ist, und ϕ′l(u) = 1
(G0:Gu) ,

ϕ′r(u) = 1
(G0:Gu+1) , falls u ganzzahlig ist.
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2.3 Die Funktionen ϕ und ψ

Die Funktion ϕ : [−1,∞)→ [−1,∞) ist ein Homöomorphismus. Wir bezeichnen
die Umkehrfunktion von ϕ mit ψ := ψL/F .

Lemma 2.3.2 (IV, § 3, Proposition 13 in [20]). (i) Die Funktion ψ ist stetig, stück-
weise linear, streng monoton steigend und konvex.

(ii) Es gilt ψ(0) = 0.

(iii) Wenn v = ψ(u) gilt, dann gilt ψ′l(v) = 1
ϕ′

l
(u) und ψ′r(v) = 1

ϕ′r(u) .

(iv) Wenn v ganzzahlig ist, dann auch u = ψ(v).

Definition (Verzweigungsgruppen in oberer Nummerierung). Sei L/F eine endli-
che galoissche Erweiterung lokaler Körper und G := Gal(L/F ). Dann ist

Gv := Gψ(v)

beziehungsweise für v = ϕ(u)
Gϕ(u) := Gu

die v-te Verzweigungsgruppe in oberer Nummerierung.

Es gilt G−1 = G, G0 = G0 und Gv = {id} für genügend großes v. Die Kenntnis
von Gv ist äquivalent zur Kenntnis von Gu, und es gilt

ψ(v) =
∫ v

0
(G0 : Gw)dw.

Lemma 2.3.3 (IV, §3, Lemma 3 in [20]). Es gilt ϕ(u) = 1
#G0

∑
σ∈G Inf(iG(σ), u+

1)− 1.

Beweis. Sei θ(u) = 1
#G0

∑
σ∈G Inf(iG(σ), u + 1) − 1 die durch die rechte Seite der

Gleichung definierte Funktion. Dann ist θ stetig und stückweise linear, und es gilt
θ(0) = 0.
Wenn m < u < m+ 1 für eine ganze Zahl m gilt, dann ist θ′(u) gleich der Anzahl
der σ ∈ G mit iG(σ) ≥ m+ 2 multipliziert mit 1

#G0
, also

θ′(u) = #Gm+1
#G0

= 1
(G0 : Gm+1) .

Damit gilt θ′ = ϕ′, also stimmen beide Funktionen überein.

Sei nun H eine normale Untergruppe von G und E ⊆ L der Fixkörper von H.

Lemma 2.3.4 (Herbrands Theorem). Gilt v = ϕL/E(u), so ist GuH/H = (G/H)v

Satz 2.3.5 (III, § 3, Proposition 15 in [20]). Die Funktionen ϕ und ψ erfüllen die
folgenden Gleichungen:

ϕL/F = ϕE/F ◦ ϕL/E
und

ψL/F = ψL/E ◦ ψE/F .
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2 Verzweigungstheorie

Beweis. Sei u > −1 keine ganze Zahl. Die Ableitung der Funktion ϕE/F ◦ ϕL/E an
der Stelle u ist nach der Kettenregel

(ϕE/F ◦ ϕL/E)′(u) = ϕ′E/F (v) · ϕ′L/E(u)

mit v = ϕL/E(u). Damit gilt mit Lemma 2.3.4

(ϕE/F ◦ ϕL/E)′(u) = (#(G/H)v/eE/F ) · (#Hu/eL/E)
= #Gu/eL/F = ϕ′L/F (u).

Die Formel für ψ folgt daraus.

Satz 2.3.6. Sei H eine normale Untergruppe von G. Dann gilt

(G/H)v = GvH/H

für alle v ≥ −1.

Beweis. Es gilt
(G/H)v = (G/H)x, wobei x = ψE/F (v).

Nach Lemma 2.3.4 gilt (G/H)x = GwH/H, mit w = ψL/E(x) = ψL/F (v) nach Satz
2.3.5. Damit gilt Gw = Gv.

Bemerkung 2.3.7. Für eine unendliche Galoiserweiterung F/F mit Galoisgruppe G
können wir nun aufgrund von Satz 2.3.6

Gu = lim←−Gal(E/F )u

definieren, wobei E die Menge der endlichen Galoiserweiterungen in F/F durch-
läuft.
Gu ist eine abgeschlossene normale Untergruppe von G. Im Fall F = F sep bezeich-
nen wir den Fixkörper von Gu mit F (u). Insbesondere ist F (u)/F galoissch.
Bemerkung 2.3.8. Sei E/F die maximale unverzweigte Teilerweiterung von L/F .
Es gilt ψL/F = ψL/E ◦ ψE/F = ψL/E . Mit Lemma 2.2.6 folgt ψL/F = ψ

L̂un/F̂un
.

Lemma 2.3.9 (Lemma 2.1 in [16]). Sei L/F eine beliebige endliche Erweiterung.
Dann gilt

νL(DL/F ) =
∫ ∞
−1

1− 1
[L : L ∩ F (i)]

di. (2.2)

Beweis. Sei M/F eine endliche galoissche Erweiterung mit L ⊆ M . Da die Diffe-
rente multiplikativ ist, gilt DM/L · DL/F = DM/F und damit

νM (DL/F ) = νM (DM/F )− νM (DM/L). (2.3)
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Setze G = Gal(M/F ) und sei H die Untergruppe von G, die L festlässt. Nach
Lemma 2.2.7 gilt

νM (DM/F ) =
∫ ∞
−1

(#Gi − 1)di, νM (DM/L) =
∫ ∞
−1

(#Hi − 1)di,

und damit, nach (2.3),

νL(DL/F ) = 1
e(M/L)

∫ ∞
−1

(#Gi −#Hi)di. (2.4)

Wir zeigen nun, dass die rechte Seite von (2.2) zu (2.3) äquivalent ist. Sei i ≥ −1.
Dann ist L ∩ F (i) der Fixkörper von GiH, und es gilt

[L : L ∩ F (i)] = #(GiH)/#H = #(Gi/(Gi ∩H)). (2.5)

Sei i = ϕM/F (t). Nach Lemma 2.3.1 gilt, wenn t nicht ganzzahlig ist, ϕM/F (t) =
#Gt

#G0
. Außerdem gilt nach Lemma 2.2.3 Gt ∩ H = Ht. Durch die Variablensubsti-

tution i = ϕM/F (t) erhalten wir somit aus (2.5), dass die rechte Seite von (2.2)
gleich

e(L/F )
∫ ∞
−1

(1− #Ht

#Gt
) #Gt
#G0

dt (2.6)

ist. Wegen #G0 = e(M/F ) = e(M/L) · e(L/F ) ist (2.6) gleich (2.4).

2.4 Zyklische total verzweigte Erweiterungen von
Primzahlgrad

Sei L/F eine total verzweigte galoissche Erweiterung und G = Gal(L/F ) zyklisch
von Primzahlgrad l. Sei π ein Primelement von L. Sei σ ∈ G ein Erzeuger von G
und setze s = s(L/F ) := i(σ)− 1. Die Verzweigungsgruppen von L/F sehen dann
folgendermaßen aus:

G = G0 = ... = Gs,

{1} = Gs+1 = ...

Es gilt s 6= 0 genau dann, wenn l gleich der Restklassenkörpercharakteristik p ist.
Für die Funktion ψ = ψL/F gilt

ψ(x) =
{
x x ≤ s,
s+ l(x− s) x ≥ s.

(2.7)

Lemma 2.4.1 (V, §3, Lemma 3 in [20]). Für die Differente DL/F gilt νL(DL/F ) =
(s+ 1)(l − 1)

Beweis. Folgt direkt aus Lemma 2.2.7.

17



2 Verzweigungstheorie

Lemma 2.4.2 (V, §3, Lemma 4 in [20]). Es gilt TrL/F (mL) = mr
F , wobei r =

[(s+ 1)(l− 1)/l+ 1/l] = s+ 1 + [−s/l] gilt. (Hierbei bezeichnet [x] die größte ganze
Zahl ≤ x.)

Beweis. Da die Spur oF -linear ist, ist TrL/F (mL) ein Ideal in oF . Sei r ∈ N eine
natürliche Zahl. Nach [20, Chapter III, Proposition 7] gilt TrL/F (mL) ⊆ mr

F genau
dann, wenn

mL ⊆ mr
F · D−1

L/F = m
lr−(s+1)(l−1)
L

gilt (wobei die Gleichheit aus Lemma 2.4.1 folgt), das heißt wenn r ≤ ((s+ 1)(l −
1) + 1)/l ist.

Sei ab jetzt L/F eine beliebige endliche Erweiterung.

Lemma 2.4.3. Wenn L/F galoissch ist, können wir L/F als Turm von Teilerwei-
terungen F = F0 ⊆ F1 ⊆ ... ⊆ Fi ⊆ ... ⊆ Fn = L schreiben, wobei F1/F unverzweigt
und Fi+1/Fi total verzweigt und zyklisch von Primzahlgrad für i ≥ 1 ist.

Beweis. Nach [15, Kapitel II, §7] finden wir einen Teilkörper F1, sodass F1/F un-
verzweigt und L/F1 total verzweigt ist. Nach [20, Kapitel IV, §1, Korollar zu Pro-
position 2] ist die Galoisgruppe von L/F1 die Trägheitsgruppe G0 = Gal(L/F )0.
Diese ist nach [20, Kapitel IV, §2, Korollar 5 zu Proposition 7] auflösbar. Damit
besitzt G0 eine Normalreihe G0 ⊇ G(1) ⊇ ... ⊇ G(i) ⊇ G(i+1) ⊇ ... ⊇ {1}, deren
Faktoren zyklisch von Primzahlordnung sind2, woraus das Lemma folgt.

Bemerkung 2.4.4. Wir können die Funktion ψ, die wir bisher nur für eine galois-
sche Erweiterung definiert haben, auch für eine beliebige endliche Erweiterung (die
allerdings nach Grundvoraussetzung separabel sein soll) definieren. Dazu sei L/F
eine endliche Erweiterung und L′/F eine endliche Galois-Erweiterung mit L ⊆ L′.
Dann definieren wir

ψL/F = ϕL′/L ◦ ψL′/F .

Analog können wir ϕL/F = ϕL′/F ◦ ψL′/L definieren. Nach Satz 2.3.5 sind diese
Definitionen unabhängig vom gewählten L′ und ψL/F und ϕL/F erfüllen dieselben
Transitivitätsformeln wie die entsprechenenden Funktionen im galoisschen Fall.

Bemerkung 2.4.5. Sei L/F eine endliche Erweiterung, wobei wir F = F̂un anneh-
men. Dann ist L/F total verzweigt. Sei Ln die normale Hülle von L über F .
Ln/F ist ebenfalls total verzweigt. Seien G = Gal(Ln/F ) und H = Gal(Ln/L).
Dann erhalten wir wie im obigen Lemma eine Folge von Körpererweiterungen
F = F0 ⊆ F1 ⊆ ... ⊆ Fi ⊆ ... ⊆ Fn = Ln, wobei Fi+1/Fi total verzweigt und
zyklisch von Primzahlgrad für i ≥ 0 ist, da wir wie im obigen Lemma gesehen eine
Normalreihe G = G0 ⊇ G(1) ⊇ ... ⊇ G(i) ⊇ G(i+1) ⊇ ... ⊇ {1}, deren Faktoren

2Siehe z.B. [4, 5.4, Satz 7].
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zyklisch von Primzahlordnung sind, haben.
Der Index von G(i+1)H in G(i)H teilt #G(i)/G(i+1), was man wie folgt sieht: Es
gilt

#(G(i)H/G(i+1)H) =
#(G(i)H/G(i)) ·#(G(i)/G(i+1))

#G(i+1)H/G(i+1)
.

Wir haben Isomorphismen G(j)H/G(j) ∼= H/H ∩G(j), und außerdem einen surjek-
tiven Homomorphismus H/H ∩G(i+1) → H/H ∩G(i). Damit ist #(G(i)H/G(i)) ein
Teiler von #(G(i+1)H/G(i+1)).
Dann ist GH ⊇ G(1)H ⊇ ... ⊇ G(i)H ⊇ G(i+1)H ⊇ ... ⊇ H eine Reihe von
Untergruppen von G, wobei der Index von G(i+1)H in G(i)H für i ≥ 0 eine Prim-
zahl oder gleich 1 ist. Wir erhalten damit einen Turm von Körpererweiterungen
F = F0 ⊆ F̃1 ⊆ ... ⊆ F̃i ⊆ ... ⊆ F̃n = L, sodass F̃i+1/F̃i total verzweigt von
Primzahlgrad oder trivial ist.
Bemerkung 2.4.6. Sei E/F die maximale unverzweigte Teilerweiterung von L/F .
Es gilt nach Bemerkung 2.3.8 ψL/F = ψL/E = ψ

L̂un/Êun
= ψ

L̂un/F̂un
. Wegen Bemer-

kung 2.4.5 und Satz 2.3.5 wird es im Folgenden häufig ausreichen, das Verhalten
der Funktion ψ für zahm verzweigte und wild verzweigte Erweiterungen von Prim-
zahlgrad zu betrachten.
Bemerkung 2.4.7. Wenn der Restklassenkörper von F endlich ist, dann ist die Ga-
loisgruppe einer endlichen galoisschen Erweiterung L/F auflösbar (siehe [20, IV, § 2,
Corollary 5 zu Proposition 7]). In diesem Fall müssen wir nicht zu lokalen Körpern
mit algebraisch abgeschlossenem Restklassenkörper übergehen, sondern erhalten
mit analogem Beweis wie in Bemerkung 2.4.5 für eine endliche Erweiterung E/F
einen Turm aus zyklischen Erweiterungen von Primzahlgrad.

Lemma 2.4.8 (siehe III, Proposition 3.3 in [9]). Sei L/F eine endliche Erweite-
rung.

(i) Wenn L/F unverzweigt ist, gilt ψL/F = id.

(ii) Wenn L/F zahm verzweigt mit e(L/F ) := l ist, gilt

ψL/F (x) =
{
x x ≤ 0,
lx x ≥ 0.

(iii) Wenn L/F total verzweigt von Grad p ist, gilt

ψL/F (x) =
{
x x ≤ s(Ln/Lt)l−1,

s(Ln/Lt)(1− p)l−1 + px x ≥ s(Ln/Lt)l−1,

wobei Ln die normale Hülle von L/F , Lt die maximale zahm verzweigte Tei-
lerweiterung von Ln/F und l := e(Ln/L) den Verzweigungsindex von Ln/L
bezeichne.
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Beweis. Sei L/F unverzweigt und sei Ln die normale Hülle von L/F . Sie E/F die
maximale unverzweigte Teilerweiterung von Ln/F . Dann gilt ψLn/F = ψLn/E =
ψLn/L, also ψL/F = ϕLn/L ◦ ψLn/F = id.
Sei zunächst L/F total verzweigt von Primzahlgrad l 6= p. Nach Bemerkung 2.4.6kön-
nen wir o.B.d.A. F = F̂un und L = L̂un annehmen. Dann enthält F eine primitive
l-te-Einheitswurzel ζ (siehe [20, IV, §4, Proposition 16]). Sei a ∈ L ein Element mit
F (a) = L. Dann gilt al ∈ L und a ist Nullstelle des Polynoms X l−al ∈ F [X]. Nach
[4, 4.8, Satz 3] ist nun L/F galoissch, also insbesondere eine zyklische verzweigte
Erweiterung von Primzahlgrad l 6= p, und die Behauptung folgt damit aus (2.7). Für
eine beliebige zahm verzweigte Erweiterung L/F benutzen wir Bemerkung 2.4.5.
Wenn schließlich L/F total verzweigt von Grad p ist, dann ist [Ln : L] teilerfremd
zu p. In der Tat: Wenn a ∈ L ein Element mit F (a) = L ist, dann sei f ∈ F [X] das
Minimalpolynom von a. Die normale Hülle Ln von L/F ist der Zerfällungskörper
von f über F . Wenn f(X) = (X − a)g(X) ist, dann ist Ln der Zerfällungskörper
von g über L. Da der Grad von g gleich p−1 ist, ist der Grad der Körpererweiterung
[Ln : L] ≤ (p− 1)!, also teilerfremd zu p.
Damit ist Ln/L zahm verzweigt. Es gilt dann l = e(Ln/L) = e(Lt/F ). Wir berech-
nen für x ≥ 0

ψL/F (x) = ϕLn/L ◦ ψLn/F (x)
= 1/l · ψLn/F (x)
= 1/l · ψLn/Lt(ψLt/F (x)
= 1/l · ψLn/Lt(l · x),

woraus die Behauptung mit der Formel für den galoisschen Fall (2.7) folgt.

Lemma 2.4.9. Sei L/F eine endliche Erweiterung. Dann gilt

(i) ψL/F ist stetig, stückweise linear, streng monoton steigend und konvex.

(ii) Die Steigungen von ψ′L/F sind ganzzahlig.

(iii) Es gilt ψL/F (x) ≤ e(L/F )x für alle x ≥ −1.

Beweis. Nach Definition gilt ψL/F = ϕLn/L ◦ ψLn/F , wobei Ln die normale Hülle
von L/F sei.
Da ϕLn/L und ψLn/F stetig, streng monoton steigend und stückweise linear sind, gilt
selbiges auch für ψL/F . Die restlichen Aussagen folgen aus Lemma 2.4.8 zusammen
mit Bemerkung 2.4.5.

Bemerkung 2.4.10. Für eine endliche galoissche Erweiterung L/F mit Galoisgruppe
G sagen wir, dass L/F einen unteren Sprung an der Stelle u für eine Zahl u ≥ −1
hat, wenn Gu 6= Gu+1 gilt. Analog hat L/F einen oberen Sprung an der Stelle
u ≥ −1, wenn Gu 6= Gu+ε für alle ε > 0 gilt.
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

Lemma 2.4.11. Sei F ′/F eine zyklische total verzweigte Erweiterung von Grad p.
Sei L/F eine zu F ′/F linear disjunkte endliche Erweiterung. Dann gilt

s(F ′L/L) ≤ ψF ′L/F ′(s(F ′/F )).

(Dabei setzen wir, falls F ′L/L unverzweigt ist, s(F ′L/L) = 0.)

Beweis. Zur Veranschaulichung:

F ′ F ′L

F L

Es gilt nach Lemma 2.3.5

ψF ′L/F = ψF ′L/F ′ ◦ ψF ′/F = ψF ′L/L ◦ ψL/F . (2.8)

Wir nehmen zunächst an, dass L/F galoissch ist. Dann ist auch F ′L/F galoissch,
und wir setzen G = Gal(F ′L/F ), H = Gal(F ′L/L) und I = Gal(F ′L/F ′).
Fall 1
Wir nehmen an, dass L/F unverzweigt ist. Aufgrund der Multiplikativität des Ver-
zweigungsindex’ und da [F ′L : L] = p gilt, ist auch F ′L/F ′ unverzweigt. Dann ist
ψL/F = ψF ′L/F ′ = id. Mit (2.8) folgt ψF ′L/L = ψF ′/F , und somit

s(F ′L/L) = s(F ′/F ) = ψF ′L/F ′(s(F ′/F ))

Fall 2
Wir nehmen an, dass L/F total verzweigt von Primzahlgrad l 6= p ist. Dann gilt
ψL/F (x) = l · x nach Lemma 2.4.8 und ebenso ψF ′L/F ′(x) = l · x für x ≥ 0, denn
ähnlich wie oben sieht man, dass F ′L/F ′ total verzweigt von Grad l ist. Also gilt
nach Lemma 2.3.5

l · ψF ′/F (x) = ψF ′L/F ′(ψF ′/F (x)) = ψF ′L/F (x) = ψF ′L/L(lx) für x ≥ 0.

Der Graph von ψF ′L/L(lx) hat also einen Knick an der Stelle x = s(F ′/F ), das
heißt

s(F ′L/L) = l · s(F ′/F ) = ψF ′L/F ′(s(F ′/F )).

Fall 3
Wir nehmen an, dass L/F total verzweigt von Grad p ist.
Fall 3a3: Wir nehmen an, dass s(L/F ) < s(F ′/F ) gilt. Dann hat F ′L/F zwei ver-
schiedene untere Sprünge 0 < s1 < s2. In der Tat:

3Der Beweis stammt aus [11].
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2 Verzweigungstheorie

Es gilt Gal(L/F ) = G/H und Gal(F ′/F ) = G/I. Die Erweiterung F ′L/F hat min-
destens einen unteren Sprung, da andernfalls Gu = {1} für alle u > 0 gelten würde.
Aber aus s(L/F ) < s(F ′/F ) (d.h. s(F ′/F ) ≥ 1) folgt Gal(F ′/F )u = GuI/I 6= {1}
für u ≤ 1, also auch Gu 6= {1} und damit Gu 6= {1}. Also hat F ′L/F mindestens
einen unteren Sprung.
Angenommen, F ′L/F hat genau einen unteren Sprung an der Stelle s. Da dann
nach Lemma 2.3.6 der Sprung von L/F durch den Sprung von F ′L/F bestimmt
wird, folgt s(L/F ) = s. Analog hat F ′/F einen Sprung bei s(F ′/F ) = s, was ein
Widerspruch zur Voraussetzung s(F ′/F ) < s(L/F ) ist. Insbesondere sind F ′L/L
und F ′L/F ′ wieder total verzweigt.
Wir setzen nun H ′ = Gs1+1 und K ′ = F ′LH

′ . Dann gilt nach Korollar 2.2.0.1

Gal(K ′/F )i =
{

Gal(K ′/F ) i ≤ s1,

{1} i > s1.

Sei K ′′/F eine von K ′/F verschiedene Erweiterung in F ′L/F von Grad p. Dann
sind K ′′ und K ′ linear disjunkt. Setze H ′′ = Gal(F ′L/K ′′). Dann gilt F ′L = K ′K ′′

und G ist ein semidirektes Produkt von H ′ und H ′′. Für ein Element σ aus H ′ gilt

iH′(σ) = iG(σ) = s2 + 1.

Sei σ0 ∈ G \H ′′. Wir können σ0 = σ1 ◦ σ2 mit σ1 ∈ H ′ und σ2 ∈ H ′′ schreiben, das
heißt σ1 = σ0 ◦ σ−1

2 ∈ σ0H
′′ ∩H ′. Damit ist σ0H

′′ ∩H ′ nichtleer. Die Gruppe H ′
enthält, nach Definition und da LF ′/F genau zwei untere Sprünge hat, sämtliche
Elemente σ ∈ G mit iG(σ) = s2 + 1. Also haben wir insgesamt p solcher Elemente.
Der Index von H ′′ in G ist ebenfalls p. Da die Nebenklassen σH ′′ disjunkt sind,
enthält σ0H

′′ ∩H ′ somit genau ein Element τ . Für die übrigen Elemente σ ∈ σ0H
′′

gilt iG(σ) = s1 + 1. Somit gilt nach Satz 2.2.4

iG/H′′(σ0|K′′) = 1
p

((p− 1) · (s1 + 1) + (s2 + 1)) = s1 + s2 − s1
p

+ 1.

Damit gilt s(K ′′/F ) = s1 + s2+s1
p . Da F ′/F und L/F Erweiterungen von Grad

p in F ′L/F sind, folgt aufgrund von s(L/F ) < s(F ′/F ) somit s1 = s(L/F ) und
s(F ′/F ) = s(L/F ) + s2−s(L/F )

p , also

s2 = s(L/F ) + p(s(F ′/F )− s(L/F )) = ψL/F (s(F ′/F )).

Damit können wir nun s(F ′L/L) und s(F ′L/F ′) berechnen: Es gilt aufgrund von
Lemma 2.2.3 {s(F ′L/L), s(F ′L/F ′)} = {s1, s2}. Wäre s(L/F ) = s1 = s(F ′L/L),
hätte wegen (2.8) ψF ′L/F nur einen Knick, also hätte LF ′/F nur einen unteren
Sprung, was aber nicht der Fall ist. Also gilt s(F ′L/L) = s2 und damit s(F ′L/F ′) =
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2.4 Zyklische total verzweigte Erweiterungen von Primzahlgrad

s1. Es gilt schließlich

s(F ′L/L) = ψF ′L/L(s(F ′L/L))
= ψF ′L/L(ψL/F (s(F ′/F )))
= ψF ′L/F ′(ψF ′/F (s(F ′/F ))
= ψF ′L/F ′(s(F ′/F ))

und

s(F ′L/F ′) = ψF ′L/L(s(F ′L/F ′)) = ψF ′L/L(s(L/F )),

wobei die erste Gleichheit aus s(F ′L/F ′) ≤ s(F ′L/L) folgt.
Fall 3b
Wir nehmen an, dass s(L/F ) = s(F ′/F ) gilt. Dann gilt ψL/F = ψF ′/F und ϕL/F =
ϕF ′/F . Weiterhin können wir s(F ′/F ) < s(F ′L/L) annehmen, da die Behauptung
andernfalls klar ist. Insbesondere können wir davon ausgehen, dass sowohl F ′L/L
als auch F ′L/F ′ total verzweigt sind.
Es gilt

ψF ′L/F ′(s(F ′/F ) + 1) = ψF ′L/F (ϕF ′/F (s(F ′/F ) + 1))
= ψF ′L/L(ψL/F (ϕF ′/F (s(F ′/F ) + 1)))
= ψF ′L/L(s(F ′/F ) + 1)
= s(F ′/F ) + 1,

wobei die letzte Gleichheit aus s(F ′/F ) < s(F ′L/L) (d.h. s(F ′/F )+1 ≤ s(F ′L/L))
folgt. Außerdem gilt

ψF ′L/F ′(s(F ′/F )) + 1 = ψF ′L/F ′(ψF ′/F (s(F ′/F )) + 1
= ψF ′L/F (s(F ′/F )) + 1
= ψF ′L/L(ψF/L(s(F ′/F ))) + 1
= ψF ′L/L((s(F ′/F )) + 1
= s(F ′/F ) + 1,

wobei die letzte Gleichheit wieder aus der Annahme s(F ′/F ) < s(F ′L/L) folgt.
Also gilt ψF ′L/F ′(s(F ′/F ) + 1) = ψF ′L/F ′(s(F ′/F )) + 1.
Weiterhin gilt

{1} = Gal(F ′/F )s(F ′/F )+1 = (G/I)s(F ′/F )+1 = GψF ′L/F ′ (s(F ′/F )+1)I/I,

das heißt

GψF ′L/F ′ (s(F ′/F )+1) = GψF ′L/F ′ (s(F ′/F ))+1 ⊆ I. (2.9)
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2 Verzweigungstheorie

Wir zeigen nun, dass

HψF ′L/F ′ (s(F ′/F ))+1 = GψF ′L/F ′ (s(F ′/F ))+1 ∩H = {1}

gilt. Daraus folgt direkt s(F ′L/L) ≤ ψF ′L/F ′(s(F ′/F )).
Sei also σ ∈ GψF ′L/F ′ (s(F ′/F ))+1 ∩H. Dann gilt nach (2.9) σ ∈ H ∩ I. Aber da G ein
semidirektes Produkt von H und I ist, folgt σ = id.

Für eine beliebige endliche galoissche Erweiterung L/F folgt das Lemma schließ-
lich per Induktion mit Lemma 2.4.3 und der Transitivität von ψ.
Sei nun L/F eine beliebige endliche Erweiterung. Nach Bemerkung 2.4.5 und 2.4.6
und da ψ transitiv ist, reicht es wieder aus, unverzweigte Erweiterungen, Erweite-
rungen von Primzahlgrad l 6= p und Erweiterungen von Grad p zu betrachten (wenn
F̂ ′un und L̂un nicht mehr über F̂un linear disjunkt sind, gilt, da F̂ ′un/F̂un galoissch
ist, F̂ ′un ⊆ L̂un und die Behauptung ist klar).
Für unverzweigte Erweiterungen können wir genauso wie im galoisschen Fall argu-
mentieren. Für eine verzweigte Erweiterung L/F von Primzahlgrad l 6= p können
wir aufgrund von Lemma 2.4.8 ebenfalls wie im galoisschen Fall argumentieren.
Wenn letztendlich L/F verzweigt von Grad p ist, dann betrachten wir die normale
Hülle Ln von L/F . Dann gilt [Ln : L] = d für ein d mit p - d, d.h. Ln/L ist zahm
verzweigt. Sei l := e(Ln/L). Dann gilt, indem wir das Lemma auf die Erweiterun-
gen F ′L/L und Ln/L anwenden, s(F ′L/L) = 1/l · s(F ′Ln/Ln), und außerdem ist
ψF ′L/F ′ = 1/l ·ψF ′Ln/F ′ . Damit folgt die Behauptung durch Anwenden des Lemmas
auf die Erweiterung Ln/F .

Bemerkung 2.4.12. Seien F ′/F und L/F wie in Lemma 2.4.11, wobei wir zusätzlich
vorraussetzen, dass wir L/F als Turm F = F0 ⊆ F1 ⊆ ... ⊆ Fi ⊆ ... ⊆ L schreiben
können, wobei die Fi+1/Fi zyklische total verzweigte Erweiterungen von Grad p
seien. Wir fordern zusätzlich, dass s(F ′/F ) > s(Fi+1/Fi) für alle i ≥ 0 gilt. Dann
gilt s(F ′L/L) = ψF ′L/F ′(s(F ′/F )).

Beweis. Wir benutzen Fall 3a aus dem Beweis von Lemma 2.4.11 und Induktion
nach i zusammen mit der Transitivität von ψ (Lemma 2.3.5).

Bemerkung 2.4.13. In der Situation von Lemma 2.4.11 gilt

e(F ′L/F ′) ≤ e(L/F ).

Beweis. Wenn L/F unverzweigt ist, dann gilt aufgrund der Multiplikativität des
Verzweigungsindex’ und da [F ′L : L] = p ist, e(F ′L/L) = p und e(F ′L/F ′) = 1 < p.
Wenn L/F total verzweigt von Primzahlgrad l 6= p ist, folgt e(F ′L/F ′) = l =
e(L/F ). Wenn L/F total verzweigt von Grad p ist, dann gilt, da dann [F ′L : F ] = p2

gilt, e(F ′L/F ′) ∈ {1, p}, also ebenfalls e(F ′L/F ′) ≤ e(L/F ).
Sei L/F eine beliebige endliche Erweiterung. Nach Bemerkung 2.4.5 können wir
L̂un/F̂un als Turm von zyklischen Erweiterungen von Primzahlgrad F̂un = L0 ⊆
L1 ⊆ ... ⊆ Li ⊆ ... ⊆ L̂un schreiben, wobei F̂ ′unLi−1 entweder linear disjunkt zu
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Li über Li−1 oder in Li enthalten ist (denn F̂ ′unLi−1/Li−1 ist galoissch). Es gilt
e(L̂un/F̂un) = e(L/F ) und ebenso für e(F ′L/F ′). Damit folgt die Behauptung.

Bemerkung 2.4.14. Wenn F ein lokaler Körper von Charakteristik 0 ist, dann ist
F eine Erweiterung von Qp von endlichem Verzweigungsindex. Da die Restklas-
senkörpercharakteristik von F nach Voraussetzung gleich p ist, gilt ν(p) > 0, die
Einschränkung von ν auf Q ist also zur p-adischen Bewertung äquivalent. Der Ab-
schluss von Q in F ist also Qp. Der Verweigungsindex von F/Qp ist endlich, da die
Bewertung auf F diskret ist.

Satz 2.4.15 (siehe Chapter III, Section 2, Proposition 2.5 in [9]). Sei f(X) =
Xp−X−α ∈ F [X] ein Polynom mit α /∈ oF und p - νF (α). Außerdem sei νF (α) >
−pe(F/Qp)/(p − 1), falls char(F ) = 0. Dann hat f(X) eine Nullstelle λ, sodass
L = F (λ) eine zyklische verzweigte Erweiterung von Grad p über F ist. Außerdem
gilt s(L/F ) = −νF (α).

Beweis. Das Polynom f(X) zerfällt nicht vollständig über F in Linearfaktoren,
denn wäre λ ∈ F eine Nullstelle von f(X), dann wäre νF (α) = νF (λp − λ) =
min{pνF (λ), νF (λ)} = pνF (λ) mit νF (λ) ∈ Z, was der Voraussetzung p - νF (α)
widerspricht.
Sei λ eine Nullstelle von f(X) in F sep (da f(X) separabel ist, finden wir eine solche).
Setze L = F (λ) und

g(Y ) = (λ+ Y )p − (λ+ Y )− α = Y p +
(
p

1

)
λY p−1 + ...+

(
p

p− 1

)
λp−1Y − Y.

Wenn char(F ) = p ist, dann ist L/F eine zyklische Erweiterung von Grad p (siehe
4.8, Theorem 5 in [4]).
Wenn char(F ) = 0 ist, dann gilt aufgrund der Voraussetzung −pe(F/Qp)/(p−1) <
νF (α) = νF (λp − λ) = pνF (λ) und damit für 0 < i ≤ p− 1

νL(
(
p

i

)
λi) = e(L/F )(νF (

(
p

i

)
) + νF (λi))

≥ e(L/F )(e(F/Qp) + νF (λi))
> e(L/F )(e(F/Qp)− ie(F/Qp)/(p− 1))
≥ 0.

Also gilt g(Y ) ∈ oF [Y ]. Es ist ḡ(Y ) = Y p − Y über L̄. Da ḡ(Y ) = Y p − Y =
Y (Y − 1̄)·...·(Y −p̄− 1̄) über L̄ vollständig in paarweise verschiedene Linearfaktoren
zerfällt, zerfällt g(Y ) aufgrund des Henselschen Lemmas über oL vollständig in
Linearfaktoren. Damit zerfällt f(X) über L vollständig in Linearfaktoren. Da f(X)
nicht über F in Linearfaktoren zerfällt, ist L/F also eine zyklische Erweiterung von
Grad p.
Sei nun σ ∈ Gal(L/F ) ein Erzeuger von Gal(L/F ), sodass σ(λ)− λ eine Nullstelle
von g(Y ) ist, die kongruent zu 1 modulo (πL) ist. Dann gilt νL(σ(λ) − λ) = 0.

25



2 Verzweigungstheorie

Wenn p - νF (α), dann folgt aus pνL(λ) = νL(λp− λ) = νL(α) = e(L/F )νF (α), dass
e(L/F ) = p gilt, also ist L/F total verzweigt. Schließlich gilt s(L/F ) = νL(σ(λ)/λ−
1) = νL(σ(λ)− λ)− νL(λ) = −νL(λ) = −νL(α)/p = −νF (α).
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3 Tief verzweigte Körpererweiterungen

Wir setzen auch in diesem Kapitel grundsätzlich voraus, dass alle betrachteten
Körpererweiterungen separabel sind, es sei denn, es handelt sich um Vervollständi-
gungen von Körpern, wobei diese durch das Symbol ̂ gekennzeichnet werden.
3.1 Definition und einige Eigenschaften

In diesem Abschnitt werden wir tief verzweigte Erweiterungen definieren und einige
äquivalente Charakterisierungen nennen und beweisen. Dabei orientieren wir uns
an [8]. Die folgenden Resultate stammen urpünglich für den Fall F = Qp aus [16].

Satz 3.1.1 (siehe Theorem 1.1 in [8]). Für eine Erweiterung F/F sind äquivalent:

(i) Für jedes m ≥ −1 und jedes ε > 0 existiert eine endliche Erweiterung E/F
in F , sodass ψE/F (m)/e(E/F ) < ε gilt.

(ii) Für jede zyklische total verzweigte Erweiterung F ′/F von Primzahlgrad und
jedes ε > 0 existiert eine endliche Teilerweiterung E/F in F/F , sodass F ′/F
über E definiert ist und s(E′/E)/e(E/F ) < ε gilt.

(iii) Für jede endliche Erweiterung F ′/F und jedes ε > 0 existiert eine endliche
Erweiterung E/F in F/F , sodass F ′/F über E definiert ist und ν(DE′/E) < ε
gilt.

(iv) Für jede endliche Erweiterung F ′/F gilt TrF ′/F (mF ′) = mF .

Bemerkung 3.1.2. Wenn (i) für eine Erweiterung F/F gilt, dann auch für F ′/F
und F/M , wobei F ′/F eine Erweiterung und M/F eine endliche Erweiterung in
F/F seien. Wenn L/E/F endliche Erweiterungen sind und ψE/F (m)/e(E/F ) < ε
gilt, dann gilt auch ψL/F (m)/e(L/F ) < ε.

Beweis der Bemerkung. Die erste Aussage ist klar.
Sei M/F eine endliche Erweiterung in F/F und seien n ≥ −1 und ε > 0 beliebig.
Wir finden ein m ≥ −1 mit n = ψM/F (m). Sei E/F eine endliche Erweiterung mit
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ψE/F (m)/e(E/F ) < ε, dann gilt mit Lemma 2.3.5

ψME/M (n)/e(ME/M) = ψME/M (ψM/F (m))/e(ME/M)
= e(M/F ) · ψME/F (m)/e(ME/F )
= e(M/F ) · ψME/E(ψE/F (m))/e(ME/F )
≤ e(M/F ) · e(ME/E) · ψE/F (m)/e(ME/F )
< e(M/F ) · e(ME/E) · ε · e(E/F )/e(ME/F )
= e(M/F ) · ε.

Das zeigt die zweite Aussage.
Seien L/E/F endliche Erweiterungen. Dann gilt nach Lemma 2.3.5 und Lemma
2.4.9

ψL/F = ψL/E ◦ ψE/F ≤ e(L/E)ψE/F .

Gilt also ψE/F (m)/e(E/F ) < ε für ein m ≥ −1 und ein ε > 0, dann gilt, da der
Verzweigungsindex multiplikativ ist, auch

ψL/F (m)/e(L/F ) ≤ e(L/E)/e(L/F ) · ψE/F (m)
= ψE/F (m)/e(E/F )
< ε.

Bemerkung 3.1.3. Seien E/F eine endliche Erweiterung, E′/E eine zyklische ver-
zweigte Erweiterung von Primzahlgrad und L/E eine zu E′/E linear disjunkte
endliche Erweiterung:

E′ E′L

E L

Es gelte s(E′/E)/e(E/F ) < ε für ein ε > 0. Dann gilt

s(E′L/L)/e(L/F ) ≤ ψE′L/E′(s(E′/E))/e(L/F )
≤ e(E′L/E′)s(E′/E)/e(L/F )
≤ e(L/E)s(E′/E)/e(L/F )
< e(L/F )ε/e(L/F )
= ε,

wobei die erste Ungleichung aus Lemma 2.4.11 und die dritte Ungleichung aus
Bemerkung 2.4.13 folgt. Es gilt s(E′L/L)/e(L/F ) ≤ s(E′/E)/e(E/F ) ist. Daraus
folgt, dass, wenn F/F Eigenschaft (ii) erfüllt und F1/F eine endliche Erweiterung
in F/F ist, F/F1 ebenfalls (ii) erfüllt.
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3.1 Definition und einige Eigenschaften

Bemerkung 3.1.4. Wenn F/F Eigenschaft (i) erfüllt, dann gilt e(F/F ) → ∞, das
heißt es gibt für jedes n ∈ N eine endliche Erweiterung E/F in F/F , sodass
e(E/F ) ≥ n gilt. In der Tat: Angenommen, es gäbe ein n, sodass e(E/F ) ≤ n
für alle endlichen Erweiterungen E/F in F/F gilt. Dann wäre, da ψE/F (m) ≥ m
für alle m ≥ −1 gilt,

ψE/F (m)/e(E/F ) ≥ m/n

für alle endlichen Erweiterungen E/F in F/F und alle m ≥ −1, was Eigenschaft
(i) widerspricht.
Eigenschaft (ii) impliziert ebenfalls e(F/F )→∞. Angenommen, es gäbe ein n wie
oben, dann sei E/F eine endliche Erweiterung in F/F mit

e(E/F ) = max{e(L/F ) |L/F endliche Erweiterung in F/F}.

Dann gilt für alle endlichen Erweiterungen L/E in F/F aufgrund der Multipli-
kativität des Verzweigungsindex’ e(L/E) = 1. Sei F ′/F eine zyklische verzweigte
Erweiterung von Primzahlgrad und seien L2/L/E beliebige endliche Erweiterungen
in F/E, wobei wir o.B.d.A. davon ausgehen, dass F ′/F über E und damit auch
über L und L2 definiert ist. Dann gilt s(L′/L)/e(L/F ) = s(L′2/L2)/e(L2/F ) =
s(E′/E)/e(E/F ) (siehe Lemma 2.4.11, Fall 1). Wegen Bemerkung 3.1.3 kann nun
(ii) nicht gelten.
Insbesondere ist F nichtdiskret bewertet.

Bemerkung 3.1.5 (siehe Lemma 2.12 in [16]). Wenn F/F Eigenschaft (ii) erfüllt,
existiert für jedes n ∈ N eine endliche Erweiterung E/F , sodass pn|e(E/F ) gilt. In
diesem Sinn ist F/F unendlich wild verzweigt.

Beweis der Bemerkung. Angenommen, es existiert ein n, sodass pn die maxima-
le p-Potenz ist, die e(E/F ) für eine endliche Erweiterung E/F in F/F teilt. Sei
F ′/F eine endliche Erweiterung und E/F eine endliche Erweiterung in F/F , sodass
pn|e(E/F ) gilt und F ′/F über E/F definiert ist. Dann sind alle endlichen Erwei-
terungen L/E in F/F zahm verzweigt, und wie im Beweis von Lemma 2.4.11 sieht
man, dass s(E′L/L)/e(L/F ) = s(E′/E)/e(E/F ) gilt. Das ist ein Widerspruch zu
Eigenschaft (ii).

Bemerkung 3.1.6. Wenn (ii) für eine Erweiterung F/F gilt und L/F eine zyklische
verzweigte Erweiterung von Grad p ist, dann gilt (ii) auch für L/F .

Beweis der Bemerkung. Wenn S ein lokaler Körper ist und T/S sowie R/S line-
ar disjunkte zyklische verzweigte Erweiterungen von Grad p sind, dann folgt aus
s(R/S) < s(T/S) aus Lemma 2.4.11, Fall 3a, s(RT/R) = ps(T/S)− (p− 1)s(R/S)
sowie s(RT/T ) = s(R/S). Wenn s(R/S) = s(T/S) ist, gilt unter Benutzung von
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Lemma 2.4.11

s(RT/R) ≤ ψRT/T (s(T/S))
= ψRT/S(s(T/S))
= ψRT/R(ψR/S(s(T/S))
= ψRT/R(s(T/S),

und durch Anwenden von ϕRT/R folgt, da ϕRT/R(s(RT/R)) = s(RT/R) gilt und
ϕRT/R monoton steigend ist, s(RT/R) ≤ s(T/S).
Sei nun δ ∈ (0, (2p(p − 1))−1). Sei E/F eine endliche Erweiterung in F/F . Wir
nehmen an, dass L/F nicht (ii) erfüllt. Dann gibt es eine zyklische verzweigte Er-
weiterung M/L von Grad p und ein ε′ > 0, sodass für jede endliche Erweiterung
P/F in L/F , sodassM/L über P definiert ist, s(P ′/P )/e(P/F ) ≥ ε′ gilt. Sei ε > 0
das Infimum aller s(QP ′/Q)/e(Q/F ), wobei Q/F eine endliche Erweiterung in L/F
ist. Indem wir P falls nötig vergrößern, können wir annehmen, dass für alle solche
Q die Gleichung ε ≤ s(QP ′/Q)/e(Q/F ) < cε gilt, wobei c eine reelle Zahl mit
1 < c < p und (c−1)ε < p−1−p−2 ist. Außerdem können wir annehmen, dass P/E
eine zyklische total verzweigte Erweiterung ist, die zu F/E linear disjunkt ist.
Sei R/E eine zyklische total verzweigte Erweiterung von Grad p mit s(R/E) >
pe(E/F )/(p−1) und s(R/E) 6= s(P/E). Eine solche finden wir mit Satz 2.4.15 und
indem wir in Charakteristik 0 falls nötig F durch eine geeignete endliche Erweite-
rung F1/F in F/F ersetzen, sodass e(F1/Qp) hinreichend groß wird, also sodass die
Differenz pe(E/Qp)/(p− 1)− pe(E/F1)(p− 1) mindestens 5 beträgt und wir somit
eine ganze Zahl pe(E/F1)(/p − 1) < s < pe(E/Qp)/(p − 1) finden, die ungleich
s(PEF1/EF1) ist und nicht von p geteilt wird. F/F erfüllt (ii) genau dann, wenn
F/F1 dies tut.1
Dann sind R/E und P/E linear disjunkt. Es gilt außerdem s(RP/P ) ≥ s(R/E).
Wir nehmen an, dass R/E eine Teilerweiterung von F/E ist. Falls dann s(RP/P ) ≥
s(P ′/P ) gilt, ist s(RP ′/RP )/e(RP/F ) ≤ p−1s(P ′/P )/e(P/F ), was ein Wider-
spruch zu c < p ist. Andererseits folgt aus s(RP/P ) < s(P ′/P ) aber

(c− 1)ε > s(P ′/P )/e(P/F )− s(RP ′/RP )/e(RP/F )
= (1− p−1)s(RP/P )/e(P/F )
> (1− p−1) · p−1

= p−1 − p−2,

was der Wahl von c widerspricht. Dabei folgt die letzte Ungleichung aus

s(RP/P )
e(P/F ) ≥

s(R/E)
e(P/F ) >

pe(E/F )
(p− 1)e(P/F ) = 1

p− 1 >
1
p
.

Also ist R/E zu F/E linear disjunkt.
Wir finden eine endliche Erweiterung K/E in F/F , sodass s(KR/K)/e(K/F ) < δ

1Im Folgenden schreiben wir weiterhin E und F anstatt EF1 und F1.
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gilt, indem wir (ii) auf FR/F anwenden. Setze V := KP . Durch Übergang zu
lokalen Körpern mit algebraisch abgeschlossenem Restklassenkörper (siehe Lemma
2.2.6) können wir die Erweiterung V/P mit Lemma 2.4.5 als Turm von verzweigten
Erweiterungen Pi+1/Pi, 1 ≤ i ≤ n, von Primzahlgrad schreiben (dabei ist P = P1
und Pn = V ). Wir können dabei o.B.d.A. davon ausgehen, dass alle diese Erwei-
terungen von Grad p sind. Außerdem gehen wir davon aus, dass eine verzweigte
Erweiterung K1/K in F/K von Grad p existiert, und setzen Pn+1 = PK1. Wir
können beide Annahmen machen, da Eigenschaft (ii) für F/F gilt und indem wir
E falls nötig durch eine endliche zahm verzweigte Erweiterung von E in F/F erset-
zen (nach Lemma 2.4.11, Fall 2, sind die Voraussetzungen an S(R/E) und s(P/E)
dann weiterhin erfüllt).
Wir bezeichnen mit Pni+1 die normale Hülle von Pi+1/Pi und mit P ti+1 die maxi-
male zahm verzweigte Teilerweiterung von Pni+1/Pi. Wir setzen li = e(P ti+1/Pi) =
e(Pni+1/Pi+1), si := s(Pni+1/P

t
i+1) und s′i = s(RPi/Pi) (falls RPi = Pi ist, set-

zen wir s′i = 0). Es ist li teilerfremd zu p und es gilt nach Lemma 2.4.11, Fall 2,
s(RP ti+1/P

t
i+1) = li · s′i und s′i+1 = s(RPni+1/P

n
i+1)/li.

Pn2 RPn2

P t2 RP t2

P = P1 RP

Falls nun s1 ≥ l1 · s′1 = l1 · s(RP/P ) gilt, ist

s1/e(P/F ) ≥ l1 · s′1/e(P/F )
≥ l1 · s(R/E)/e(P/F )
> l1 · pe(E/F )/((p− 1)e(P/F ))
> l1/p,

also s1/(l1e(P/F )) > 1/p.
Wenn hingegen s1 < l1s

′
1 ist, gilt l1s′2 = s(RPn2 /Pn2 ) = pl1s

′
1 − (p − 1)s1, also

s′2 = ps′1 − (p − 1)/l1 · s1. Wenn nun ein 2 ≤ m < n existiert, sodass si < lis
′
i für

i ≤ m− 1 und sm ≥ lms′m gilt, dann ist

s′m = pm−1s′1 − (p− 1)
m−2∑
i=0

pi · sm−1−i
li

.
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Dann berechnen wir

s′1 = s′m/p
m−1 + (p− 1)/pm−1 ·

m−2∑
i=0

pi · sm−1−i
li

⇔ s′1/e(P/F ) = (s′m/pm−1 + (p− 1)/pm−1 ·
m−2∑
i=0

pi · sm−1−i
li

) · 1
e(P/F )

⇔ s′1/e(P/F ) = s′m/e(Pm/F ) + (p− 1)/p ·
m−2∑
i=0

sm−1−i
li · e(Pm−1−i/F )

= s′m/e(Pm/F ) + (1− p−1) ·
m−2∑
i=0

sm−1−i
li · e(Pm−1−i/F ) .

Damit folgt

(1− p−1)
m−1∑
i=1

si
lie(Pi/F ) + sm

lm · e(Pm/F ) ≥
s(R/E)
p · e(E/F ) ,

also
m∑
i=1

si
li · e(Pi/F ) ≥

s(R/E)
p · e(E/F ) + p−1 ·

n−1∑
i=1

si
li · e(Pi/F )

= p−1(s(R/E)
e(E/F ) +

n−1∑
i=1

si
li · e(Pi/F ))

> p−1( pe(E/F )
(p− 1)e(E/F ))

= p−1 · p

p− 1

>
1
p
.

Wenn andererseits si < lis
′
i für alle i ≤ n gilt, dann ist

s′n = pn−1s′1 − (p− 1)
n−2∑
i=0

pi/lisn−1−i < e(Pn/F ) · δ,

wobei die Ungleichung aus

s′n/e(Pn/F ) = s(V R/V )/e(Pn/F ) ≤ s(KR/K)/e(K/F ) < δ

folgt. Wir haben s′1 = s′n/p
n−1 + (p− 1)/pn−1∑n−2

i=0 p
i/li · sn−1−i. Wir erhalten

(1− p−1)
n−1∑
i=1

si
li · e(Pi/F ) + δ ≥ s′1

p · e(E/F )
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und wegen δ < (2p(p− 1))−1 gilt

(1− p−1)
n−1∑
i=1

si
lie(Pi/F ) + (2p(p− 1))−1 ≥ s(R/E)

p · e(E/F ) ,

also
n−1∑
i=1

si
lie(Pi/F ) ≥ p

−1(
n−1∑
i=1

si
lie(Pi/F ) + s(R/E)

e(E/F ))− (2p(p− 1))−1

> p−1
n−1∑
i=1

si
lie(Pi/F ) + 1

p− 1 −
1

2p(p− 1)

>
1

p− 1 −
1

2p(p− 1) = 2p− 1
2p(p− 1)

= 1
p
· 2p− 1

2(p− 1) >
1
p
.

Insgesamt erhalten wir also

n∑
i=1

si
lie(Pi/F ) > p−1.

Nun setzen wir P ′i = PiP
′ und ri = s(P ′i/Pi). Wenn si ≥ liri für ein 1 ≤ i ≤ n ist,

dann gilt s(Pni+1P
′/Pni+1) ≤ liri, also ri+1 ≤ ri.

Pni+1 Pni+1P
′

P ti+1 P ti+1P
′

Pi PiP
′

Daraus folgt ri+1/e(Pi+1/F ) ≤ p−1ri/e(Pi/F ). Das ist ein Widerspruch zu c < p.
Wenn andererseits si < liri für alle 1 ≤ i ≤ n gilt, haben wir ri+1/e(Pi+1/F ) =
ri/e(Pi/F )− (1− p−1)si/(lie(Pi/F ) für alle i. Daraus folgt

(c− 1)ε > s(P ′/P )/e(P/F )− s(P ′n+1/Pn+1)/e(Pn+1/F )

= (1− p−1)
n∑
i=1

si
li · e(Pi/F )

> (p− 1)p−2 = p−1 − p−2.

Das ist ebenfalls ein Widerspruch zur Wahl von c. Also muss Eigenschaft (ii) für
L/F gelten.
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Bemerkung 3.1.7. Unter der Annahme, dass (i) nicht gilt, finden wir eine endliche
Erweiterung M/F in F/F und ein m ≥ −1, sodass ψ′E/M (x) = e(E/M) für alle
endlichen Erweiterungen E/M mit E ⊆ F und x ≥ ψM/F (m) gilt.

Beweis der Bemerkung. Wenn (i) nicht gilt, gibt es ein ε > 0 und ein m > −1,
sodass

ψE/F (m)/e(E/F ) ≥ ε

für jede endliche Erweiterung E/F in F/F gilt. Da ψE/F (x) ≤ 0 für x ≤ 0 ist, gilt
m > 0.
Sei o.B.d.A. ε = inf{δ |ψE/F (m) = δe(E/F ) und E/F endlich}. Sei M/F eine
endliche Erweiterung in F/F mit ψM/F (m) = ε′e(M/F ) für ein ε′ ≥ ε. Für eine
endliche Erweiterung L/M gilt

ψL/F (m) = ψL/M (ψM/F (m))
≤ e(L/M) · ψM/F (m)
= e(L/M) · ε′ · e(M/F )
= e(L/F ) · ε,

das heißt es gilt ψL/F = ε′′e(L/F ) mit einem ε ≤ ε′′ ≤ ε′. Wir wählen M nun so
groß, dass ε′/ε < p gilt.
Da für zahm verzweigte endliche Erweiterungen E/M nach Lemma 2.4.9 sowieso
ψ′E/M (x) = e(E/M) für x > 0 gilt, betrachten wir verzweigte Erweiterungen von
Grad p.
Sei also E/M eine verzweigte Erweiterung von Grad p mit E ⊆ F . Wenn En die
normale Hülle von E/M und Et die maximale zahm verzweigte Teilerweiterung
von En/M bezeichnen und l := e(Et/M) ist, gilt nach Lemma 2.4.8 ψE/M (x) =
1/l · ψEn/Et(lx). Falls s := s(En/Et) < ψM/F (m) · l ist, ist ψE/M bei ψM/F (m)
differenzierbar und es gilt ψ′E/M (ψM/F (m)) = p. Andernfalls gilt

ε · e(E/F ) ≤ ψE/F (m)
= ψE/M (ψM/F (m))
= 1/l · ψEn/Et(l · ψM/F (m))
= 1/l · l · ψM/F (m)
= ε′ · e(M/F ),

also

ε · e(E/F ) ≤ e(M/F )ε′

⇔ e(E/M) ≤ ε′/ε
⇔ p ≤ ε′/ε.
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Dies ist ein Widerspruch, also gilt ψ′E/M (ψM/F (m)) = p.
Sei dann E1/E eine verzweigte Erweiterung von Grad p mit E1 ⊆ F . Wir er-
halten mit analoger Argumentation wie oben, dass ψ′E1/E

(x) = e(E1/E) für x ≥
ψE/F (m) = ψE/M (ψM/F (m)) gilt. Mit der Kettenregel für Ableitungen erhalten wir
ψE1/M (x) = e(E1/M) für x ≥ ψM/F (m).
Für eine beliebige endliche Erweiterung E/M in F/F benutzen wir Lemma 2.4.5
und Bemerkung 2.4.6. Dabei beachten wir, dass, wenn

ψ
Êun/F̂un

(m)/e(Êun/F̂un) ≥ ε

gilt, selbiges auch für Zwischenkörper von Êun/F̂un gilt. In der Tat: Wenn L ein
Zwischenkörper von Êun/F̂un, dann gilt

ψ
Êun/L

◦ ψ
L/F̂un

(m) = ψ
Êun/F̂un

(m)

≥ ε · e(Êun/F̂un).

Wäre nun ψ
L/F̂un

(m) < εe(L/F̂un), dann wäre

ψ
Êun/F̂un

(m) = ψ
Êun/L

◦ ψ
L/F̂un

(m)

≤ e(Êun/L) · ψ
L/F̂un

(m)

< ε · e(Êun/L) · e(L/F̂un)
= ε · e(Êun/F̂un).

Wir können also zu Êun/M̂un übergehen und erhalten mit analoger Argumentation
wie oben (und Induktion)

ψ′E/M (x) = ψ′
Êun/M̂un

= e(Êun/M̂un)
= e(E/M)

für alle endlichen Erweiterungen E/M mit E ⊆ F und x ≥ ψ
M̂un/F̂un

(m) =
ψM/F (m). Wir können dabei M auch durch eine beliebige endliche Erweiterung
M1/M in F/F ersetzen.

Beweis von Satz 3.1.1. (i)⇒ (ii):
Sei F ′/F eine zyklische total verzweigte Erweiterung von Primzahlgrad l und
E0/F eine endliche Erweiterung, sodass F ′/F über E0 definiert ist. Da F ′/F
verzweigt ist, ist auch E′0/E0 verzweigt. Nach Bemerkung 3.1.2 gilt (i) ebenfalls
für die Erweiterung F/E0. Sei also E/E0 eine endliche Erweiterung in F/E0 mit
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ψE/E0(m)/e(E/E0) < ε für m = s(E′0/E0) und ein ε > 0. Dann gilt für E′ = EE′0

s(E′/E)/e(E/F ) ≤ ψE′/E′0(s(E′0/E0))/e(E/F )
= ψE′/E′0(ψE′0/E0(s(E′0/E0)))/e(E/F )
= ψE′/E0(s(E′0/E0))/e(E/F )
= ψE′/E(ψE/E0(s(E′0/E0)))/e(E/F )
≤ e(E′/E) · ψE/E0(s(E′0/E0))/e(E/F )
< l · ε/e(E0/F ),

wobei die erste Ungleichung aus Satz 2.4.11 folgt. Mit Bemerkung 3.1.4 folgt (ii).

(ii)⇒ (i):
Wir nehmen an, dass (i) nicht gilt. Dann gibt es ein m > 0 und ein ε > 0, sodass
ψE/F (m)/e(E/F ) ≥ ε für alle endlichen Erweiterungen E/F gilt. Nach Bemerkung
3.1.7 finden wir eine endliche ErweiterungM/F in F/F , sodass ψ′E/M (x) = e(E/M)
für alle endlichen Erweiterungen E/M mit E ⊆ F und alle x ≥ ψM/F (m) gilt.
Behauptung. Es existiert ein Turm von Erweiterungen M = L0 ⊆ L1 ⊆ ... ⊆
Ln−1 ⊆ Ln für n ≥ 1, wobei die Li/Li−1 zyklische, verzweigte Erweiterungen von
Grad p sind und

s(Ln/Ln−1) > ψLn−1/F (m)

gilt.

Beweis der Behauptung. Wir wählen in Charakteristik p eine geeignete Artin-Schreier-
Erweiterung L1/L0 (siehe Satz 2.4.15).
In Charakteristik 0 wählen wir, wenn wir Li−1 bereits konstruiert haben, ein Ele-
ment α ∈ Li−1, sodass νLi−1(α) nicht von p geteilt wird und das

pe(Li−1/Qp)/(2p− 2) ≤ −νLi−1(α) < p · e(Li−1/Qp)/(p− 1)

erfüllt. Dabei vergrößern wir M falls nötig, um mithilfe von Bemerkung 3.1.4 die
Existenz eines solchen Elements sicherzustellen. Sei λ eine Nullstelle vonXp−X−α.
Wir setzen Li = Li−1(λ) Dann gilt nach Satz 2.4.15

s(Li/Li−1) = −νLi−1(α) ≥ p · e(Li−1/Qp)/(2p− 2).

Siehe auch Abbildung (3.2).
Wenn nun ψLi−1/F (m) ≥ s(Li/Li−1) gilt, dann ist mit (2.7) aus Kapitel 1

ψLi/F (m)/e(Li/Qp) = ψLi/Li−1(ψLi−1/F (m))/e(Li/Qp)
= (s(Li/Li−1) + p(ψLi−1/F (m)− s(Li/Li−1)))/e(Li/Qp)
= ((1− p)s(Li/Li−1) + pψLi−1/F (m))/(pe(Li−1/Qp))
= ((1− p)s(Li/Li−1)/p+ ψLi−1/F (m))/e(Li−1/Qp)
≤ ψLi−1/F (m)/e(Li−1/Qp)− 1/2.

36



3.1 Definition und einige Eigenschaften

Iterativ erhalten wir (falls es kein j < i mit ψLj−1/F (m) < s(Lj/Lj−1) gibt)

ψLi/F (m)/e(Li/Qp) ≤ ψM/F (m)/e(M/Qp)− i/2
⇔ ψLi/F (m) ≤ e(Li/Qp) · (ψM/F (m)/e(M/Qp)− i/2)
⇔ ψLi/F (m) ≤ pi(ψM/F (m)− e(M/Qp) · i/2).

Wir wählen n so groß, dass

pe(M/Qp)/(2p− 2) > ψM/F (m)− (n− 1)e(M/Qp)/2

gilt. Dann ist (falls es kein j < n mit ψLj−1/F (m) < s(Lj/Lj−1) gibt)

s(Ln/Ln−1) ≥ pe(Ln−1/Qp)/(2p− 2)
= pne(M/Qp)/(2p− 2)
> pn−1(ψM/F (m)− (n− 1)e(M/Qp)/2)
≥ ψLn−1/F (m).

Behauptung. Sei E/M eine endliche Erweiterung in F/F . Dann ist ELn/ELn−1
total verzweigt von Grad p und es gilt

s(ELn/ELn−1) = ψELn−1/Ln−1(s(Ln/Ln−1)). (3.1)

E ... ELi ELi+1 ... ELn−1 ELn

M = L0 ... Li Li+1 ... Ln−1 Ln

F

(3.2)

Beweis der Behauptung. Wenn E/M zahm verzweigt ist, ist auch ELn−1/Ln−1
zahm verzweigt und (3.1) folgt wie im Beweis von Lemma 2.4.11 (Fall 1 und 2).
Sei E/M eine verzweigte Erweiterung von Grad p.
Wir können davon ausgehen, dass ELn−1/Ln−1 (und damit auch ELi/Li für i ≤
n− 1) total verzweigt ist. Wenn das nicht der Fall ist, ist ELn−1/Ln−1 unverzweigt
und die Behauptung ist klar. Wir können insbesondere annehmen, dass ELi linear
disjunkt zu Li+1 über Li für alle i < n − 1 ist, da andernfalls ELn−1 = Ln−1 und
ELn = Ln gilt.
Sei En die normale Hülle von E über M und Et/M die maximale zahm verzweigte
Teilerweiterung von En/M . Der Grad [En : E] ist teilerfremd zu p. Deswegen ist
En/Et eine zyklische verzweigte Erweiterung von Grad p. Da ELi/Li total ver-
zweigt von Grad p ist, gilt selbiges, da der Verzweigungsindex multiplikativ ist
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und weil EtLi/Li zahm verzweigt ist, auch für LiEn/LiEt für i ≤ n − 1. Setze
l := e(Et/M) = e(En/E). Nach Wahl von M gilt, wenn x ≥ ψM/F (m) ist,

e(E/M) = ψ′E/M (x)
= (ϕEn/E ◦ ψEn/M )′(x)
= ψ′En/M (x)/l,

wobei die Differenzierbarkeit von ψEn/M an der Stelle x folgt daraus, dass ψE/M =
ψEn/M · 1/l an der Stelle x differenzierbar ist. Es folgt

e(En/M) = ψ′En/M (x)
= (ψEn/Et ◦ ψEt/M )′(x)
= ψ′En/Et(ψEt/M (x)) · l,

wobei ψEn/Et an der Stelle ψEt/M (x) = lx differenzierbar ist, da ψEn/M = ψEn/Et ◦
ψEt/M an der Stelle x differenzierbar ist.
Also gilt ψ′En/Et(ψEt/M (x)) = e(En/Et) und damit s(En/Et) ≤ ψEt/F (m).
Wir zeigen jetzt per Induktion nach i, dass s(Ln−1E

n/Ln−1E
t) ≤ ψLn−1Et/F (m)

gilt:
Wenn wir Lemma 2.4.11 auf das Quadrat

En L1E
n

Et L1E
t

anwenden, erhalten wir folgende Abschätzung:
s(L1E

n/L1E
t) ≤ ψL1En/En(s(En/Et))

= ψL1En/Et(s(En/Et))
≤ ψL1En/Et(ψEt/F (m))
= ψL1En/F (m)
= ψL1En/L1Et(ψL1Et/F (m)).

Anwenden von ϕL1En/L1Et auf beide Seiten ergibt, da ϕL1En/L1Et(x) = x für
x ≤ s(L1E

n/L1E
t) gilt und da ϕL1En/L1Et monoton steigend ist, s(L1E

n/L1E
t) ≤

ψL1Et/F (m). Gelte s(Li−1E
n/Li−1E

t) ≤ ψLi−1Et/F (m) nun für ein i ≤ n− 1. Dann
gilt

s(LiEn/LiEt) ≤ ψLiEn/EnLi−1(s(Li−1E
n/Li−1E

t))
= ψLiEn/Li−1En(ψLi−1En/Li−1Et(s(Li−1E

n/Li−1E
t)))

= ψLiEn/Li−1Et(s(Li−1E
n/Li−1E

t))
≤ ψLiEn/Li−1Et(ψLi−1Et/F (m))
= ψLiEn/F (m)
= ψLiEn/LiEt(ψLiEt/F (m)).
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3.1 Definition und einige Eigenschaften

Anwenden von ϕLiEn/LiEt ergibt nun wieder s(LiEn/LiEt) ≤ ψLiEt/F (m). Das
zeigt s(Ln−1E

n/Ln−1E
t) ≤ ψLn−1Et/F (m).

Dann gilt nach Konstruktion von Ln/Ln−1

s(Ln−1E
n/Ln−1E

t) ≤ ψLn−1Et/F (m)
= ψLn−1Et/Ln−1 ◦ ψLn−1/F (m)
= l · ψLn−1/F (m)
< l · s(Ln/Ln−1)
= s(LnEt/Ln−1E

t).

Wir wenden Lemma 2.4.11, Fall 3a auf das Quadrat

LnE
t LnE

n

Ln−1E
t Ln−1E

n

an. Es folgt, dass LnEn/Ln−1E
n total verzweigt von Grad p ist und dass

s(LnEn/Ln−1E
n) = ψLnEn/LnEt(s(LnEt/Ln−1E

t))
= ψLnEn/Ln−1Et(s(LnEt/Ln−1E

t))
= ψLnEn/Ln−1En(ψLn−1En/Ln−1Et(s(LnEt/Ln−1E

t)),

gilt. Damit folgt durch Anwenden von ϕLnEn/Ln−1En ,

s(EnLn/EnLn−1) = ψEnLn−1/Ln−1Et(s(LnEt/Ln−1E
t)).

Daraus folgt

l · s(ELn/ELn−1) = s(EnLn/EnLn−1)
= ψEnLn−1/Ln−1Et(s(LnEt/Ln−1E

t))
= ψEnLn−1/Ln−1(ϕLn−1Et/Ln−1(s(LnEt/Ln−1E

t)))
= ψEnLn−1/Ln−1(s(LnEt/Ln−1E

t)/l)
= ψEnLn−1/Ln−1(s(Ln/Ln−1))
= l · ψELn−1/Ln−1(s(Ln/Ln−1)),

also

s(ELn/ELn−1) = ψELn−1/Ln−1(s(Ln/Ln−1)).

Sei E/M eine beliebige endliche Erweiterung wie in der Behauptung. Nach Bemer-
kung 2.4.5 finden wir einen Turm von Körpererweiterungen

M̂un = M0 ⊆M1 ⊆ ... ⊆Mi ⊆Mi+1 ⊆ ... ⊆Mk = Êun,
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3 Tief verzweigte Körpererweiterungen

sodass Mi+1/Mi total verzweigt von Primzahlgrad ist.

Êun ... ÊunLn−1 ÊunLn

Mi ... MiLn−1 MiLn

M1 ... M1Ln−1 M1Ln

M̂un = M0 = L0M0 ... M0Ln−1 = L̂n−1,un M0Ln = L̂n,un

F̂un

Nach Bemerkung 2.2.6 gilt ψE/M = ψ
Êun/M̂un

und somit ψ′
Êun/M̂un

(x) = e(E/M) =

e(Êun/M̂un) für alle x ≥ ψM/F (m) = ψ
M̂un/F̂un

(m). Insbesondere folgt mit der Ket-
tenregel für Ableitungen ψ′Mi+1/Mi

(x) = e(Mi+1/Mi) für x ≥ ψ
Mi/F̂un

(m). Außer-
dem gilt s(Ln/Ln−1) = s(L̂n,un/L̂n−1,un) und ψLn−1/F = ψ

L̂n−1,un/F̂un
. Wir können

(zunächst im Fall i = 1) obige Argumentation wiederholen und erhalten

s(M1Ln/M1Ln−1) = ψ
M1Ln−1/M̂unLn−1

(s(Ln/Ln−1)).

Gilt nun für ein i

s(MiLn/MiLn−1) = ψ
MiLn−1/M̂unLn−1

(s(Ln/Ln−1)),

dann ist

s(MiLn/MiLn−1) = ψ
MiLn−1/M̂unLn−1

(s(Ln/Ln−1)

> ψ
MiLn−1/M̂unLn−1

(ψLn−1/F (m))

= ψ
MiLn−1/M̂unLn−1

(ψ
M̂unLn−1/F̂un

(m))

= ψ
MiLn−1/F̂un

(m).

Wir haben also einen Turm von KörpererweiterungenMi ⊆MiL1 ⊆ ... ⊆MiLn−1 ⊆
MiLn, sodassMiLn/MiLn−1 zyklisch und verzweigt von Grad pmit s(MiLn/MiLn−1) >
ψ
MiLn−1/F̂un

(m) ist und MiLj/MiLj−1 zyklisch und verzweigt von Grad p oder tri-
vial ist für j < n .
Dann sehen wir analog wie oben und per Induktion nach i, dass s(Mi+1Ln−1/MiLn−1) 6=
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3.1 Definition und einige Eigenschaften

s(MiLn/MiLn−1) für alle i gilt. Daraus folgt, dass Mi+1Ln/Mi+1Ln−1 total ver-
zweigt (und nicht trivial) ist.
Es gilt außerdem mit analoger Argumentation wie oben und weil ψ transitiv ist

s(Mi+1Ln/Mi+1Ln−1) = ψ
Mi+1Ln−1/M̂unLn−1

(s(Ln/Ln−1))

und insbesondere

s(ÊunLn/ÊunLn−1) = ψ
ÊunLn−1/L̂n−1,un

(s(Ln/Ln−1)).

Damit folgt die Behauptung aus Bemerkung 2.4.6.

Mit (3.1) gilt nun

s(ELn/ELn−1) = ψELn−1/Ln−1(s(Ln/Ln−1) (3.3)
> ψELn−1/Ln−1(ψLn−1/F (m))
= ψELn−1/F (m)
≥ ψE/F (m).

Insgesamt ist L′ := FLn eine total verzweigte galoissche Erweiterung von Grad p
über L := FLn−1 (verzweigt, da für alle endlichen Erweiterungen E/F in F/F die
Erweiterung ELn/ELn−1 verzweigt ist). Es gilt

s(ELn/ELn−1)/e(ELn−1/F ) ≥ ψELn−1/F (m)/e(ELn−1/F )
≥ ψE/F (m)/e(ELn−1/F )
≥ ε/e(ELn−1/E)
≥ ε/pn−1.

Damit gilt (ii) nicht für L/F nach Bemerkung 3.1.3. Aus Bemerkung 3.1.6 folgt,
dass (ii) nicht für F/F gilt.

(ii)⇒ (iv):
Zunächst gehen wir von einer zyklischen total verzweigten Erweiterung F ′/F von
Primzahlgrad l aus. Sei x ∈ mF ′ . Wir finden eine endliche Erweiterung E/F , sodass
F ′/F über E/F definiert ist und x ∈ E′ gilt. Sei E2/F eine endliche Erweiterung,
über der F ′/F definiert ist und die

[(s(E′2/E2) + 1)(l − 1) + 1))/l]/e(E2/F ) < ν(x)

erfüllt. Eine solche existiert wegen (ii), Bemerkung 3.1.3 und da e(F/F )→∞ gilt.
Dann ist F/F auch über dem Kompositum EE2 definiert mit (EE2)′ = E′E2. Nach
Bemerkung 3.1.3 und da der Verzweigungsindex multiplikativ ist, gilt

[(s(E′E2)/EE2) + 1)(l − 1) + 1)/l]/e(EE2/F ) < ν(x).
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3 Tief verzweigte Körpererweiterungen

Aufgrund von Lemma 2.4.2 folgt nun x ∈ Tr(EE2)′/EE2(m(EE2)′) und damit x ∈
TrF ′/F (mF ′).
Sei nun F ′/F eine beliebige endliche galoissche Erweiterung. Falls eine endliche
Erweiterung E/F , über der F ′/F definiert ist, existiert, sodass E′/E unverzweigt
ist, ist auch E′2/E2 für alle endlichen Erweiterungen E2/E unverzweigt, und da für
eine unverzweigte Erweiterung E′/E und ein Primelement πE von E′ und E

TrE′/E(πEoE′) = πETrE′/E(oE′) = πEoE = mE

gilt, folgt TrF ′/F (mF ′) = mF . Wir können also aufgrund der Transitivität der Spur
o.B.d.A. davon ausgehen, dass E′/E total verzweigt ist.
Dann finden wir nach Lemma 2.4.3 eine Teilerweiterung E′/E′0 in E′/E, sodass
E′/E′0 zyklisch von Primzahlgrad ist. Es ist F ′/FE′0 zyklisch von Primzahlgrad
und verzweigt. Nach Bemerkung 3.1.2 gilt Eigenschaft (ii) für FE′0/F , also, wie
gerade gesehen, auch (iv), das heißt TrF ′/FE′0(mF ′) = mFE′0 . Im nächsten Schritt
finden wir eine zyklische Erweiterung von Primzahlgrad E′0/E

′
1 in E′/E. Dann

ist auch E′0F/E′1F zyklisch und total verzweigt von Primzahlgrad und es gilt
TrE′0F/E′1F (mE′0F ) = mE′1F .
Iterativ und aufgrund der Transitivität der Spurabbildung erhalten wir TrF ′/F (mF ′) =
mF .
Für den Fall, dass F ′/F nicht galoissch ist, betrachten wir die normale Hülle Fn von
F ′ über F . Dann ist Fn/F ′ eine endliche Erweiterung und es gilt TrFn/F (mFn) =
mF und TrFn/F ′(mFn) = mF ′ nach Bemerkung 3.1.2 und dem oben Gezeigten. Da
die Spurabbildung transitiv ist, folgt

TrF ′/F (mF ′) = TrF ′/F (TrFn/F ′(mFn)) = TrFn/F (mF ′) = mF .

(iv)⇒ (ii):
Angenommen, (ii) gilt nicht. Sei F ′/F eine zyklische verzweigte Erweiterung von
Primzahlgrad. Dann existiert ein ε > 0, sodass s(E′/E)/e(E/F ) ≥ ε für alle endli-
chen Erweiterungen E/F , über denen F ′/F definiert ist, gilt. Es gilt TrF ′/F (mF ′) =⋃

TrE′/E(mE′), wobei die Vereinigung über alle endlichen Erweiterungen E/F , so-
dass F ′/F über E/F definiert ist, geht. Wir finden also für alle x ∈ TrF ′/F (mF ′)
eine endliche Erweiterung E/F , sodass F ′/F über E/F definiert ist und x ∈
TrE′/E(mE′) gilt. Nach Lemma 2.4.2 gilt mit s := s(E′/E) und l := e(E′/E)

ν(TrE′/E(mE′)) = (s(E′/E) + 1 + [−s/l])/e(E/F )
≥ (s+ 1 + (−s− l + 1)/l)/e(E/F )
= (s(1− 1/l) + 1/l))/e(E/F )
≥ ε(1− 1/l) + 1/(l · e(E/F ))
≥ ε(1− 1/l).

Damit gilt ν(x) ≥ ε(1 − 1/l) für alle x ∈ TrF ′/F (mF ′). Da die Bewertung auf F
nichtdiskret ist, folgt TrF ′/F (mF ′) 6= mF , Widerspruch zu (iv).
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3.1 Definition und einige Eigenschaften

(ii)⇒ (iii):
Für eine zyklische verzweigte Erweiterung F ′/F von Primzahlgrad folgt (iii) ähn-
lich wie im Beweis für (ii)⇒ (iv) aus Lemma 2.4.1.
Sei F ′/F eine galoissche endliche Erweiterung und gelte (ii). Sei E/F eine endliche
Erweiterung in F/F , sodass F ′/F über E definiert ist. Sei E = E0 ⊆ ... ⊆ Ei ⊆
... ⊆ E′ ein Turm von Teilerweiterungen wie in Lemma 2.4.3, das heißt E1/E ist
unverzweigt und Ei+1/Ei ist total verzweigt von Primzahlgrad für i ≥ 1. Setze
Fi = FEi. Dann ist Fi+1/Fi zyklisch von Primzahlgrad für i ≥ 1. Siehe Abbil-
dung (3.4). Nach Bemerkung 3.1.2 gelten Bedingung (i) und damit Bedingung (ii)
auch für F1/F . Wir finden also wie oben gesehen für jedes ε > 0 eine endliche
Erweiterung L in F1/F , sodass F2/F1 über L definiert ist und ν(DL′/L) < ε gilt.
(Dabei können wir davon ausgehen, dass F2/F1 verzweigt ist, da wir andernfalls
eine endliche Erweiterung L in F1/F finden, sodass F2/F1 über L definiert ist und
L′/L unverzweigt ist. Aber die Bewertung der Differente einer unverzweigten Er-
weiterung ist sowieso gleich 0.)
Wir können dabei o.B.d.A. von E ⊆ L und L′ = LE2 ausgehen (indem wir L, falls
nötig, vergrößern, siehe Lemma 2.1.10). Setze L̃ = F∩L. Dann ist L/L̃ unverzweigt
und F2/F ist über L̃ definiert mit L̃E2 = L′. Aufgrund der Multiplikativität der
Differente und da ν(DL/L̃) = 0 ist, gilt ν(DLE2/L̃

) < ε.
Iterativ und mit Lemma 2.1.10 erhalten wir für jedes ε > 0 eine endliche Teilerwei-
terung E/F in F/F , über der F ′/F definiert ist und für die ν(DE′/E) < ε gilt. Für
eine beliebige endliche Erweiterung F ′/F folgt die Behauptung aus dem Übergang
zur normalen Hülle von F ′/F und der Multiplikativität der Differente.

F ′

F2

F1

F LE′

LE2

L

L̃ E′

E2

E1

E

F

(3.4)
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3 Tief verzweigte Körpererweiterungen

(iii)⇒ (ii) :
Sei F ′/F eine zyklische verzweigte Erweiterung von Primzahlgrad l. Falls (ii) nicht
gilt, gibt es ein ε > 0, sodass für alle endlichen Erweiterungen E/F in F/F , über
denen F ′/F definiert ist, s(E′/E)/e(E/F ) ≥ ε gilt. Dann gilt für die Differente von
E′/E nach Lemma 2.4.1

ν(DE′/E) = νE′(DE′/E)/e(E′/F )
= (s(E′/E) + 1)(l − 1)/(e(E/F )l)
= s(E′/E)/e/E/F ) · (1− 1/l) + 1/e(E/F ) · (1− 1/l)
≥ ε · (1− 1/l) + 1/e(E/F ) · (1− 1/l).

Das ist das ein Widerspruch zu (iii).

Definition. Ein Erweiterung F/F heißt tief verzweigt, wenn sie die äquivalenten
Bedingungen aus Satz 3.1.1 erfüllt. (Dabei setzen wir, den Voraussetzungen für
dieses Kapitel entsprechend, selbstverständlich voraus, dass F/F separabel ist.)

Definition. Eine Erweiterung F/F hat endlichen Führer, wenn F ⊆ F (m) für ein
m ≥ −1 gilt. (Dabei ist F (m) der Fixkörper der m-ten Verzweigungsgruppe GmF der
absoluten Galoisgruppe von F .)

Bemerkung 3.1.8. F/F hat genau dann endlichen Führer, wenn Fn/F endlichen
Führer hat, wobei Fn die normale Hülle von F/F sei. In der Tat: Wenn Fn ⊆ F (m)

gilt, dann ist sicherlich auch F ⊆ F (m). Andersherum ist F (m)/F galoissch; wenn
also F ⊆ F (m) gilt, dann auch Fn ⊆ F (m).

Lemma 3.1.9 (Lemma 2.8 in [16]). Wenn F/F nicht endlichen Führer hat, finden
wir für jedes m ∈ [−1,∞] und jede natürliche Zahl d eine endliche Erweiterung
E/F in F/F mit [E : E ∩ F (m)] ≥ d.

Beweis. Wir zeigen zunächst, dass F/F ∩ F (m) eine unendliche Erweiterung ist.
Wenn dies nicht der Fall wäre, könnten wir F als Kompositum von F ∩ F (m) mit
einer endlichen Erweiterung E/F schreiben. Es gilt aber E ⊆ F (m′) für ein m′, also
wäre F ⊆ F (m′′) für ein m′′, was ein Widerspruch zur Voraussetzung ist.
Wir finden also für jedes d ∈ N ein Element x ∈ F , dessen Grad über F ∩ F (m)

mindestens d beträgt. Dann gilt [F (x) : F (x) ∩ F (m)] ≥ d.

Lemma 3.1.10 (siehe Proposition 2.4 und 2.9 in [16]). Sei F/F eine Körperer-
weiterung. Dann sind äquivalent:

(i) F/F ist tief verzweigt.

(ii) F/F hat unendlichen Führer.

(iii) Für jedes ε > 0 existiert eine endliche Erweiterung E/F in F/F mit ν(DE/F ) ≥
ε.
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Beweis. (i)⇒ (ii):
Sei F/F tief verzweigt. Wir nehmen an, dass F/F endlichen Führer hat. Dann exis-
tiert ein m ≥ −1, sodass F ⊆ F (m) gilt. Seien E/F eine endliche Teilerweiterung
von F/F und En die normale Hülle von E/F in F (m). Dann gilt Gal(En/F )m =
{id}, und damit ist, wenn wir m falls nötig etwas vergrößern, um Differenzierbar-
keit sicherzustellen, ψ′En/F (m) = e(En/F ) und ψ′E/F (m) = ϕ′En/E(ψEn/F (m)) ·
ψ′En/F (m) = e(E/F ). Das ist ein Widerspruch zu Eigenschaft (i) aus Satz 3.1.1,
denn dann gilt für alle n ≥ m, da der höchste obere Sprung von E/F kleiner oder
gleich m ist,

ψE/F (n)/e(E/F ) ≥ m/e(E/F ) + n−m.

(ii)⇒ (i):
Wir zeigen Eigenschaft (iii) aus Satz 3.1.1.
Sei F ′/F eine endliche Erweiterung. Wir können annehmen, dass F ′/F galoissch
ist; falls nicht, können wir zur normalen Hülle von F ′/F übergehen und die Multi-
plikativität der Differente ausnutzen.
Sei E/F eine endliche Erweiterung in F/F , sodass F ′/F über E definiert ist. Sei
E(m) wieder die von Gal(F sep/E)m festgelassene Erweiterung von E. Sei L/E eine
endliche Erweiterung in F/F . Dann gilt wegen der Multiplikativität der Differente

ν(DL′/L) = ν(DL′/E)− ν(DL/E) (3.5)

und wegen Lemma 2.3.9

ν(DL′/L) = e(E/F )−1
∫ ∞
−1

( 1
[L : L ∩ E(m)]

− 1
[L′ : L′ ∩ E(m) ])dm. (3.6)

Da E′/E eine endliche Erweiterung ist, gibt es ein m0, sodass E′ ⊆ E(m0) gilt. Wir
zeigen nun, dass

[L′ : L′ ∩ E(m)] = [L : L ∩ E(m)] für alle m ≥ m0 (3.7)

gilt. Wenn (3.7) gilt, dann ist der Integrand in (3.5) gleich 0 für m ≥ m0 und es gilt

ν(DL′/L) = e(E/F )−1
∫ m0

−1
( 1
[L : L ∩ E(m)]

− 1
[L′ : L′ ∩ E(m) ])dm

≤ e(E/F )−1
∫ m0

−1
( 1
[L : L ∩ E(m) )dm.

Es gilt L ∩ E(m) ⊆ L ∩ E(m0) für m ≤ m0 und damit

ν(DL′/L) ≤ (m0 + 1)/(e(E/F )[L : L ∩ E(m0)]).

Wegen Lemma 3.1.9 folgt daraus, dass F/F tief verzweigt ist.
Um (3.7) zu zeigen, setzen wir

R(m) := L ∩ E(m), R′(m) := L′ ∩ E(m).
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Da E(m) galoissch über E ist, sind L und E(m) linear unabhängig über R(m). Al-
so gilt [L : R(m)] = [LR′(m) : R′(m)]. Es gilt LR(m)′ ⊆ L′. Andererseits gilt
E′ ⊆ E(m) für m ≥ m0. Damit gilt L′ = E′L ⊆ R′(m)L. Das zeigt (3.7). Damit ist
F/F tief verzweigt.

(ii)⇔ (iii):
Wir zeigen, dass F/F genau dann endlichen Führer hat, wenn es ein ε0 > 0 gibt,
sodass ν(DE/F ) ≤ ε0 für alle endlichen Erweiterungen E/F in F/F gilt.
Sei F ⊆ F (m) für ein m ≥ −1. Dann gilt E ⊆ F (m) für alle endlichen Erweiterungen
E/F in F/F , und aus Lemma 2.3.9 folgt, dass ν(DE/F ) beschränkt ist.
Andersherum sei ν(DE/F ) ≤ ε0 für ein ε0 > 0 und alle endlichen Erweiterungen
E/F in F/F . Sei E/F eine endliche Erweiterung in F/F , sodass E * F (m) für ein
m > 0 (falls es derartige m und E/F nicht gibt, ist die Behauptung klar). Dann
folgt aus Lemma 2.3.9 ν(DE/F ) ≥ m/2, denn es ist [E : E∩F (m)] ≥ 2. Also existiert
ein m ≥ 0, sodass E ⊆ F (m) für alle endlichen Erweiterungen E/F in F/F gilt.

Beispiel. Sei Qp,n die Erweiterung von Qp, die durch Adjungieren einer primiti-
ven n-ten Einheitswurzel entsteht, mit n = pm für eine natürliche Zahl m. Dann
ist Qp∞ :=

⋃
nQp,n tief verzweigt, denn nach [20, IV, §4, Proposition 18] gilt

Gal(Qp,n/Qp)m−1 6= {1}. Das zeigt, dass Qp∞ unendlichen Führer hat.

Beispiel. Sei (p1/pn)n≥1 eine Folge in Qalg
p mit (p1/p)p = p und (p1/pn)p = p1/pn−1

für n ≥ 2. Sei

Fn := Qp(p1/pn) und F := Qp(p1/p∞) :=
⋃
n≥1

Fn.

Dann ist f(X) = Xpn − p das Minimalpolynom von p1/pn über Qp. Da f(X) ein
Eisenstein-Polynom ist, ist Fn/Qp total verzweigt. Es gilt [Fn : Qp] = pn. Außerdem
ist pnν(p1/pn) = ν((p1/pn)pn) = ν(p) = 1, also ist ν(p1/pn) = 1/pn.
Damit ist p1/pn ist ein Primelement von Fn. Deswegen gilt oFn = Zp[p1/pn ]. Nach
[20, III, §6, Corollary 2 zu Lemma 2] gilt DFn/Qp

= (f ′(p1/pn)) = (pn · p(pn−1)·1/pn),
also ν(DFn/Qp

) = n + 1 − 1/pn. Damit gilt ν(DFn/Qp
) −→
n→∞

∞. Also ist F/Qp tief
verzweigt.

3.2 Bezug zur Definition aus [17]

In diesem Abschnitt wollen wir begründen, warum die Definition einer tief verzweig-
ten Erweiterung eines lokalen Körpers mit der entsprechenden Definition aus [17]
übereinstimmt. Abgesehen davon, dass wir so einen alternativen Beweis für Satz
5.4.6 im fünften Kapitel bekommen (siehe Satz 5.4.8), werden wir diese Eigenschaft
tief verzweigter Erweiterungen nicht mehr benutzen.

Sei im Folgenden R ein Ring, A eine R-Algebra und B eine A-Algebra.
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Definition. Sei M ein B-Modul. Eine A-Derivation von B in M ist ein A-Modul-
homomorphismus d : B →M mit

d(bc) = bdc+ cdb für alle b, c ∈ B.

Die Menge dieser Derivationen bildet einen B-Modul, den wir mit DerA(B,M)
bezeichnen.

Lemma 3.2.1. Es existiert bis auf eindeutige Isomorphie genau ein B-Modul ΩB/A

zusammen mit einer A-Derivation dB/A = d : B → ΩB/A, sodass für jede A-
Derivation d′ : B → M in einen B-Modul M genau eine B-lineare Abbildung
f : ΩB/A →M , sodass das Diagramm

B
d′ //

d ""

M

ΩB/A

f

<<

kommutiert, existiert.

Beweis. [4, 7.4 Satz 2]

ΩB/A heißt der Modul der Kähler-Differentiale von B über A.

Korollar 3.2.0.1. Sei M ein B-Modul. Dann ist die Abbilldung

HomB(ΩB/A,M)→ DerA(B,M)
f 7→ f ◦ dB/A

ein Isomorphismus von B-Moduln.

Satz 3.2.2. Sei f : B → C ein Homomorphismus von A-Algebren. Dann ist die
Sequenz

C ⊗B ΩB/A
α→ ΩC/A

β→ ΩC/B → 0,

die durch y ⊗ dB/A(x) α7→ y · dC/A(f(x)), dC/A(z) β7→ dC/B(z) gegeben ist, exakt.

Beweis. [4, 7.4, Satz 5]

Definition (Definition 6.6.1 aus [17]). Sei (F , ν) ein bewerteter Körper und νFsep

eine Bewertung auf einem separabel-algebraischen Abschluss Fsep von F , die ν
fortsetzt. Dann heißt F tief verzweigt, wenn für den Modul der Kähler-Differentiale
ΩoFsep/oF = 0 gilt.

Bemerkung 3.2.3. Die Definition hängt nicht von der Wahl der Fortsetzung νFsep ab:
Sei ν ′Fsep eine weitere Fortsetzung von ν auf Fsep und seien oFsep beziehungsweise
o′Fsep die zugehörigen Bewertungsringe. Dann existiert nach [1, Theorem 3.2.15] ein
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3 Tief verzweigte Körpererweiterungen

σ ∈ Gal(Fsep/F) mit σ(oFsep) = o′Fsep . Wir erhalten mit Satz 3.2.2 die exakte
Sequenz

σ(oFsep)⊗oFsep ΩoFsep/oF
→ Ωσ(oFsep)/oF

→ Ωσ(oFsep)/oFsep
= 0.

Wenn also ΩoFsep/oF
= 0 gilt, dann auch Ωσ(oFsep)/oF

= 0.

Wir wollen also zeigen, dass diese Definition im Falle einer Erweiterung eines
lokalen Körpers mit der Definition aus [8], die wir benutzen, übereinstimmt.

Wir betrachten die Kategorie R-Alg.Morph, deren Objekte Homomorphismen
A → B von R-Algebren sind; wenn dann A′ → B′ ein weiterer Homomorphismus
von R-Algebren ist, dann besteht ein Morphismus von A → B nach A′ → B′ aus
Homomorphismen von R-Algebren ψ : A → A′ sowie ϕ : B → B′, sodass das
Diagramm

A //

ψ
��

B

ϕ
��

A′ // B′

kommutiert.
Außerdem haben wir die Kategorie R-Alg.Mod, die aus Paaren (A,M) besteht,
wobei A eine R-Algebra und M ein A-Modul ist. Die Morphismen in R-Alg.Mod
sind Paare (ϕ, f) : (A,M) → (B,N), wobei ϕ : A → B ein Homorphismus von R-
Algebren ist und f : B⊗AM → N ein Homomorphismus von B-Moduln ist (dabei
wird B ⊗A M mittels Multiplikation auf dem linken Faktor zu einem B-Modul).
Wir können Ω als Funktor von R-Alg.Morph nach R-Alg.Mod auffassen: Sei
A → B ein Objekt in R-Alg.Morph. Diesem ordnen wir das Paar (B,ΩB/A) zu.
Wenn A′ → B′ ein weiteres Objekt in R-Alg.Morph ist und wir einen Morphismus
zwischen A→ B und A′ → B′ haben, das heißt Homomorphismen von R-Algebren
ψ : A→ A′ sowie ϕ : B → B′, sodass das Diagramm

A //

ψ
��

B

ϕ
��

A′ // B′

kommutiert, dann ordnen wir diesem Morphismus den Morphismus (ϕ, f) zu, wobei
f als Komposition des Homomorphismus’ B′ ⊗B ΩB/A → ΩB′/A aus Satz 3.2.2 mit
dem Homomorphismus ΩB′/A → ΩB′/A′ , dB′/Ax 7→ dB′/A′x definiert wird.

Seien (Bi)i∈I R-Algebren mit einer gerichteten Indexmenge I und sodass wir für
i ≤ j eine Inklusion Bi → Bj haben. Sei B = lim−→i

Bi =
⋃
iBi. Außerdem sei Mi

für alle i ≥ 1 ein Bi-Modul. Seien (ιij , fij) : (Bi,Mi) → (Bj ,Mj) Morphismen
in R-Alg.Mod für i ≤ j, wobei ιij : Bi → Bj die Inklusion sei, und sodass die
fij : Bj ⊗Bi Mi →Mj folgende Bedingungen erfüllen:

48



3.2 Bezug zur Definition aus [17]

(i) fii = id,

(ii) fik = fjk ◦ fij für i ≤ j ≤ k.

Dann bilden die ((Bi,Mi))i ein induktives System. Außerdem haben wir Homomor-
phismen von B-Moduln

B ⊗Bi Mi
∼=→ B ⊗Bj Bj ⊗Bi Mi

idB⊗fij−→ B ⊗Bj Mj .

Dadurch bekommen wir ein induktives System (B ⊗Bi Mi)i von B-Moduln und
können in der Kategorie der B-Moduln den Kolimes lim−→i

(B ⊗Bi Mi) bilden.

Lemma 3.2.4. Dann gilt in R-Alg.Mod

lim−→
i

(Bi,Mi) = (B, lim−→
i

(B ⊗Bi Mi)).

Beweis. Wir haben Abbildungen (ιj , uj) : (Bj ,Mj) → (B, lim−→i
(B ⊗Bi Mi)), die

gegeben sind durch die Inklusion ι : Bj → B, und durch die Abbildungen uj :
B⊗Bj Mj → lim−→i

(B⊗Bi Mi), die mit dem Kolimes in der Kategorie der B-Moduln
kommen. Dann gilt ui = uj ◦ fij für i ≤ j, da wir die Morphismen im induktiven
System (B ⊗Bi Mi)i entsprechend definiert haben.
Sei nun (S,N) ein Objekt in R-Alg.Mod mit Abbildungen (ψi, gi) : (Bi,Mi) →
(S,N) (also Homomorphismen ψi : Bi → S und gi : S⊗BiMi → N), die mit den fij
und den ιij verträglich sind. Dann haben wir einen eindeutigen Homomorphismus
ψ : B → S aufgrund der universellen Eigenschaft von B = lim−→i

(Bi) in der Kategorie
der kommutativen Ringe mit 1, und einen eindeutigen Homomorphismus

g : S ⊗B lim−→
i

(B ⊗Bi Mi)
∼=→ lim−→

i

(S ⊗B B ⊗Bi Mi)
∼=→ lim−→

i

(S ⊗Bi Mi)→ N,

indem wir die universelle Eigenschaft von lim−→i
(S⊗BB⊗Bi Mi) in der Kategorie der

S-Moduln benutzen. Durch die gi bekommen wir nämlich Homomorphismen von
S-Moduln

g′i : S ⊗B B ⊗Bi Mi
∼=→ S ⊗Bi Mi

gi→ N,

und dadurch ein induktives System in der Kategorie der S-Moduln. Es gilt nach
Konstruktion (ψi, gi) = (ψ, g)◦(ι, ui). Somit erfüllt lim−→i

(B,B⊗BiMi) die universelle
Eigenschaft des Kolimes.

Seien (Ai)i∈I und (Bi)i∈I R-Algebren mit Inklusionen Ai → Aj und Bi → Bj
für i ≤ j und mit Ai ⊆ Bi, und A =

⋃
iAi sowie B =

⋃
iBi. Wir definieren

ein induktives System in R-Alg.Mod. durch Paare (Bi,ΩBi/Ai
) und Abbildungen

(Bi,ΩBi/Ai
) → (Bj ,ΩBj/Aj

) für i ≤ j, wobei Bj ⊗Bi ΩBi/Ai
→ ΩBj/Aj

durch die
Komposition

Bj ⊗Bi ΩBi/Ai
→ ΩBj/Ai

→ ΩBj/Aj
,
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3 Tief verzweigte Körpererweiterungen

wobei der erste Homomorphismus aus der exakten Sequenz (Satz 3.2.2) kommt und
der zweite Homomorphismus durch ΩBj/Ai

→ ΩBj/Aj
, dBj/Ai

x 7→ dBj/Aj
x definiert

ist, gegeben ist.

Lemma 3.2.5. Es gilt

lim−→
i

(Bi,ΩBi/Ai
) = (B,ΩB/A).

Beweis. Nach Lemma 3.2.4 gilt lim−→i
(Bi,ΩBi/Ai

) ∼= (B, lim−→i
(B ⊗Bi ΩBi/Ai

)). Wir
zeigen nun, dass lim−→i

(B ⊗Bi ΩBi/Ai
) als B-Modul zu ΩB/A isomorph ist.

Sei M ein B-Modul. Wir haben Isomorphismen von B-Moduln

HomB(lim−→
i

(B ⊗Bi ΩBi/Ai
),M) ∼= lim←−

i

(HomB(B ⊗Bi ΩBi/Ai
,M))

∼= lim←−
i

(HomBi(ΩBi/Ai
,M))

∼= lim←−
i

(DerAi(Bi,M))

∼= DerA(B,M).

(Dabei werden HomBi(ΩBi/Ai
,M)) beziehungsweise DerAi(Bi,M) durch b · ϕ :=

(x 7→ bϕ(x)) für ϕ ∈ HomBi(ΩBi/Ai
,M)) beziehungsweise b · f := (x 7→ bf(x)) für

f ∈ DerAi(Bi,M) zu B-Moduln.)
Das Lemma folgt nun aus Lemma 3.2.1.

Satz 3.2.6. Sei L/E eine endliche Erweiterung, wobei E eine Erweiterung von F
ist, sodass die Bewertung auf E diskret ist, πL sei ein Primelement von oL und
DL/E sei die Differente von L/E. Dann wird der oL-Modul ΩoL/oE

von doL/oE
πL

erzeugt und DL/E ist der Annulator des oL-Moduls ΩoL/oE
.

Beweis. [20, III. §7, Proposition 14]

Lemma 3.2.7 (Lemme 4 in [10]). Seien E/L/F endliche Erweiterungen. Aus Satz
3.2.2 erhalten wir einen kanonischen Homomorphismus

α : oE ⊗oL ΩoL/oF
→ ΩoE/oF

y ⊗ doL/oF
x 7→ ydoE/oF

x.

Dieser ist injektiv. Insbesondere ist für jedes Element ω ∈ ΩoL/oF
mit Annulator

Ann(ω) der Annulator des Bildes von 1⊗ ω das Ideal oE ·Ann(ω).

Beweis. Da wir E/L als E/E0/L mit E0/L unverzweigt und E/E0 total verzweigt
schreiben können, reicht es aus, unverzweigte und total verzweigte Erweiterungen
zu betrachten.
Zunächst sei E/L unverzweigt. Sei 0 6= ω ∈ ΩoL/oF

ein beliebiges Element und sei
πL ein Primelement von oL. Dann können wir ω nach Satz 3.2.6 als ω = adoL/oF

πL
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3.2 Bezug zur Definition aus [17]

schreiben mit einem a ∈ oL, und es gilt ν(Ann(ω)) = ν(DL/F ) − ν(a). Es ist
α(1 ⊗ ω) = adE/FπL ∈ ΩoE/oF

, und da πL auch ein Primelement von oE ist, gilt
für ein b ∈ oE genau dann badoE/oF

πL = 0, wenn ν(ba) ≥ ν(DE/F ) = ν(DL/F ) gilt,
denn da E/L unverzweigt ist, gilt ν(DE/F ) = ν(DL/F ). Also ist ν(Ann(α(1⊗ω))) =
ν(DL/F )− ν(a) und es gilt Ann(α(1⊗ ω)) = oE ·Ann(ω).
Sei nun E/L total verzweigt von Grad n, sei πE ein Primelement von oE und sei
f(X) = Xn + an−1X

n−1 + ... + a0 das Minimalpolynom von πE über L. Dann
ist f ein Eisenstein-Polynom und πL = −a0 ist ein Primelement von oL. Sei 0 6=
ω ∈ ΩoL/oF

ein beliebiges Element. Dann können wir wie oben ω nach Satz 3.2.6 als
ω = adoL/oF

πL schreiben mit einem a ∈ oL, und es gilt ν(Ann(ω)) = ν(DL/F )−ν(a).
Es gilt πL = πnE + an−1π

n−1
E + ...a1πE und damit

doE/oF
πL = (a1 + 2a2πE + ...+ nπn−1

E ) · doE/oF
πE = f ′(πE)doE/oF

πE .

Also gilt α(1⊗ω) = f ′(πE)adoE/oF
πE , und für ein b ∈ oE ist genau dann bα(1⊗ω) =

0, wenn ν(bf ′(πE)a) ≥ ν(DE/F ) gilt. Da nach Satz 3.2.6 für das von f ′(πE) erzeugte
Ideal (f ′(πE)) = DE/L gilt und aufgrund der Multiplikativität der Differente ist
bα(1 ⊗ ω) genau dann 0, wenn ν(b) ≥ ν(DL/F ) − ν(a) = ν(Ann(ω)) gilt, woraus
wieder Ann(α(1⊗ ω)) = Ann(ω) · oE folgt.

Seien F/F eine Erweiterung und E/L/F endliche Erweiterungen in F/F .

Lemma 3.2.8. Jeder torsionsfreie oF -Modul ist flach.

Beweis. Jedes endlich erzeugte Ideal I ⊆ oF ist bereits ein Hauptideal. In der
Tat: Sei I von Elementen x1, ..., xn ∈ oF erzeugt und sei 1 ≤ i0 ≤ n so, dass
ν(xi0) = max{ν(xi)| 1 ≤ i ≤ n} gilt. Dann erzeugt xi0 bereits I. Das Lemma folgt
nun aus [5, I, §2, 4, Proposition 3.ii].

Wir haben wegen Lemma 3.2.7 die Inklusion

oE ⊗oL ΩoL/oF
↪→ ΩoE/oF

und damit wegen Lemma 3.2.8 auch einen injektiven Homomorphismus von oF sep-
Moduln

oF sep ⊗oL ΩoL/oF
∼= oF sep ⊗oE oE ⊗oL ΩoL/oF

↪→ oF sep ⊗oE ΩoE/oF
.

Damit erhalten wir durch Übergang zum Kolimes über alle endlichen Erweiterungen
E/F auf der rechten Seite einen injektiven Homomorphismus

oF sep ⊗oL ΩoL/oF
↪→ ΩoF sep/oF

.

Wenn wir nun auf der linken Seite den Kolimes über alle endlichen Erweiterungen
E/F in F/F bilden, bekommen wir einen injektiven Homomorphismus

lim−→
E

(oF sep ⊗oE ΩoE/oF
) ↪→ ΩoF sep/oF

.
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3 Tief verzweigte Körpererweiterungen

Außerdem gilt

lim−→
E

(oF sep ⊗oE ΩoE/oF
) = lim−→

E

(oF sep ⊗oF oF ⊗oE ΩoE/oF
)

= oF sep ⊗oF lim−→
E

(oF ⊗oE ΩoE/oF
)

= oF sep ⊗oF ΩoF/oF
.

Wir können also sowohl ΩoL/oF
als auch ΩoF/oF

als oL- beziehungsweise oF -Untermodul
von ΩoF sep/oF

auffassen. Im Folgenden setzen wir d := doF sep/oF
.

Sei Fun die maximale unverzweigte Teilerweiterung von F sep/F .
Bemerkung 3.2.9. Für eine Erweiterung F/F gilt ΩoFFun/oF

= ΩoFFun/oFun
. Dies

folgt aus Satz 3.2.2.
Sei a ∈ oF sep ein beliebiges Element, und sei L/Fun eine endliche Erweiterung,

sodass a ∈ L ist. Sei πL ein Primelement von oL. Dann ist oL ein freier Modul von
Rang n = [L : Fun] über oFun mit Basis 1, πL, ..., πn−1

L (siehe [20, III, §6, Lemma
3]). Wir finden also ein eindeutiges Polynom f ∈ oFun [X] mit f(πL) = a und von
Grad kleiner als n. Nun setzen wir

δ(a) = min{ν(f ′(πL))− ν(DL/Fun
), 0}.

2

Wenn da 6= 0 ist, ist auch doL/oFun
a 6= 0 und es gilt −ν(Ann(doL/oFun

a)) =
ν(f ′(πL))− ν(DL/Fun

) = δ(a). Wenn L′/Fun eine weitere endliche Erweiterung mit
a ∈ L′ ist, gilt aufgrund von Satz 3.2.73

oLL′ ·Ann(dL/Fun
a) = Ann(dL′L/Fun

a)
= oLL′ ·Ann(dL′/Fun

a).

Also ist δ(a) in diesem Fall unabhängig von der Wahl von L.
Wenn da = 0 gilt, ist auch doL/oFun

a = doL′/oFun
a = 0 und es gilt δ(a) = 0.

Damit definiert δ eine Funktion δ : oF sep → (−∞, 0].
Bemerkung 3.2.10. Für x, y ∈ oF sep gilt xdy = 0 genau dann, wenn ν(x) + δ(y) ≥ 0
ist.

Lemma 3.2.11 (Lemma 2.2. in [2]). Seien x, y ∈ oF sep zwei Elemente mit δ(x) ≤
δ(y). Dann gibt es ein z ∈ oFun [x, y] mit zdx = dy.

2Wir haben die Differente nur für lokale Körper definiert, die insbesondere vollständig sind.
Aber für endliche Erweiterungen von Fun gelten dieselbe Definition und alle hier benötigten
Eigenschaften.

3In Lemma 3.2.7 gehen wir eigentlich von einem vollständigen Körper aus, diese haben wir im
Beweis allerdings nicht benutzt. Abgesehen davon gilt für einen Homomorphismus A→ B von
R-Algebren ΩB′/A′ ∼= A′ ⊗A ΩB/A, wobei A′ eine A-Algebra und B′ = B ⊗ A′ ist (siehe [7,
Proposition 16.4]). Ω verträgt sich hier also mit Vervollständigen.
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Beweis. Sei π = πFun[x,y] ein Primelement in oFun[x,y] und seien h1, h2 ∈ oFun[X]
Polynome, sodass x = h1(π) und y = h2(π) gilt. Dann ist dx = h′1(π)dπ und
dy = h′2(π)dπ. Falls δ(y) = 0 ist, dann gilt dy = 0 und wir können z = 0 wählen.
Wenn δ(y) < 0 ist, dann gilt

δ(x) = ν(h′1(π)) + δ(π) ≤ ν(h′2(π)) + δ(π) = δ(y).

Also können wir z = h′2(π)/h′1(π) ∈ oFun[x,y] wählen.

Satz 3.2.12 (Theorem 2.2. in [2]). Sei F/F eine Körpererweiterung mit Fun ⊆ F .
Dann sind die folgenden Bedingungen äquivalent:

(i) F/F ist tief verzweigt (im ursprünglichen Sinn).

(ii) δ(oF ) ist unbeschränkt.

(iii) Für jede Erweiterung F ′/F gilt ΩoF′/oF
= 0.

(iv) Für jede Erweiterung F ′/F gilt ΩoF′/oFun
= oF ′ · ΩoF/oFun

.

Beweis. Man sieht an Eigenschaft (iii) aus Lemma 3.1.10, dass (i) zu (ii) äquivalent
ist. Dabei benutzen wir, dass für eine endliche Erweiterung E/F für die Differente
ν(DE/F ) = ν(DE/E0) gilt, wobei E0/F die maximale unverzweigte Teilerweiterung
von E/F ist (siehe [20, III, § 5, Theorem 1]). Dann sehen wir an der Definition der
Differente, dass ν(DE/F ) = ν(DEun/Fun

) gilt.
Gelte (ii). Sei x ∈ oF ′ für eine Erweiterung F ′/F . Dann existiert ein y ∈ oF , sodass
δ(y) ≤ δ(x) gilt. Wegen Lemma 3.2.11 finden wir ein z ∈ oF ′ mit dx = zdy ∈
oF ′ · ΩoF/oFun

, also gilt (iv).
Gelte (iv). Wir nehmen an, dass δ(oF ) beschränkt ist. Dann gibt es ein N ∈ N,
sodass −N ≤ inf{δ(a)|a ∈ oF} gilt. Dann gilt πNF ΩoF/oFun

= 0 (für ein Primelement
πF von oF ). Für ein α ∈ oF sep mit δ(α) < −N gilt πNF dα 6= 0, also ist dα 6∈
oF sep · ΩoF/oFun

, Widerspruch.
Um zu sehen, dass (iii) zu (iv) äquivalent ist, betrachten wir eine Erweiterung
F ′/F und erhalten nach Satz 3.2.2 die exakte Sequenz

oF ′ ⊗oF ΩoF/oFun

f→ ΩoF′/oFun
→ ΩoF′/oF

→ 0.

Da das Bild von f gleich oF ′ · ΩoF/oFun
ist, ist (iii) äquivalent zu (iv).

Lemma 3.2.13. Sei F/F eine Körpererweiterung und F ′/F eine endliche Erwei-
terung. Dann gilt oF ′Fun ⊗oF′ ΩoF′/oF

∼= ΩoF′Fun
/oFFun

.

Beweis. Sei L/F eine unverzweigte endliche Erweiterung, und sei E/F eine endliche
Erweiterung in F/F , sodass F ′/F über E definiert ist. Dann haben wir die exakte
Sequenz (siehe Satz 3.2.2)

0 = oE′L ⊗oEL ΩoEL/oE
→ ΩoE′L/oE

→ ΩoE′L/oEL
→ 0,
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wobei EL/E unverzweigt ist, woraus ΩoEL/oE
= 0 folgt. Also gilt ΩoE′L/oE

∼=
ΩoE′L/oEL

.
Außerdem haben wir die exakte Sequenz

0→ oE′L ⊗oE′ ΩoE′/oE
→ ΩoE′L/oE

→ ΩoE′L/oE′
= 0,

wobei ΩoE′L/oE′
= 0 gilt, da E′L/E′ unverzweigt ist. Außerdem ist der Homomor-

phismus oE′L ⊗oE′ ΩoE′/oE
→ ΩoE′L/oE

injektiv aufgrund von Lemma 3.2.7. Also
haben wir einen Isomorphismus oE′L ⊗oE′ ΩoE′/oE

→ ΩoE′L/oE
und damit gilt

oE′L ⊗oE′ ΩoE′/oE
∼= ΩoE′L/oEL

.

Wir betrachten nun den Kolimes über alle endlichen unverzweigten Erweiterungen
L/F : lim−→

L

(oE′L,ΩoE′L/oEL
). Nach Lemma 3.2.5 gilt

lim−→
L

(oE′L,ΩoE′L/oEL
) = (oE′Fun ,ΩoE′Fun

/oEFun
).

Es gilt

lim−→
L

(oE′L,ΩoE′L/oEL
) ∼= lim−→

L

(oE′L, oE′L ⊗oE′ ΩoE′/oE
)

∼= (oE′Fun , lim−→
L

(oE′Fun ⊗oE′L oE′L ⊗oE′ ΩoE′/oE
))

∼= (oE′Fun , lim−→
L

(oE′Fun ⊗oE′ ΩoE′/oE
))

∼= (oE′Fun , oE′Fun ⊗oE′ ΩoE′/oE
).

Also gilt insgesamt ΩoE′Fun
/oEFun

∼= oE′Fun ⊗oE′ ΩoE′/oE
.

Dann gilt für den Kolimes über alle endlichen Erweiterungen E/F in F/F

lim−→
E

(oE′Fun ,ΩoE′Fun
/oEFun

) ∼= lim−→
E

(oE′Fun , oE′Fun ⊗oE′ ΩoE′/oE
)

∼= (oF ′Fun , lim−→
E

(oF ′Fun ⊗oE′Fun
oE′Fun ⊗E′ ΩoE′/oE

))

∼= (oF ′Fun , lim−→
E

(oF ′Fun ⊗E′ ΩoE′/oE
))

∼= (oF ′Fun , lim−→
E

(oF ′Fun ⊗oF′ oF ′ ⊗E′ ΩoE′/oE
))

∼= (oF ′Fun , oF ′Fun ⊗oF′ lim−→
E

(oF ′ ⊗E′ ΩoE′/oE
))

∼= (oF ′Fun , oF ′Fun ⊗oF′ ΩoF′/oF
).

Wegen Lemma 3.2.5 gilt

lim−→(oE′Fun ,ΩoE′Fun
/oEFun

) ∼= (oF ′Fun ,ΩoF′Fun
/oFFun

),
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3.2 Bezug zur Definition aus [17]

also insgesamt

(oF ′Fun ,ΩoF′Fun
/oFFun

) ∼= (oF ′Fun , oF ′Fun ⊗oF′ ΩoF′/oF
),

woraus die Behauptung folgt.

Wenn F/F eine Körpererweiterung ist, dann ist F/F genau dann tief verzweigt,
wenn FFun/F tief verzweigt ist, wie man an Lemma 3.1.10 sieht: Wenn F/F tief
verzweigt ist, dann klarerweise auch FFun/F . Wenn hingegen F/F nicht tief ver-
zweigt ist, dann existiert ein m ≥ 0, sodass F ⊆ F (m) gilt. Aber wegen Fun ⊆
F (0) ⊆ F (m) ist damit auch FFun ⊆ F (m).
Andererseits zeigt das vorherige Lemma, dass ΩoF′Fun

/oFFun
= 0 genau dann gilt,

wenn oF ′Fun ⊗F ′ ΩoF′/oF
= 0 ist. Aber da die Inklusion oF ′ → oF ′Fun als lokaler

flacher Homomorphismus von lokalen Ringen treu-flach ist (siehe [3, Tag 00HR]),
ist dies genau dann der Fall, wenn ΩoF′/oF

= 0 gilt. Nach [17, Theorem 6.3.23] (und
Lemma 3.2.5) ist dies äquivalent zu ΩoF sep/oF = 0.
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4 Tief verzweigt impliziert perfektoid

Sei in diesem Kapitel F/F eine tief verzweigte Erweiterung. Nach Bemerkung 3.1.4
ist die Bewertung ν auf F nicht diskret. Wir bezeichnen das maximale Ideal des
Bewertungsrings oF = {x ∈ F|ν(x ≥ 0} mit m = mF = {x ∈ F|ν(x) > 0}.

Wir werden in diesem Kapitel einige ”Fast-Begriffe” (fast null, fast injektiv, Fast-
Isomorphismus etc.) definieren und einige Resultate aus der kommutativen Algebra
in diesen Kontext übertragen. Anschließend zeigen wir, dass der Homomorphismus
τF ′/F fast surjektiv ist. Darauf aufbauend beweisen wir, dass die Inklusion fast
schwach étale ist, woraus wir schließlich folgern, dass der Frobenius auf oF̂/poF̂
surjektiv ist.

4.1 Fast kommutative Algebra

Lemma 4.1.1. Es gilt m2 = m. Darüber hinaus lässt sich jedes Element ε ∈ m als
Produkt zweier Elemente aus m schreiben.

Beweis. Die Inklusion m2 ⊆ m ist klar.
Andersherum sei ε ∈ m\{0} beliebig. Da die Bewertung nichtdiskret ist, finden wir
ein ε′ ∈ m mit ν(ε′) < ν(ε), also gilt ε/ε′ ∈ m und damit ε = ε′ · ε/ε′ ∈ m2.

Bemerkung 4.1.2 (Remark 2.1.4 in [17]). Es gilt m ⊗oF m = m. In der Tat: Die
Inklusion m→ oF induziert eine Injektion m⊗oF m→ m⊗oF oF , x⊗ y 7→ xy. Das
Bild ist m2 = m.

Definition (2.1.3. aus [17]). (i) Sei M ein oF -Modul. Dann heißt M fast null,
wenn mM = 0 gilt.

(ii) Sei N ein weiterer oF -Modul und sei f : M → N ein Modulhomomorphis-
mus. Dann heißt f fast injektiv, wenn mKer(f) = 0, und fast surjektiv, wenn
mCoker(f) = 0 gilt. Wenn f fast surjektiv und fast injektiv ist, heißt f Fast-
Isomorphismus.

Lemma 4.1.3 (Remark 2.1.4.(i) in [17]). Ein oF -Modul M ist genau dann fast
null, wenn m⊗oF M = 0 ist.

Beweis. Sei m ⊗oF M = 0. Wir haben einen surjektiven Homomorphismus m ⊗oF

M → mM, ε⊗m 7→ εm, also ist mM = 0. Umgekehrt sei mM = 0. Da m2 = m gilt,
ist damit m⊗oF M = m⊗oF mM = 0.
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4 Tief verzweigt impliziert perfektoid

Lemma 4.1.4 (Remark 2.1.4.(i) in [17]). Seien M und N zwei oF -Moduln. Ein
Homomorphismus f : M → N ist genau dann ein fast injektiv beziehungsweise fast
surjektiv, wenn id⊗ f : m⊗oF M → m⊗oF N injektiv beziehungsweise surjektiv ist.

Beweis. Wir zeigen die Aussage für einen Fast-Isomorphismus f ; die Aussagen für
fast injektive beziehungsweise fast surjektive Homomorphismen ergeben sich direkt
aus dem Beweis.
Sei f : M → N ein Fast-Isomorphismus. Wir haben die exakte Sequenz

0→ Ker(f)→M → N → Coker(f)→ 0.

Das Ideal m ist nach Lemma 3.2.8 ein flacher oF -Modul. Damit ist auch die indu-
zierte Sequenz

0→ m⊗oF Ker(f)→ m⊗oF M → m⊗oF N → m⊗oF Coker(f)→ 0

exakt.
Nach Lemma 4.1.3 ist m ⊗oF Ker(f) = m ⊗oF Coker(f) = 0, also ist id ⊗ f :
m⊗oF M → m⊗oF N ein Isomorphismus.
Sei umgekehrt id⊗ f : m⊗oF M → m⊗oF N ein Isomorphismus. Dann gilt m⊗oF

Ker(f) = m ⊗oF Coker(f) = 0, denn wir können, da m flach ist, sowohl Kern als
auch Cokern von m ⊗oF M → m ⊗oF N mit m ⊗oF Ker(f) bzw. m ⊗oF Coker(f)
identifizieren. Also gilt auch mKer(f) = mCoker(f) = 0 nach Lemma 4.1.31.

Die folgenden Resultate sind Fast-Versionen von allgemeinen Sätzen über flache
und schwach étale Homomorphismen, vergleiche z.B. [3, Tag 092A].
Sei f : A → B ein Homomorphismus von oF -Algebren. Dann wird B durch f zu
einer A-Algebra. Wenn I ⊆ A ein Ideal ist, bezeichnen wir mit IB = BI das von I
erzeugte Ideal in B.

Definition. Sei f : A → B ein Homomorphismus von oF -Algebren. Dann heißt f
fast flach, wenn für jeden injektiven Homomorphismus g : M → N von A-Moduln
der Kern der induzierten Abbildung

B ⊗AM → B ⊗A N

fast null ist.

Lemma 4.1.5. Seien A und B zwei oF -Algebren. Dann ist f : A→ B genau dann
fast flach, wenn m⊗oF B ein flacher A-Modul ist.

Beweis. Sei g : M → N ein injektiver Homomorphismus von A-Moduln. Wir haben
die exakte Sequenz

0→ Ker(id⊗ g)→ B ⊗AM → B ⊗A N.
1Der Beweis stammt aus [6].
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4.1 Fast kommutative Algebra

Nach Lemma 3.2.8 ist auch die induzierte Sequenz

0→ m⊗oF Ker(id⊗ g)→ m⊗oF B ⊗AM → m⊗oF B ⊗A N

exakt. Wenn f : A → B fast flach ist, wird Ker(id ⊗ g) von m annuliert, und mit
Lemma 4.1.3 folgt m ⊗oF Ker(id ⊗ g) = 0. Wenn andererseits m ⊗oF B ein flacher
A-Modul ist, dann ist wieder nach Lemma 4.1.3 m ⊗oF Ker(id ⊗ g) = 0, also ist
f : A→ B fast flach.

Bemerkung 4.1.6. Wenn f : A→ B fast flach ist und g : M → N ein fast injektiver
Homomorphismus von A-Moduln ist, dann ist die induzierte Abbildung B⊗AM →
B ⊗A N fast injektiv.

Lemma 4.1.7. Seien A → B sowie B → C fast flache Homomorphismen von
oF -Algebren. Dann ist auch die Komposition A→ B → C fast flach.

Beweis. Sei h : M → N ein injektiver Homomorphismus von A-Moduln. Wir haben
die exakte Sequenz

0→ Ker(idB ⊗ h)→ B ⊗AM
idB⊗h−→ B ⊗A N.

Nach Lemma 4.1.5 ist die induzierte Sequenz

0→ m⊗oF C ⊗B Ker(idB ⊗ h)→ m⊗oF C ⊗B B ⊗AM → m⊗oF C ⊗B B ⊗A N

exakt, also ist auch die Sequenz

0→ m⊗oF C ⊗B Ker(idB ⊗ h)→ m⊗oF C ⊗AM → m⊗oF C ⊗A N

exakt. Weiterhin gilt m ⊗oF Ker(idB ⊗ h) = 0, da B ein fast flacher A-Modul ist.
Deswegen ist m ⊗oF C ⊗oF Ker(idB ⊗ h) ∼= C ⊗oF m ⊗oF Ker(idB ⊗ h) = 0. Wir
haben den kanonischen surjektiven Homomorphismus

0 = m⊗oF C ⊗oF Ker(idB ⊗ h)→ m⊗oF C ⊗B Ker(idB ⊗ h)
x⊗ y ⊗ z 7→ x⊗ y ⊗ z.

Also gilt m⊗oF C⊗B Ker(id⊗h) = 0. Damit haben wir einen injektiven Homomor-
phismus

id⊗ id⊗ h : m⊗oF C ⊗AM → m⊗oF C ⊗A N.

Somit ist nach Lemma 4.1.4 der Homomorphismus id⊗h : C⊗AM → C⊗AN fast
injektiv, woraus die Behauptung folgt.

Lemma 4.1.8 (Basiswechsel). Sei A → B ein fast flacher Homomorphismus von
oF -Algebren. Wenn ϕ : A → A′ ein Homomorphismus von oF -Algebren ist, dann
ist A′ → B ⊗A A′ fast flach.

59



4 Tief verzweigt impliziert perfektoid

Beweis. Sei f : M → N ein injektiver Homomorphismus von A′-Moduln. Dann ist
f auch als Homomorphismus von A-Moduln injektiv. Wir haben das kommutative
Diagramm von A-Moduln

B ⊗A A′ ⊗A′ M
id⊗f //

∼=
��

B ⊗A A′ ⊗A′ N
∼=
��

B ⊗AM id⊗f
// B ⊗A N

Die Behauptung folgt, da A→ B fast flach ist.

Definition (Fast schwach étale Algebren). Sei ϕ : A → B ein Homomorphismus
von oF -Algebren. Dann heißt ϕ fast schwach étale, wenn B ein fast flacher A-Modul
ist und wenn B außerdem ein fast flacher B ⊗A B-Modul ist, wobei B durch die
Multiplikationsabbildung µ : B ⊗A B → B, x ⊗ y 7→ xy zu einem B ⊗A B-Modul
wird.

Lemma 4.1.9. Sei A eine oF -Algebra. Sei ϕ : B → C ein Homomorphismus von
fast schwach étalen A-Algebren. Dann ist ϕ fast schwach étale.

Beweis. Wir schreiben ϕ : B → C als Komposition von B → C ⊗A B, x 7→ 1 ⊗ x,
mit C ⊗A B → C, x⊗ y 7→ x · ϕ(y). Der erste Homomorphismus ist fast flach nach
Lemma 4.1.8, denn er ist der Basiswechsel von A→ C durch A→ B.
Um zu sehen, dass auch der zweite Homomorphismus fast flach ist, betrachten
wir den Basiswechsel des fast flachen Ringhomomorphismus’ B ⊗A B → B be-
züglich des Ringhomomorphismus’ B ⊗A B → C ⊗A B: Der Homomorphismus
C ⊗A B → B ⊗B⊗AB (C ⊗A B) ist nach Lemma 4.1.8 fast flach, und wir haben
einen Isomorphismus von A-Moduln

B ⊗B⊗AB (C ⊗A B) ∼= C,

b1 ⊗ c⊗ b2 7→ ϕ(b1b2) · c.

Also ist auch C ⊗A B → C fast flach, und aus Lemma 4.1.7 folgt, dass ϕ : B → C
fast flach ist.
Der kanonische Homomorphismus C ⊗A C → C ⊗B C ist surjektiv. Damit gilt
C ⊗B C ⊗C⊗AC C ⊗B C ∼= C ⊗B C, also ist C ⊗B C ⊗C⊗AC C ⊗B C → C ⊗B C fast
flach. Da auch C⊗AC → C fast flach ist, ist C⊗BC → C fast flach (denn wenn wir
X = C ⊗A C und Y = C ⊗B C setzen, haben wir Y ⊗Y⊗XY (C ⊗X M) = C ⊗Y M
für einen Y -Modul M).

Lemma 4.1.10. Sei f : A→ B ein Homomorphismus von oF -Algebren. Dann sind
folgende Bedingungen äquivalent:

(i) f ist fast flach und für einen A-Modul M folgt aus m⊗oF B⊗AM = 0 schon
m⊗oF M = 0;
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4.2 τ ist fast surjektiv

(ii) f ist fast flach und für jedes echte Ideal I von A folgt aus m ⊗oF B/BI = 0
schon m⊗oF A/I = 0.

Beweis. Es gilt B/BI ∼= B ⊗A A/I, also gilt (i) ⇒ (ii). Gelte nun (ii) und sei M
ein A-Modul, sodass m ⊗oF B ⊗A M = 0 gilt. Wenn M 6= 0, dann existiert ein
Element 0 6= x ∈ M . Sei I ( A der Annulator von x. Wir haben die Inklusion
A/I ∼= Ax ↪→M . Da f : A→ B fast flach ist, ist die induzierte Abbildung

m⊗oF B ⊗A A/I ∼= m⊗oF B/BI ↪→ m⊗oF B ⊗AM = 0

injektiv, also gilt m ⊗oF B/BI = 0. Mit (ii) folgt m ⊗oF Ax
∼= m ⊗oF A/I = 0 für

beliebiges x ∈M , das heißt m⊗oF M = 0, also gilt (i).

Bemerkung 4.1.11. Wir nennen einen Homomorphismus f : A→ B von oF -Moduln,
der die äquivalenten Eigenschaften von Lemma 4.1.10 erfüllt, fast treu-flach.

4.2 τ ist fast surjektiv

Sei für den Rest des Kapitels F ′/F eine endliche Erweiterung von Grad d mit
F ′ ⊆ F sep.

Lemma 4.2.1. Es existieren für jedes ε ∈ mF \ {0} Elemente e1, ..., ed ∈ oF ′, die
eine F-Basis von F ′ bilden und sodass der Kokern der Inklusion

⊕
i eioF → oF ′

von ε annuliert wird.

Beweis. Sei ε ∈ m \ {0}. Wähle eine endliche Erweiterung E/F in F/F so, dass
F ′/F über E definiert ist und ν(DE′/E) < ν(ε) gilt. Sei e1, ..., ed eine oE-Basis von
oE′ . Dann ist e1, ..., ed auch eine F-Basis von F ′, denn da e1, ..., ed eine oE-Basis
von oE′ ist, ist es eine E-Basis von E′, und es gilt F ′ = FE′ und [E′ : E] = [F ′ : F ].
Sei e∗1, ..., e∗d die duale Basis von E′/E unter der Spurabbildung, das heißt es ist

TrE′/E(eie∗j ) =
{

1, falls i = j

0, falls i 6= j.

Sei y ∈ oF ′ beliebig. Schreibe y =
∑
aiei für bestimmte ai ∈ F . Es gibt ein

a ∈ oF \ {0}, sodass a · e∗i ∈ oF ′ für alle 1 ≤ i ≤ d gilt, und es ist ν(a) = ν(DE′/E)
nach Definition der Differente. Wir haben TrF ′/F (y ·a · e∗i ) ∈ oF für alle i = 0, ..., d,
andererseits ist TrF ′/F (y · a · e∗i ) = a · ai für alle i = 0, ..., d, das heißt a · ai ∈ oF .
Der Kokern der Inklusion ι :

⊕
eioF → oF ′ wird also von δ für alle δ ∈ mF mit

ν(δ) ≥ ν(a) annuliert. Da ε ∈ m \ {0} beliebig war, folgt die Behauptung.

Bemerkung 4.2.2. Diese Aussage gilt auch ohne die Voraussetzung "tief verzweigt",
siehe Proposition 6.3.8. in [17].
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4 Tief verzweigt impliziert perfektoid

Beispiel (Example 4.9 in [19], Example 2 in [13]). Sei p 6= 2. Wir setzen F :=
Qp(p1/p∞) und F ′ := F(p1/2) sowie Fn = Qp(p1/pn) und F ′n = Fn(p1/2). Dann
wird oF ′n nach dem Lemma von Bezout als oFn-Algebra von p1/2pn erzeugt, und
die Differente ist nach [20, III, §6, Corollary 2] das Ideal (p1/2pn). Der Kokern der
Inklusion

oF ⊕ p1/2pn
oF → oF ′

wird von p1/2pn annuliert.
Das folgende Lemma zeigt, dass der Homomorphismus

τ := τF ′/F : oF ′ → HomoF (oF ′ , oF )
y 7→ (x 7→ TrF ′/F (xy)),

fast surjektiv ist.

Lemma 4.2.3. Es gibt für jedes ε ∈ mF \ {0} und jedes ϕ ∈ HomoF (oF ′ , oF )
ein zε ∈ oF ′, sodass TrF ′/F (zεy) = εϕ(y) für alle y ∈ oF ′ gilt, das heißt es gilt
ε · Coker(τ) = 0.

Beweis. Seien ϕ ∈ HomoF (oF ′ , oF ) und ε ∈ mF \ {0} beliebig. Wir finden nach
Lemma 4.1.1 Elemente ε1, ε2 ∈ mF mit ε = ε1 · ε2. Betrachte ε1 · ϕ. Wir finden
nach Lemma 4.2.1 eine F-Basis e1, ..., ed ∈ oF ′ von F ′, sodass für alle x ∈ oF ′ das
Element ε1 ·x in

⊕
i eioF liegt. Dann setze ε1 ·ϕ fort zu einer F-linearen Abbildung

Φ : F ′ → F . Das geht, da man für jedes y ∈ oF ′ eindeutige b1, ..., bd ∈ oF mit
ε1 · y =

∑
i biei findet.

Da F/F tief verzweigt ist, finden wir eine endliche Erweiterung E/F in F/F , sodass
F ′/F über E definiert ist und sodass ν(DE′/E) < ν(ε2) gilt. Wegen Lemma 2.1.10
können wir ε2 ∈ mE annehmen.
Da TrF ′/F nicht ausgeartet ist, gibt es ein x ∈ F ′ mit

Φ(y) = Tr(xy) für alle y ∈ F ′. (4.1)

Sei e′1, ..., e′d eine E-Basis von E′ (und damit eine F-Basis von F ′). Schreibe x =∑
aie
′
i mit ai ∈ F . Definiere E2 := E[a1, ..., ad]. Dann ist F ′/F über E2 definiert

mit E′2 = E′[a1, ..., ad]. Nach Lemma 2.1.10 ist

ν(DE′2/E2) ≤ ν(DE′/E) ≤ ν(ε2). (4.2)

Es gilt Tr(xy) = TrE′2/E2(xy) ∈ E2 für alle y ∈ E′2. Damit folgt ε1 · ϕ(y) ∈ oE′2 für
alle y ∈ oE′2 , das heißt es ist

ε1 · ϕ|E′2 ∈ HomoE2
(oE′2 , oE2).

Wegen (4.2) und Lemma 2.1.12 ist ε2 ∈ AnnoE′2
(Coker(τE′2/E2)), das heißt wir finden

ein zε ∈ oE′2 mit

ε · ϕ|oE′2
(y) = ε2 · ε1 · ϕ|oE′2

(y) = TrE′2/E2(zεy).
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4.3 oF → oFsep ist fast schwach étale

Aufgrund der Injektivität der Abbildung τE′2/E2 gilt ε2 · x = zε, und aufgrund von
(4.1) gilt

ε · ϕ(y) = Tr(zεy) für alle y ∈ oF ′ .

Also erfüllt zε die gewünschte Eigenschaft.

Bemerkung 4.2.4. Hier ist der wesentliche Punkt, an dem die Voraussetzung ”tief
verzweigt” eingeht. Alles Weitere funktioniert unter Benutzung der Aussage des
vorherigen Lemmas; die Voraussetzung ”tief verzweigt” wird nicht mehr explizit
benutzt.

4.3 oF → oFsep ist fast schwach étale
Wir definieren einen (oF -linearen) Homomorphismus σ durch

σ : oF ′ ⊗oF HomoF (oF ′ , oF )→ HomoF (oF ′ , oF )
x⊗ ϕ 7→ (y 7→ ϕ(xy)).

Dadurch wird HomoF (oF ′ , oF ) zu einem oF ′-Modul.
Der Homomorphismus τ = τF ′/F : oF ′ → HomoF (oF ′ , oF ) ist oF ′-linear, denn für
Elemente x, y, b ∈ oF ′ gilt b · (τ(x))(y) = (τ(x))(by) = TrF ′/F (bxy) = (τ(bx))(y).

Sei ε ∈ m \ {0}. Wir wählen wie in Lemma 4.2.1 Elemente ei, sodass der Kokern
der Inklusion

⊕
i eioF → oF ′ von ε annuliert wird. Dann ist die Abbildung

ωε :
⊕
i

eioF ⊗oF HomoF (
⊕
i

eioF , oF )→ HomoF (
⊕
i

eioF ,
⊕
i

eioF ),

x⊗ ϕ 7→ (y 7→ x · ϕ(y))

ein Isomorphismus von oF -Moduln, da
⊕
i eioF ein endlich erzeugter freier oF -

Modul ist (Lemma 2.1.4).

Lemma 4.3.1 (vgl. Lemma 2.4.29 in [17]). Der Homomorphismus

ω : oF ′ ⊗oF HomoF (oF ′ , oF )→ HomoF (oF ′ , oF ′),
x⊗ ϕ 7→ (y 7→ x · ϕ(y))

ist fast injektiv.

Beweis. Nach Lemma 4.2.1 gibt es für jedes ε ∈ m \ {0} Elemente ei ∈ oF ′ , sodass
der Kokern der Inklusion ι :

⊕
i eioF → oF ′ von ε annuliert wird. Wir haben also

Abbildungen
oF ′

·ε−→
⊕
i

eioF
ι→ oF ′ , (4.3)
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4 Tief verzweigt impliziert perfektoid

deren Komposition ε · idoF′ ist. Es gilt zudem

oF ′⊗oFHomoF (
⊕
i

eioF , oF ) ∼= oF ′⊗oF

⊕
i

eioF ∼=
⊕

eioF ′ ∼= HomoF (
⊕
i

eioF , oF ′).

Wir betrachten nun das kommutative Diagramm

oF ′ ⊗oF HomoF (oF ′ , oF ) f1 //

ω

��

oF ′ ⊗oF HomoF (
⊕

i eioF , oF )
∼=
��

f2 // oF ′ ⊗oF HomoF (oF ′ , oF )

ω

��
HomoF (oF ′ , oF ′)

g1 // HomoF (
⊕

i eioF , oF ′)
g2 // HomoF (oF ′ , oF ′)

Dabei werden die waagerechten Homomorphismen durch (4.3) induziert; ihre
Komposition ist also Multiplikation mit ε.
Sei x ∈ Ker(ω). Dann gilt g1(ω(x)) = 0, d.h. wegen Kommutativität des Diagramms
auch f1(x) = 0 und damit 0 = f2(f1(x)) = ε · x. Also gilt ε ·Ker(ω) = 0.

Sei ε = ε1 ·ε2 ∈ mF \{0} beliebig und sei idoF′ die Identität auf oF ′ . Wegen Lem-
ma 4.2.1 finden wir geeignete ei, sodass der Kokern der Inklusion

⊕
i eioF → oF ′

von ε1 annuliert wird.
Wir finden ein eindeutiges Element ζ̂ε1 =

∑
j xj⊗fj ∈

⊕
i eioF⊗oFHomoF (

⊕
i eioF , oF )

mit ωε1(ζ̂ε1) = id⊕
i
eioF

.

Setze fj fort zu einer F-linearen Abbildung Fj : F ′ → F . Dann gilt ε1·Fj(oF ′) ⊆ oF .
Sei ζε1 :=

∑
j xj ⊗ ε1Fj|oF′ ∈ oF ′ ⊗oF HomoF (oF ′ , oF ). Dann gilt für b ∈ oF ′

ω(ζε1)(b) =
∑
j

xj · ε1Fj|oF′ (b)

=
∑
j

xj · Fj|oF′ (ε1b)

=
∑
j

xj · fj(ε1b) = ε1b,

das heißt es gilt ω(ζε1) = ε1 · idoF′ .
Wir versehen HomoF (oF ′ , oF ′) durch ((x⊗y)·ϕ)(z) := x·ϕ(yz) mit einer oF ′⊗oF oF ′-
Modulstruktur, und ω sowie ωε sind diesbezüglich linear.

Wir haben die Multiplikationsabbildung µ : oF ′⊗oF oF ′ → oF ′ , die durch x⊗y 7→
xy induziert wird. µ ist ein oF -Algebrenhomomorphismus. Setze I := Ker(µ).
Das Tensorprdoukt oF ′ ⊗oF HomoF (oF ′ , oF ) wird durch

oF ′ ⊗oF oF ′ × oF ′ ⊗oF HomoF (oF ′ , oF )→ oF ′ ⊗oF HomoF (oF ′ , oF ),
(a⊗ b, x⊗ ϕ) 7→ ax⊗ bϕ

zu einem oF ′ ⊗oF oF ′-Modul.
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4.3 oF → oFsep ist fast schwach étale

Lemma 4.3.2 (vgl. Claim 4.1.16 in [17]). Es gilt ε2 · I · ζε1 = 0 und σ(ζε1) =
ε1 · TrF ′/F .

Beweis. Wir berechnen für b1, b2, b3 ∈ oF ′ .

ω((b1 ⊗ b2) · ζε1)(b3) = ((b1 ⊗ b2) · ω(ζε1))(b3) = ε1 · b1b2b3.

Es gilt damit für alle Elementartensoren y = y1⊗y2 ∈ oF ′⊗oF oF ′ und alle z ∈ oF ′ :

ω(y · ζε1)(z) = ((y1 ⊗ y2) · ω(ζε1)(z))
= ε1 · y1y2z

= ω((µ(y)⊗ 1) · ζε1)(z).

Da wir jedes Element aus oF ′ ⊗oF oF ′ als Summe von Elementartensoren schreiben
können und ω ein Homomorphismus ist, folgt ω(y · ζε1)(z) = 0 für alle y ∈ I =
Ker(µ), das heißt y · ζε1 liegt im Kern von ω. Der Homomorphismus ω ist fast
injektiv nach Lemma 4.3.1, also wird der Kern von ω insbesondere von ε2 annuliert.
Das zeigt die erste Gleichheit.
Bezeichne mit trε1 die Spurabbildung auf HomoF (

⊕
i eioF ,

⊕
i eioF ), definiert als

Komposition

trε1 := evε1 ◦ ω−1
ε1 .

Dabei bezeichnet evε1 die Evaluationsabbildung

evε1 :
⊕
i

eioF ⊗oF HomoF (
⊕
i

eioF , oF )→ oF ,

x⊗ ϕ 7→ ϕ(x).

Dann gilt Tr|⊕
i
eioF

(x) = trε1(µx) für x ∈
⊕

i eioF , wobei Tr = Tr|F ′/F die Spurab-
bildung von F ′/F bezeichnet, denn wir können die Homomorphismen µx, trε1 , ωε1

und evε1 alle F-linear auf die jeweiligen Moduln für F ′/F fortsetzen und erhalten
dadurch die jeweiligen Homomorphismen für F ′/F .
Wir berechnen nun für b ∈ oF ′

σ(ζε1)(b) = σ(
∑
j

xj ⊗ ε1Fj|oF′ )(b)

=
∑
j

ε1Fj|oF′ (xjb)

= ev((1⊗ b) · ζε1)
= trε1(ωε1((1⊗ ε1b) · ζ̂ε1))
= trε1((1⊗ ε1b) · ωε1(ζ̂ε1))
= trε1((1⊗ ε1b) · id⊕

i
eioF

)

= ε1 · Tr(b).
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4 Tief verzweigt impliziert perfektoid

oF ′ wird durch µ und oF ′ ⊗oF oF ′ wird durch x⊗ x′ · y⊗ y′ = xy⊗ x′y′ zu einem
oF ′ ⊗oF oF ′-Modul.

Nach Lemma 4.2.3 wird der Kokern von τ von m annuliert, deswegen und wegen
Lemma 3.2.8 können wir

eε := (idoF′ ⊗ τ
−1)(ε2 · ζε1) ∈ oF ′ ⊗oF oF ′

definieren.
Es gilt τ ◦ µ = σ ◦ (idoF′ ⊗ τ), also wegen Lemma 4.3.2 τ(µ(eε))(b) = ε1 · ε2 · Tr(b)
für alle b ∈ oF ′ , und somit

µ(eε) = ε1ε2 = ε, (4.4)

denn τ ist injektiv. Außerdem ist

I · eε = 0, (4.5)

denn es gilt (idoF′ ⊗ τ)(x · eε) = x · (idoF′ ⊗ τ)(eε) = 0 für alle x ∈ I, da sowohl
τ als auch idoF′ oF ′-linear sind, und wegen Lemma 4.3.2. Der Homomorphismus
idoF′ ⊗ τ ist injektiv, da oF ′ ein flacher oF -Modul ist, also folgt x · eε = 0.

Wir definieren die Abbildung (vgl. Proposition 3.1.4. in [17])

uε : oF ′ → oF ′ ⊗oF oF ′

x 7→ eε · (1⊗ x).

Die Abbildung uε ist ein Homomorphismus von oF ′ ⊗oF oF ′-Moduln, denn wir
berechnen für x, y, z ∈ oF ′

(y ⊗ z) · eε(1⊗ x)− eε(1⊗ xyz) = eε(y ⊗ zx)− eε(1⊗ xyz)
= eε(y ⊗ zx− 1⊗ xyz)
= (y ⊗ zx− 1⊗ xyz)eε
= 0.

Die letzte Gleichheit folgt daraus, dass y ⊗ zx− 1⊗ xyz in I liegt (siehe (4.5)).
Außerdem gilt µ ◦ uε = ε · id : oF ′ → oF ′ nach (4.4).
Lemma 4.3.3. Der Homomorphismus µ : oF ′ ⊗oF oF ′ → oF ′ ist fast flach.
Beweis. Setze C := oF ′ ⊗oF oF ′ .
Sei ε ∈ m \ {0} beliebig und sei g := idC ⊗ f . Sei f : M → N ein injektiver
Homomorphismus von C-Moduln. Betrachte das kommutative Diagramm

oF ′ ⊗C M
id⊗f //

uε⊗id
��

h

((

oF ′ ⊗C N

uε⊗id
��

C ⊗C M g
//

µ⊗id
��

C ⊗C N

µ⊗id
��

oF ′ ⊗C M id⊗f
// oF ′ ⊗C N

66



4.3 oF → oFsep ist fast schwach étale

Sei x ∈ Ker(id⊗f). Dann liegt uε⊗ id(x) im Kern von g. Damit folgt uε⊗ id(x) =
0, denn g ist injektiv. Somit ist auch h(x) = µ⊗ id(uε⊗ id(x)) = 0. Aber h(x) = εx,
also wird x von ε annuliert.

Damit und mit Lemma 3.2.8 folgt, dass die Inklusion oF → oF ′ fast schwach
étale ist.

Lemma 4.3.4. Die Inklusion oFsep ⊗oF oFsep → oFsep ist fast flach.

Beweis. Schreibe Fsep als Vereinigung der endlichen separablen Teilerweiterungen
Fi/F , i ∈ I für eine gerichtete Indexmenge I, für die Fi ⊆ Fj gilt, wenn i ≤ j ist.
Sei M ein oFsep ⊗oF oFsep-Modul. Seien für j ≥ i

fij : oFsep ⊗oFi
⊗oF oFi

M → oFsep ⊗oFj
⊗oF oFj

M,

x⊗m 7→ x⊗m

die kanonischen Homomorphismen zwischen den Tensorprodukten. Diese bilden ein
induktives System (von oF -Moduln).
Behauptung. Dann gilt oFsep ⊗oFsep⊗oF oFsep M = colim

i
(oFsep ⊗oFi

⊗oF oFi
M).

Beweis der Behauptung. Wir haben mit den fij kompatible kanonische surjektive
Homomorphismen

ui : oFsep ⊗oFi
⊗oF oFi

M → oFsep ⊗oFsep⊗oF oFsep M,

x⊗m 7→ x⊗m.

Seien ti : oFsep⊗oFi
⊗oF oFi

M → T mit den fij kompatible Homomorphismen in ein
Testobjekt T . Dann definiere c : oFsep⊗oFsep⊗oF oFsepM → T folgendermaßen: sei x⊗
y ∈ oFsep⊗oFsep⊗oF oFsep M , also ist x⊗y ∈ oFsep⊗oFi

⊗oF oFi
M (d.h. wir betrachten

das Tensorprodukt von x und y über oFi ⊗oF oFi anstatt über oFsep ⊗oF oFsep).
Dann sei c(x⊗y) = ti(x⊗y). Dann ist c ein wohldefinierter Homomorphismus, und
es gilt ti = c ◦ ui. Außerdem ist c eindeutig mit dieser Eigenschaft.

Sei g : M → N ein injektiver Homomorphismus von oFsep-Moduln. Wir müssen
zeigen, dass die induzierte Abbildung

id⊗ g : oFsep ⊗oFsep⊗oF oFsep M → oFsep ⊗oFsep⊗oF oFsep N

fast injektiv ist. Wir betrachten das kommutative Diagramm

colim
i

(oFsep ⊗oFi
⊗oF oFi

M) id⊗g // colim
i

(oFsep ⊗oFi
⊗oF oFi

N)

oFsep ⊗oFj
⊗oF oFj

M
(id⊗g)j //

uj

OO

oFsep ⊗oFj
⊗oF oFj

N

uj

OO
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4 Tief verzweigt impliziert perfektoid

Sei x ∈ Ker(id⊗ g). Wir finden ein Urbild u in oFsep ⊗oFj
⊗oF oFj

M unter uj , wobei
wir j so groß wählen, dass u ∈ Ker((id⊗ g)j) ist. Dann wird u von m annuliert,
denn die Komposition oFj ⊗oF oFj → oFj → oFsep der Mutiplikationsabbildung
oFj ⊗oF oFj → oFj mit der Inklusion oFj → oFsep ist als Komposition von fast
flachen Homomorphismen fast flach, also ist oFsep ein fast flacher oFj ⊗oF oFj -
Modul. Also wird auch x von m annuliert.

Insgesamt sehen wir, dass oF → oFsep fast schwach étale ist, denn oF → oFsep ist
flach (oFsep ist ein torsionsfreier oF -Modul und damit schon flach), und wir haben
gezeigt, dass oFsep ⊗oF oFsep → oFsep fast flach ist.

4.4 Frobenius ist surjektiv

Sei b ∈ oF \ {0} ein Element, sodass 0 < ν(b) ≤ ν(p) gilt.

Lemma 4.4.1. Der Frobenius oFsep/boFsep → oFsep/boFsep , x 7→ xp, ist surjektiv.

Beweis. Nach [18, Lemma 1.4.26] liegt Fsep dicht in Falg. Sei x ∈ oFsep und
ε ≥ ν(b). Das Urbild des ε-Balls Bε(x) unter der Potenzierung mit p ist offen,
da Polynome stetig sind. Damit finden wir ein y ∈ Fsep, sodass ν(yp − x) > ε gilt,
also gilt y ∈ oFsep . Dann gilt yp ≡ xmod (b).

Definition (siehe Definition 3.5.8. in [17]). Sei f : A → B ein Homomorphismus
von oF/boF -Algebren. Wir definieren A(m) als A aufgefasst als oF/boF -Algebra via

oF/boF
Φm

→ oF/boF → A,

und analog definieren wir B(m). Hierbei sei Φ der Frobenius auf oF/poF .
Seien ΦA beziehungsweise ΦB der Frobenius auf A beziehungsweise B. Dann heißt
f invertierbar bis auf Φm für ein m ∈ N, wenn ein Homomorphismus (von Ringen)
f ′ : B → A existiert, sodass das Diagramm

B
f ′ // A

oF/boF Φm
//

OO

oF/boF

OO

kommutiert und f ◦ f ′ = Φm
B und f ′ ◦ f = Φm

A gilt.

Lemma 4.4.2. Seien f : A → B und g : B → C Homomorphismen von oF/boF -
Algebren. Seien f und g ◦ f bis auf Φm invertierbar. Dann ist auch g invertierbar
bis auf Φ2m.
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4.4 Frobenius ist surjektiv

Beweis. Sei f ′ ein Inverses von f bis auf Φm und h′ ein Inverses von h := g ◦ f bis
auf Φm. Setze g′ := Φm

B ◦ f ◦ h′. Dann berechnen wir

g ◦ g′ = g ◦ Φm
B ◦ f ◦ h′ = Φm

C ◦ Φm
C .

(Beachte, dass g ◦ Φm
B = Φm

C ◦ g gilt.) Weiterhin berechnen wir auf ähnliche Art

g′ ◦ g = Φm
B ◦ f ◦ h′ ◦ g = f ◦ h′ ◦ g ◦ Φm

B

= f ◦ h ◦ g ◦ f ◦ f ′ = f ◦ Φm
A ◦ f ′

= f ◦ f ′ ◦ Φm
B = Φm

B ◦ Φm
B .

Lemma 4.4.3 (vgl. Theorem 3.5.13(i) in [17]). Sei f : A → B ein fast schwach
étaler surjektiver Homomorphismus von oF/boF -Algebren. Wenn f bis auf Φm in-
vertierbar ist, dann ist f ein Fast-Isomorphismus.

Beweis. (Wir haben auf A und B durch die Projektion oF → oF/boF eine oF -
Modulstruktur.)
Zunächst zeigen wir, dass für einen A-Modul M mit m ⊗oF B ⊗A M = 0 schon
m ⊗oF M = 0 gilt, das heißt f ist fast treu-flach. Nach Lemma 4.1.10 können wir
o.B.d.A. M = A/I für ein Ideal I ⊆ A annehmen, also müssen wir zeigen, dass aus

m⊗oF B/BI = m⊗oF B ⊗A A/I = 0

schon

m⊗oF A/I = 0

folgt. Da A→ B fast schwach étale ist, ist auch die induzierte Abbildung f̄ : A/I →
B/BI fast schwach étale (Basiswechsel von A→ B beziehungsweise B ⊗A B → B
bezüglich A→ A/I). Sei also

m⊗oF B/BI = m⊗oF A/I ⊗A/I B/BI = 0. (4.6)

f ist invertierbar bis auf Φm, dasselbe gilt für f̄ . Damit ist der Homomorphismus
Φm
A/I : A/I → (A/I)m fast null, also mΦm

A/I(A/I) = 0. Es gilt also εpm · 1 = 0 für
alle ε ∈ m, wobei 1 ∈ A/I. Aber da die Bewertung auf oF nicht diskret ist, gilt
ε · 1 = 0 für alle ε ∈ m, also mA/I = 0.
Wir zeigen nun, dass f fast injektiv ist:
Die Inklusion ι : Ker(f)→ A ist injektiv, damit ist auch

m⊗oF B ⊗A Ker(f)→ m⊗oF B ⊗A A ∼= m⊗oF B

injektiv, denn f : A→ B ist fast flach. Das Bild dieser Abbildung ist

Im(id⊗ id⊗ ι) = m⊗oF Ker(f)B = 0.

Wir können es aufgrund der Injektivität nach Kap. I, §2.3, Remark 2 in [5] mit
m ⊗oF B ⊗A Ker(f) identifizieren, d.h. m ⊗oF B ⊗A Ker(f) = 0. Also folgt m ⊗oF

Ker(f) = 0.
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4 Tief verzweigt impliziert perfektoid

Die Inklusion oF → oFsep ist fast schwach étale nach Abschnitt 3.1. Dann ist auch
der durch die Projektion induzierte Homomorphismus oF/boF → oFsep/boFsep fast
schwach étale, denn der Homomorphismus

oF/boF → oFsep/boFsep

entspricht dem Basiswechsel von oF → oFsep bezüglich der Projektion oF → oF/boF
und der Homomorphismus

oFsep/boFsep ⊗oF/boF oFsep/boFsep → oFsep/boFsep

entspricht dem Basiswechsel von oFsep ⊗oF oFsep → oFsep bezüglich

oFsep ⊗oF oFsep → oFsep/boFsep ⊗oF/boF oFsep/boFsep .

Beide Homomorphismen sind also fast flach nach Lemma 4.1.8.

Setze A := oF/boF und B := oFsep/boFsep . Wir betrachten das kommutative
Diagramm

A
Φm

A //

f

��

A(m)

f(m)
��

B
Φm

B

// B(m)

Dabei bezeichnet f(m) den Homomorphismus f : A → B aufgefasst als Homo-
morphismus zwischen den oF/boF -Algebren A(m) und B(m) bezüglich der über den
Frobenius erhaltenen Skalarmultiplikation.
Das kommutative Diagramm

A
Φm

A //

f

��

A(m)

α

��
B

β// B ⊗A A(m)

ist ein Pushout-Diagramm (in der Kategorie der kommutativen Ringe mit 1),
wobei α durch a 7→ 1⊗ a und β durch b 7→ b⊗ 1 gegeben sind (dann gilt α ◦Φm

A =
β ◦ f). Darum es existiert ein eindeutiger Homomorphismus h, sodass folgendes
Diagramm kommutiert:

A
Φm

A //

f

��

A(m)

��
f(m)

��

B //

Φm
B

//

B ⊗A A(m)
h

%%
B(m)

(4.7)
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Wir zeigen, dass h ein Fast-Isomorphismus ist (vgl. Theorem 3.5.13(ii) in [17]):
h ist surjektiv, denn ΦB ist nach Lemma 4.4.1 surjektiv.
A(m) → B⊗AA(m) ist fast schwach étale (Basiswechsel von A→ B bezüglich A ΦA→
A(m), vergleiche Lemma 4.1.8). A(m) → B(m) ist ebenfalls fast schwach étale, denn
die A(m)-Algebrastruktur von B(m) entspricht der von B als A-Modul. Also ist nach
Lemma 4.1.9 h fast schwach étale. Wir betrachten weiterhin die Homomorphismen

B
idB⊗Φm

A−→ B ⊗A A(m)
h→ B(m).

idB⊗Φm
A ist invertierbar bis auf Φm durch B⊗AA(m) → B ∼= B⊗A(m)A(m), x⊗y 7→

xp
m
y.

Die Komposition der beiden Abbildungen ist Φm
B , also ist h nach Lemma 4.4.2

invertierbar bis auf Φ2m. Also ist h fast injektiv nach Lemma 4.4.3. Damit ist h ein
Fast-Isomorphismus.

Lemma 4.4.4. Sei B := oFsep/boFsep und A := oF/boF . Dann gilt mCoker(ΦA) =
0.

Beweis. Betrachte das folgende (nichtkommutative2) Diagramm:

A
ΦA //

f

��

A(1)

f(1)
��

prA

��

α

''
B

ΦB //

β

33

��

B(1)

prB

��

kε //

ϕε

��

B ⊗A A(1)
h

oo

g

��

0 //

i

<<

Coker(ΦB)

ψε ''
Coker(ΦA)

Dabei definiere den oF -Modulhomomorphismus kε : B(1) → B ⊗A A(1) durch
x 7→ εy, wobei y ∈ B ⊗A A(1) ein Urbild von x unter h ist. Da h fast injektiv ist,
ist kε wohldefiniert.
Es existiert ein eindeutiger Homomorphismus g : B ⊗A A(m) → Coker(ΦA) mit
g ◦α = prA und g ◦ β = 0, da das Diagramm (4.7) kokartesisch ist. Definiere ϕε als
Komposition

ϕε := g ◦ kε.

2man könnte auch sagen: fast kommutative
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4 Tief verzweigt impliziert perfektoid

Dann gilt ϕε ◦ f(1) = εprA, denn es gilt g ◦ α = prA und kε ◦ f(1) = εα. Es
gilt g ◦ β = 0 und kε ◦ ΦB = εβ, also ϕε ◦ ΦB = g ◦ kε ◦ ΦB = g ◦ εβ = 0.
Damit können wir die Pushout-Eigenschaft des unteren Quadrates benutzen (wir
betrachten das untere Diagramm nun als Pushout von oF -Moduln). Es existiert also
ein eindeutiger Modulhomomorphismus ψε : Coker(ΦB) → Coker(ΦA), sodass das
entsprechende Diagramm kommutiert. Es gilt ψε ◦ prB = ϕε und ϕε ◦ f(1) = εprA,
also ψε ◦ prB ◦ f(1) = εprA.
Es ist Coker(ΦB) = 0, also prB = 0, also εprA = 0, also gilt εCoker(ΦA) = 0. Da
ε ∈ m \ {0} beliebig war, folgt mCoker(ΦA) = 0.

Lemma 4.4.5 (vgl. Proposition 6.6.6. in [17]). Der Frobenius ist auf oF̂/poF̂ sur-
jektiv.

Beweis. Wähle ein ε ∈ m \ {0} mit ν(b) > ν(εp). Wir finden nach Lemma 4.4.4 für
jedes x ∈ oF ein y ∈ oF mit εp · x − yp ∈ boF . Daraus folgt, dass der Frobenius
auf oF/(b · ε−p)oF surjektiv ist. Sei b1 ∈ oF ein Element mit 0 < ν(b1) ≤ ν(b) und
seien Fil•1(oF̂/poF̂ ) beziehungsweise Fil•2(oF̂/poF̂ ) die b1-adische bzw. bp1-adische
Filtrierung auf oF̂/poF̂ . Die durch die Filtrierungen auf oF̂/poF̂ induzierte Grup-
pentopologie ist dieselbe wie die Bewertungstopologie. Die Bewertungstopologie ist
die eindeutige Gruppentopologie auf oF , sodass die Mengen Uγ := {x ∈ oF̂ | |x| < γ}
ein Fundamentalsystem von offenen Umgebungen der 0 bilden. Auf oF̂/poF̂ hat man
dann die Quotiententopologie. Die durch Fil•1(oF̂/poF̂ ) induzierte Topologie ist die
eindeutige Gruppentopologie, sodass die Mengen bn1 · oF̂/poF̂ ein Fundamentalsys-
tem der 0 bilden (analog für Fil•2(oF̂/poF̂ )). Dann bilden die offenen Mengen des
einen Fundamentalsystems auch ein Fundamentalsystem der 0 in der jeweils ande-
ren Topologie.
Man rechnet nach, dass der Frobenius einen Morphismus von filtrierten abelschen
Gruppen definiert, und der assoziierte Morphismus von graduierten abelschen Grup-
pen surjektiv ist. (Die assoziierte graduierte Gruppe zur b1-adischen Filtrierung
gr(oF̂/poF̂ ) ist gegeben durch

grn(oF̂/poF̂ ) = bn1 · (oF̂/poF̂ )/bn+1
1 · (oF̂/poF̂ )

gr(oF̂/poF̂ ) =
⊕

grn(oF̂/poF̂ ).

Analog für die bp1-adische Filtrierung.) Dann folgt die Behauptung aus [5, Kap. III,
§2, Nr. 8, Kor.2]. (Dabei benutzt man, dass obige Topologien übereinstimmen.)

Bemerkung 4.4.6. In Charakteristik 0 ist der Frobenius auf oF̂/poF̂
∼= oF/poF und

in Charakteristik p auf oF̂/poF̂ = oF̂ surjektiv.

Definition (Perfektoider Körper). Sei K ein nichtdiskret bewerteter vollständiger
Körper, sodass der Frobenius auf oK/(p) surjektiv ist. Dann heißt K perfektoid.

Wir erhalten nun den folgenden Satz:
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4.4 Frobenius ist surjektiv

Satz 4.4.7. Sei F ein lokaler Körper und F/F eine tief verzweigte Erweiterung.
Dann ist die Vervollständigung F̂ perfektoid.
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5 Perfektoid impliziert tief verzweigt

5.1 Witt-Vektoren
Zunächst gehen wir auf strikte p-Ringe und Witt-Vektoren ein, die wir im weiteren
Verlauf benötigen werden.

Definition (Strikter p-Ring). Ein strikter p-Ring R ist ein p-torsionsfreier, be-
züglich der p-adischen Topologie vollständiger und hausdorffscher Ring, sodass der
Restklassenring R/(p) perfekt ist.

Lemma 5.1.1 (II, §4 Lemma 1 in [20]). Sei R ein Ring. Wenn x ≡ ymod (p) für
Elemente x, y ∈ R gilt, dann gilt für alle n ≥ 0

xp
n ≡ ypn mod (pn+1).

Beweis. Wir beweisen die Aussage per Induktion nach n. Der Fall n = 0 ist klar.
Wir schreiben xpn−1 = yp

n−1 + pn · z für n ≥ 1 und ein z ∈ R. Dann gilt mit der
binomischen Formel

xp
n = yp

n +
p−1∑
i=1

(
p

i

)
yp

n(p−i)pnizi + pnpzp.

Daraus folgt das Lemma, denn p teilt alle Binomialkoeffizienten, und es gilt pn ≥
n+ 1.

Lemma 5.1.2 (Lemma 1.1.4. in [12], siehe auch II, §4, Prop. 8 in [20]). Sei R̄ ein
perfekter Ring (das heißt der Frobenius ist bijektiv) mit Charakteristik p und S ein
p-adisch vollständiger hausdorffscher Ring. Sei pr : S → S/(p) die kanonische Pro-
jektion und t̄ : R̄→ S/(p) ein Ringhomomorphismus. Dann existiert eine eindeutige
multiplikative Abbildung t : R̄→ S mit pr ◦ t = t̄. Es gilt t(x̄) ≡ xpn mod (pn+1) für
alle n ∈ N und alle x ∈ S mit pr(x) = t̄(x̄p−n).

Beweis. Wir setzen

Un(x̄) := {xpn |x ist Urbild von t̄(x̄p−n) unter pr : S → S/(p)}.

Die Un bilden eine absteigende Sequenz. Wenn xp
n
, yp

n ∈ Un(x̄) zwei Elemente
sind, gilt x ≡ y mod (p), also nach Lemma 5.1.1 xpn ≡ yp

n mod (pn+1), das heißt
es gilt xpn − ypn ∈ (pn+1). Sei (un)n eine Folge mit un ∈ Un(x̄). Da S vollständig
ist, können wir t(x̄) := limnun definieren. Das ist wohldefiniert. Die so definiert
Abbildung kommutiert mit p-Potenzierung, denn wenn x̄ = ȳp gilt, dann wird Un(ȳ)
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5 Perfektoid impliziert tief verzweigt

durch Potenzieren mit p in Un(x̄) abgebildet. Durch Übergang zum Grenzwert folgt
t(ȳ)p = t(x̄). Die Abbildung t ist eindeutig, was man wie folgt sieht: Sei t′ : R̄→ S
eine weitere Abbildung, die mit p-Potenzierung kommutiert und die pr ◦ t′ = t̄
erfüllt. Dann gilt, da R̄ perfekt ist, t′(x̄) = t′(x̄p−n)pn und pr(t′(x̄p−n)) = t̄(x̄p−n).
Also liegt t′(x̄) in Un(x̄) für alle n, woraus die Eindeutigkeit von t folgt. Außerdem
folgt

⋂
n Un(x̄) = t(x̄).

Die Multiplikativität von t folgt schließlich daraus, dass xy eine pn-te Potenz ist,
wenn x und y pn-te Potenzen sind.

Definition (Teichmüller-Abbildung). Sei in der Situation von Lemma 5.1.2 R = S.
Dann hat die Projektion pr : R→ R/(p) einen eindeutigen multiplikativen Schnitt
[·] : R/(p)→ R, die Teichmüller-Abbildung.

Bemerkung 5.1.3. Jedes x ∈ R hat eine eindeutige Darstellung als konvergente
Reihe

∑∞
n=0 p

n[x̄n] mit Elementen x̄n ∈ R/(p). In der Tat: wir finden ein x̄0 mit
x− [x̄0] ≡ 0 mod (p). Schreibe dann x = [x̄0]+px1. Analog finden wir ein x̄1, sodass
x = [x̄0] + px̄1 + p2x2 gilt. Iterativ erhalten wir eine Reihe

∑∞
n=0 p

n[x̄n], die gegen
x konvergiert. Die Eindeutigkeit ist klar.

Lemma 5.1.4 (Lemma 1.1.6. in [12]). Sei R ein strikter p-Ring, S ein p-adisch
vollständiger Ring und pr : S → S/(p) die kanonische Projektion. Sei t : R/(p)→ S
eine multiplikative Abbildung, sodass t̄ = pr ◦ t ein Ringhomomorphismus ist. Dann
definiert

T (
∞∑
n=0

pn[x̄n]) =
∞∑
n=0

pnt(x̄n) (x̄0, x̄1, ... ∈ R/(p)) (5.1)

einen eindeutigen Homomorphismus T : R→ S, sodass T ◦ [·] = t gilt.

Beweis. Wir zeigen per Induktion, dass für jede natürliche Zahl n durch T eine
additive Abbildung R/(pn)→ S/(pn) induziert wird.
Für n = 1 ist das klar, da pr ◦ t ein Homomorphismus ist. Wir nehmen an, dass die
Behauptung für ein n ≥ 1 stimmt. Sei x = [x̄] +px1, y = [ȳ] +py1, z = [z̄] +pz1 ∈ R
mit x+ y = z. Dann ist t(x̄p−n) + t(ȳp−n) ein Urbild von t̄(z̄p−n) = t̄((x̄+ ȳ)p−n) =
t̄(x̄p−n) + t̄(ȳp−n) unter pr, also gilt nach Lemma 5.1.2

t(z̄) ≡ (t(x̄p−n) + t(ȳp−n))pn mod (pn+1)

und analog

[z̄] ≡ ([x̄p−n ] + [ȳp−n ])pn mod (pn+1).

Es folgt

T ([z̄])− T ([x̄])− T ([ȳ]) ≡ T ([z̄])− t(x̄)− t(ȳ) mod (pn+1)

≡
pn−1∑
i=1

(
pn

i

)
t(x̄ip−n

ȳ1−ip−n) mod (pn+1). (5.2)
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5.1 Witt-Vektoren

Es gilt 1
p

(pn

i

)
∈ Z für i = 1, ..., pn − 1. Deswegen gilt

z1 − x1 − y1 = [x̄] + [ȳ]− [z̄]
p

≡
pn−1∑
i=1

1
p

(
pn

i

)
t(x̄ip−n

ȳ1−ip−n) mod (pn).

Aufgrund der Induktionsannahme erhält man durch Anwenden von T und Multi-
plizieren mit p

pT (z1)− pT (x1)− pT (y1) ≡ −
pn−1∑
i=1

(
pn

i

)
t(x̄ip−n

ȳ1−ip−n) mod (pn+1). (5.3)

Da T (x) = T ([x̄]) + pT (x1) gilt (ebenso für y und z), folgt aus (5.2) und (5.3)

T (z)− T (x)− T (y) ≡ 0 mod (pn+1).

Damit ist T additiv. Da t multiplikativ ist, ist auch T multiplikativ.

Satz 5.1.5. Sei R̄ ein perfekter Ring von Charakteristik p. Dann existiert ein ein-
deutiger strikter p-Ring W (R̄) mit W (R̄)/(p) = R̄.

Beweis. Siehe [20, II, § 5, Theorem 5].

Sei nun (X0, ..., Xn, ...) eine Sequenz von Unbestimmten. Wir betrachten die fol-
genden Polynome (Witt-Polynome):

Φ0 = X0,

Φ1 = Xp
0 + pX1,

...

Φn =
i=n∑
i=0

piXpn−i

i = Xpn

0 + ...+ pnXn

...

Setze Z′ = Z[p−1]. Dann können wir die Xi als Polynome in den Φi mit Koeffi-
zienten in Z′ ausdrücken:

X0 = Φ0, X1 = p−1Φ1 − Φp
0, ...

Sei (Y0, ..., Yn, ..., ) eine andere Sequenz von Unbestimmten.

Satz 5.1.6. Für jedes F ∈ Z[X,Y ] existiert eine eindeutige Sequenz (ϕ0, ..., ϕn, ...)
in Z[X0, ..., Xn, ..., Y0, ..., Yn, ...], sodass

Φn(ϕ0, ..., ϕn, ...) = F (Φn(X0, ...),Φn(Y0, ...)) für n ≥ 0

gilt.
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5 Perfektoid impliziert tief verzweigt

Beweis. Siehe [20, II, § 6, Theorem 6].

Wir betrachten nun die Polynome

F (X,Y ) = X + Y, H(X,Y ) = X − Y, und G(X,Y ) = XY.

Wir bezeichnen die Polynome ϕ0, ..., ϕn, ..., die gemäß Satz 5.1.6 F beziehungs-
weise H beziehungsweise G zugeordnet werden, mit S0, ..., Sn, ..., beziehungsweise
D0, ..., Dn, ... beziehungsweise P0, ..., Pn, ....
Sei R ein Ring und a = (a0, ..., an, ...) und b = (b0, ..., bn, ...) Elemente aus RN.
Dann definieren wir

a+ b = (S0(a, b), ..., Sn(a, b), ...)
a · b = (P0(a, b), ..., Pn(a, b), ...)

Satz 5.1.7 (II, § 6, Theorem 7 in [20]). Durch die so definierte Addition und
Multiplikation wird RN zu einem kommutativen Ring mit 1, dem Ring der Witt-
Vektoren mit Koeffizienten in R. Wir bezeichnen diesen Ring mit W (R).

Beweis. Sei a = (a0, ..., an, ...) ∈ RN ein Witt-Vektor. Wir haben die Abbildung

Φ∗ : W (R)→ RN,

(a0, ..., an, ...) 7→ (Φ0(a), ...,Φn(a), ...).

Diese ist ein Ringhomomorphismus nach Definition der Sn bzw. Pn. Wenn p in R
invertierbar ist, dann ist W∗ ein Isomorphismus. Dann ist W (R) ein kommutativer
Ring mit Einselement (1, 0, ...). Wenn der Satz für einen Ring R gilt, dann auch
für jeden Teilring und Quotienten. Er gilt für jeden Polynomring der Form Z′[Tα],
damit für alle Ringe R, denn durch Z[Tα∈A] → A, Tα 7→ α wird ein surjektiver
Ringhomomorphismus definiert, sodass wir R als Quotienten von Z[Tα] schreiben
können.

Satz 5.1.8. Sei R̄ ein perfekter Ring von Charakteristik p und H der strikte p-Ring
mit Restklassenring R̄. Dann ist die Abbildung

W (R̄)→ H,

(ā0, ..., āi, ...) 7→
∞∑
i=0

pi[āi]p
−i

ein Ringisomorphismus. Insbesondere ist W (R̄) ein strikter p-Ring mit Restklas-
senring R̄.

Beweis. Siehe [20, II, § 6, Theorem 8].
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5.2 Tilting

5.2 Tilting
Wir wollen nun den Tilt eines perfektoiden Körpers von Charakteristik 0 definieren.
Dazu halten wir uns an die Vorlesung ”Galois Representations and (ϕ,Γ)-modules”,
die 2015 von Peter Schneider in Münster gehalten wurde ([18]).

Sei für den den Rest des Kapitels K ein perfektoider Körper mit char(K) = 0.
Sei die Bewertung ν auf K so normalisiert, dass ν(p) = 1 gilt. Durch |x| := p−ν(x)

wird eine nichtarchimedische multiplikative Norm auf K definiert.

Wir definieren einen Ring oK[ als projektiven Limes über die Quotienten oK/(p),
wobei die Abbildungen zwischen den oK/(p) durch Potenzieren mit p gegeben sind:

oK[ := lim←−
(·)p

oK/poK

= {(x0 mod poK , ..., xi mod poK , ...) ∈ (oK/poK)N0 |xpi+1 ≡ xi mod poK}.

Bemerkung 5.2.1 (siehe Remark 1.4.4 in [18]). Da Potenzierung mit p ein Endomor-
phismus von oK/(p) als Fp-Algebra ist, ist oK[ eine Fp-Algebra. Diese ist perfekt.

Beweis. Sei x = (x0 mod poK , ..., xi mod poK , ...) ∈ oK[ . Falls xp = 0 ist, dann ist
xi ≡ xpi+1 ≡ 0 mod poK für alle i ≥ 0. Andererseits sei

x1/p := (x1 mod poK , ..., xi mod poK , ...).

Dann gilt (x1/p)p = x.

Bemerkung 5.2.2. Wir können Lemma 5.1.2 und 5.1.4 auf die Projektion auf den
ersten Eintrag θ̄K = θ̄ : oK[ = lim←− oK/(p) → oK/(p) anwenden und erhalten
eine multiplikative Abbildung θK = θ : oK[ → oK sowie einen Homomorphismus
ΘK = Θ : W (oK[)→ oK (siehe auch [18, Lemma 1.4.18]).
Bemerkung 5.2.3. Wir können θ auch etwas konkreter angeben (siehe [18, Abschnitt
1.4]):
Sei x = (x0 mod poK , ..., xi mod poK , ..., ) ∈ oK[ ein beliebiges Element. Wir wäh-
len für jedes i ≥ 0 einen Repräsentanten xi ∈ oK . Dann gilt xpi+1 ≡ xi mod poK
und somit nach Lemma 5.1.1 xp

i+1

i+1 ≡ x
pi

i mod pi+1oK . Damit existiert der Limes

θ(x) := lim
i→∞

xp
i

i ∈ oK .

Wenn yi ∈ oK andere Elemente mit yi ≡ xi mod poK sind, dann gilt nach Lemma
5.1.1 yp

i

i ≡ x
pi

i mod pi+1oK . Damit ist limi→∞y
pi

i = limi→∞x
pi

i . Es folgt, dass

oK[ → oK ,

x 7→ θ(x)

eine wohldefinierte multiplikative Abbildung ist, sodass θ(x) ≡ x0 mod poK gilt.
Damit ist θ die eindeutige multiplikative Abbildung aus Lemma 5.1.2.
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Lemma 5.2.4. Die Abbildung

lim←−
(·)p

oK
'→ oK[

(x0..., xi, ...) 7→ (x0 mod poK , ..., xi mod poK , ...)

ist eine multiplikative Bijektion mit Inversem x 7→ (θ(x), ..., θ(x1/pi), ..., ).

Beweis. Analog wie Lemma 1.4.5 in [18].

Lemma 5.2.5. Die Abbildung

| · |[ : oK[ → R≥0

x 7→ |θ(x)|

ist ein nichtarchimedischer Absolutbetrag. Außerdem gilt

(i) |oK[ |[ = |oK |.

(ii) xoK[ ⊆ yoK[ gilt für alle x, y ∈ oK[ genau dann, wenn |x|[ ≤ |y|[ ist.

(iii) mK[ := {x ∈ oK[ : |x|[ < 1} ist das einzige maximale Ideal in oK[.

(iv) Sei z ∈ oK[ ein Element mit |z|[ = |p|. Dann induziert die Projektions-
abbildung (x0 mod poK , ..., xi mod poK , ...) 7→ x0 + poK einen Ringisomor-
phismus oK[/zoK[

∼= oK/poK . Insbesondere gibt es einen Isomorphismus
oK[/mK[

∼= oK/mK .

Beweis. Analog wie Lemma 1.4.6 in [18].

Nach dem vorherigen Lemma ist oK[ ein Integritätsbereich. Sei z ∈ oK[ ein
Element mit |z|[ = |p|. Wir bezeichnen den Quotientenkörper von oK[ mit K[.
Wir können jedes Element aus K[ als x

zm mit x ∈ oK[ und m ≥ 0 schreiben.
Die Funktion | · |[ setzt sich per Multiplikativität auf K[ fort und definiert einen
nichtarchimedischen Absolutbetrag auf K[. Es gilt nach vorherigem Lemma |K| =
|K[|[ und oK[ ist der Bewertungsring von K[. Wir nennen K[ den Tilt von K.

Satz 5.2.6. K[ mit | · |[ ist ein perfekter und vollständiger nichtarchimedisch be-
werteter Körper von Charakteristik p.

Beweis. Analog wie Proposition 1.4.7 in [18].

Lemma 5.2.7 ( siehe Lemma 1.4.18 in [18]). Der Homomorphismus

Θ : W (oK[)→ oK
∞∑
n=0

pn[x̄n] 7→
∞∑
n=0

pnθ(x̄n)

ist surjektiv.
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5.2 Tilting

Beweis. Da K perfektoid ist, finden wir für jedes x ∈ oK ein Element y0 ∈ oK[ der
Form y0 = (x mod poK , ...). Dann gilt x− θ(y0) = x2 · p für ein x2 ∈ oK . Induktiv
finden wir Elemente xn ∈ oK und yn ∈ oK[ , sodass xn − θ(yn) = xn+1 · p für alle
n ≥ 1 gilt. Dann gilt

x =
∞∑
n=0

pnθ(yn) = Θ(
∞∑
n=0

pn[yn]).

Sei nunKalg ein algebraischer Abschluss vonK und K̂alg seine Vervollständigung
(dabei setzen wir | · | eindeutig auf Kalg und kanonisch auf K̂alg fort) . Alle im Fol-
genden betrachteten perfektoiden Körper in Charakteristik 0 seien Zwischenkörper
von K̂alg/K, sofern nichts anderes gesagt wird.

Lemma 5.2.8 (siehe Remark 1.4.1 in [18]). K̂alg ist algebraisch abgeschlossen.
Insbesondere ist K̂alg perfektoid.

Beweis. Wir nehmen an, dass eine nichttriviale endliche Erweiterung E/K̂alg exis-
tiert. Wir finden einen Erzeuger x dieser Körpererweiterung in oE . Der ganze Ab-
schluss von o

K̂alg in E stimmt mit oE überein. Damit ist x ganz über o
K̂alg . Da

o
K̂alg ganzabgeschlossen ist, liegen die Koeffizienten des Minimalpolynoms P (X) =
Xd + ad−1X

d−1 + ... + a0 von x in o
K̂alg . Sei A die Menge der Nullstellen von

P (X). Wir wählen eine reelle Zahl 0 < r < min{|a′ − a| | a 6= a′ in A} sowie
Elemente bi ∈ oKalg für 0 ≤ i < d, sodass |bi − ai| < rd ist. Das Polynom
Q(X) := Xd + bd−1X

d−1 + ... + b0 ∈ oKalg [X] hat eine Nullstelle b ∈ oKalg (da
oKalg ganzabgeschlossen ist, liegen alle Nullstellen in oKalg). Dann gilt

P (b) = P (b)−Q(b) = (ad−1 − bd−1b
d−1 + ...+ (a0 − b0), also |P (b)| < rd.

Andererseits haben wir

P (b) = Πa′∈A(b− a′),

also

rd > |P (b)| ≥ (min{|b− a′| | a′ ∈ A})d = |b− c|d

für ein c ∈ A. Daraus folgt |b− c| < r. Nach Krasners Lemma (siehe zum Beispiel
[18, Remark 1.4.1]) gilt nun c ∈ K̂alg(b) = K̂alg. Das ist ein Widerspruch.

Bemerkung 5.2.9 (siehe 24.14 und 24.15 in [14]). Wenn (F, |·|) ein nichtarchimedisch
bewerteter Körper von Charakteristik p ist, dann ist die Vervollständigung eines
algebraischen Abschlusses F̂ alg algebraisch abgeschlossen.
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5 Perfektoid impliziert tief verzweigt

Beweis der Bemerkung. Wir können mit demselben Beweis wie in Bemerkung 5.2.8
folgern, dass die Vervollständigung eines separabel-algebraischen Abschlusses F̂ sep
von F separabel-algebraisch abgeschlossen ist. Dann ist F̂ sep aber schon algebraisch
abgeschlossen, denn sei a ∈ F̂ sep \ {0} ein Element und α das eindeutige Element
in einem algebraischen Abschluss von F̂ sep, das αp = a erfüllt. Wir müssen zeigen,
dass α in F̂ sep liegt. Sei dazu t ∈ F̂ sep \ {0} ein Element mit |t| < 1 und fn(X) :=
Xp − tnX − a. Es gilt limn→∞ fn(X) = Xp − a. Es ist f ′n(X) = tn, also ist fn
separabel. Damit zerfällt fn über F̂ sep in Linearfaktoren. Wir können annehmen,
dass |a| ≤ 1 gilt, also erfüllt mindestens eine Nullstelle αn von fn auch |αn| ≤ 1.
Daraus folgt |αpn − a| → 0 für n → ∞. Aber dann ist (αn)n eine Cauchy-Folge
mit Grenzwert α, da die Nullstellen eines Polynoms stetig als Funktionen in den
Koeffizienten sind.

Seien K ⊆ L1 ⊆ L2 ⊆ K̂alg perfektoide Körper. Es gilt oL1 ∩ poL2 = poL1 . Damit
ist die natürliche Abbildung oL1/poL1 ↪→ oL2/poL2 injektiv, also können wir L[1 in
natürlicher Weise als Unterkörper von L[2 betrachten.
Lemma 5.2.10 (siehe Lemma 1.4.10 in [18]). Es ist (K̂alg)[ algebraisch abgeschlos-
sen.
Beweis. Sei P (X) = Xd + x(d−1)X

d−1 + ... + x(0) ∈ o(K̂alg)[ [X] ein normiertes
irreduzibles Polynom mit d ≥ 1. Wir zeigen, dass dann schon d = 1 gilt, indem wir
eine Nullstelle von P (X) in o(K̂alg)[ konstruieren. Wenn x(j) = (xj,0, ..., xj,i, ...) ist,
dann haben wir eine Familie von Polynomen Pi(X) = Xd + xd−1,iX

d−1 + ...+ x0,i
in o

K̂alg/poK̂alg [X]. Sei Bi ⊆ o
K̂alg/poK̂alg [X] die Menge der Nullstellen von Pi(X).

Da K̂alg algebraisch abgeschlossen ist, sind alle diese Bi nichtleer.. Außerdem gilt
Bp
i+1 ⊆ Bi für alle i ≥ 0. Es ist B := lim←−(·)p Bi genau die Menge der Nullstellen von

P (X) in o(K̂alg)[ . Wir müssen also zeigen, dass B nichtleer ist.
Wir wählen für alle i ≥ 0 ein normiertes Polynom P̃i(X) in o

K̂alg [X], das modulo
po
K̂alg gleich Pi(X) ist. Sei Ãi ⊆ o

K̂alg die Menge der Nullstellen von P̃i(X), die
nichtleer ist, da K̂alg algebraisch abgeschlossen ist (da o

K̂alg ganzabgeschlossen ist,
liegen alle Nullstellen in o

K̂alg). Wir setzen Ai := {apd−1 mod po
K̂alg | a ∈ Ãi+d−1}.

Nach Konstruktion gilt Ai ⊆ Bi. Wir wollen nun zeigen, dass Api+1 ⊆ Ai gilt. Sei
dazu a ∈ Ãi+d Dann ist

Pi+d−1(ap mod po
K̂alg ) = Pi+d(a mod po

K̂alg )p = 0,

also P̃i+d−1(ap) ∈ po
K̂alg . Es ist P̃i+d−1(X) = Πb∈Ãi+d−1

(X − b)mb mit geeigneten
mb ≥ 1. Daraus folgt

Πb∈Ãi+d−1
(ap − b)mb ∈ po

K̂alg .

Damit erfüllt mindestens einer der d Faktoren ap − b ∈ p1/do
K̂alg . Nach Lemma

5.1.1 erhalten wir apd − bpd−1 ∈ po
K̂alg , also

(apd−1 mod po
K̂alg )p = bp

d−1 mod po
K̂alg ∈ Ai.
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Wir wollen zeigen, dass lim←−(·)p Ai ⊆ B nichtleer ist. Dazu bemerken wir, dass wir
für alle i ≥ 0 eine absteigende Sequenz von nichtleeren Teilmengen

Ai ⊇ Api+1 ⊇ A
p2

i+2 ⊇ ...

haben. Da Ai endlich ist, wird diese Sequenz stabil, das heißt wir finden ein j(i) ≥ 0,
sodass

A′i := Ap
j(i)

i+j(i) = Ap
j(i)+1
i+j(i)+1 = ...

gilt. Wir können die j(i) so wählen, dass i1 + j(i1) ≤ i2 + j(i2) gilt, wenn i1 ≤ i2
ist. Dann haben wir j(i+ 1)− j(i) + 1 ≥ 0. Wir berechnen

(A′i+1)p = Ap
j(i+1)+1

i+1+j(i+1) = Ap
j(i)+(j(i+1)−j(i)+1)

i+j(i)+(j(i+1)−j(i)+1) = A
pj(i)
i+j(i) = A′i

für alle i ≥ 0. Damit ist lim←−(·)p Ai ⊇ lim←−(·)p A
′
i 6= ∅, denn die Abbildungen im rechten

projektiven Limes sind surjektiv.

5.3 Untilting

In diesem Abschnitt definieren wir den ”Untilt” eines perfektoiden Körpers von
Charakteristik p und zeigen, dass Tilten und Untilten invers zueinander sind.

Im Folgenden sei oF der Bewertungsring eines perfekten Körpers F von Cha-
rakteristik p mit multiplikativer nichtarchimedischer Norm | · |[, bezüglich derer F
vollständig ist, das heißt F ist ein perfektoider Körper von Charakteristik p (dabei
ist die Wertegruppe des Betrags dicht in R, weil F perfekt ist).

Lemma 5.3.1. Die Polynome Sn(X0, X
p
1 , ..., X

pn

n , Y0, Y
p

1 , ..., Y
pn

n ) sind homogen
von Grad pn. Die Polynome Sn(X0, 0, ..., 0, Y0, 0, ..., 0) sind außerdem durch X0 +Y0
teilbar (in Z[X0, Y0]).

Beweis. Wir zeigen die Aussage per Induktion nach n.1.
Setze S̃n = S̃n(X0, ..., Xn, Y0, ..., Yn) := Sn(X0, X

p
1 , ..., X

pn

n , Y0, Y
p

1 , ..., Y
pn

n ).
Es gilt S0(X0, Y0) = X0 + Y0, also gilt die Behauptung für n = 0.
Gelte die Behauptung für n− 1 für ein beliebiges n. Es gilt

pnS̃n = Φn(X0, ..., X
pn

n ) + Φn(Y0, ..., Y
pn

n )− Φn−1(S̃p0 , ..., S̃
p
n−1)

= Xpn

0 + ...+ pnXpn

n + Y pn

0 + ...+ pnY pn

n − S̃
pn

0 − ...− p
n−1S̃pn−1.

1Der Beweis stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewählte Themen zu (ϕ, Γ)-Moduln” in Münster gehalten hat.
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5 Perfektoid impliziert tief verzweigt

Die Behauptung folgt damit aus der Induktionsvoraussetzung.
Setzen wir X1 = ... = Xn = Y1 = ...Yn = 0, haben wir

pnS̃n = Xpn

0 + Y pn

0 − S̃p
n

0 − ...− p
n−1S̃pn−1

= (X0 + Y0) · (
∑

i+j=pn−1
Xi

0Y
j

0 )− S̃p
n

0 − ...− p
n−1S̃pn−1,

und wir folgern ebenfalls per Induktion nach n, dass Sn(X0, ..., 0, Y0, ..., 0) durch
X0 + Y0 teilbar ist.

Lemma 5.3.2 (siehe Lemma 1.7.2 in [12]). Sei r ∈ (0, 1]. Die Abbildung

|| · ||r : W (oF )→ [0, 1],
∞∑
n=0

pn[x̄n] 7→ supn≥0 {rn|x̄n|[}

definiert eine multiplikative Norm auf W (oF ), bezüglich derer W (oF ) vollständig
ist.

Beweis. 2 Es ist klar, dass ||x||r = 0 für x ∈W (oF ) genau dann gilt, wenn x = 0 ist.
Um die strikte Dreiecksungleichung zu zeigen, betrachten wir Elemente x =

∑∞
n=0 p

n[x̄n]
und y =

∑∞
n=0 p

n[ȳn] aus W (oF ).
Für ein Monom g = Xi0

0 · ... · Xin
n Y

j0
0 · ... · Y jn

n ∈ Z[X0, ..., Xn, Y0, ..., Yn] mit
i0 + ...+ in + j0 + ...+ jn = pn gilt

rnp
n |x̄i00 ...x̄

in
n ȳ

j0
0 ...ȳ

jn
n |[ = rn(i0+...+in+j0+...+jn)|Πn

m=0x̄
im
m Πn

m=0ȳ
jm
m |[

≤ Πn
m=0(rn|x̄m|[)imΠn

m=0(rn|ȳm|[)jm

≤ max{||x||r, ||y||r}i0+...+in+j0+...+jn

= max{||x||r, ||y||r}p
n
.

Aufgrund von Lemma 5.3.1 folgt

rnp
n |Sn(x̄0, x̄

p
1, ..., x̄

pn

n , ȳ0, ȳ
p
1 , ..., ȳ

pn

n )|[ ≤ max{||x||r, ||y||r}p
n

und damit

rn|Sn(x̄0, x̄
p
1, ..., x̄

pn

n , ȳ0, ȳ
p
1 , ..., ȳ

pn

n )p−n |[ ≤ max{||x||r, ||y||r}.

Also gilt

||x+ y||r = supn≥0 {rn|Sn(x̄0, x̄
p
1, ..., x̄

pn

n , ȳ0, ȳ
p
1 , ..., ȳ

pn

n )p−n |[}
≤ max{||x||r, ||y||r}.

2Der Beweis stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewählte Themen zu (ϕ, Γ)-Moduln” in Münster gehalten hat.
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5.3 Untilting

Nun sei zunächst r < 1.
Wir zeigen die Multiplikativität: Seien x =

∑∞
n=0 p

n[xn] und y =
∑∞
n=0 p

n[yn] aus
W (oF ) beliebig. Falls xy = 0 gilt, ist klarerweise ||xy||r = 0 ≤ ||x||r · ||y||r. Sei
also xy 6= 0, also auch ||xy||r 6= 0. Es gibt daher ein N ∈ N mit rN < ||xy||r. Wir
berechnen

xy =
∞∑
n=0

pn
∑

l+m=n
[x̄lȳm]

=
∑

l+m<N
pl+m[x̄lȳm] + pN ·

∑
n≥N

pn−N
∑

l+m=n
[x̄lȳm].

Setze a :=
∑
n≥N p

n−N ∑
l+m=n[x̄lȳm] =

∑∞
n=0 p

n[ān] für bestimmte ān ∈ oF .
Da (rn|ān|[)n eine Nullfolge ist, gibt es ein n0, sodass ||a||r = supn≥0 {rn|ān|[} =
rn0 |ān0 |[ gilt. Es folgt

||pNa||r = rn0+N |ān0+N |[ ≤ rN < ||xy||r.

Aufgrund der Dreiecksungleichung gilt dann

||xy||r = ||xy − pNa||r ≤ maxl+m<N{||pl+m[x̄lȳm]||r}
= maxl+m<N{rl|x̄l|[ · rm|ȳm|[}
≤ maxl∈N{rl|x̄l|[} ·maxm∈N{rm|ȳm|[}
= ||x||r · ||y||r.

Andersherum seien x =
∑∞
n=0 p

n[x̄n] und y =
∑∞
n=0 p

n[ȳn] Elemente aus W (oF )
mit x, y 6= 0. Wir finden, da (rn|x̄n|[)n≥0 beziehungsweise (rn|ȳn|[)n≥0 Nullfolgen
sind, minimale Indizes i, j, sodass ||x||r = ri|x̄i|[ und ||y||r = rj |ȳj |[ gilt. Setze

x′ :=
∞∑
n=i

pn[x̄n] und y′ :=
∞∑
n=j

pn[ȳn].

Dann gilt ||x′||r = ||x||r und ||y′||r = ||y||r. Wir schreiben x′y′ = c =
∑∞
n=0 p

n[c̄n].
Es gilt c̄n = 0 für n ≤ i+ j − 1 und c̄i+j = x̄i · ȳj . Also ist

||x′y′||r ≥ ri+j |x̄i · ȳj |[ = ||x||r · ||y||r. (5.4)

Aufgrund der Minimalität von i gilt

||x− x′||r = ||
i−1∑
n=0

pn[x̄n]||r < ri|x̄i|[ = ||x||r.

Analog gilt ||y − y′||r < ||y||r, und es folgt mit den vorangehenden Resultaten

||xy − x′y′||r = ||(x− x′)y + x′(y − y′)||r
≤ max{||(x− x′)y||r, ||x′(y − y′)||r}
≤ max{||(x− x′)||r||y||r, ||x′||r||(y − y′)||r}
< ||x||r · ||y||r.
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5 Perfektoid impliziert tief verzweigt

Mit der Dreiecksungleichung und (5.4) erhalten wir

||xy||r = ||(xy − x′y′) + x′y′||r = ||x′y′||r ≥ ||x||r · ||y||r.

Insgesamt erhalten wir

||xy||r = ||x||r · ||y||r.

Um die Vollständigkeit zu zeigen, sei (x(i))i eine Cauchy-Folge in W (oF ) bezüglich
|| · ||r mit Elementen x(i) =

∑∞
n=0 p

n[x̄(i)
n ].

Zuerst zeigen wir, dass die Abbildung [·] stetig ist: Seien x, y ∈ W (oF ). Die
Aussage von Lemma 5.3.1 gilt analog auch für die Dn, also gilt

||[x̄0]− [ȳ0]||r ≤ rnsupn{|Dn(x̄0, 0, ..., 0, ȳ0, ..., 0)p−n |[}

≤ rnsup{|x̄0 − ȳ0|p
−n

[ }.

Da die rechte Seite für |x̄0 − ȳ0|[ → 0 gegen 0 konvergiert, folgt die (gleichmäßige)
Stetigkeit von [·].
Nun zeigen wir per Induktion über n, dass (x̄(i)

n )i für alle n eine Cauchy-Folge in oF
bezüglich | · |[ ist. Der Ringhomomorphismus Φ0 ist Lipschitz-stetig, da klarerweise
||Φ0(x)||r ≤ ||x||r gilt. Damit bildet Φ0 Cauchy-Folgen auf Cauchy-Folgen ab. Das
zeigt die Behauptung für n = 0.
Wir nehmen an, dass die Behauptung für alle n ≤ N für ein beliebiges festes N gilt.
Da oF vollständig ist, gibt es für alle n ≤ N ein Element x̄n ∈ oF , gegen das (x̄(i)

n )i
konvergiert. Da [·] stetig ist, konvergiert ([x̄(i)

n ])i gegen [x̄n] für n ≤ N . Damit gilt

||
∑
n≤N

pn[x̄(i)
n ]−

∑
n≤N

pn[x̄n]||r ≤ maxn≤N{||[x̄(i)
n ]− [x̄n]||r} −→

i→∞
0.

Also konvergiert (
∑
n≤N [x̄(i)

n ])i bezüglich || · ||r gegen
∑
n≤N [x̄n] und ist damit ins-

besondere eine Cauchy-Folge. Sei ε > 0. Dann finden wir i, j, sodass

||x(i) − x(j)||r = ||
∑
n≤N

pn[x̄(i)
n ] +

∞∑
n>N

pn[x̄(i)
n ]−

∑
n≤N

pn[x̄(j)
n ]−

∞∑
n>N

pn[x̄(j)
n ]||r

≤ ε

gilt. Es folgt aufgrund der strikten Dreiecksungleichung (für genügend große i′, j′)

||
∞∑
n>N

pn[x̄(i′)
n ]−

∞∑
n>N

pn[x̄(j′)
n ]||r ≤ ε.

Damit ist (
∑∞
n>N p

n[x̄(i)
n ])i eine Cauchy-Folge und wie im Induktionsanfang folgt,

dass (x̄(i)
N+1)i eine Cauchy-Folge ist.

Damit existiert für alle n ein Grenzwert x̄n ∈ oF von (x̄(i)
n )i.
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5.3 Untilting

Wir zeigen nun, dass dann (
∑∞
n=0 p

n[x̄(i)
n ])i bezüglich || · ||r gegen

∑∞
n=0 p

n[x̄n] kon-
vergiert. Dazu sei ε > 0 beliebig. Wir finden wegen r < 1 ein N ∈ N mit rN < ε.
Es gilt dann

||
∞∑
n≥N

pn[x̄(i)
n ]−

∞∑
n≥N

pn[x̄n]||r ≤ rN < ε.

Aufgrund von Stetigkeit konvergiert ([x̄(i)
n ])i gegen [x̄n] für alle n ∈ N. Damit gilt

||
∑
n<N

pn[x̄(i)
n ]−

∑
n<N

pn[x̄n]||r ≤ maxn<N{||[x̄(i)
n ]− [x̄n]||r} −→

i→∞
0,

und damit für genügend großes i

||
∞∑
n=0

pn[x̄(i)
n ]−

∞∑
n=0

pn[x̄n]||r ≤ max{||
∞∑
n<N

pn[x̄(i)
n ]−

∞∑
n<N

pn[x̄n]||r, ||
∞∑
n≥N

pn[x̄(i)
n ]−

∞∑
n≥N

pn[x̄n]||r}

≤ ε.

Also konvergiert (
∑∞
n=0 p

n[x̄(i)
n ])i bezüglich || · ||r gegen

∑∞
n=0 p

n[x̄n].

Sei nun r ∈ (0, 1] beliebig. Sei x =
∑∞
n=0 p

n[x̄n] ∈W (oF ) ein beliebiges Element.
Da (0, 1] → [0, 1], r 7→ rn|x̄n|[ für alle n stetig und monoton steigend ist, ist auch
(0, 1]→ [0, 1], r 7→ ||x||r stetig und monoton steigend. Es gilt insbesondere ||x||1 =
lim
r→1
||x||r. Damit folgen die noch nicht gezeigten Behauptungen für r = 1.

Definition (Definition 1.4.3 in [12]). Ein Element b =
∑∞
n=0 p

n[x̄n] heißt primitiv,
wenn |x̄0|[ = p−1 und x̄1 ∈ o×F gilt.

Definition (Definition 1.4.4 in [12]). Ein Element x =
∑∞
n=0 p

n[x̄n] heißt stabil,
wenn |x̄n|[ ≤ |x̄0|[ für alle n gilt.

Lemma 5.3.3. 3 Sei x ∈W (oF ) stabil und z ∈W (oF ) primitiv. Dann gilt für alle
y ∈W (oF )

||x+ yz||1 ≥ ||x||1

Beweis. Sei im Folgenden r = p−1.
Da x stabil ist, gilt ||x||r = ||x||1. Falls ||yz||r 6= ||x||r, folgt mit der strikten Drei-
ecksungleichung

||x||1 = ||x||r ≤ max{||x||r, ||yz||r} = ||x+ yz||r ≤ ||x+ yz||1.

Wir nehmen also ||yz||r = ||x||r an. Da z primitiv ist, gilt ||z||r = r und somit
||z||1 = 1 > ||z||r. Außerdem ist ||y||1 ≥ ||y||r. Damit gilt

||yz||1 = ||y||1 · ||z||1 > ||y||r · ||z||r = ||yz||r = ||x||r = ||x||1.
3Das Lemma stammt aus einem Vortrag, den Danial Sanusi im Wintersemester 15/16 im Seminar
“Ausgewählte Themen zu (ϕ, Γ)-Moduln” in Münster gehalten hat.
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5 Perfektoid impliziert tief verzweigt

Damit erhalten wir mit der Dreiecksungleichung

||x+ yz||1 = max{||x||1, ||yz||1} = ||yz||1 > ||x||1 = ||x||r.

Lemma 5.3.4 (Lemma 1.4.7. in [12]). Sei z ∈ W (oF ) primitiv. Dann finden wir
für jede Äquivalenzklasse von W (oF )/(z) einen stabilen Repräsentanten.

Beweis. Schreibe z = [z̄] + pz1 mit z1 ∈W (oF )×. Sei x ∈W (oF ) und setze x0 = x.
Sei xl =

∑∞
n=0 p

n[xl,n] ein zu x modulo z kongruentes Element aus W (oF ). Setze
xl,1 =

∑∞
n=0 p

n[x̄l,n+1] und xl+1 = xl − xl,1z−1
1 z. Dann ist xl+1 ebenfalls kongruent

zu x modulo z. Es gilt außerdem

xl+1 = xl − xl,1z−1
1 z

= xl − xl,1z−1
1 ([z̄] + pz1)

= xl − xl,1z−1
1 [z̄]− pxl,1

= [x̄l,0]− xl,1z−1
1 [z̄].

Wir nehmen an, dass es ein l gibt, sodass |x̄l,n|[ < p|x̄l,0|[ für alle n > 0 gilt. Dann
gilt ||xl+1||1 ≤ max{||[x̄l,0]||1, p−1 · ||xl,1||1} = |x̄l,0|[.
Es gilt |x̄l+1,0|[ = |x̄l,0 + z̄x̄l,1(z̄−1

1 )|[ = max{|x̄l,0|[, p−1|x̄l,1|[} = |x̄l,0|[. Also ist xl+1
ein stabiler Repräsentant der Kongruenzklasse von x modulo z.
Angenommen, ein solches l existiert nicht. Dann gilt aufgrund von Lemma 5.3.2

supn{|x̄l+1,n|[} ≤ p−1supn{|x̄l,n|[}

für alle l ≥ 0, also ||xl||1 → 0 für l→∞ und

||xl,1z−1
1 [z̄]||1 = ||[x̄l,0]− xl+1||1

≤ max{||[x̄l,0]||1, ||xl+1||1}
≤ p−1supn{|x̄l,n|[}
≤ p−l−1 −→

l→∞
0.

Da W (oF ) bezüglich || · ||1 vollständig ist, konvergiert die Summe
∑∞
l=0 xl,1z

−1
1
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5.3 Untilting

somit bezüglich || · ||1 gegen ein y ∈W (oF ). Da Multiplikation mit z stetig ist, gilt

yz = (
∞∑
l=0

xl,1z
−1
1 ) · z

=
∞∑
l=0

(xl,1z−1
1 · ([z̄] + pz1))

=
∞∑
l=0

([z̄]xl,1z−1
1 + pxl,1)

=
∞∑
l=0

([x̄l,0]− xl+1 + pxl,1)

= [x̄]− x1 + px0,1 + [x̄1]− x2 + px1,1 + ...

= x,

wobei die letzte Gleichheit aus [x̄l] + pxl,1 = xl folgt. Damit ist 0 ein stabiler
Repräsentant der Kongruenzklasse von x modulo (z).

Lemma 5.3.5 (Lemma 1.4.9. aus [12]). Ein stabiles Element x ∈W (oF ), das durch
ein primitives Element z teilbar ist, ist schon gleich 0.
Beweis. Sei x ∈ W (oF ) ein stabiles, durch ein primitives Element z teilbares Ele-
ment. Setze y = x/z und x =

∑∞
n=0 p

n[x̄n] bzw. y =
∑∞
n=0 p

n[ȳn] sowie z = [z̄]+pz1
mit z1 ∈W (oF )×. Wir schreiben

(x− pz1y) = (zy − pz1y) (5.5)
= (z − pz1) · y
= [z̄] · y.

Wir zeigen nun per Induktion nach n, dass

|ȳn|[ = pn+1|x̄0|[ für alle n ≥ 0 (5.6)

gilt. Das beweist die Behauptung, denn es ist ȳn ∈ oF für alle n ≥ 0, d.h. |ȳn|[ ≤ 1
für ȳn 6= 0. Deswegen ist (5.6) nur möglich, wenn x = 0 gilt.
Wir zeigen (5.6): Wir gehen von x̄0 6= 0 aus. Für n = 0 gilt aufgrund von (5.5)

|ȳ0|[ = |z̄−1 · x̄0|[ = p|x̄0|[.

Sei N ∈ N eine beliebige feste natürliche Zahl und sei die Behauptung für alle
n ≤ N gezeigt. Es gilt

x− pz1y =
∞∑
n=0

pn[x̄n]− p · (
∞∑
n=0

pn(
∑

l+m=n
[z̄m+1 · ȳl]))

=
∞∑
n=0

pn[x̄n]−
∞∑
n=0

pn+1(
∑

l+m=n
[z̄m+1 · ȳl])

=
∞∑
n=0

pn[x̄n]−
∞∑
n=1

pn(
∑

l+m=n−1
[z̄m+1 · ȳl])
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Es gilt aufgrund von (5.5) und der Induktionsvoraussetzung

||[z̄ · ȳN+1]||1 = ||[x̄N+1 +
∑

l+m=n−1
z̄m+1 · ȳl] +R||1,

wobei R ∈W (oF ) ein Element mit kleinerem Betrag als

||[x̄N+1 +
∑

l+m=n−1
z̄m+1 · ȳl]||1 = |x̄N+1 +

∑
l+m=n−1

z̄m+1 · ȳl|[ = |ȳN |[

ist. Also gilt ||[z̄ · ȳN+1]||1 = |ȳN |[, und da ||[z̄]||1 = p−1 gilt, folgt die Behauptung.

Korollar 5.3.0.1 (Corollary 1.4.10 in [12]). Sei z ∈ W (oF ) primitiv und seien
x, y ∈W (oF ) stabil und kongruent modulo z. Dann gilt |x̄0|[ = |ȳ0|[.

Beweis. Schreibe w = x − y. Es gilt aufgrund der strikten Dreiecksungleichung
|wn|[ ≤ max{|x0|[, |y0|[} für alle n nach Lemma 5.3.2. Angenommen, es gilt |x0|[ 6=
|y0|[, dann ist |w0|[ = max{|x0|[, |y0|[} > 0, also ist w stabil, Widerspruch zu
Lemma 5.3.5.

Lemma 5.3.6. Das Produkt zweier stabiler Elemente a, b ∈W (oF ) ist stabil.

Beweis. Sei ab =
∑
pn[c̄n]. Dann gilt

|c̄0|[ = |ā0|[ · |b̄0|[ = ||a||1 · ||b||1 = ||ab||1.

Also ist ab stabil.

Bemerkung 5.3.7. Ein Element x =
∑∞
n=0[x̄n] ∈W (oF ) ist genau dann eine Einheit,

wenn Φ0(x) = x̄0 ∈ oF eine Einheit ist.

Beweis der Bemerkung. Wenn x eine Einheit ist, dann auch Φ0(x), da Φ0 ein Ring-
homomorphismus ist. Andersherum sei x̄0 = Φ0(x) eine Einheit in oF . Dann ist [x̄0]
eine Einheit in W (oF ) mit multiplikativ Inversem [x̄0]−1 = [x̄−1

0 ]. Wir schreiben
x = [x̄0] + px1 für ein x1 ∈ W (oF ). Dann ist, da W (oF ) p-adisch vollständig ist,
das multiplikativ Inverse von [x̄−1

0 ] · x = 1 + p[x̄−1
0 ]x1 durch die geometrische Reihe

1
1− (−p[x̄−1

0 ]x1)
=
∞∑
n≥0

pn(−[x̄−1
0 ]x1)n

gegeben. Damit folgt die Behauptung.

Lemma 5.3.8. Ein Element x =
∑∞
n=0[x̄n] ∈ W (oF ) ist genau dann stabil, wenn

es gleich einer Einheit multipliziert mit einem Teichmüller-Lift ist.

Beweis. Sei ȳ ∈ oF . Es gilt [ȳ] ·
∑
pn[x̄n] =

∑
pn[ȳx̄n], da [·] multiplikativ ist.

Wenn x = [ȳ] · e für ein e =
∑∞
n=0 p

n[ēn] ∈ W (oF )× ist, dann gilt wegen ē0 ∈ o×F ,
dass |x̄|[ = |ȳē|[ = |ȳ|[ ≥ |ȳēn|[ für alle n ≥ 0, d.h. x ist stabil.
Andersherum sei x stabil. Wegen |x̄0|[ ≥ |x̄n|[ ist x̄n durch x̄0 teilbar für alle n ≥ 0,
also gilt x = [x̄]·([1]+

∑∞
n=1 p

n[x̄n/x̄]. Dabei ist [1]+
∑∞
n=1 p

n[x̄n/x̄] eine Einheit.
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Nun betrachten wir wieder einen perfektoiden Zwischenkörper K ⊆ L ⊆ K̂alg.

Lemma 5.3.9 (siehe Lemma 1.4.19 in [18]). Wir betrachten den Homomorphismus
ΘL : W (oL[) → oL. Dann erzeugt jedes primitive Element, das im Kern von ΘL :
W (oL[)→ oL liegt, schon Ker(ΘL).

Beweis. Sei z =
∑∞
n=0 p

n[z̄n] ∈ W (oL[) ein primitives Element mit ΘL(z) = 0.
Dann gilt klarerweise z ·W (oL[) ⊆ Ker(ΘL).
Sei x =

∑∞
n=0 p

n[x̄n] ∈ W (oL[) ein Element im Kern von ΘL. Dann gilt 0 =
ΘL(x) = θL(x̄0) + p(

∑∞
n=1 p

n−1θL(x̄n)). Daraus folgt |x̄0|[ = |θL(x̄0)| ≤ |p| = |z̄|[.
Damit gibt es ein ȳ ∈ oL[ mit x̄0 = z̄ȳ und es gilt x−z[ȳ] = 0. Somit ist Ker(ΘL) ⊆
zW (oL[) + pW (oL[).
Sei nun a ∈ Ker(ΘL) irgendein Element. Dann finden wir Elemente a1, b0 ∈W (oL[)
mit a = zb0 +pa1. Wegen z ·W (o[L) ⊆ Ker(ΘL) gilt a1 ∈ Ker(ΘL). Wir erhalten nun
induktiv Folgen (bn)n≥0 in W (oL[) und (an)n≥1 ∈ Ker(ΘL) mit an = zbn + pan+1.
Da W (oL[) nach Lemma 5.1.5 p-adisch vollständig ist, konvergiert b =

∑∞
n=0 p

nbn
in W (oL[) und erfüllt a = zb, woraus Ker(ΘL) ⊆ zW (oL[) folgt.

Bemerkung 5.3.10 (Corollary 1.4.14 in [12]). Es existiert ein primitives Element
z ∈ Ker(ΘL : W (oL[) → oL), sodass Ker(ΘL) nach Lemma 5.3.9 von z erzeugt
wird.

Beweis. L und L[ haben dieselbe Wertegruppe, darum finden ein z̄ ∈ oL[ mit
|θL(z̄)| = |z̄|[ = p−1. Dann ist θL(z̄) durch p teilbar (in oL). Da ΘL surjektiv ist,
finden wir ein z1 ∈ W (oL[) mit ΘL(z1) = −θL(z̄)/p. Dann gilt |ΘL(z1)| = | −
θL(z̄)/p| = 1. Damit ist z1 ∈ W (oL[)×, denn andererseits wäre |ΘL(z1)| < 1. Dann
ist z = [z̄] + pz1 das gesuchte Element, denn es gilt ΘL(z) = ΘL([z̄]) + pΘL(z1) =
θL(z̄)− θL(z̄) = 0.

Sei nun z ein primitives Element im Kern von ΘK : W (oK[) → oK . Dann er-
zeugt z den Kern von ΘK und ebenso den Kern von ΘL : W (oL[) → oL für einen
perfektoiden Zwischenkörper K ⊆ L ⊆ K̂alg, da z auch im Kern von ΘL liegt. Sei
im Folgenden Θ = Θ

K̂alg und θ = θ
K̂alg .

Wir haben das kommutative Diagramm

W (o(K̂alg)[)
Θ // o

K̂alg

W (oF )

⊆
OO

W (oK[)
ΘK //

⊆

OO

oK

⊆

OO
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5 Perfektoid impliziert tief verzweigt

Das Argument in Bemerkung 5.3.9 zeigt, dass Ker(Θ
K̂alg |W (oF )) = z ·W (oF ) gilt.

Wir erhalten also ein kommutatives Diagramm

W (o(K̂alg)[)/zW (o(K̂alg)[)
Θ̄ // o

K̂alg

W (oF )/zW (oF )

⊆
OO

W (oK[)/zW (oK[)
Θ̄K //

⊆

OO

oK

⊆

OO

Dabei sind die waagerechten Pfeile Isomorphismen.

Satz 5.3.11 (siehe Theorem 1.4.13 in [12]). Sei Wz := W (oF )/zW (oF ) und sei
x ∈ Wz. Wir finden einen stabilen Repräsentanten y =

∑∞
n=0 p

n[ȳn] ∈ W (oF ) und
definieren |x|′ := |ȳ0|[. Dann gilt

(i) | · |′ ist eine multiplikative Norm auf Wz, bezüglich derer Wz vollständig ist.

(ii) Es gibt einen Isomorphismus Wz/(p) ∼= oF /(z̄).

(iii) Der Ring Wz ist der Bewertungsring eines perfektoiden Körpers von Charak-
teristik 0.

Beweis. Zu (i):
Nach Korollar 5.3.0.1 ist | · |′ eine wohldefinierte Funktion von Wz nach [0, 1]. Au-
ßerdem gilt |Wz|′ = |oF |[, denn es ist |[ȳ] mod (z)|′ = |ȳ|[ für y ∈ oF .
Da jedes Element x ∈ Wz \ {0} einen stabilen Repräsentanten y 6= 0 hat, gilt
x = 0⇔ |x|′ = 0.
Um die strikte Dreiecksungleichung zu zeigen, seien x′, y′ ∈ W (oF ) stabile Reprä-
sentanten von Elementen x, y ∈Wz. Dann gilt nach Lemma 5.3.3 für einen stabilen
Repräsentanten x′ + y′ + az von x+ y

||x′ + y′||1 = ||x′ + y′ + az − az||1 ≥ ||x′ + y′ + az||1.

Damit ist

|x+ y|′ = ||x′ + y′ + az||1 ≤ ||x′ + y′||1 ≤ max{||x′||1, ||y′||1}
= max{|x̄′0|[, |ȳ′0|[}
= max{|y|′, |x|′},

wobei die vorletzte Gleichheit aus der Stabilität von x′ und y′ folgt.
Als nächstes zeigen wir die Multiplikativität: Seien a, b ∈ Wz zwei Elemente mit
stabilen Repräsentanten a′, b′ ∈W (oF ). Dann ist nach Lemma 5.3 auch a′b′ stabil,
also ein stabiler Repräsentant von ab. Es gilt

|ab|′ = |ā′0b̄′0|[ = |ā′0|[ · |b̄′0|[ = |a|′ · |b|′.
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5.3 Untilting

Jetzt zeigen wir die Vollständigkeit: Da W (oF ) ein Integritätsbereich ist, haben wir
die exakte Sequenz

0→W (oF ) ·z→W (oF )→Wz → 0.

Sei x ∈ W (oF ) ein Element mit zx ∈ pW (oF ). Dann ist die Reduktion modulo
p z̄x = z̄ · x̄ gleich 0. Da z primitiv ist, ist z̄ 6= 0, also folgt, da oF nullteilerfrei
ist, x̄ = 0, d.h. x ∈ pW (oF ). Per Induktion und wegen p 6= 0 in W (oF ) folgt
x ∈ pmW (oF ), wenn zx ∈ pmW (oF ) gilt. Damit haben wir für alle m ≥ 1 die
exakte Sequenz

0→W (oF )/pmW (oF ) ·z→W (oF )/pmW (oF )→Wz/p
mWz → 0.

Da die Projektionen W (oF )/pmW (oF ) → W (oF )/pnW (oF ) für n ≥ m surjektiv
sind, bekommen wir eine exakte Sequenz

0→ lim←−
m

W (oF )/pmW (oF ) ·z→ lim←−
m

W (oF )/pmW (oF )→ lim←−
m

Wz/p
mWz → 0.

Wir erhalten das kommutative Diagramm

0 //W (oF )
∼=
��

·z //W (oF ) //

∼=
��

Wz
//

��

0

0 // lim←−mW (oF )/pmW (oF ) ·z // lim←−mW (oF )/pmW (oF ) // lim←−mWz/p
mWz

// 0

Da W (oF ) p-adisch vollständig ist, gilt W (oF ) ∼= lim←−W (oF )/pmW (oF ), deswegen
sind die mittleren senkrechten Homomorphismen Isomorphismen, also ist auch die
Abbildung Wz → lim←−Wz/p

mWz ein Isomorphismus. Damit ist Wz p-adisch voll-
ständig.
Um zu zeigen, dass Wz bezüglich | · |′ vollständig ist, zeigen wir weiterhin, dass
|x|′ ≤ |p|′ äquivalent ist zu x ∈ (p) für ein x ∈Wz:
Wenn x im von p erzeugten Ideal liegt, gilt |x|′ ≤ |p|′, da | · |′ multiplikativ ist.
Andersherum sei |x|′ ≤ |p|′. Sei y =

∑∞
n=0 p

n[ȳn] ein stabiler Repräsentant der
Äquivalenzklasse von x. Dann gilt |ȳ0|[ = |x|′ ≤ |p|′. Da p + az ≡ az mod (p) für
alle a ∈ W (oF ) gilt, ist |p|′ ≤ p−1 nach der Definition eines primitiven Elements.
Deswegen gilt |ȳ0|[ ≤ p−1 = |z̄0|[. Wir finden also ein b̄ ∈ oF mit ȳ0 = b̄z̄0. Dann
gilt y − z · [b̄] ∈ pW (oF ), also x ∈ pWz.
Zu (ii):
Nach Satz 5.1.5 gilt W (oF )/(p) ∼= oF . Damit gilt

Wz/(p) = (W (oF )/(z))/(p) = W (oF )/(z, p) ∼= W (oF )(p, [z̄]) ∼= oF /(z̄).

Wir haben also einen Isomorphismus Wz/(p) → oF /(z̄),
∑∞
n=0 p

n[x̄n] + (p, z) 7→
x̄0 + (z̄). Insbesondere ist der Frobenius auf Wz/(p) surjektiv.
Zu (iii):
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5 Perfektoid impliziert tief verzweigt

Wz ist nach (i) ein Integritätsbereich. Wenn x =
∑∞
n=0 p

n[x̄n] und y =
∑∞
n=0 p

n[ȳn]
stabil sind und |x̄0|[ ≤ |ȳ0|[ gilt, dann ist x durch y teilbar in W (oF ) (dies folgt aus
Lemma 5.3.8). Damit ist Wz ein Bewertungsring. Der Quotientenkörper Quot(Wz)
hat Charakteristik 0, denn wir haben den Ringhomomorphismus Θ̄|Wz

: Wz →
o
K̂alg , und K̂alg hat Charaktersitik 0.

Wir setzen oF ] := Θ̄(Wz). Sei x ∈Wz ein Element mit stabilem Repräsentanten
y =

∑∞
n=0 p

n[ȳn] ∈ W (oF ). Dann gilt |Θ̄(x)| = |Θ̄(y + (z))| = |
∑∞
n=0 p

nθ(ȳn)| =
|θ(ȳ0)| = |ȳ0|[ = |x|′. Aus dem vorherigen Satz folgern wir, dass oF ] der Bewer-
tungsring eines perfektoiden Körpers F ] := Quot(oF ]) mit K ⊆ F ] ⊆ K̂alg ist.

Wir berechnen nun den Tilt von F ] (siehe [18, Proposition 1.4.23]):
Sei x ∈ oF ⊆ o(K̂alg)[ . Wir schreiben

x = (x0 mod po
K̂alg , ..., xi mod po

K̂alg , ...) ∈ o(K̂alg)[ = lim←− o
K̂alg/poK̂alg .

Es ist (θ(x) mod poF ] , ..., θ(x1/pi) mod poF ] , ...) ein Element in o(F ])[ . Als Element
in o(K̂alg)[ betrachtet, ist

(θ(x) mod po
K̂alg , ..., θ(x1/pi) mod po

K̂alg , ...) = (x0 mod po
K̂alg , ..., xi mod po

K̂alg , ...),

also gleich x. Damit gilt oF ⊆ o(F ])[ .
Sei umgekehrt x ∈ o(F ])[ . Wir benötigen das folgende Lemma:

Lemma 5.3.12. Die Abbildung

lim←−
(·)p

oF → lim←−
(·)p

oF /(z̄),

(x0, ..., xi, ...) 7→ (x0 mod (z̄), ..., xi mod (z̄), ...)

ist ein Ringisomorphismus.

Beweis. Siehe Lemma 1.4.22 aus [18].

Mit Lemma 5.3.12 und dem Isomorphismus oF ]/poF ]
∼= Wz/(p) ∼= oF /z̄oF kön-

nen wir

x = (θ(x0) mod poF ] , ..., θ(xj) mod poF ] , ...) ∈ o(F ])[ = lim←−
(·)p

oF ]/poF ]

mit Elementen xj = (x0j mod po
K̂alg , ..., xij mod po

K̂alg , ...) ∈ oF , sodass xpj+1 = xj
für alle j ≥ 0 gilt, schreiben. Dann gilt für alle i, j ≥ 0

xpi+1j ≡ xij ≡ x
p
ij+1 mod po

K̂alg ,
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5.4 Kompatibilität mit endlichen Erweiterungen

also

x = ( lim
i→∞

xp
i

i0 mod po
K̂alg , ..., lim

i→∞
xp

i

ij mod po
K̂alg , ...)

= ( lim
i→∞

xp
i

i0 mod po
K̂alg , ..., lim

,i>j,i→∞
xp

i−j

i0 mod po
K̂alg , ...)

= (x00 mod po
K̂alg , ..., xj0 mod po

K̂alg , ...)
= x0 ∈ oF .

Also gilt o(F ])[ ⊆ oF .

Satz 5.3.13. Wir haben eine Bijektion

Perfektoide Körper K ⊆ L ⊆ K̂alg ↔ Vollständige und perfekte Körper K[ ⊆ F ⊆ (K̂alg)[

(L, | · |) 7→ (L[, | · |[),
(F ], | · |[)←[ (F, | · |).

Beweis. Es gilt (F ])[ = F . Umgekehrt haben wir einen IsomorphismusW (oL[)/(z) ∼=
oL, also gilt (L[)] = L.

5.4 Kompatibilität mit endlichen Erweiterungen

Lemma 5.4.1 (Remark 1.4.25 in [18]). Sei F ein perfektoider Körper von Charak-
teristik p. Wenn F algebraisch abgeschlossen ist, dann auch F ].

Beweis. Sei E/F ] eine nichttriviale endliche Erweiterung. Sei x ∈ oE ein Ele-
ment mit F ](x) = E. Da oE der ganze Abschluss von oF ] in E ist und x da-
mit ganz über oF ] ist, hat das Minimalpolynom P (X) von x Koeffizienten in oF ] .
Sei d ≥ 2 der Grad von P (X). Da F ] vollständig und damit henselsch ist, ha-
ben alle Nullstellen von P (X) in einem algebraischen Abschluss von F ] denselben
Betrag. Da F ] perfektoid ist, finden wir ein normiertes Polynom Q(X) ∈ oF [X],
sodass Q(X) und P (X) dasselbe Bild in oF ]/poF ] [X] ∼= oF /(z̄)[X] haben. Es gilt
θ(Q(X)) ≡ P (X) mod (p).
Da F algebraisch abgeschlossen ist, hat Q(X) eine Nullstelle α ∈ oF Das Element
y1 := θ(α) ∈ oF ] erfüllt dann 0 < |P (y1)| ≤ p−1 = |p|.
Es gilt |oF ] | = |oF |[, und da F algebraisch abgeschlossen ist, hat jede reelle Zahl
aus |oF |[ eine d-te Wurzel. Damit finden wir ein c1 ∈ oF ] mit |c1|d = |P (y1)| ≤ p−1.
Das Polynom P1(X) := c−d1 P (c1X + y1) ist normiert und irreduzibel von Grad d.
Der konstante Koeffizient von P1(X) hat nach Konstruktion den Betrag 1, also ha-
ben auch alle Nullstellen den Betrag 1, da alle Nullstellen denselben Betrag haben.
Damit gilt P1(X) ∈ oF ] [X]. Das Polynom P1(X) hat damit dieselben Eigenschaften
wie das Polynom P (X). Wir können also mit P1(X) analog verfahren und erhalten
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5 Perfektoid impliziert tief verzweigt

induktiv Sequenzen (yn)n≥1 und (cn)n≥1 in oF ] und eine Sequenz von irreduziblen
normierten Polynomen (Pn)n≥0 von Grad d in oF ] [X]. sodass gilt

P0 = P, |cn|d = |Pn−1(yn)| ≤ p−1 und Pn(X) = c−dn Pn−1(cnX + yn) für alle n ≥ 1.

Damit gilt

|P (c1...cnyn+1 + c1...cn−1yn + ...+ c1y2 + y1)| ≤ p−n|Pn(yn+1)| ≤ p−(n+1)

für alle n ≥ 1. Außerdem gilt |c1...ci| ≤ p−i/d für alle i ≥ 1. Damit folgt, dass

c :=
∞∑
n=1

(Πn−1
i=1 ci)yn

in oF ] konvergiert und eine Nullstelle von P (X) ist, was einen Widerspruch zur
angenommenen Irreduzibilität von P (X) darstellt.
Es gibt keinen echten algebraisch abgeschlossenen und vollständigen Unterkörper
von K̂alg. Daraus folgt F ] = K̂alg und somit F = (K̂alg)[.

Seien K ⊆ K1 ⊆ K2 ⊆ K̂alg zwei perfektoide Körper. Wenn K[
2/K

[
1 eine echte

endliche Erweiterung ist, dann ist K[
2 nicht algebraisch abgeschlossen (siehe [4, 6.3,

Satz 2]), also ist auchK2 nicht algebraisch abgeschlossen. Dann ist σ ∈ Aut(K2/K1)
stetig, denn andernfalls würde durch x 7→ |σ(x)| eine nicht zu | · | äquivalente Norm
definiert werden, was aber [1, Theorem 4.4.1] widerspricht. Außerdem folgt aus [15,
II, Satz 3.3], dass σ den Betrag erhält.

Sei K2/K1 eine Erweiterung perfektoider Körper in Charakteristik 0, sodass
K[

2/K
[
1 endlich ist. Wir erhalten einen Homomorphismus

Aut(K2/K1)→ Aut(K[
2/K

[
1)

σ 7→ σ[,

wobei wir σ[(x0 mod poK2 , ..., xi mod poK2 , ...) := (σ(x0) mod poK2 , ..., σ(xi) mod poK2 , ...)
für x = (x0 mod poK2 , ..., xi mod poK2 , ...) ∈ oK[

2
setzen. Dabei gilt θ(σ[(x)) =

limi→∞ σ(xi)p
i = σ(θ(x)), also |σ[(x)|[ = |θ(σ[(x))| = |σ(θ(x))| = |θ(x)| = |x|[.

Weiterhin definieren wir durch

σ(
∞∑
n=0

pn[x̄n]) =
∞∑
n=0

pn[σ(x̄n)]

eine Autcont(K[
2/K

[
1)-Operation auf W (oK[

2
).

Lemma 5.4.2 (Lemma 1.6.1. aus [18]). Sei K[
2/K

[
1 endlich. Der Homomorphismus

ΘK2 : W (oK[
2
)→ oK2 erfüllt

ΘK2(σ[(x)) = σ(ΘK2(x))

für alle σ ∈ Aut(K2/K1) und alle x =
∑∞
n=0 p

n[x̄n] ∈W (oK[
2
).
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Beweis. Sei σ ∈ Aut(K2/K1). Dann gilt

ΘK2(σ[(
∞∑
n=0

pn[x̄n])) = ΘK2(
∞∑
n=0

pn[σ[(x̄n)]) =
∞∑
n=0

pnθK2(σ[(x̄n))

=
∞∑
n=0

pnσ(θK2(x̄n)) = σ(
∞∑
n=0

pnθK2(x̄n))

= σ(ΘK2(
∞∑
n=0

pn[x̄n])).

Dabei folgt die dritte beziehungsweise vierte Gleichheit aus der Stetigkeit von σ
zusammen mit Bemerkung 5.2.3.

Lemma 5.4.3 (siehe Proposition 1.6.2. aus [18]). Sei K2/K1 eine Erweiterung
perfektoider Körper, sodass K[

2/K
[
1 endlich ist. Dann ist der Homomorphismus

Aut(K2/K1)→ Aut(K[
2/K

[
1)

σ 7→ σ[

bijektiv.

Beweis. Um die Injektivität zu zeigen, sei σ[ die Identität. Es operiert σ[ als Iden-
tität auf W (oK[

2
). Lemma 5.4.2 und die Surjektivität von ΘK2 implizieren, dass ein

Urbild σ von σ[ schon die Identität ist.
Nun zeigen wir die Surjektivität. Das Element z ∈ Ker(ΘK1) ist ein Erzeuger von
Ker(ΘK1). Die Operation von Aut(K[

2/K
[
1) auf W (oK[

2
) lässt z fest. Das führt zu

einer Operation auf W (oK[
2
)/zW (oK[

2
) ∼= oK2 und damit auf K2. Die so definierte

Operation von Aut(K[
2/K

[
1) auf oK2 lässt W (oK[

1
)/zW (oK[

1
) ∼= oK1 fest. Wir erhal-

ten damit einen Automorphismus σ] von K2, der K1 festlässt. Damit haben wir
einen Homomorphismus

Aut(K[
2/K

[
1)→ Autcont(K2/K1)
σ 7→ σ].

Nach Definition gilt

ΘK2([σ(x)]) = σ](ΘK2([x])) für alle x ∈ oK[
2
.

Wir müssen zeigen, dass (σ])[ = σ gilt. Für jedes

x = (x0 mod poK2 , ..., xn mod poK2 , ...) ∈ oK[
2

gilt

xn ≡ θK2(x1/pn) ≡ ΘK2([x1/pn ]) mod (p)
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und damit

x = (ΘK2([x]) mod poK2 , ...,ΘK2([x1/pn ]) mod poK2 , ...). (5.7)

Nun können wir berechnen:

σ(x) = (ΘK2([σ(x)]) mod poK2 , ...,ΘK2([σ(x)1/pi ]) mod poK2 , ...)

= (σ](ΘK2([x])) mod poK2 , ..., σ
](ΘK2([x1/pi ])) mod poK2 , ...)

= (σ])[((ΘK2([x])) mod poK2 , ...,ΘK2([x1/pi ]) mod poK2 , ...))
= (σ])[(x).

Lemma 5.4.4 (Lemma 1.6.3. in [18]). Seien K1 ⊆ K2 zwei perfektoide Körper
in Charakteristik 0, sodass K[

2/K
[
1 eine endliche Galoiserweiterung ist. Dann ist

K2/K1 eine endliche Galoiserweiterung, und die Abbildung

Gal(K2/K1)→ Gal(K[
2/K

[
1),

σ 7→ σ[

ist ein Isomorphismus.

Beweis. Nach Lemma 5.4.3 ist der Homomorphismus Aut(K2/K1)→ Gal(K[
2/K

[
1)

bijektiv. Außerdem ist der Isomorphismus ΘK2 : W (oK[
2
)/zW (oK[

2
)→ oK2 äquiva-

riant für die Aktion dieser beiden Gruppen. Wir bekommen also ein kommutatives
Diagramm

W (oK[
2
)/zW (oK[

2
)Gal(K[

2/K
[
1) ΘK2 // o

Aut(K2/K1)
K2

W (oK[
1
)/zW (oK[

1
)

ΘK1

//

⊆
OO

oK1

⊆

OO

Dabei sind die waagerechten Pfeile Isomorphismen.
Andererseits haben wir die exakte Sequenz

0→W (oK[
2
) z·−→W (oK[

2
)→W (oK[

2
)/zW (oK[

2
)→ 0,

und damit die exakte Sequenz

0→W (oK[
2
)Gal(K[

2/K
[
1) z·−→W (oK[

2
)Gal(K[

2/K
[
1) → (W (oK[

2
)/zW (oK[

2
))Gal(K[

2/K
[
1)

→ H1(Gal(K[
2/K

[
1),W (oK[

2
)).

Es gilt W (oK[
2
)Gal(K[

2/K
[
1) = W (oGal(K[

2/K
[
1)

K[
2

) = W (oK[
1
). Nach [20, VII, §2, Cor.

1] wird H1(Gal(K[
2/K

[
1),W (oK[

2
)) durch die Ordnung von Gal(K[

2/K
[
1) annuliert.
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Die Gruppe H1(Gal(K[
2/K

[
1),W (oK[

2
)) ist ein Zp-Modul 4. Da in Zp alle Primzah-

len bis auf p invertierbar sind, wird H1(Gal(K[
2/K

[
1),W (oK[

2
)) von einer p-Potenz

annuliert. Zusammengenommen ergibt sich, dass der Kokern des linken senkrech-
ten Pfeils in obigem Diagramm von einer p-Potenz annuliert wird und damit auch
der Kokern des rechten senkrechten Pfeils. Geht man zu den Quotientenkörpern
über, erhält man also K1 = K

Aut(K2/K1)
2 . Nach Artins Theorem ist damit K2/K1

galoissch mit Galoisgruppe Aut(K2/K1).

Satz 5.4.5 (Proposition 1.6.8. in [18]). Es gilt:

(i) Jede endliche Erweiterung K1/K ist perfektoid.

(ii) Wenn K1 perfektoid ist, dann ist K1/K genau dann endlich, wenn K[
1/K

[

endlich ist. In diesem Fall gilt [K1 : K] = [K[
1 : K[].

Beweis. Setze F := K[. Sei F alg der algebraische Abschluss von F in (K̂alg)[. Dann
ist F alg die Vereinigung aller endlichen galoisschen Teilerweiterungen F2/F . Nach
[18, Remark 1.6.4] ist jedes derartige F2 vollständig und perfekt, also perfektoid. Da-
mit ist F2 = K[

2 damit der Tilt eines eindeutigen perfektoiden Körpers K2/K. Nach
Lemma 5.4.4 ist K2/K endlich und galoissch und es gilt Gal(K2/K) ∼= Gal(F2/F ).
Alle Zwischenkörper von F2/F sind nach [18, Remark 1.6.4] perfektoid, also Tilts
von perfektoiden Zwischenkörpern von K2/K. Wegen des Isomorphismus’ der Ga-
loisgruppen sind alle Zwischenkörper von K2/K perfektoid. Sei Kperf die Verei-
nigung aller solcher endlichen Galoiserweiterungen K2/K Damit ist jede endliche
Erweiterung K1/K mit K1 ⊆ Kperf perfektoid, denn sie ist in einem K2 enthalten.
Aufgrund von Lemma 5.4.4 und Galoistheorie gilt [K1 : K] = [K[

1 : K[].
Die Vervollständigung von Kperf ist ein perfektoider Körper, dessen Tilt F̂ alg ist.
Da F̂ alg perfektoid und algebraisch abgeschlossen ist, gilt F̂ alg = (K̂alg)[.
Da K̂alg der eindeutige Körper mit Tilt F̂ alg ist, folgt K̂perf = K̂alg. Da Kalg al-
gebraisch über K ist und K vollständig ist, erhält jedes σ ∈ Gal(Kalg/Kperf ) den
Betrag und ist somit stetig. Kperf liegt dicht in K̂perf = K̂alg, also auch in Kalg.
Damit ist jedes σ ∈ Gal(Kalg/Kperf ) die Identität und es gilt Kperf = Kalg.
Also ist jede endliche Erweiterung K1/K perfektoid und es gilt [K1 : K] = [K[

1 :
K[]. Wenn andersherum K1 perfektoid und K[

1/K
[ endlich ist, dann ist K[

1 in einem
F2 enthalten und K1 ist im entsprechenden Körper K2 enthalten.

Satz 5.4.6 (Theorem 1.6.4. in [12]). Sei L eine endliche Erweiterung von K. Dann
ist die Spur Tr : mL → mK surjektiv.

Beweis. Sei zunächst L/K galoissch.
Nach Lemma 5.4.5 ist L ebenfalls perfektoid. Wir betrachten K[ und L[. Wegen
Perfektheit von K[ ist L[ eine endliche separable Erweiterung von K[. Darum
finden wir ein u ∈ mK[ \ {0}, sodass uoK[ ⊆ Tr(mL[) gilt. Da der Frobenius nach
Voraussetzung surjektiv ist, können wir u durch up−n ersetzen für alle n ∈ N. Also

4oK[
2
ist eine Zp-Algebra, also auch W (oK[

2
), siehe [18, Proposition 1.1.8].
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5 Perfektoid impliziert tief verzweigt

ist TrL[/K[ : mL[ → mK[ surjektiv.
K ist nicht diskret bewertet, deshalb finden wir ein t ∈ mK mit p−1 < |t| < 1. Da L
eine endliche separable Erweiterung von K ist, finden wir eine positive natürliche
Zahl m, sodass (p/t)mmK ⊆ Tr(mL) gilt. Sei x ∈ mK . Wir finden ein Element
(x mod poK , ..., xi mod poK , ...) ∈ mK[ . Wegen Lemma 5.4.3 und Satz 5.4.5 ist
L[/K[ galoissch.
Wir finden ein y = (y0 mod poL, ..., yi mod poL, ...) ∈ mL[ mit

(x mod poL, ..., xi mod poL, ...) = TrL[/K[(y)

=
∑

σ∈Gal(L/K)
σ[(y)

=
∑

σ∈Gal(L/K)
σ[((y0 mod poL, ..., yi mod poL, ...))

=
∑

σ∈Gal(L/K)
(σ(y0) mod poL, ..., σ(yi) mod poL, ...),

wobei wir den Isomorphismus zwischen den Galoisgruppen Gal(L[/K[) ∼= Gal(L/K)
benutzen (Lemma 5.4.4). Anwenden der Projektion oK[ → oK/(p) ergibt

x ≡ TrL/K(y0) mod (p),

wir finden also ein a ∈ oK mit x = TrL/K(y0) + pa. Dann gilt, indem wir dasselbe
Verfahren wiederholen,

x = TrL/K(y0) + pa

= TrL/K(y0) + p/t · ta
= TrL/K(y0) + p/t(TrL/K(y′) + pa′)
= TrL/K(y0) + TrL/K(p/t · y′) + (p/t)2 · ta′

= TrL/K(y0 + p/t · y′) + (p/t)2(TrL/K(y′′) + pa′′)
= TrL/K(y0 + p/t · y′ + (p/t)2y′′) + (p/t)3 · ta′′

für bestimmte Elemente y′, y′′ ∈ mL und a′, a′′ ∈ oK . Wir können iterativ so verfah-
ren, bis schließlich der letzte Summand in (p/t)mmK und damit im Bild der Spur
liegt.
Daraus folgt x ∈ Tr(mL) und damit die Behauptung.
Für eine beliebige endliche Erweiterung L/K betrachten wir die normale Hülle Ln
von L über K und wenden das bereits bewiesene auf Ln/L und Ln/K an und
benutzen die Transitivität der Spurabbildung.

Bemerkung 5.4.7. Aus dem ersten Teil des Beweises ist ersichtlich, dass die Aussage
des vorherigen Satzes auch für perfektoide Körper von Charakteristik p gilt.

Korollar 5.4.0.1. Sei F eine separable Erweiterung eines lokalen Körpers, sodass
die Vervollständigung F̂ perfektoid ist. Sei F ′/F eine separable endliche Erweite-
rung. Dann gilt TrF ′/F (mF ′) = mF .

100



5.4 Kompatibilität mit endlichen Erweiterungen

Beweis. Sei zunächst F ′/F galoissch. Sei x ein Element mit F(x) = F ′. Dann
gilt F̂ ′ = F̂(x), denn einerseits gilt klarerweise F̂(x) ⊆ F̂ ′, und andererseits gilt
F ′ ⊆ F̂(x) und F̂(x) ist vollständig und die Bewertung von F̂ ′ setzt die Bewertung
auf F̂ eindeutig auf F̂(x) fort, also gilt F̂(x) = F̂ ′. Also ist F̂ ′/F̂ eine endliche
separable Erweiterung. Sei σ ∈ Gal(F ′/F) ein beliebiges Element. Wir können
σ per (gleichmäßiger) Stetigkeit zu einem F̂-Automorphismus von F̂ ′ fortsetzen.
Andererseits gilt ord Aut(F̂ ′/F̂) ≤ [F̂ ′ : F̂ ] ≤ [F ′ : F ] = ord Gal(F ′/F), also ist die
Abbildung Gal(F ′/F)→ Aut(F̂ ′/F̂) ein Isomorphismus, F̂ ′/F̂ ist galoissch und es
gilt TrF̂ ′/F̂ (y) = TrF ′/F (y) für alle y ∈ F ′.
Es ist F̂ ′ als endliche Erweiterung von F̂ ebenfalls perfektoid.
Sei zunächst char(F) = 0, und sei x ∈ mF ein beliebiges Element. Wir finden wegen
Satz 5.4.6 ein y0 ∈ oF̂ ′ mit x = TrF̂ ′/F̂ (y0). Da F ′ dicht in F̂ ′ liegt, finden wir ein
y ∈ oF ′ mit |y0 − y| < |p|, also gilt

x ≡ TrF̂ ′/F̂ (y) = TrF ′/F (y) mod (p).

Wir erhalten durch ähnliche Argumentation wie im obigen Beweis die Surjektivität
der Spur.
Sei nun char(F) = p. Sei b ∈ mF ein Element mit 1 > |b| > 0. Wir finden ein
t ∈ mF mit |b| < |t| < 1 und eine natürliche Zahl m mit (b/t)mmF ⊆ TrF ′/F (mF ′)
(da F ′/F nach Voraussetzung separabel ist). Sei x ∈ mF . Wir finden aufgrund der
Dichtheit von F ′ in F̂ ′ und wegen Bemerkung 5.4.7 ein Elements y ∈ mF ′ mit

x ≡ TrF̂ ′/F̂ (y) = TrF ′/F (y) mod (b),

und ähnlich wie im Beweis von Satz 5.4.6 im Fall char(F) = 0 folgern wir die
Behauptung.
Wenn F ′/F nicht galoissch ist, können wir wieder zur normalen Hülle von F ′/F
übergehen und die Transitivität der Spur ausnutzen.

Wenn also F/F eine separable Erweiterung des lokalen Körpers F ist, sodass
die Vervollständigung von F perfektoid ist, dann ist F/F tief verzweigt. Wenn F
ein perfektoider Zwischenkörper von Cp/Qp ist, dann ist F ∩ Qalg

p tief verzweigt,
denn jeder vollständige Zwischenkörper von Cp/Qp ist die Vervollständigung einer
algebraischen Erweiterung von Qp (siehe Proposition 1.6.6 in [18]).

Alternativ kann man auch wie folgt argumentieren:

Satz 5.4.8. [Theorem 1.6.2 in [12]] Wenn L/K eine endliche Erweiterung ist,
dann ist ΩoL/oK

= 0.

Beweis. Wir zeigen zunächst, dass es ein z ∈ oL gibt, sodass z · ΩoL/oK
= 0 gilt.

Dazu betrachten wir die exakte Sequenz (Lemma 3.2.2)

ΩK/oK
⊗K L→ ΩL/oK

→ ΩL/K → 0.
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5 Perfektoid impliziert tief verzweigt

Nach [7, Proposition 16.9] gilt ΩK/oK
= K⊗oK ΩoK/oK

= 0. Außerdem ist ΩL/K = 0,
da L/K separabel ist. Also ist 0 = ΩL/oK

= L ⊗oL ΩoL/oK
, wobei wir wieder [7,

Proposition 16.9] benutzen. Nun können wir aus [5, I, § 2.11, Proposition 13] folgern,
dass für alle x ∈ oL ein v ∈ oL \ {0} existiert, sodass v · dx = 0 gilt.
Sei nun e1, ..., ed ∈ oL eine Basis von L/K. Dann finden wir ein t ∈ oL \ {0}, sodass
t · oL ⊆

⊕
eioK gilt (siehe den Beweis von Lemma 4.2.1). Wir wählen ein u, sodass

u · dei = 0 für alle i = 1, ..., d gilt. Dann ist z := tu das gesucht Element.
Da K und damit auch L perfektoid sind, finden wir für alle x ∈ oL Elemente
y, z ∈ oL, sodass x = yp + pz gilt. Dann haben wir

dx = p · dyp−1 + p · dz,

also gilt ΩoL/oK
= p · ΩoL/oK

und iterativ folgt für alle natürlichen Zahlen n

ΩoL/oK
= pn · ΩoL/oK

.

Wir finden ein n, sodass z|pn, und die Aussage folgt mit dem ersten Teil des Be-
weises.
Wenn F eine separable Erweiterung eines lokalen Körpers ist, dessen Vervollstän-
digung F̂ perfektoid ist, und F ′/F eine endliche separable Erweiterung ist, können
wir in Charakteristik 0 analog argumentieren, denn es gilt, da F ′ dicht in der Ver-
vollständigung F̂ ′ liegt, oF̂ ′/poF̂ ′

∼= oF ′/poF ′ . In Charakteristik p wählen wir ein
Element b ∈ mF \ {0}. Dann ist der Frobenius surjektiv auf oF̂ ′/boF̂ ′

∼= oF ′/boF ′

und wir können ähnlich wie im ersten Teil des Beweises argumentieren.
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6 Arithmetisch proendliche
Körpererweiterungen

Sei F/F eine Erweiterung, F ⊆ F sep. Wir bezeichnen die absoluten Galoisgrup-
pen von F beziehungsweise F mit GF = Gal(F sep/F ) bezeihungsweise GF =
Gal(F sep/F). Die folgende Definition stammt aus [21].

Definition (Arithmetisch proendlich). Die Erweiterung F/F heißt arithmetisch
proendlich (APF), wenn die Gruppe GuFGF für alle u ≥ −1 offen in GF ist.

Lemma 6.0.1. Unendliche arithmetisch proendliche Erweiterungen sind tief ver-
zweigt. Die Umkehrung gilt jedoch nicht.

Beweis. Sei F/F eine unendliche APF-Erweiterung. Wenn es ein u ∈ [−1,∞) gäbe,
sodass F ⊆ F (u) gilt, dann wäre GuFGF = GF nicht mehr von endlichem Index in
GF . Insbesondere hat F/F unendlichen Führer und ist damit nach Lemma 3.1.10
tief verzweigt.
Andersherum ist die Restklassenkörpererweiterung von F/F notwendigerweise end-
lich (denn andernfalls wäre G0

FGF nicht von endlichem Index in GF ). Wenn man
eine Erweiterung eines lokalen Körpers mit unendlicher Restklassenkörpererweite-
rung mit einer tief verzweigten Erweiterung kompositioniert, erhält man eine Er-
weiterung, die tief verzweigt, aber nicht arithmetisch proendlich ist. Zum Beispiel
ist das Kompositum von Qp(p1/p∞) mit der maximal unverzweigten Erweiterung
von Qp über Qp tief verzweigt, aber nicht arithmetisch proendlich.

Sei im Folgenden F/F eine unendliche Erweiterung, F ⊆ F sep. Setze B := {b ∈
R∗+ |Gb+εF GF 6= GbFGF}. Das ist die Menge der Sprünge von F/F .

Lemma 6.0.2. Wenn F/F APF ist, dann ist B diskret und unbeschränkt.

Beweis. B ist diskret, denn andernfalls gäbe es unendliche viele Sprünge ≤ n für
eine reelle Zahl n und GnFGF hätte keinen endlichen Index in GF .
Angenommen, B wäre endlich. Dann gäbe es ein x ∈ R, sodass GxFGF = Gx+ε

F GF =
GF für alle ε > 0 gelten würde (nämlich x = maxB). Dann wäre aber der Index von
GxFGF in GF nicht mehr endlich, was ein Widerspruch zur Voraussetzung ist.

Das folgende Beispiel ist eine tief verzweigte ErweiterungM von Qp, deren Menge
der Sprünge B dicht in [0,∞) liegt. Insbesondere ist sie nicht APF.
Beispiel (Ch. IV, Sect. 6, Exercise 10 in [9]). SeiM die maximale abelsche Erweite-
rung der maximalen abelschen Erweiterung der maximalen abelschen Erweiterung
von Qp. Dann liegt die Menge der Sprünge B dicht in [0,∞).
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6 Arithmetisch proendliche Körpererweiterungen

Beweis. 1 Sei r/n eine rationale Zahl mit p - n. Wir konstruieren eine endliche
Erweiterung L/Qp in M , die einen oberen Sprung an der Stelle r/n hat. Dann hat
auch M/Qp einen Sprung an der Stelle r/n.
Sei L0 := Qp(ζ) mit einer primitiven n-ten Einheitswurzel ζ. Dann ist L0/Qp unver-
zweigt von Grad m, wobei m die kleinste natürliche Zahl ist, sodass pm ≡ 1 mod n
(siehe [15, V, § 6, Satz 6.3]). Außerdem ist L0/Qp abelsch.
Dann definieren wir L1 := L0(p1/n) durch Adjungieren einer n-ten Wurzel von p.
Diese Erweiterung ist total verzweigt von Grad n. Da p - n gilt, ist sie zahm ver-
zweigt. Da L0 eine primitive n-te Einheitswurzel enthält, ist L1/L0 nach [4, 4.8,
Satz 3] zyklisch.
Drittens sei L2/L1 eine total verzweigte abelsche Erweiterung, die einen oberen
Sprung bei r hat (siehe [20, IV, § 4, Proposition 18]). Dann ist L2/Qp eine endliche
Erweiterung in M , und es gilt

ψL2/Qp
= ψL2/L1 ◦ ψL1/L0 ◦ ψL0/Qp

(r/n)
= ψL2/L1(n · r/n)
= ψL2/L1(r).

Da L2/L1 einen oberen Sprung an der Stelle r hat, folgt, dass L2/Qp einen oberen
Sprung an der Stelle r/n hat.
Bezeichne mit K die Vervollständigung der maximalen unverzweigten Erweiterung
von Qp. Dann ist MK/K eine tief verzweigte Erweiterung mit trivialer Restklas-
senkörpererweiterung, die nicht APF ist.

Lemma 6.0.3 (Proposition 2.3 in [8]). Wir nehmen an, dass der Restklassenkörper
von F endlich ist. Sei F/F eine Galoiserweiterung mit endlicher Restklassenkör-
pererweiterung. Dann ist F/F genau dann arithmetisch proendlich, wenn F/F tief
verzweigt ist und die Menge der Sprünge B diskret ist.

Beweis. Wenn F/F APF ist, dann ist F/F tief verzweigt nach Lemma 6.0.1. Nach
Lemma 6.0.2 ist die Menge der Sprünge diskret.
Andersherum sei B diskret und F/F tief verzweigt. Dann ist B zusätzlich unbe-
schränkt. Wir zeigen, dass für n ≥ 1

(Gal(F/F )bn : Gal(F/F )bn+1) ≤ pf

gilt, wobei pf die Kardinalität des Restklassenkörpers von F ist.
Sei zunächst M/F eine endliche Galoiserweiterung mit zwei aufeinanderfolgenden
oberen Sprüngen u1 und u2. Wir bezeichnen die Fixkörper von Gal(M/F )u1 bezie-
hungsweise Gal(M/F )u2 mit K1 beziehungsweise K2.
Wir finden ganze Zahlen v1 und v2 mit u1 = ψM/F (v1) beziehungsweise u2 =
ψM/F (v2). Dann stimmt Gal(M/F )u2 = Gal(M/F )v2 mit Gal(M/F )v1+1 überein.
Nach [20, IV, §2, Proposition 6 und 7] gibt es eine Injektion von Gal(M/F )v1/Gal(M/F )v1+1

1Der Beweis stammt aus einem Post auf math.stackexchange.com, siehe http://math.
stackexchange.com/questions/2116442
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in die multiplikative oder in die additive Gruppe des Restklassenkörpers M̄ vonM .
Daraus folgt, dass der Grad der Erweiterung K2/K1 nicht größer als die Kardina-
lität von M̄ sein kann.
Sei nun En der Fixkörper von Gal(F/F )bn für n ≥ 1 und E0 := F . Wir wollen per
Induktion über n zeigen, dass

[En+1 : En] ≤ pf

gilt. Für n = 0 stimmt das aufgrund der Voraussetzung an die Restklassenkörperer-
weiterung.
Nach Induktionsannahme ist [En : F ] < ∞. Wähle einen Turm von endlichen Er-
weiterungen Fj/F , sodass F =

⋃
j Fj gilt. Dann finden wir für jedes n ein j, sodass

En ⊆ Fj gilt und bn und bn+1 zwei aufeinanderfolgende Sprünge in der oberen Num-
merierung von Gal(Fj/F ) sind. Alle Sprünge bn von Gal(F/F ) sind obere Sprünge
von endlichen galoisschen Teilerweiterungen, da B nach Voraussetzung diskret ist.
Dann sind En bzw. En+1 ∩Fj die Fixkörper von Gal(Fj/F )bn bzw. Gal(Fj/F )bn+1 .
Wie bereits im ersten Teil des Beweises gesehen, gilt dann [En+1 ∩ Fj : En] ≤ pf .
Damit gilt auch [En+1 : En] ≤ qf , da wir Fj vergrößern können und dieselbe Un-
gleichung erhalten.

Beispiel. Wir betrachten die Erweiterung Qp∞/Qp, die durch Hinzufügen der pn-ten
primitiven Einheitswurzeln für alle n ∈ N entsteht. Diese Erweiterung ist abelsch,
tief verzweigt und total verzweigt. Außerdem ist die Menge der Sprünge diskret, da
die oberen Sprünge sämtlicher endlicher Teilerweiterungen L/Qp natürliche Zahlen
sind (siehe [20, V, § 7, Theorem 1]). Damit ist Qp∞/Qp APF.
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