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Abstract

We show that every henselian valued field L of residue characteristic 0 admits a proper

subfield K which is dense in L. We present conditions under which this can be taken

such that L|K is transcendental and K is henselian. These results are of interest for the

investigation of integer parts of ordered fields. We present examples of real closed fields

which are larger than the quotient fields of all their integer parts. Finally, we give rather

simple examples of ordered fields that do not admit any integer part and of valued fields

that do not admit any subring which is an additive complement of the valuation ring.

1 Introduction

At the “Logic, Algebra and Arithmetic” Conference, Teheran 2003, Mojtaba Moniri asked
the following question: Does every non-archimedean ordered real closed field L admit a
proper dense subfield K? This question is interesting since if such a subfield K admits
an integer part I then I is also an integer part for L, but the quotient field of I lies in K
and is thus smaller than L. An integer part of an ordered field K is a discretely ordered
subring I with 1 such that for all a ∈ K there is r ∈ I such that r ≤ a < r+ 1. It follows
that the element r is uniquely determined, and in particular that 1 is the least positive
element in I.

Since the natural valuation of a non-archimedean ordered real closed field L is non-
trivial, henselian and has a (real closed) residue field Lv of characteristic 0, the following
theorem answers the above question to the affirmative:
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Mathématiques de Jussieu, Paris, and of the Equipe Algèbre–Géométrie at the University of Versailles.
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in Iran for their hospitality and support. I also thank the two referees as well as A. Fornasiero for their
careful reading of the paper and their useful suggestions. This paper is dedicated to Salma Kuhlmann
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work.
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Theorem 1 Every henselian non-trivially valued field (L, v) with a residue field of char-
acteristic 0 admits a proper subfield K which is dense in (L, v). This subfield K can be
chosen such that L|K is algebraic.

Here, density refers to the topology induced by the valuation; that is, K is dense in
(L, v) if for every a ∈ L and all values α in the value group vL of (L, v) there is b ∈ K
such that v(a − b) ≥ α. In the case of non-archimedean ordered fields with natural (or
non-trivial order compatible) valuation, density in this sense is equivalent to density with
respect to the ordering.

In the case where the value group vL has a maximal proper convex subgroup, the
proof is quite easy, but does in general not render any subfield K such that L|K is
transcendental. In the case of vL having no maximal proper convex subgroup, the proof
is much more involved, but leaves us the choice between L|K algebraic or transcendental:

Theorem 2 In addition to the assumptions of Theorem 1, suppose that vL does not have
a maximal proper convex subgroup. Then for each integer n ≥ 1 there is a henselian (as
well as a non-henselian) subfield K dense in L such that trdegL|K = n. It can also be
chosen such that trdegL|K is infinite.

To see that such valued fields (L, v) exist, take xi , i ∈ N, to be a set of algebraically
independent elements over an arbitrary field k and define a valuation v on k(xi | i ∈ N)
by setting 0 < vx1 � vx2 � . . . � vxi � . . .; then pass to the henselization of (k(xi |
i ∈ N), v). For a more general approach, see Lemma 26.

Remark 3 A. Fornasiero [F] has shown that every henselian valued field with a residue
field of characteristic 0 admits a truncation closed embedding in a power series field with
coefficients in the residue field and exponents in the value group (in general, the power
series field has to be endowed with a non-trivial factor system). “Truncation closed”
means that every truncation of a power series in the image lies again in the image.

It follows that all of the henselian dense subfields admit such truncation closed em-
beddings. But also the dense non-henselian subfields can be chosen such that they admit
truncation closed embeddings. We will sketch the proof in Section 3 (Remarks 25 and 28).

Our construction developed for the proof of Theorem 2 also gives rise to a counterex-
ample to a quite common erroneous application of Hensel’s Lemma. A valuation w is
called a coarsening of v if its associated valuation ring contains that of v. In this case,
v induces a valuation w on the residue field Kw whose valuation ring is simply the image
of the valuation ring of v under the residue map associated with w. The counterexample
proves:

Proposition 4 There are valued fields (K, v) such that vK has no maximal proper convex
subgroup, the residue field (Kw,w) is henselian for every non-trivial coarsening w 6= v of
v, but (K, v) itself is not henselian.
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The proofs of Theorems 1 and 2 and of Proposition 4 are given in Section 3. There,
we will also give a more explicit version of Theorem 2.

In general, the quotient fields of integer parts of an ordered field are smaller than
the field. The following theorem will show that there are real closed fields for which the
quotient field of every integer part is a proper subfield. If k is any field, then

PSF (k) :=
⋃
n∈N

k((t
1
n ))

is called the Puiseux series field over k; it is a subfield of the power series field k((tQ))
with coefficients in k and exponents in Q, which we also simply denote by k((Q)).

Theorem 5 Let Qrc denote the field of real algebraic numbers and PSF (Qrc) the Puiseux
series field over Qrc. If I is any integer part of this real closed field, then Quot I is a
proper countable subfield of PSF (Qrc) such that the transcendence degree of PSF (Qrc)
over Quot I is uncountable. The same holds for the completion of PSF (Qrc).

This answers a question of M. Moniri. An answer was also given, independently, by
L. van den Dries at the conference. A larger variety of such fields is presented in Section 4.
On the other hand, there are fields that admit integer parts whose quotient field is the
whole field:

Theorem 6 Let λ be any cardinal number and k any field of characteristic 0. Then there
exists a henselian valued field (L, v) with residue field k which has the following properties:

a) L contains a k-algebra R which is an additive complement of its valuation ring such
that QuotR = L.
b) At the same time, for each non-zero cardinal number κ ≤ λ, L contains a k-algebra
Rκ which is an additive complement of its valuation ring such that trdegL|QuotRκ = κ.

If in addition k is an archimedean ordered field and < is any ordering on L compatible
with v (see Section 2 for this notion), then (L,<) admits an integer part I such that
Quot I = L. At the same time, for each non-zero cardinal number κ ≤ λ, L admits an
integer part Iκ such that trdegL|Quot In = κ.

S. Boughattas [Bg] has given an example of an ordered (and “n-real closed”) field
which does not admit any integer part. In the last section of our paper, we generalize the
approach and consider a notion that comprises integer parts as well as subrings which are
additive complements of the valuation ring or of the valuation ideal in a valued field. A
subring R of a valued field (K, v) will be called a weak complement (in K) if it has the
following properties:

• vr ≤ 0 for all r ∈ R,
• for all a ∈ K there is r ∈ R such that v(a− r) ≥ 0.
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Every integer part in a non-archimedean ordered field K is a weak complement with
respect to the natural valuation of K (see Lemma 35).

Using a somewhat surprising little observation (Lemma 37) together with a result of
[K1] (which is a generalization of a result in [M–S]) we construct examples for valued fields
that do not admit any weak complements. From this we obtain ordered fields without
integer parts. In particular, we show:

Theorem 7 For every prime field k there are valued rational function fields k(t, x, y) of
transcendence degree 3 over the trivially valued subfield k which do not admit any weak
complements. There are ordered rational function fields of transcendence degree 3 over Q
which do not admit any integer parts.

There are valued rational function fields of transcendence degree 4 over a trivially val-
ued prime field which do not admit any weak complements, but admit an embedding of
their residue field and a cross-section. There are ordered rational function fields of tran-
scendence degree 4 over Q which do not admit any integer parts, but admit an embedding
of their residue field and a cross-section for their natural valuation.

Our example of an n-real closed field without integer parts is the n-real closure of such
an ordered rational function field. It is quite similar to the example given by Boughattas,
but in contrast to his example, ours is of finite transcendence degree over Q.

Open Problem: Are there valued fields of transcendence degree ≤ 2 over a trivially
valued ground field that do not admit any weak complements? Are there ordered fields
of transcendence degree ≤ 2 over an archimedean ordered field that do not admit any
integer parts? Are there examples of transcendence degree ≤ 3 with embedding of their
residue field and cross-section?

2 Some preliminaries

For basic facts from general valuation theory we refer the reader to [E], [R], [W], [Z–S],
[K2]. For ramification theory, see [N], [E] and [K2]. In the following, we state some well
known facts without proofs.

Take any valued field (K, v). If v′ is a valuation on the residue field Kv, then v ◦ v′
will denote the valuation whose valuation ring is the subring of the valuation ring of v
consisting of all elements whose v-residue lies in the valuation ring of v′. (Note that we
identify equivalent valuations.) While v ◦ v′ does actually not mean the composition of
v and v′ as mappings, this notation is used because in fact, up to equivalence the place
associated with v ◦ v′ is indeed the composition of the places associated with v and v′.

Every convex subgroup Γ of vK gives rise to a coarsening vΓ of v such that vΓK is
isomorphic to vK/Γ. As mentioned in the introduction, v induces a valuation vΓ on the
residue field KvΓ . We then have that v = vΓ ◦ vΓ . The value group vΓ(KvΓ) of vΓ is
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isomorphic to Γ, and its residue field (KvΓ)vΓ is isomorphic to Kv. Every coarsening w
of v is of the form vΓ for some convex subgroup Γ of vK.

If a is an element of the valuation ring Ov of v on K, then av will denote the image
of a under the residue map associated with the valuation v. This map is a ring homo-
morphism from Ov onto the residue field Kv. It is only unique up to equivalence, i.e., up
to composition with an isomorphism from Kv to another field (and so the residue field
Kv is only unique up to isomorphism). If w is a coarsening of v, that is, Ov contains the
valuation ring Ow of v on L, then the residue map Ow 3 a 7→ aw ∈ Kw can be chosen
such that it extends the residue map Ov 3 a 7→ av ∈ Kv.

An ordering < on a valued field (K, v) is said to be compatible with the valuation
v (and v is compatible with <) if

∀x, y ∈ K : 0 < x ≤ y ⇒ vx ≥ vy . (1)

This holds if and only if the valuation ring of v is a convex subset of (K,<). This in
turn holds if and only if < induces an ordering on the residue field Kv. We will need the
following well-known facts (cf. [P]):

Lemma 8 Take any valued field (K, v). Every ordering <r on Kv can be lifted to an
ordering < on K which is compatible with v and induces <r on Kv (that is, if a, b are
elements of the valuation ring of v such that a < b, then av = bv or av <r bv).

Lemma 9 If an ordering of a field K is compatible with the valuation v of K, then v
extends to a valuation of the real closure Krc of (K,<), which is still compatible with the
ordering on Krc. This extension is henselian, its value group vKrc is the divisible hull
of vK, and its residue field Krcv is the real closure of Kv (with respect to the induced
ordering on Kv).

A compatible valuation of an ordered field (K,<) is called the natural valuation
of (K,<) if its residue field is archimedean ordered. The natural valuation is uniquely
determined, and every compatible valuation is a coarsening of the natural valuation.

Take any valued field (K, v) and a finite extension L|K. Then the following funda-
mental inequality holds:

n ≥
g∑
i=1

eifi , (2)

where n = [L : K] is the degree of the extension, v1, . . . , vg are the distinct extensions of
v from K to L, ei = (viL : vK) are the respective ramification indices, and fi = [Lvi : Kv]
are the respective inertia degrees. Note that the extension of v from K to L is unique (i.e.,
g = 1) if and only if (K, v) is henselian (which by definition means that (K, v) satisfies
Hensel’s Lemma). The following are easy consequences:
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Lemma 10 If L|K is a finite extension and v is a valuation on L, then [L : K] ≥ (vL :
vK) and [L : K] ≥ [Lv : Kv].

Corollary 11 Let L|K be an algebraic extension and v a valuation on L. Then vL/vK
is a torsion group and the extension Lv|Kv of residue fields is algebraic. If v is trivial on
K (i.e., vK = {0}), then v is trivial on L.

An extension (K, v) ⊆ (L, v) of valued fields is called immediate if the canonical
embeddings of vK in vL and of Kv in Lv are onto. We have:

Lemma 12 If K is dense in (L, v), then (K, v) ⊆ (L, v) is an immediate extension.

Proof: If a ∈ L and b ∈ K such that v(a− b) > va, then va = vb ∈ vK. If a ∈ L such
that va = 0 and b ∈ K such that v(a− b) > 0, then av = bv ∈ Kv. 2

The following is a well known consequence of the so-called “Lemma of Ostrowski”:

Lemma 13 If a valued field (L, v) is an immediate algebraic extension of a henselian
field (K, v) of residue characteristic 0, then L = K.

Lemma 14 The henselization Kh of a valued field (K, v) (which is unique up to valuation
preserving isomorphism over K) is an immediate extension and can be chosen in every
henselian valued extension field of (K, v).

Lemma 15 An algebraic extension of a henselian valued field, equipped with the unique
extension of the valuation, is again henselian.

Lemma 16 Let (L, v) be any field and v = w◦w where w is non-trivial. Take any subfield
L0 of L. Then L0 is dense in (L, v) if and only if L0 is dense in (L,w).

Lemma 17 Let (K, v) be any field and v = w ◦ w. Then (K, v) is henselian if and only
if (K,w) and (Kw,w) are.

Corollary 18 Let (K, v) be any field and v = w ◦ w. If (Kw,w) is henselian, then the
henselization of (K, v) is equal to the henselization of (K,w) (as fields).

The value group vK of a valued field (K, v) is archimedean if it is embeddable in
the ordered additive group of the reals. This holds if and only if every convex subgroup
of vK is equal to {0} or to vK.

Lemma 19 If (K, v) is a valued field such that vK is archimedean, then K is dense in
its henselization. In particular, the completion of (K, v) is henselian.
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The following result is an easy application of Hensel’s Lemma:

Lemma 20 Take (K, v) to be a henselian valued field of residue characteristic charKv =
0. Take any subfield K0 of K on which v is trivial. Then there is a subfield K ′ of K
containing K0 and such that v is trivial on K ′ and the residue map associated with v
induces an isomorphism from K ′ onto Kv. If Kv|K0v is algebraic, then so is K ′|K0 .

A field K ′ as in this lemma is called a field of representatives for the residue field
Kv.

Proposition 21 a) Take a non-empty set T of elements algebraically independent over
K and a finite extension F of K(T ). Then no non-trivial valuation on F is henselian. In
particular, no non-trivial valuation on an algebraic function field (of transcendence degree
at least one) is henselian.

b) Fix n ∈ N, take K(T ) as in a) and take F to be the closure of K(T ) under successive
adjunction of roots of polynomials of degree ≤ n. Then no non-trivial valuation on F is
henselian.

Proof: Choosing any t ∈ T and replacing K by K(T \ {t}), we may assume in parts a)
and b) that T consists of a single element, i.e., trdegF |K = 1.

Take any non-trivial valuation on F . We show that there is some x ∈ K(T ) such that
vx > 0 and x is transcendental over K. Assume first that v is trivial on K. Since v
is non-trivial on F and F |K(T ) is algebraic, Corollary 11 shows that v is non-trivial on
K(T ). Hence there must be some x ∈ K(T ) such that vx 6= 0. Replacing x by x−1 if
necessary, we may assume that vx > 0. It follows that x /∈ K, so x is transcendental over
K.

Now assume that v is not trivial on K, and take an arbitrary x ∈ K(T ) transcendental
over K. If vx > 0, we are done. If vx < 0, we replace it by x−1 and we are done again.
If vx = 0, we pick some c ∈ K such that vc > 0. Then vcx > 0 and cx is transcendental
over K, hence replacing x by cx finishes the proof of our claim.

Pick any positive integer q such that q is not divisible by the characteristic p := charKv
of the residue field Kv. By Hensel’s Lemma, any henselian extension of K(x) will contain
a q-th root of the 1-unit y := 1+x. We wish to show that any algebraic extension of K(x)
containing such a q-th root must be of degree at least q over K(x). A valuation theoretical
proof for this fact reads as follows. Take the y-adic valuation vy on K(x) = K(y). Then
vyy is the least positive element in the value group vyK(x) ' Z, and any q-th root b of y
will have vy-value 1

q
vyy. This shows that (vyK(x)(b) : vyK(x)) ≥ q. By the fundamental

inequality, it follows that [K(x, b) : K(x)] ≥ (vyK(x, b) : vyK(x)) ≥ q.

Proof of part a): Since trdegF |K = 1, x ∈ K(T ) is transcendental over K and F |K is
finite, also F |K(x) is finite. Pick q > [F : K(x)] not divisible by p. Then it follows that
F does not contain a q-th root of y, and so (F, v) cannot be henselian.
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Proof of part b): This time, we still have that K(T )|K(x) is finite. Pick a prime
q > max{n, [K(T ) : K(x)]}, q 6= p. For every element α in the value group vyF there is
an integer e which is a product of positive integers ≤ n such that eα ∈ vyK(T ). Further,
there is a positive integer e′ such that e′eα ∈ vyK(x). On the other hand, by our choice of
q, it does not divide e′e. Since the order of the value 1

q
vyy modulo vyK(x) is q, it follows

that this value does not lie in vyF . Hence again, (F, v) cannot be henselian. 2

Proposition 22 Take (L, v) to be a henselian field of residue characteristic charLv = 0,
and K a subfield of L such that L|K is algebraic. Then K admits an algebraic extension
L0 inside of L such that the extension of v from K to L0 is unique, L0 is linearly disjoint
over K from the henselization Kh of K in L, and L = L0.K

h = Lh0 .

Proof: Take any subextension L0|K of L|K maximal with the property that the
extension of v from K to L0 is unique. By general ramification theory it follows that
L0|K is linearly disjoint from Kh|K and that Lh0 = L0.K

h. We only have to show that
Lh0 = L. Note that L|Lh0 is algebraic since already L|K is algebraic,

Let us show that L0v = Lv. If this is not the case, then there is be some element
ζ ∈ Lv \ L0v. By Corollary 11, Lv|L0v is algebraic. Let g ∈ L0v[X] be the minimal
polynomial of ζ over L0v. Since charKv = 0, g is separable. We choose some monic
polynomial f with integral coefficients in L0 whose reduction modulo v is g; it follows
that deg f = deg g. Since ζ is a simple root of g, it follows from Hensel’s Lemma that the
henselian field (L, v) contains a root z of f whose residue is ζ. We have

[L0(z) : L0] ≤ deg f = deg g = [L0v(ζ) : L0v] ≤ [L0(z)v : L0v] ≤ [L0(z) : L0] ,

where the last inequality follows from Lemma 10. We conclude that [L0(z) : L0] =
[L0(z)v : L0v]. From the fundamental inequality it follows that the extension of v from
L0 (and hence also from K) to L0(z) is unique. But this contradicts the maximality of
L0 . Hence, L0v = Lv.

Next, let us show that vL0 = vL. If this is not the case, then there is some α ∈ vL\vL0 .
By Corollary 11, vL/vL0 is a torsion group and hence there is some n > 1 such that
nα ∈ vL0 . We choose n minimal with this property, so that (vL0 + αZ : vL0) = n.
Further, we pick some a ∈ L such that va = α. Since nα ∈ vL0 , there is some d ∈ L0

such that vd = nα = van. It follows that van/d = 0, and since we have already shown
that Lv = L0v, we can choose some c ∈ L0 such that (an/cd)v = 1. Consequently, the
reduction of Xn − an/cd modulo v is the polynomial Xn − 1, which admits 1 as a simple
root since charKv = 0. Hence by Hensel’s Lemma, Xn − an/cd admits a root b in the
henselian field (L, v). For z := a

b
it follows that

nvz = v
an

bn
= vcd = vd = nα,
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which shows that α = vz ∈ vL0(z). We have

[L0(z) : L0] ≤ n = (vL0 + αZ : vL0) ≤ (vL0(z) : vL0) ≤ [L0(z) : L0] ,

where again the last inequality follows from Lemma 10. We conclude that [L0(z) : L0] =
(vL0(z) : vL0). From the fundamental inequality it follows that the extension of v from
L0 (and hence also from K) to L0(z) is unique. But this again contradicts the maximality
of L0 . Hence, vL0 = vL.

We have shown that vL = vL0 and Lv = L0v. Hence, vL = vLh0 and Lv = Lh0v. As
L|L0 is algebraic, the same is true for L|Lh0 . Since the residue field characteristic of (L, v)
is zero, Lemma 13 shows that L = Lh0 . This concludes our proof. 2

3 Dense subfields

In this section we prove the existence of proper dense subfields of henselian fields with
residue characteristic 0.

Proposition 23 Take a henselian valued field (L, v) such that vL admits a maximal
proper convex subgroup Γ. Assume that charLvΓ = 0. Then L admits a proper dense
subfield L0 such that L|L0 is algebraic.

Proof: By Lemma 16 it suffices to find a subfield L0 which is dense in L with respect to
vΓ , and such that L|L0 is algebraic. By Lemma 17, (L, vΓ) is henselian. Since charLvΓ = 0
and hence charL = 0, L contains Q and vΓ is trivial on Q. Pick a transcendence basis
T of L|Q. Since vΓ is non-trivial on L, T is non-empty. We infer from Lemma 21 that
(Q(T ), vΓ) is not henselian. By Proposition 22, there is an algebraic extension L0 of Q(T )
within L such that L0 is linearly disjoint over Q(T ) from the vΓ-henselization Q(T )h of
Q(T ) in L, and L = L0.Q(T )h = Lh0 . Since (Q(T ), vΓ) is not henselian, Q(T )h|Q(T ) is
a proper extension. By the linear disjointness, the same holds for L|L0 . As Γ is the
maximal proper convex subgroup of vL, vΓL ' vL/Γ must be archimedean. Thus by
Lemma 19, (L0, vΓ) lies dense in its henselization (L, vΓ). Hence by Lemma 16, (L0, v)
lies dense in its henselization (L, v). Since L|Q(T ) is algebraic, so is L|L0 . 2

In certain cases, even if v has a coarsest non-trivial coarsening, there will also be dense
subfields K such that L|K is transcendental. For instance, this is the case for L = k((t))
equipped with the t-adic valuation vt , where a subfield is dense in L as soon as it contains
k(t). On the other hand, the henselization k(t)h of k(t) w.r.t. vt admits k(t) as a proper
dense subfield, and the extension k(t)h|K is algebraic for every subfield K which is dense
in k(t)h. More generally, the following holds:
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Proposition 24 Suppose that (L, v) is a valued field and that v is trivial on the prime
field k of L. If

trdegL|k = dimQ(Q⊗ vL) + trdegLv|k < ∞ ,

then L|K is algebraic for every dense subfield K.

Proof: If K is a dense subfield, then by Lemma 12, (L|K, v) is an immediate extension.
Hence,

trdegK|k ≥ dimQ(Q⊗ vK) + trdegKv|k = dimQ(Q⊗ vL) + trdegLv|k = trdegL|k ,

whence trdegK|k = trdegL|k, showing that L|K is algebraic. 2

Note that if (L, v) is a valued field with a subfield L0 on which v is trivial, and if
trdegL|L0 <∞, then in general,

trdegL|L0 ≥ dimQ(Q⊗ vL) + trdegLv|L0 . (3)

This is a special case of the so-called “Abhyankar inequality”. For a proof, see [Br],
Chapter VI, §10.3, Theorem 1. Note that Q⊗vL is the divisible hull of vL, and dimQ(Q⊗
vL) is the maximal number of rationally independent elements in vL.

Remark 25 It can be shown that if charLv = 0, then the dense subfield L0 in Propo-
sition 23 can always be constructed in such a way that it admits a truncation closed
embedding into a power series field. The idea is as follows. Since (L, v) is henselian, we
can use Lemma 20 to find a field k of representatives in L for the residue field Lv. Then we
can choose a twisted cross-section as in [F]. The field L1 generated over k by the image of
the cross-section admits a truncation closed embedding in k((vL)) with a suitable factor
system, and this embedding ι can be extended to a truncation closed embedding of (L, v)
in k((vL)) (cf. [F]). It is easy to show that LΓ := ι−1( ιL∩ k((Γ)) ) is a field of representa-
tives for the residue field LvΓ in (L, vΓ), and that ι induces a truncation closed embedding
of LΓ in k((Γ)) ⊂ k((vL)). This can be extended to a truncation closed embedding of
L2 := L1.LΓ which is obtained from LΓ by adjoining the image of the cross-section. We
note that (L, vΓ) is an immediate extension of (L2, vΓ). If this extension is algebraic, then
L is also algebraic over the henselization of L2 (with respect to vΓ), and by Lemma 13,
the two fields must be equal. That shows that L2 is dense in (L, vΓ) and hence in (L, v),
and we can take L0 = L2 .

If L|L2 is transcendental, we take a transcendence basis S of L|L2 and pick s ∈ S.
Then one shows as before that L is the henselization of L2(S), and also of the larger
field L0 := L2(S \ {s})h(s). Again, L0 is dense in (L, v). Following [F], L2(S \ {s})h
admits a truncation closed embedding in k((vL)). As (L, v) is immediate over (L2, v),
it is also immediate over L2(S \ {s})h. Therefore, s is the limit of a pseudo Cauchy
sequence in L2(S \ {s})h without a limit in this field. As the field is henselian of residue
characteristic 0, this pseudo Cauchy sequence is of transcendental type. Now [F] shows
that the truncation closed embedding can be extended to L0 .
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Now we turn to the case where vL admits no maximal proper convex subgroup, i.e.,
v admits no coarsest non-trivial coarsening. Such valued fields exist:

Lemma 26 Take any regular cardinal number λ and any field k. Then there is a valued
field (L, v) with residue field k and such that λ is the cofinality of the set of all proper
convex subgroups of vL, ordered by inclusion.

Proof: Take J to be the set of all ordinal numbers < λ, endowed with the reverse of
the usual ordering. Choose any archimedean ordered abelian group Γ. Then take G to be
the ordered Hahn product HJΓ with index set J and components Γ (see [Fu] or [KS] for
details on Hahn products). Then the set of all proper convex subgroups of G, ordered by
inclusion, has order type λ and hence has cofinality λ. Now take (L, v) to be the power
series field k((G)) with its canonical valuation. 2

Note that if vL admits no maximal proper convex subgroup, then vL is the union of
its proper convex subgroups. Indeed, if α ∈ vL, then the smallest convex subgroup C of
vL that contains α (= the intersection of all convex subgroups containing α) admits a
largest convex subgroup, namely the largest convex subgroup of vL that does not contain
α (= the union of all convex subgroups not containing α). Therefore C 6= vL, showing
that C is a proper convex subgroup containing α.

Proposition 27 Take a henselian valued field (L, v) such that vL admits no maximal
proper convex subgroup. Assume that charL = 0. Then L admits a proper dense subfield
K such that L|K is algebraic. If κ > 0 is any cardinal number smaller than or equal to
the cofinality of the set of convex subgroups of vL ordered by inclusion, then there is also
a henselian (as well as a non-henselian) subfield K dense in L such that trdegL|K = κ.

Proof: It suffices to prove that there is a subfield K dense in L such that the trans-
cendence degree of L|K is equal to the cofinality λ of the set of convex subgroups of vL.
This is seen as follows. Take a transcendence basis T of L|K. If κ is a cardinal number
≤ λ, then take a subset Tκ of T of cardinality κ. Then Kκ := K(T \ Tκ) is dense in L
because it contains K; furthermore, trdegL|Kκ = κ. We may always, even in the case
of κ = λ, choose Tκ 6= T . Then by part a) of Proposition 21, (Kκ, v) is not henselian.
In particular, (K(T ), v) is not henselian and thus, K(T ) is a proper subfield of L such
that L|K(T ) is algebraic. If κ 6= 0, then L|Kκ will be transcendental. By Lemma 14, the
henselian field L contains the henselization Kh

κ of Kκ. Since it is an algebraic extension
of Kκ , we have trdegL|Kh

κ = trdegL|Kκ = κ, and it is dense in L, too.
To illustrate the idea of our proof, we first show that there is a dense subfield K such

that trdegL|K > 0. We choose a convex subgroup C0 of vL as follows. If charLv = 0,
then we set C0 = {0}. If charLv = p > 0, then we observe that 0 6= p ∈ L since
charL = 0, so we may take C0 to be the smallest proper convex subgroup that contains
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vp. We let w0 = vC0 be the coarsening of v associated with C0 . We have w0 = v if
charLv = 0. Since C0 is a proper convex subgroup, w0 is a non-trivial valuation.

Let λ be the cofinality of the set of all proper convex subgroups of vL, ordered by
inclusion. Starting from C0 , we pick a strictly ascending cofinal sequence of convex
subgroups Cν , ν < λ, in this set. We denote by wν the coarsening of v which corresponds
to Cν .

By Lemma 20 there is a field K ′0 of representatives for Lw0 in L. We pick a transcen-
dence basis T0 = {t0,µ | µ < κ0} of K ′0|Q, where κ0 is the transcendence degree of Lw0|Q.
Then we proceed by induction on ν < λ. Suppose we have already constructed a field
K ′ν of representatives of Lwν and a transcendence basis

⋃
ν′≤ν Tν′ for it. By Lemma 20,

K ′ν can be extended to a field K ′ν+1 of representatives of Lwν+1 , and we choose a tran-
scendence basis Tν+1 = {tν+1,µ | µ < κν+1} of K ′ν+1|K ′ν . Having constructed K ′ν , ν < λ′

for some limit ordinal λ′ ≤ λ, we set K∗λ′ =
⋃
ν<λ′ K

′
ν . Again by Lemma 20, K∗λ′ can be

extended to a field of representatives K ′λ′ of Lwλ′ , and we choose a transcendence basis
Tλ′ = {tλ′,µ | µ < κλ′} of K ′λ′ |K∗λ′ . Note that Tλ′ may be empty.

We set K ′ =
⋃
ν<λK

′
ν and show that K ′ is dense in L. Take any a ∈ L and α ∈ vL.

Then there is some ν < λ such that α ∈ Cν . By construction, K ′ contains a field of
representatives for Lwν . Hence there is some b ∈ K ′ such that awν = bwν , meaning that
wν(a− b) > 0 and thus, v(a− b) > α. This proves our claim. Hence if trdegL|K ′ > 0, we
set K = K ′ and we are done showing the existence of a subfield K with trdegL|K > 0.
But it may well happen that L|K ′ is algebraic, or even that L = K ′. In this case, we
construct a subfield K of K ′ as follows.

Note that for all ν < λ, (K ′ν , v) is henselian. Indeed, it is isomorphic (by the place
associated with wν) to (Lwν , wν), where wν is the valuation induced by v on Lwν ; since
(L, v) is henselian, Lemma 17 shows that the same is true for (Lwν , wν) and hence for
(K ′ν , v). Again from Lemma 17 it follows that (K ′ν , wµ) is henselian for all µ < λ. Note
that wµ is non-trivial on K ′ν only for µ < ν, and in this case, K ′νwµ = Lwµ since K ′ν
contains the field K ′µ of representatives for Lwµ .

Note further that for all ν < λ and all µ < κν , wνtν,µ = 0. On the other hand, after
multiplication with suitable elements in Kν+1 we may assume that wνtν+1,µ > 0 for all
µ < κν+1 .

We will now construct inside of K ′ a chain (ordered by inclusion) of subfields Kν ⊂ K ′ν
(ν < λ) such that each Kν is a field of representatives for Lwν and contains the element
t0,0 − tν+1,0, but not the element t0,0 .

Since T0 = {t0,µ | µ < κ0} is a transcendence basis of K ′0|Q, Lemma 11 shows that the
residue field K ′1w0 = K ′0w0 is algebraic over Q(t0,µ | µ < κ0)w0 . Because (t0,0 − t1,0)w0 =
t0,0w0 by construction, the latter field is equal to Q(t0,0 − t1,0, t0,µ | 1 ≤ µ < κ0)w0 . Since
charK ′1w0 = 0, we can use Lemma 20 to find inside of the henselian field (K ′1, w0) an
algebraic extension K0 of Q(t0,0− t1,0, t0,µ | 1 ≤ µ < κ0) which is a field of representatives
for K ′1w0 = Lw0 . Note that t0,0 is transcendental over Q(t0,0− t1,0, t0,µ | 1 ≤ µ < κ0) and
therefore, t0,0 /∈ K0 , but t0,0 − t1,0 ∈ K0 .
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Suppose we have already constructed all fields Kµ for µ ≤ ν, where ν is some ordinal <
λ. Since Tν+1 = {tν+1,µ | µ < κν+1} is a transcendence basis of K ′ν+1|K ′ν , Lemma 11 shows
that the residue field K ′ν+2wν+1 = K ′ν+1wν+1 is algebraic over Kν(tν+1,µ | µ < κν+1)wν+1 .
Because (tν+1,0 − tν+2,0)wν+1 = tν+1,0wν+1 by construction, the latter field is equal to
Kν(tν+1,0 − tν+2,0, tν+1,µ | 1 ≤ µ < κν+1)wν+1 . Since charK ′ν+2wν+1 = 0, we can use
Lemma 20 to find inside of the henselian field (K ′ν+2, wν+1) an algebraic extension Kν+1 of
Kν(tν+1,0− tν+2,0, tν+1,µ | 1 ≤ µ < κν+1) which is a field of representatives for K ′ν+2wν+1 =
Lwν+1 . Since t0,0− tν+1,0 , tν+1,0− tν+2,0 ∈ Kν+1 we have that t0,0− tν+2,0 ∈ Kν+1 . Again,
t0,0 /∈ Kν+1 as t0,0 is transcendental over Kν(tν+1,0 − tν+2,0, tν+1,µ | 1 ≤ µ < κν+1).

Suppose we have already constructed all fields Kν for ν < λ′, where λ′ is some limit
ordinal ≤ λ. We note that t0,0 /∈ ⋃

ν<λ′ Kν =: K∗∗λ′ . But K∗∗λ′ (t0,0) contains the entire
transcendence basis of K∗λ′|Q because t0,0 − tν+1,0 ∈ Kν for every ν < λ′ (recall that K∗λ′
is the field we constructed above before constructing K ′λ′). It follows that Tλ′ ∪ {t0,0} is
a transcendence basis of K ′λ′|K∗∗λ′ , and therefore the residue field K ′λ′+1wλ′ = Lwλ′ is an
algebraic extension of K∗∗λ′ (Tλ′ ∪{t0,0})wλ′ . Because (t0,0− tλ′+1,0)wλ′ = t0,0wλ′ , the latter
field is equal to K∗∗λ′ (Tλ′ ∪ {t0,0 − tλ′+1,0})wλ′ . Again by Lemma 20, there is an algebraic
extension Kλ′ of K∗∗λ′ (Tλ′ ∪ {t0,0 − tλ′+1,0}) inside of the henselian field (K ′λ′+1, wλ′) which
is a field of representatives for K ′λ′+1wλ′ = Lwλ′ . By construction, t0,0− tλ′+1,0 ∈ Kλ′ . As
before, t0,0 /∈ Kλ′ as t0,0 is transcendental over K∗∗λ′ (Tλ′ ∪ {t0,0 − tλ′+1,0}).

We set
K :=

⋃
ν<λ

Kν . (4)

By construction, t0,0 /∈ K, but K(t0,0) contains tν,µ for all ν < λ and µ < κν . Hence,
K ′|K(t0,0) is algebraic and therefore, trdegK ′|K = 1. With the same argument as for
K ′, one shows that K is dense in L. (This also follows from the fact that t0,0 is limit of
the Cauchy sequence (t0,0 − tν+1,0)ν<λ in K and K ′ is dense in L.)

Now we indicate how to achieve trdegK ′|K = λ. By passing to a cofinal subsequence
of (Cν)ν<λ if necessary, we can assume that every Tν contains at least |ν| many elements,
where |ν| denotes the cardinality of the ordinal number ν. Then it is possible to re-order
the elements of Tν in such a way that Tν = {tν,µ | µ < µν} where µν is some ordinal
number ≥ ν. Now we modify the above construction of K as follows: at every step ν
where ν = 0 or ν is a successor ordinal, we replace tν,µ by tν,µ − tν+1,µ for all µ ≤ ν. In
the limit case for λ′ < λ, we then have that Tλ′ ∪ {tν,ν | ν < λ′} is a transcendence basis
of K ′λ′|K∗∗λ′ . Here, we replace every tν,ν for ν < λ′ by tν,ν − tλ′+1,ν . In this way we achieve
that the elements tν,ν , ν < λ will be algebraically independent over K, but K will still
be dense in L. 2

Remark 28 We can replace the field Kκ = K(T \ Tκ) mentioned in the first paragraph
of the proof by the larger field K(T \Tκ\{t})h(t) where t ∈ T \Tκ. By the same argument
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as given at the end of Remark 25, this field admits a truncation closed embedding into
the corresponding power series field.

Propositions 23 and 27 together prove Theorem 1. Theorem 2 follows immediately
from Proposition 27 since if vL admits no maximal proper convex subgroup, then the
cofinality of the set of convex subgroups of vL is an infinite cardinal number. It remains
to give the

Proof of Proposition 4: By Lemma 26 we may take a henselian valued field (L, v) of
residue characteristic 0 such that vL admits no maximal proper convex subgroup. Using
Proposition 27 we pick a non-henselian proper subfield K which is dense in L. Lemma 16
shows that for every non-trivial coarsening w of v, (K,w) is dense in (L,w), whence
Kw = Lw. By Lemma 17, (Lw,w) is henselian because (L, v) is henselian and v = w ◦w.
Hence, (Kw,w) is henselian, which finishes our proof. 2

Example 1 A more direct construction of a counterexample works as follows: Take an
ascending chain of convex subgroups Ci , i ∈ N, in some ordered abelian group. Take k
to be any field and set

K :=
⋃
i∈N

k((Ci)) .

As a union of an ascending chain of henselian valued fields, K is itself a henselian valued
field. But K is not complete. For instance, if 0 < αi ∈ Ci \ Ci−1 , then the element

x :=
∑
i∈N

tαi ∈ k((
⋃
i∈N

Ci))

lies in the completion of K, but not in K. Since every henselian field is separable-
algebraically closed in its henselization (cf. [W], Theorem 32.19), x is either transcendental
or purely inseparable over K. But it cannot be purely inseparable over K because if p =
charK > 0, then xp

ν
=
∑
i∈N t

pναi /∈ K for all ν ≥ 0. Hence by part a) of Proposition 21,
K(x) (endowed with the restriction v of the valuation of the completion of K) is not
henselian. But for every non-trivial coarsening w of v, K(x)w = Kw since K is dense in
(K(x), v), and we leave it to the reader to prove that (Kw,w) is henselian. ♦

4 Small integer parts

We will use a cardinality argument to show that there are real closed fields that are larger
than the quotient fields of all its integer parts.

Lemma 29 a) Take any valued field (L, v). Then all additive complements of the valu-
ation ring of L, if there are any, have the same cardinality.

b) All integer parts in an ordered field, if there are any, are isomorphic as ordered sets
and thus have the same cardinality.
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Proof: a): As an additive group, any additive complement of the valuation ring O of
L is isomorphic to L/O.

b): Take two integer parts I1 and I2 of a given ordered field (L,<). Since I2 is an integer
part, for every a ∈ I1 there is a unique element a′ ∈ I2 such that a′ ≤ a < a′ + 1. Hence,
we have a mapping I1 3 a 7→ a′ ∈ I2 . Conversely, since I1 is an integer part, there is a
unique a′′ ∈ I1 such that a′′ < a′ ≤ a′′ + 1. Consequently, a = a′′ + 1 and a is the only
element that is sent to a′, showing that the map is injective and even order preserving.
On the other hand, since a′′ + 1 is sent to a′, the mapping is also proved to be onto. 2

We also need the following facts, which are well known (note that a similar statement
holds for weak complements):

Lemma 30 a) If K is dense in (L, v), then every additive complement of the valuation
ring of (K, v) is also an additive complement of the valuation ring of (L, v).

b) If K is dense in (L,<), then every integer part of (K,<) is also an integer part of
(L,<).

Proof: We only prove a) and leave the proof of b) to the reader. Let A be an additive
complement of the valuation ring OK of (K, v), that is, A∩OK = {0} and A+OK = K.
Denote the valuation ring of (L, v) by OL . Since the valuation on L is an extension of
the valuation on K, we have that K ∩OL = OK and thus, A∩OL = A∩OK = {0}. Now
take any a ∈ L. Since K is dense in (L, v), there is b ∈ K such that v(a− b) ≥ 0, that is,
a− b ∈ OL . Consequently, a = b + (a− b) ∈ K +OL = A +OK +OL = A +OL . This
proves that A+OL = L. 2

We cite the following fact; for a proof, see for instance [B–K–K].

Lemma 31 If K is an ordered field and R is a subring which is an additive complement
of the valuation ring for the natural valuation of K, then R + Z is an integer part of K.

For every ordered abelian group G, written additively, we set

G<0 := {g ∈ G | g < 0} .

Proposition 32 Suppose that k is a countable field. Then the countable ring k[Q<0] :=
k[tg | 0 > g ∈ Q] ⊂ k((Q)) is an additive complement of the valuation ring of the
uncountable henselian valued field PSF (k). The same remains true if PSF (k) is replaced
by its completion.

If in addition k is an ordered (respectively, real closed) field, then k[Q<0] + Z is an
integer part of the ordered (respectively, real closed) field PSF (k), and this also remains
true if PSF (k) is replaced by its completion.
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Proof: It is well known that every field k((t)) of formal Laurent series is uncountable.

Hence, PSF (k) is uncountable. As the union of an ascending chain of fields k((t
1
n )) of

formal Laurent series, which are henselian, PSF (k) is itself henselian. Note that the
completion of a henselian field is again henselian ([W], Theorem 32.19).

Every element a ∈ PSF (k) lies in k((t
1
n )) for some n ∈ N. Hence, it suffices to

show that k[t
m
n | 0 > m ∈ Z] is an additive complement of the valuation ring k[[t

1
n ]] in

k((t
1
n )). Renaming t

1
n by t, we thus have to show that k[tm | 0 > m ∈ Z] is an additive

complement of the valuation ring k[[t]] in k((t)). But this is clear since k((t)) is the set
of formal Laurent series

∞∑
i=N

cit
i =

−1∑
i=N

cit
i +

∞∑
i=0

cit
i

where N ∈ Z and ci ∈ k. The first sum lies in k[tm | 0 > m ∈ Z] and the second sum in
k[[t]].

Part a) of Lemma 30 shows that k[Q<0] is also an additive complement of the valuation
ring in the completion of PSF (k).

The assertions about the ordered case follow from Lemma 31 together with part b) of
Lemma 30. 2

From this proposition together with Lemma 29, we obtain the following corollary,
which in turn proves Theorem 5.

Corollary 33 Suppose that k is a countable field. If R is any subring which is an
additive complement of the valuation ring of PSF (k), then QuotR is countable and
trdeg PSF (k)|QuotR is uncountable.

If in addition k is an ordered field and I an integer part of PSF (k), then Quot I is
countable and trdeg PSF (k)|Quot I is uncountable.

The same remains true if PSF (k) is replaced by its completion.

Proof: The quotient field of a countable ring is again countable. So it only remains
to prove the assertion about the transcendence degree. It follows from the fact that the
algebraic closure of a countable field is again countable. So if T would be a countable
transcendence basis of PSF (k)|QuotR, then (QuotR)(T ) and hence also PSF (k) would
be countable, which is not the case. 2

Denote by k((G)) = k((tG)) the power series field with coefficients in k and exponents
in G, and by k(G) the smallest subfield of k((G)) which contains all monomials ctg, c ∈ k,
g ∈ G. Denote by k(G)c its completion; it can be chosen in k((G)). Note that the
completion of PSF (k) is equal to k(Q)c. Further, denote by k[G<0] the subring of k(G)
generated by k and all monomials ctg where c ∈ k and 0 > g ∈ G.
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Proposition 34 Suppose that k is a countable field and G is a countable archimedean
ordered abelian group. Then the countable ring k[G<0] is an additive complement of the
valuation ring of the uncountable henselian valued field k(G)c.

If R is any subring which is an additive complement of the valuation ring of k(G)c,
then QuotR is countable and trdeg k(G)c|QuotR is uncountable.

If in addition k is an ordered field and I is an integer part of the ordered field k(G)c,
then Quot I is countable and trdeg k(G)c|Quot I is uncountable.

Proof: By Lemma 19, k(G)c is henselian. (Therefore, it is real closed if and only if k is
real closed and G is divisible.)

We show that the ring k[G<0] is an additive complement of the valuation ring in k(G).
Every element a of the latter is a quotient of the form

a =
c1t

g1 + . . .+ cmt
gm

d1th1 + . . .+ dnthn

with c1, . . . , cm, d1, . . . , dn ∈ k and g1, . . . , gm, h1, . . . , hn ∈ G. Without loss of generality
we may assume that h1 is the unique smallest element among the h1, . . . , hn . Then we
rewrite a as follows:

a =
c1
d1
tg1−h1 + . . .+ cm

d1
tgm−h1

1 + d2
d1
th2−h1 + . . .+ dn

d1
thn−h1

.

By our assumption on h1 , all summands in the denominator except for the 1 have positive
value. Hence, we can rewrite a as

a =
(
c1

d1

tg1−h1 + . . .+
cm
d1

tgm−h1
)1 +

∞∑
i=1

(−1)i
(
d2

d1

th2−h1 + . . .+
dn
d1

thn−h1
)i .

In the power series determined by this geometric series, only finitely many summands will
have negative value; this is true since G is archimedean by hypothesis. Let b ∈ k[G<0] be
the sum of these summands. Then v(a − b) ≥ 0. This proves that k[G<0] is an additive
complement of the valuation ring in k(G). Part a) of Lemma 30 shows that k[G<0] is also
an additive complement of the valuation ring in k(G)c.

All other assertions are deduced like the corresponding assertions of Corollary 33. 2

5 Proof of Theorem 6

We take k to be any field of characteristic 0 and

L :=
⋃
ν<λ

k((Cν))
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to be the henselian valued field constructed in Example 1. The set Neg k((Cν)) of all
power series in k((Cν)) with only negative exponents is a k-algebra which is an additive
complement of the valuation ring k[[Cν ]] of k((Cν)). It follows that

R :=
⋃
ν<λ

Neg k((Cν))

is a k-algebra which is an additive complement of the valuation ring
⋃
ν<λ k[[Cν ]] of L. We

wish to show that its quotient field is L. Take any element a ∈ L. Since L is the union of
the k((Cν)) , there is some ν such that a ∈ k((Cν)) . Pick some negative α ∈ Cν+1 \ Cν .
Then α < Cν . Denote by tα the monic monomial of value α in k((Cν+1)). Then atα has
only negative exponents, so tα and atα are both elements of Neg k((Cν+1)). Therefore,
a ∈ Quot Neg (k((Cν+1)) ⊆ QuotR.

Now take any non-zero cardinal number κ ≤ λ. We modify the construction in the
final part of the proof of Proposition 27 in that we start with K ′ν = k((Cν)), and replace
tν,ν by tν,ν − tν+1,ν (or by tν,ν − tλ′+1,ν in the limit case) only as long as ν ≤ κ. Then
the elements tν,ν , ν < κ, will be algebraically independent over K =

⋃
ν<λKν , we have

trdegL|K = κ, and K will be dense in L.
For every ν < λ, wν induces a valuation preserving isomorphism from (k((Cν)), v) and

from (Kν , v) onto (Lwν , wν). Hence, ιν := (wν |Kν )−1 ◦ wν |k((Cν)) is a valuation preserving
isomorphism from (k((Cν)), v) onto (Kν , v). For ν < µ < λ, ιµ is an extension of ιν .
Hence, ι :=

⋃
ν<λ ιν is a valuation preserving isomorphism from (L, v) onto (K, v). The

image Rκ of R under ι is a k-algebra which is an additive complement of the valuation
ring of K and has quotient field K. Consequently, trdegL|QuotRκ = κ. Since K is dense
in L, Rκ is also an additive complement of the valuation ring of L.

If in addition k is an archimedean ordered field and < is any ordering on L compatible
with v, then v is the natural valuation of (L,<). Hence by Lemma 31, R+Z and Rκ +Z
are integer parts of (L,<). Since Quot (R+Z) = QuotR and Quot (Rκ +Z) = QuotRκ ,
this completes our proof. 2

6 Weak complements

Lemma 35 Let I be an integer part of the ordered field (K,<). If v denotes the natural
valuation of (K,<), then I is a weak complement in (K, v).

Proof: Take 0 < x ∈ K and assume that vx > 0. Then for all n ∈ N, also vnx > 0 = v1
which by (1) implies that 0 < nx ≤ 1. Consequently, 0 < x < 1 and thus, x /∈ I. This
proves that vr ≤ 0 for all r ∈ I.

For every a ∈ K there is r ∈ I such that 0 ≤ a − r < 1. Again by (1), this implies
that v(a− r) ≥ v1 = 0. 2
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In what follows, let R be a weak complement in a valued field (K, v). For every convex
subgroup Γ of vK, we define

RΓ := {r ∈ R | vr ∈ Γ ∪ {∞}} .

Lemma 36 For every convex subgroup Γ of vK, RΓ is a subring of K. Denote by KΓ its
quotient field. Then vKΓ = Γ.

Proof: Take r, s ∈ RΓ . Then vr, vs ∈ Γ. Since r − s ∈ R, we have 0 ≥ v(r − s) ≥
min{vr, vs}, showing that v(r − s) ∈ Γ and thus r − s ∈ RΓ . Further, rs ∈ R and
vrs = vr + vs ∈ Γ, showing that rs ∈ RΓ . This proves that RΓ is a subring of K.

Since vRΓ := {vr | r ∈ RΓ} ⊆ Γ, we know that vKΓ ⊆ {α−β | α, β ∈ Γ} = Γ. On the
other hand, for every a ∈ K with va ∈ Γ<0 there is some r ∈ R such that v(a − r) ≥ 0.
It follows that vr = va ∈ Γ and thus r ∈ RΓ and va = vr ∈ vRΓ . Hence, Γ<0 ⊆ vRΓ ,
which implies that vKΓ = Γ. 2

Note that KΓ is a subfield of the quotient field of R. Since vKΓ = Γ, we have that
vΓKΓ = {0}. This means that the residue map associated with vΓ induces an isomorphism
on KΓ . This is in fact an isomorphism

(KΓ, v) ' (KΓvΓ, vΓ)

of valued fields.

Lemma 37 For every non-trivial convex subgroup Γ of vK, the valued residue field
(KΓvΓ, vΓ) lies dense in (KvΓ, vΓ).

Proof: We have to show: if a ∈ K such that va ∈ Γ, then for every positive γ ∈ Γ
such that γ > va there is some b ∈ KΓ such that v(a − b) ≥ γ. Since Γ<0 ⊆ vRΓ by
the foregoing lemma, we may pick some c ∈ RΓ such that vc = −γ. Then there is some
r ∈ R such that v(ac − r) ≥ 0. Since vac = va − γ ∈ Γ<0, we have vr = vac ∈ Γ<0 and
therefore, r ∈ RΓ. Setting b = r

c
∈ KΓ , we obtain v(a− b) ≥ −vc = γ. 2

Now we give examples for valued fields and ordered fields without weak complements
or integer parts.

Basic construction: Take an arbitrary field k and t a transcendental element over k.
Denote by vt the t-adic valuation on k(t). Choose some countably generated separable-
algebraic extension (k1, vt) of (k(t), vt). Take two algebraically independent elements
x, y over k(t). Then by Theorem 1.1 of [K1] there exists a non-trivial valuation w on
K := k(t, x, y) whose restriction to k(t) is trivial, whose value group is Z and whose residue
field is k1 ; since w is trivial on k(t), we may assume that the residue map associated with
w induces the identity on k(t). Now we take the valuation v on the rational function field
K to be the composition of w with vt:

v = w ◦ vt .
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Example 2 We take k to be one of the prime fields Q or Fp for some prime p. We choose
k1 such that k1vt = k and that vtk1/vtk(t) is infinite. Take Γ to be the convex subgroup
of vK such that vΓ = w; in fact, Γ is the minimal convex subgroup containing vt.

Suppose K admits a weak complement R. Then by Lemma 37 the isomorphic image
KΓw of the subfield KΓ of K is dense in the valued residue field (k1, vt). It follows from
Lemma 12 that vt(KΓw) = vtk1 . Note that the isomorphism KΓ → KΓw preserves the
prime field k of KΓ. Since vt(KΓw) 6= {0}, it follows from Corollary 11 that KΓw cannot
be algebraic over the trivially valued subfield k. Hence, trdegKΓw|k = 1, and we take
some t′ ∈ KΓ such that t′w is transcendental over k. It follows that KΓ|k(t′) is algebraic.
As vtk1/vtk(t) is infinite, Lemma 10 shows that KΓw|k(t) and hence also KΓ|k(t′) must
be an infinite extension.

Since trdegK|k = 3, we have that trdegK|k(t′) = 2. Let {x′, y′} be a transcendence
basis for this extension. Because the algebraic extension KΓ|k(t′) is linearly disjoint from
the purely transcendental extension k(t′, x′, y′)|k(t′), the extension KΓ(x′, y′)|k(t′, x′, y′)
is infinite. But it is contained in the finite extension K|k(t′, x′, y′). This contradiction
shows that K cannot admit weak complements. Note that by construction,

Kv = k1vt = k ⊂ K .

♦

Example 3 In the foregoing example, take k = Q. By Lemma 8, there is an ordering
< on the rational function field K = k(t, x, y) which is compatible with the valuation v.
Then (K,<) does not admit an integer part, because any such integer part would be a
weak complement for v. ♦

Example 4 In Example 2, take k = Q. By Lemma 8 there is an ordering on k(t)
compatible with the vt-adic valuation. The real closure k(t)rc of k(t) with respect to this
ordering is a countably generated infinite algebraic extension of k(t). So we may take
k1 = k(t)rc. The valuation vt extends to a valuation of k1 which is compatible with its
ordering. Again by Lemma 8 we may choose a lifting of the ordering of k1 to K through
the valuation w. This ordering on K induces through v = w ◦ vt the same ordering on
the residue field k as the ordering on k(t)rc induces through vt ; in particular, we find that
the chosen ordering on K is compatible with the valuation v.

Now pick any positive integer n and consider the n-real closure Krc(n) of (K,<) as
defined in [Bg]. It is encluded in the real closure Krc of (K,<), so we can extend w to the
real closure (cf. Lemma 9) and then restrict it to Krc(n); the valuation so obtained is still
compatible with the ordering. As Krcw = (Kw)rc = k(t)rc = Kw by Lemma 9, we have
that Krc(n)w = k(t)rc. So w ◦ vt is an extension of v to Krc(n), and we denote it again by
v. As before, we see that it is compatible with the ordering.

Suppose Krc(n) admits a weak complement R. We proceed as in Example 2, with K
replaced by L := Krc(n). As LΓw is dense in (Lw, vt) = (k(t)rc, vt) we can infer from
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Lemma 12 that vt(LΓw) = vtk(t)rc. This in turn is the divisible hull of vtk(t) = Z (cf.
Lemma 9). Hence, vt(LΓw) = Q and thus also vLΓ = Q. But as in Example 2 one shows
that the relative algebraic closure of k(t′) in K(t′) must be a finite extension E of k(t′).
Now LΓ lies in the relative algebraic closure E ′ of E in L, which is just the n-real closure
of E. But the value group of the n-real closure of E is the n-divisible hull of vE, which
in turn is a finite extension of vk(t′) = Z. So the value group of E ′ is still isomorphic to
the n-divisible hull of Z. This contradicts the fact that its subfield LΓ has value group Q.
This contradiction proves that Krc(n) does not admit weak complements for its compatible
valuation v, and therefore does not admit integer parts. ♦

In order to obtain an example where the valued field (K, v) admits an embedded
residue field and a cross-section, we modify Example 2 as follows.

Example 5 In our basic construction, we take k = k0(z) where k0 is any prime field and
z is transcendental over k0 . The henselization k0(z)h of k0(z) with respect to the z-adic
valuation vz is a countably generated separable-algebraic extension of k0(z). Therefore,
we may choose k1 to be a countably generated separable-algebraic extension of k(t) such
that vtk1 = Z and k1vt = k0(z)h (cf. Theorem 2.14 of [K1]). Then we take

v′ = v ◦ vz = w ◦ vt ◦ vz .

Let Γ be the convex subgroup of v′K such that v′Γ = w; now Γ is the minimal convex
subgroup containing v′t. Suppose that (K, v′) admits a weak complement R. Then by
Lemma 37 the isomorphic image KΓw of the subfield KΓ of K is dense in the valued
residue field (k1, vt ◦ vz). The isomorphism KΓ → KΓw preserves the prime field k0 of
KΓ. From Lemma 12 we infer that vt ◦ vz(KΓw) = vt ◦ vz(k1). This value group has
two non-trivial convex subgroups, namely, itself and the smallest convex subgroup which
contains vt ◦ vz(z). We choose elements t′, z′ ∈ KΓ such that vt ◦ vz(t′w) > 0 lies in the
former, but not in the latter, and vt ◦ vz(z′w) > 0 lies in the latter. Then these two values
are rationally independent. Thus by Theorem 1 of [Br], Chapter VI, §10.3, t′w, z′w are
algebraically independent over the trivially valued field k0 . But as KΓw ⊆ k1 , we must
have trdegKΓw|k0 = 2. Hence KΓw|k0(t′w, z′w) is algebraic, and so is KΓ|k0(t′, z′).

By Lemma 16, KΓw is also dense in (k1, vt). Hence (KΓw)vt = k1vt = k0(z)h by
Lemma 12. Hence, z ∈ (KΓw)vt and we can in fact choose z′ such that (z′w)vt = z.
Consequently, k0(t′w, z′w)vt = k0(z) (cf. the already cited Theorem 1 of [Br]). Since
(KΓw)vt = k0(z)h is an infinite extension of k0(z) by part a) of Proposition 21, it follows
from Lemma 10 that KΓw is an infinite extension of k0(t′w, z′w). Thus, KΓ is an infinite
extension of k0(z′, t′).

Since trdegK|k0 = 4 and trdeg k0(z′, t′)|k0 = trdeg k0(z′w, t′w)|k0 = 2, we have that
trdegK|k0(z′, t′) = 2. Let {x′, y′} be a transcendence basis for this extension. Because
the algebraic extension KΓ|k0(z′, t′) is linearly disjoint from the purely transcendental
extension k0(z′, t′, x′, y′)|k0(z′, t′), the extension KΓ(x′, y′)|k0(z′, t′, x′, y′) is infinite. But
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it is contained in the finite extension K|k0(z′, t′, x′, y′). This contradiction shows that
(K, v′) cannot admit weak complements.

The value group v′K is the lexicographic product wK × vtk1 × vzk0(z) ' Z × Z × Z
since vzk0(z) = vzk0(z)h = Z. This shows that (K, v′) admits a cross-section. The residue
field Kv′ = k0 is embedded in K. Note that K is a rational function field of transcendence
degree 4 over its residue field. ♦

Example 6 In the foregoing example, take k0 = Q. By Lemma 8, there is an ordering
< on the rational function field K = k(t, x, y, z) which is compatible with the valuation
v′. Then (K,<) does not admit an integer part. Nevertheless, the valuation v′, which is
the natural valuation of the ordering < since Kv′ = Q is archimedean ordered, admits an
embedding of its residue field and a cross-section. ♦

Finally, let us note that Proposition 21 shows:

Proposition 38 None of the valued fields in the above examples are henselian. Also, the
natural valuation of the example constructed by Boughattas in [Bg] is not henselian.

Proof: It follows from part a) of Proposition 21 that the rational function fields of
Examples 2 and 3 are not henselian. The fields of Example 4 and Boughattas’ example
are n-real closures of algebraic function fields. The “n-algebraic closures” of part b) of
Proposition 21 are algebraic extensions of the n-real closures. Since they are not henselian,
Lemma 15 shows that the same holds for the n-real closures. 2
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