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Abstract

We show that every henselian valued field L of residue characteristic 0 admits a proper
subfield K which is dense in L. We present conditions under which this can be taken
such that L|K is transcendental and K is henselian. These results are of interest for the
investigation of integer parts of ordered fields. We present examples of real closed fields
which are larger than the quotient fields of all their integer parts. Finally, we give rather
simple examples of ordered fields that do not admit any integer part and of valued fields
that do not admit any subring which is an additive complement of the valuation ring.

1 Introduction

At the “Logic, Algebra and Arithmetic” Conference, Teheran 2003, Mojtaba Moniri asked
the following question: Does every non-archimedean ordered real closed field L admit a
proper dense subfield K ? This question is interesting since if such a subfield K admits
an integer part I then [ is also an integer part for L, but the quotient field of I lies in K
and is thus smaller than L. An integer part of an ordered field K is a discretely ordered
subring [ with 1 such that for all a € K there is r € I such that » < a < r+ 1. It follows
that the element r is uniquely determined, and in particular that 1 is the least positive
element in [.

Since the natural valuation of a non-archimedean ordered real closed field L is non-
trivial, henselian and has a (real closed) residue field Lv of characteristic 0, the following
theorem answers the above question to the affirmative:
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Theorem 1 FEvery henselian non-trivially valued field (L,v) with a residue field of char-
acteristic 0 admits a proper subfield K which is dense in (L,v). This subfield K can be
chosen such that L|K is algebraic.

Here, density refers to the topology induced by the valuation; that is, K is dense in
(L,v) if for every a € L and all values « in the value group vL of (L,v) there is b € K
such that v(a — b) > «. In the case of non-archimedean ordered fields with natural (or
non-trivial order compatible) valuation, density in this sense is equivalent to density with
respect to the ordering.

In the case where the value group vL has a maximal proper convex subgroup, the
proof is quite easy, but does in general not render any subfield K such that L|K is
transcendental. In the case of vL having no maximal proper convex subgroup, the proof
is much more involved, but leaves us the choice between L|K algebraic or transcendental:

Theorem 2 In addition to the assumptions of Theorem 1, suppose that vL does not have
a mazximal proper convexr subgroup. Then for each integer n > 1 there is a henselian (as
well as a non-henselian) subfield K dense in L such that trdeg L|K = n. It can also be
chosen such that trdeg L|K is infinite.

To see that such valued fields (L, v) exist, take x;, i € N, to be a set of algebraically
independent elements over an arbitrary field k& and define a valuation v on k(z; | i € N)
by setting 0 < vr; € vy K ... K vr; < ...; then pass to the henselization of (k(z; |
i € N),v). For a more general approach, see Lemma 26.

Remark 3 A. Fornasiero [F] has shown that every henselian valued field with a residue
field of characteristic 0 admits a truncation closed embedding in a power series field with
coefficients in the residue field and exponents in the value group (in general, the power
series field has to be endowed with a non-trivial factor system). “Truncation closed”
means that every truncation of a power series in the image lies again in the image.

It follows that all of the henselian dense subfields admit such truncation closed em-
beddings. But also the dense non-henselian subfields can be chosen such that they admit
truncation closed embeddings. We will sketch the proof in Section 3 (Remarks 25 and 28).

Our construction developed for the proof of Theorem 2 also gives rise to a counterex-
ample to a quite common erroneous application of Hensel’s Lemma. A valuation w is
called a coarsening of v if its associated valuation ring contains that of v. In this case,
v induces a valuation @ on the residue field Kw whose valuation ring is simply the image
of the valuation ring of v under the residue map associated with w. The counterexample
proves:

Proposition 4 There are valued fields (K, v) such that vK has no mazimal proper convex
subgroup, the residue field (Kw,w) is henselian for every non-trivial coarsening w # v of
v, but (K,v) itself is not henselian.



The proofs of Theorems 1 and 2 and of Proposition 4 are given in Section 3. There,
we will also give a more explicit version of Theorem 2.

In general, the quotient fields of integer parts of an ordered field are smaller than
the field. The following theorem will show that there are real closed fields for which the
quotient field of every integer part is a proper subfield. If k is any field, then

PSF (k) == [J k((t")

neN

is called the Puiseux series field over £; it is a subfield of the power series field k((t©))
with coefficients in k& and exponents in Q, which we also simply denote by k((Q)).

Theorem 5 Let Q™ denote the field of real algebraic numbers and PSF (Q™) the Puiseux
series field over Q™. If I is any integer part of this real closed field, then QuotI is a
proper countable subfield of PSF (Q™) such that the transcendence degree of PSF (Q)
over Quot I is uncountable. The same holds for the completion of PSF (Q).

This answers a question of M. Moniri. An answer was also given, independently, by
L. van den Dries at the conference. A larger variety of such fields is presented in Section 4.
On the other hand, there are fields that admit integer parts whose quotient field is the
whole field:

Theorem 6 Let \ be any cardinal number and k any field of characteristic 0. Then there
exists a henselian valued field (L, v) with residue field k which has the following properties:

a) L contains a k-algebra R which is an additive complement of its valuation ring such
that Quot R = L.
b) At the same time, for each non-zero cardinal number k < X, L contains a k-algebra
R, which is an additive complement of its valuation ring such that trdeg L|Quot R,, = k.
If in addition k is an archimedean ordered field and < is any ordering on L compatible
with v (see Section 2 for this motion), then (L,<) admits an integer part I such that
Quot I = L. At the same time, for each non-zero cardinal number k < X\, L admits an
integer part I,; such that trdeg L|Quot I,, = k.

S. Boughattas [Bg] has given an example of an ordered (and “n-real closed”) field
which does not admit any integer part. In the last section of our paper, we generalize the
approach and consider a notion that comprises integer parts as well as subrings which are
additive complements of the valuation ring or of the valuation ideal in a valued field. A
subring R of a valued field (K, v) will be called a weak complement (in K) if it has the
following properties:

e vr <0 forall r e R,
e for all a € K there is r € R such that v(a —r) > 0.



Every integer part in a non-archimedean ordered field K is a weak complement with
respect to the natural valuation of K (see Lemma 35).

Using a somewhat surprising little observation (Lemma 37) together with a result of
[K1] (which is a generalization of a result in [M—-S]) we construct examples for valued fields
that do not admit any weak complements. From this we obtain ordered fields without
integer parts. In particular, we show:

Theorem 7 For every prime field k there are valued rational function fields k(t,x,y) of
transcendence degree 3 over the trivially valued subfield k which do not admit any weak
complements. There are ordered rational function fields of transcendence degree 3 over Q
which do not admit any integer parts.

There are valued rational function fields of transcendence degree 4 over a trivially val-
ued prime field which do not admit any weak complements, but admit an embedding of
their residue field and a cross-section. There are ordered rational function fields of tran-
scendence degree 4 over Q which do not admit any integer parts, but admit an embedding
of their residue field and a cross-section for their natural valuation.

Our example of an n-real closed field without integer parts is the n-real closure of such
an ordered rational function field. It is quite similar to the example given by Boughattas,
but in contrast to his example, ours is of finite transcendence degree over Q.

Open Problem: Are there valued fields of transcendence degree < 2 over a trivially
valued ground field that do not admit any weak complements? Are there ordered fields
of transcendence degree < 2 over an archimedean ordered field that do not admit any
integer parts? Are there examples of transcendence degree < 3 with embedding of their
residue field and cross-section?

2 Some preliminaries

For basic facts from general valuation theory we refer the reader to [E|, [R], [W], [Z-S],
[K2]. For ramification theory, see [N], [E] and [K2|. In the following, we state some well
known facts without proofs.

Take any valued field (K, v). If v/ is a valuation on the residue field Kv, then v o v/
will denote the valuation whose valuation ring is the subring of the valuation ring of v
consisting of all elements whose v-residue lies in the valuation ring of v’. (Note that we
identify equivalent valuations.) While v o v’ does actually not mean the composition of
v and v as mappings, this notation is used because in fact, up to equivalence the place
associated with v o v’ is indeed the composition of the places associated with v and v’.

Every convex subgroup I' of vK gives rise to a coarsening vr of v such that vpK is
isomorphic to vK/T". As mentioned in the introduction, v induces a valuation or on the
residue field Kvp. We then have that v = vp o op. The value group vp(Kwvr) of or is



isomorphic to I', and its residue field (Kvr)or is isomorphic to Kv. Every coarsening w
of v is of the form vr for some convex subgroup I' of vK.

If a is an element of the valuation ring O, of v on K, then av will denote the image
of a under the residue map associated with the valuation v. This map is a ring homo-
morphism from O, onto the residue field Kv. It is only unique up to equivalence, i.e., up
to composition with an isomorphism from Kv to another field (and so the residue field
Kw is only unique up to isomorphism). If w is a coarsening of v, that is, O, contains the
valuation ring O, of v on L, then the residue map O, 3 a — aw € Kw can be chosen
such that it extends the residue map O, 2 a — av € K.

An ordering < on a valued field (K, v) is said to be compatible with the valuation
v (and v is compatible with <) if

Ve,ye K: 0<x<y = vr>vy. (1)

This holds if and only if the valuation ring of v is a convex subset of (K, <). This in
turn holds if and only if < induces an ordering on the residue field Kv. We will need the
following well-known facts (cf. [P]):

Lemma 8 Tuake any valued field (K,v). Every ordering <, on Kv can be lifted to an
ordering < on K which is compatible with v and induces <, on Kv (that is, if a,b are
elements of the valuation ring of v such that a < b, then av = bv or av <, bv).

Lemma 9 If an ordering of a field K is compatible with the valuation v of K, then v
extends to a valuation of the real closure K* of (K, <), which is still compatible with the
ordering on K. This extension is henselian, its value group vK™ is the divisible hull
of vK, and its residue field K™v is the real closure of Kv (with respect to the induced
ordering on Kv).

A compatible valuation of an ordered field (K, <) is called the natural valuation
of (K, <) if its residue field is archimedean ordered. The natural valuation is uniquely
determined, and every compatible valuation is a coarsening of the natural valuation.

Take any valued field (K, v) and a finite extension L|K. Then the following funda-
mental inequality holds:

g
=1

where n = [L : K] is the degree of the extension, vy, ..., v, are the distinct extensions of
v from K to L, e; = (v;L : vK) are the respective ramification indices, and f; = [Lv; : K]
are the respective inertia degrees. Note that the extension of v from K to L is unique (i.e.,
g = 1) if and only if (K,v) is henselian (which by definition means that (K, v) satisfies
Hensel’s Lemma). The following are easy consequences:



Lemma 10 If L|K is a finite extension and v is a valuation on L, then [L : K| > (vL :
vK) and [L: K| > [Lv : Kv].

Corollary 11 Let L|K be an algebraic extension and v a valuation on L. Then vL/vK

is a torsion group and the extension Lv|Kv of residue fields is algebraic. If v is trivial on
K (i.e., vK = {0}), then v is trivial on L.

An extension (K,v) C (L,v) of valued fields is called immediate if the canonical
embeddings of vK in vL and of Kv in Lv are onto. We have:

Lemma 12 If K is dense in (L,v), then (K,v) C (L,v) is an immediate extension.

Proof: Ifa € L and b € K such that v(a — b) > va, then va = vb € vK. If a € L such
that va = 0 and b € K such that v(a — b) > 0, then av = bv € Kv. O

The following is a well known consequence of the so-called “Lemma of Ostrowski”:

Lemma 13 If a valued field (L,v) is an immediate algebraic extension of a henselian
field (K,v) of residue characteristic 0, then L = K.

Lemma 14 The henselization K" of a valued field (K,v) (which is unique up to valuation
preserving isomorphism over K ) is an immediate extension and can be chosen in every
henselian valued extension field of (K, v).

Lemma 15 An algebraic extension of a henselian valued field, equipped with the unique
extension of the valuation, is again henselian.

Lemma 16 Let (L,v) be any field and v = wow where w is non-trivial. Take any subfield
Lo of L. Then Ly is dense in (L,v) if and only if Ly is dense in (L, w).

Lemma 17 Let (K,v) be any field and v = w ow. Then (K,v) is henselian if and only
if (K,w) and (Kw,w) are.

Corollary 18 Let (K,v) be any field and v = wow. If (Kw,w) is henselian, then the
henselization of (K,v) is equal to the henselization of (K,w) (as fields).

The value group vK of a valued field (K, v) is archimedean if it is embeddable in
the ordered additive group of the reals. This holds if and only if every convex subgroup
of vK is equal to {0} or to vK.

Lemma 19 If (K,v) is a valued field such that vK is archimedean, then K is dense in
its henselization. In particular, the completion of (K,v) is henselian.



The following result is an easy application of Hensel’s Lemma:

Lemma 20 Take (K,v) to be a henselian valued field of residue characteristic char Kv =
0. Take any subfield Ko of K on which v is trivial. Then there is a subfield K' of K
containing Ko and such that v is trivial on K' and the residue map associated with v
induces an isomorphism from K’ onto Kv. If Kv|Kyv is algebraic, then so is K'|K .

A field K’ as in this lemma is called a field of representatives for the residue field
Ko.

Proposition 21 a) Take a non-empty set T of elements algebraically independent over
K and a finite extension F' of K(T). Then no non-trivial valuation on F is henselian. In
particular, no non-trivial valuation on an algebraic function field (of transcendence degree
at least one) is henselian.

b) Fizn €N, take K(T) as in a) and take F to be the closure of K(T) under successive
adjunction of roots of polynomials of degree < n. Then no non-trivial valuation on F is
henselian.

Proof:  Choosing any ¢t € T and replacing K by K (T \ {t}), we may assume in parts a)
and b) that T consists of a single element, i.e., trdeg F'|K = 1.

Take any non-trivial valuation on F. We show that there is some x € K(7') such that
ve > 0 and zx is transcendental over K. Assume first that v is trivial on K. Since v
is non-trivial on F' and F|K(T) is algebraic, Corollary 11 shows that v is non-trivial on
K(T). Hence there must be some x € K(T) such that vz # 0. Replacing = by =z~ if
necessary, we may assume that vz > 0. It follows that x ¢ K, so z is transcendental over
K.

Now assume that v is not trivial on K, and take an arbitrary € K(7') transcendental
over K. If v > 0, we are done. If vz < 0, we replace it by 27! and we are done again.
If v = 0, we pick some ¢ € K such that vc > 0. Then vcx > 0 and cx is transcendental
over K, hence replacing x by cx finishes the proof of our claim.

Pick any positive integer ¢ such that ¢ is not divisible by the characteristic p := char Kv
of the residue field Kv. By Hensel’s Lemma, any henselian extension of K (z) will contain
a g-th root of the 1-unit y := 1+x. We wish to show that any algebraic extension of K (x)
containing such a g-th root must be of degree at least ¢ over K (x). A valuation theoretical
proof for this fact reads as follows. Take the y-adic valuation v, on K(z) = K(y). Then
v,y is the least positive element in the value group v, K (z) ~ Z, and any ¢-th root b of y
will have v,-value %vyy. This shows that (v, K (x)(b) : v,K(x)) > q. By the fundamental
inequality, it follows that [K(z,0) : K(x)] > (v,K(z,b) : v,K(x)) > gq.

Proof of part a): Since trdeg F|K =1, x € K(T) is transcendental over K and F|K is
finite, also F'|K(x) is finite. Pick ¢ > [F': K(x)] not divisible by p. Then it follows that
F does not contain a ¢-th root of y, and so (F,v) cannot be henselian.



Proof of part b): This time, we still have that K(T)|K(x) is finite. Pick a prime
q > max{n, [K(T) : K(z)|}, ¢ # p. For every element « in the value group v, F' there is
an integer e which is a product of positive integers < n such that ea € v, K(T'). Further,
there is a positive integer €’ such that e’ea € v, K (). On the other hand, by our choice of
q, it does not divide €’e. Since the order of the value évyy modulo v, K () is ¢, it follows
that this value does not lie in v, F. Hence again, (F,v) cannot be henselian. O

Proposition 22 Take (L,v) to be a henselian field of residue characteristic char Lv = 0,
and K a subfield of L such that L|K is algebraic. Then K admits an algebraic extension
Lo inside of L such that the extension of v from K to Lg is unique, Lo is linearly disjoint
over K from the henselization K" of K in L, and L = Lo.K" = L.

Proof: Take any subextension Lg|K of L|K maximal with the property that the
extension of v from K to Lg is unique. By general ramification theory it follows that
Lo| K is linearly disjoint from K”|K and that L} = Ly.K". We only have to show that
Lh = L. Note that L|L! is algebraic since already L|K is algebraic,

Let us show that Lgv = Lv. If this is not the case, then there is be some element
¢ € Lv \ Lov. By Corollary 11, Lv|Lgv is algebraic. Let g € Lov[X] be the minimal
polynomial of ( over Lgv. Since char Kv = 0, g is separable. We choose some monic
polynomial f with integral coefficients in Ly whose reduction modulo v is g; it follows
that deg f = degg. Since ( is a simple root of g, it follows from Hensel’s Lemma that the
henselian field (L, v) contains a root z of f whose residue is (. We have

[Lo(2) : Lo] <degf = degg = [Lov(C) : Lov] < [Lo(z)v: Lov] < [Lo(2) : Lo],

where the last inequality follows from Lemma 10. We conclude that [Lo(z) : L] =
[Lo(2)v : Lov]. From the fundamental inequality it follows that the extension of v from
Ly (and hence also from K) to Ly(z) is unique. But this contradicts the maximality of
Ly . Hence, Lov = Lv.

Next, let us show that vLy = v L. If this is not the case, then there is some o € vL\vLy .
By Corollary 11, vL/vLg is a torsion group and hence there is some n > 1 such that
na € vLy. We choose n minimal with this property, so that (vLg + aZ : vLy) = n.
Further, we pick some a € L such that va = a. Since na € vl , there is some d € L
such that vd = na = va™. It follows that va™/d = 0, and since we have already shown
that Lv = Lgv, we can choose some ¢ € Ly such that (a"/cd)v = 1. Consequently, the
reduction of X" — a™/cd modulo v is the polynomial X™ — 1, which admits 1 as a simple
root since char Kv = 0. Hence by Hensel’'s Lemma, X™ — a"/cd admits a root b in the
henselian field (L,v). For z := § it follows that

an

nvz = v— = ved = vd = na,

bn



which shows that o = vz € vLy(z). We have
[Lo(2) : Lo) < n = (vlog+ aZ:vLy) < (vLo(z):vLy) < [Lo(2): Lo,

where again the last inequality follows from Lemma 10. We conclude that [Lo(z) : Lo] =
(vLo(z) : vLg). From the fundamental inequality it follows that the extension of v from
Ly (and hence also from K) to Ly(z) is unique. But this again contradicts the maximality
of Ly. Hence, vLy = vL.

We have shown that vL = vLy and Lv = Lgv. Hence, vL = vL} and Lv = L{v. As
L|Ly is algebraic, the same is true for L|LE. Since the residue field characteristic of (L, v)
is zero, Lemma 13 shows that L = L. This concludes our proof. a

3 Dense subfields

In this section we prove the existence of proper dense subfields of henselian fields with
residue characteristic 0.

Proposition 23 Tuake a henselian valued field (L,v) such that vL admits a mazimal
proper convex subgroup I'. Assume that char Lvp = 0. Then L admits a proper dense
subfield Lo such that L|Lg is algebraic.

Proof: By Lemma 16 it suffices to find a subfield Ly which is dense in L with respect to
vr , and such that L|Ly is algebraic. By Lemma 17, (L, vr) is henselian. Since char Lor = 0
and hence char L = 0, L contains Q and vr is trivial on Q. Pick a transcendence basis
T of L|Q. Since vr is non-trivial on L, T' is non-empty. We infer from Lemma 21 that
(Q(T),vr) is not henselian. By Proposition 22, there is an algebraic extension Lg of Q(T)
within L such that Lg is linearly disjoint over Q(7T") from the vp-henselization Q(T')" of
Q(T) in L, and L = Ly.Q(T)" = Lk. Since (Q(T),vr) is not henselian, Q(T)"|Q(T) is
a proper extension. By the linear disjointness, the same holds for L|Ly. As I' is the
maximal proper convex subgroup of vL, vpL ~ vL/I" must be archimedean. Thus by
Lemma 19, (Lg,vr) lies dense in its henselization (L, vr). Hence by Lemma 16, (Lg,v)
lies dense in its henselization (L, v). Since L|Q(T) is algebraic, so is L|Ly . O

In certain cases, even if v has a coarsest non-trivial coarsening, there will also be dense
subfields K such that L|K is transcendental. For instance, this is the case for L = k((t))
equipped with the t-adic valuation v; , where a subfield is dense in L as soon as it contains
k(t). On the other hand, the henselization k(t)" of k(t) w.r.t. v; admits k(¢) as a proper
dense subfield, and the extension k(#)"|K is algebraic for every subfield K which is dense
in k(t)". More generally, the following holds:



Proposition 24 Suppose that (L,v) is a valued field and that v is trivial on the prime
field k of L. If

trdeg LIk = dimg(Q ® vL) + trdeg Lvlk < oo,
then L|K s algebraic for every dense subfield K.

Proof: If K is a dense subfield, then by Lemma 12, (L| K, v) is an immediate extension.
Hence,

trdeg K|k > dimg(Q ® vK) + trdeg Kv|k = dimg(Q ® vL) + trdeg Lv|k = trdeg L|k ,
whence trdeg K|k = trdeg L|k, showing that L|K is algebraic. O

Note that if (L,v) is a valued field with a subfield Ly on which v is trivial, and if
trdeg L| Ly < oo, then in general,

trdeg L|Ly > dimg(Q ® vL) + trdeg Lv|Ly . (3)

This is a special case of the so-called “Abhyankar inequality”. For a proof, see [Br],
Chapter VI, §10.3, Theorem 1. Note that Q®vL is the divisible hull of vL, and dimgp(Q®
vL) is the maximal number of rationally independent elements in v L.

Remark 25 It can be shown that if char Lv = 0, then the dense subfield Ly in Propo-
sition 23 can always be constructed in such a way that it admits a truncation closed
embedding into a power series field. The idea is as follows. Since (L, v) is henselian, we
can use Lemma 20 to find a field & of representatives in L for the residue field Lv. Then we
can choose a twisted cross-section as in [F]|. The field L; generated over k by the image of
the cross-section admits a truncation closed embedding in k((vL)) with a suitable factor
system, and this embedding ¢ can be extended to a truncation closed embedding of (L, v)
in k((vL)) (cf. [F]). It is easy to show that Ly := ¢}(¢LNE((T))) is a field of representa-
tives for the residue field Lor in (L, vr), and that ¢ induces a truncation closed embedding
of Lr in k((I')) C k((vL)). This can be extended to a truncation closed embedding of
Ly := Ly.Lr which is obtained from Lr by adjoining the image of the cross-section. We
note that (L, vr) is an immediate extension of (Lq, vr). If this extension is algebraic, then
L is also algebraic over the henselization of L, (with respect to vr), and by Lemma 13,
the two fields must be equal. That shows that Lo is dense in (L, vr) and hence in (L, v),
and we can take Lo = L.

If L|Ly is transcendental, we take a transcendence basis S of L|L, and pick s € S.
Then one shows as before that L is the henselization of L,(S), and also of the larger
field Ly := Lo(S \ {s})"(s). Again, Ly is dense in (L,v). Following [F], Ly(S \ {s})"
admits a truncation closed embedding in k((vL)). As (L,v) is immediate over (Ls,v),
it is also immediate over Ly(S \ {s})". Therefore, s is the limit of a pseudo Cauchy
sequence in Ly(S\ {s})" without a limit in this field. As the field is henselian of residue
characteristic 0, this pseudo Cauchy sequence is of transcendental type. Now [F] shows
that the truncation closed embedding can be extended to Ly .
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Now we turn to the case where v admits no maximal proper convex subgroup, i.e.,
v admits no coarsest non-trivial coarsening. Such valued fields exist:

Lemma 26 Take any reqular cardinal number \ and any field k. Then there is a valued
field (L,v) with residue field k and such that X\ is the cofinality of the set of all proper
convex subgroups of vL, ordered by inclusion.

Proof:  Take J to be the set of all ordinal numbers < A, endowed with the reverse of
the usual ordering. Choose any archimedean ordered abelian group I'. Then take G to be
the ordered Hahn product H;I' with index set J and components I' (see [Fu] or [KS] for
details on Hahn products). Then the set of all proper convex subgroups of G, ordered by
inclusion, has order type A and hence has cofinality A\. Now take (L,v) to be the power
series field k((G)) with its canonical valuation. O

Note that if vL admits no maximal proper convex subgroup, then vL is the union of
its proper convex subgroups. Indeed, if & € v L, then the smallest convex subgroup C' of
vL that contains a (= the intersection of all convex subgroups containing «) admits a
largest convex subgroup, namely the largest convex subgroup of vL that does not contain
a (= the union of all convex subgroups not containing «). Therefore C' # vL, showing
that C' is a proper convex subgroup containing a.

Proposition 27 Take a henselian valued field (L,v) such that vL admits no mazimal
proper convex subgroup. Assume that char L = 0. Then L admits a proper dense subfield
K such that L|K is algebraic. If k > 0 is any cardinal number smaller than or equal to
the cofinality of the set of convex subgroups of vL ordered by inclusion, then there is also
a henselian (as well as a non-henselian) subfield K dense in L such that trdeg L| K = k.

Proof: It suffices to prove that there is a subfield K dense in L such that the trans-
cendence degree of L|K is equal to the cofinality A of the set of convex subgroups of vL.
This is seen as follows. Take a transcendence basis T of L|K. If k is a cardinal number
< A, then take a subset T, of T of cardinality k. Then K, := K(T \ T,) is dense in L
because it contains K; furthermore, trdeg L|K,, = k. We may always, even in the case
of kK = A, choose T,; # T. Then by part a) of Proposition 21, (K,v) is not henselian.
In particular, (K(T),v) is not henselian and thus, K(7') is a proper subfield of L such
that L|K(T) is algebraic. If k # 0, then L|K, will be transcendental. By Lemma 14, the
henselian field L contains the henselization K" of K. Since it is an algebraic extension
of K, , we have trdeg L| K" = trdeg L| K = k, and it is dense in L, too.

To illustrate the idea of our proof, we first show that there is a dense subfield K such
that trdeg L|K > 0. We choose a convex subgroup Cy of vL as follows. If char Lv = 0,
then we set Cy = {0}. If charLv = p > 0, then we observe that 0 # p € L since
char L = 0, so we may take Cjy to be the smallest proper convex subgroup that contains
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vp. We let wy = v, be the coarsening of v associated with Cy. We have wy = v if
char Lv = 0. Since Cj is a proper convex subgroup, wy is a non-trivial valuation.

Let A be the cofinality of the set of all proper convex subgroups of vL, ordered by
inclusion. Starting from Cj, we pick a strictly ascending cofinal sequence of convex
subgroups C,,, v < A, in this set. We denote by w, the coarsening of v which corresponds
to C, .

By Lemma 20 there is a field K| of representatives for Lwg in L. We pick a transcen-
dence basis Ty = {to, | 1t < Ko} of K{|Q, where kg is the transcendence degree of Lwy|Q.
Then we proceed by induction on v < A. Suppose we have already constructed a field
K], of representatives of Lw, and a transcendence basis U, <, T}, for it. By Lemma 20,
K], can be extended to a field K,_; of representatives of Lw,,, and we choose a tran-
scendence basis T41 = {tu41,u | p# < ks } of K], | K. Having constructed K, v < X
for some limit ordinal A < A, we set K}, = U,«x K/,. Again by Lemma 20, K3, can be
extended to a field of representatives K}, of Lw, , and we choose a transcendence basis
Ty =A{txv, | 1 < Ky} of K|K3. Note that Ty may be empty.

We set K’ = U,y K|, and show that K’ is dense in L. Take any a € L and a € vL.
Then there is some v < A such that o € C,. By construction, K’ contains a field of
representatives for Lw, . Hence there is some b € K’ such that aw, = bw, , meaning that
w,(a—0b) > 0 and thus, v(a —b) > «. This proves our claim. Hence if trdeg L| K" > 0, we
set K = K’ and we are done showing the existence of a subfield K with trdeg L| K > 0.
But it may well happen that L|K’ is algebraic, or even that L = K’. In this case, we
construct a subfield K of K’ as follows.

Note that for all v < A, (K], v) is henselian. Indeed, it is isomorphic (by the place
associated with w,) to (Lw,,w,), where W, is the valuation induced by v on Lw, ; since
(L,v) is henselian, Lemma 17 shows that the same is true for (Lw,,w,) and hence for
(K},v). Again from Lemma 17 it follows that (K, w,) is henselian for all ¢ < A. Note
that w,, is non-trivial on K, only for p < v, and in this case, K,w, = Lw, since K,
contains the field K7, of representatives for Lw,, .

Note further that for all v < A and all u < s, , w,t,, = 0. On the other hand, after
multiplication with suitable elements in K,; we may assume that w,t,,;, > 0 for all
< Kyl -

We will now construct inside of K’ a chain (ordered by inclusion) of subfields K, C K,
(v < A) such that each K, is a field of representatives for Lw, and contains the element
0,0 — tu4+1,0, but not the element g .

Since Ty = {to, | ;1 < Ko} is a transcendence basis of K{|Q, Lemma 11 shows that the
residue field K{wy = Kjwy is algebraic over Q(to,, | 1 < ko)wo . Because (to o — t1,0)wo =
to,owo by construction, the latter field is equal to Q(too — t1,0,tou | 1 < o < Ko)wp . Since
char Kjwy = 0, we can use Lemma 20 to find inside of the henselian field (K7, wy) an
algebraic extension Ky of Q(to0 —t1,0,t0,. | 1 < pt < ko) which is a field of representatives
for Kjwy = Lw, . Note that ty is transcendental over Q(to,0 — t1,0, 0, | 1 < o < ko) and
therefore, too ¢ Ko, but tog —t10 € Ko.
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Suppose we have already constructed all fields K, for u < v, where v is some ordinal <
A. Since Ty = {ty41, | 1t < Kp41} is a transcendence basis of K, | K, , Lemma 11 shows
that the residue field K| w41 = K] jw,41 is algebraic over K, (t, 41, | ft < Kpg1) Wy -
Because (ty41.0 — tut20)Wyt1 = tyr10Wy41 by construction, the latter field is equal to
Ko(tus10 — tugo0, tvsin | 1 < 0 < Kygpr)wyqq . Since char K, ,w,41 = 0, we can use
Lemma 20 to find inside of the henselian field (K], ,, w,+1) an algebraic extension K, 41 of
Ky (tys1,0 = tvs2,0, tus1,u | 1 < oo < Kyy1) which is a field of representatives for K, ,w, 11 =
Lw, . Since too—tus+1,05 tus1,0 —tuy20 € K, 11 we have that too —tu420 € Ky, Again,
too & K41 as top is transcendental over K, (ty110 — tr20, tot1u | 1 < 10 < Kpya).

Suppose we have already constructed all fields K, for v < X, where )\ is some limit
ordinal < A. We note that ¢t ¢ U,y K, = K}'. But K3'(fo) contains the entire
transcendence basis of K3,|Q because too — t,410 € K, for every v < X (recall that K3,
is the field we constructed above before constructing K3,). It follows that T\ U {to0} is
a transcendence basis of K}, |K}’, and therefore the residue field K}, ,wy = Lwy is an
algebraic extension of K} (T U {too})wy . Because (oo —txi1,0)wy = toowy, the latter
field is equal to K37 (T U {too — txy+10})wy . Again by Lemma 20, there is an algebraic
extension Ky of K3 (T U{too —txt1,0}) inside of the henselian field (K7, wy ) which
is a field of representatives for K\, jwy = Lwy . By construction, tgo—ty410 € Ky . As
before, too ¢ Ky as too is transcendental over K37 (T U {too — tyv+10})-

We set

K = |JK,. (4)
v<A

By construction, oo ¢ K, but K(ty) contains t,, for all v < X\ and p < k, . Hence,
K'|K(top) is algebraic and therefore, trdeg K'|K = 1. With the same argument as for
K’, one shows that K is dense in L. (This also follows from the fact that ¢y is limit of
the Cauchy sequence (too — ty41.0)v<r in K and K’ is dense in L.)

Now we indicate how to achieve trdeg K'| K = . By passing to a cofinal subsequence
of (C),<x if necessary, we can assume that every 7, contains at least |v| many elements,
where |v| denotes the cardinality of the ordinal number v. Then it is possible to re-order
the elements of T, in such a way that T, = {t,, | p < g} where p, is some ordinal
number > v. Now we modify the above construction of K as follows: at every step v
where v = 0 or v is a successor ordinal, we replace t,,, by t,, —t,41, for all p <wv. In
the limit case for A’ < A, we then have that Ty U {t,, | v < X'} is a transcendence basis
of K},|K3f. Here, we replace every t,, for v < X by t,, —ty41,. In this way we achieve
that the elements ¢, , v < A will be algebraically independent over K, but K will still
be dense in L. O

Remark 28 We can replace the field K, = K(7T'\ T,) mentioned in the first paragraph
of the proof by the larger field K (T'\ T, \ {t})"(t) where t € T'\ T);. By the same argument
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as given at the end of Remark 25, this field admits a truncation closed embedding into
the corresponding power series field.

Propositions 23 and 27 together prove Theorem 1. Theorem 2 follows immediately
from Proposition 27 since if vL admits no maximal proper convex subgroup, then the
cofinality of the set of convex subgroups of v is an infinite cardinal number. It remains
to give the

Proof of Proposition 4: By Lemma 26 we may take a henselian valued field (L, v) of
residue characteristic 0 such that vL admits no maximal proper convex subgroup. Using
Proposition 27 we pick a non-henselian proper subfield K which is dense in L. Lemma 16
shows that for every non-trivial coarsening w of v, (K,w) is dense in (L,w), whence
Kw = Lw. By Lemma 17, (Lw,®) is henselian because (L, v) is henselian and v = w o .
Hence, (Kw,w) is henselian, which finishes our proof. O

Example 1 A more direct construction of a counterexample works as follows: Take an
ascending chain of convex subgroups C;, ¢ € N, in some ordered abelian group. Take k

to be any field and set
K = |Jk(C)) .

ieN
As a union of an ascending chain of henselian valued fields, K is itself a henselian valued
field. But K is not complete. For instance, if 0 < a; € C; \ C;_1, then the element

=Y t*ek((|J )
ieN ieN
lies in the completion of K, but not in K. Since every henselian field is separable-
algebraically closed in its henselization (cf. [W], Theorem 32.19), z is either transcendental
or purely inseparable over K. But it cannot be purely inseparable over K because if p =
char K > 0, then 2F" = 3,y P % ¢ K for all v > 0. Hence by part a) of Proposition 21,
K(z) (endowed with the restriction v of the valuation of the completion of K) is not
henselian. But for every non-trivial coarsening w of v, K(x)w = Kw since K is dense in
(K(z),v), and we leave it to the reader to prove that (Kw,w) is henselian. &

4 Small integer parts

We will use a cardinality argument to show that there are real closed fields that are larger
than the quotient fields of all its integer parts.

Lemma 29 a) Take any valued field (L,v). Then all additive complements of the valu-
ation ring of L, if there are any, have the same cardinality.

b) All integer parts in an ordered field, if there are any, are isomorphic as ordered sets
and thus have the same cardinality.
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Proof: a): As an additive group, any additive complement of the valuation ring O of
L is isomorphic to L/O.

b): Take two integer parts I; and I, of a given ordered field (L, <). Since I, is an integer
part, for every a € I; there is a unique element a’ € I such that ¢’ < a < a’ + 1. Hence,
we have a mapping Iy 3 a — a' € I,. Conversely, since [; is an integer part, there is a
unique a” € I; such that a” < o’ < a” 4+ 1. Consequently, a = a” + 1 and «a is the only
element that is sent to a/, showing that the map is injective and even order preserving.
On the other hand, since a” + 1 is sent to a’, the mapping is also proved to be onto. O

We also need the following facts, which are well known (note that a similar statement
holds for weak complements):

Lemma 30 a) If K is dense in (L,v), then every additive complement of the valuation
ring of (K, v) is also an additive complement of the valuation ring of (L,v).

b) If K is dense in (L, <), then every integer part of (K, <) is also an integer part of
(L, <).

Proof: ~ We only prove a) and leave the proof of b) to the reader. Let A be an additive
complement of the valuation ring Ok of (K, v), that is, AN Ok = {0} and A+ Ok = K.
Denote the valuation ring of (L,v) by Op . Since the valuation on L is an extension of
the valuation on K, we have that K N Op = Ok and thus, ANO, = AN Ok = {0}. Now
take any a € L. Since K is dense in (L, v), there is b € K such that v(a —b) > 0, that is,
a—be Op. Consequently, a =b+ (a —b) € K+ O = A+ O+ O = A+ Op,. This
proves that A+ Op = L. O

We cite the following fact; for a proof, see for instance [B-K-K].

Lemma 31 If K is an ordered field and R is a subring which is an additive complement
of the valuation ring for the natural valuation of K, then R+ 7Z is an integer part of K.

For every ordered abelian group G, written additively, we set
G = {geG|g<0}.

Proposition 32 Suppose that k is a countable field. Then the countable ring k[Q<"] :=
kit | 0 > g € Q C k((Q)) is an additive complement of the valuation ring of the
uncountable henselian valued field PSF (k). The same remains true if PSF (k) is replaced
by its completion.

If in addition k is an ordered (respectively, real closed) field, then k[Q<°] + Z is an
integer part of the ordered (respectively, real closed) field PSF (k), and this also remains
true if PSF (k) is replaced by its completion.
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Proof: It is well known that every field k((¢)) of formal Laurent series is uncountable.
Hence, PSF (k) is uncountable. As the union of an ascending chain of fields k((¢%)) of
formal Laurent series, which are henselian, PSF (k) is itself henselian. Note that the
completion of a henselian field is again henselian ([W], Theorem 32.19).

Every element a € PSF (k) lies in k((¢%)) for some n € N. Hence, it suffices to
show that k[t% | 0 > m € Z] is an additive complement of the valuation ring k[[t+]] in
k((tv)). Renaming t= by ¢, we thus have to show that k[t™ | 0 > m € Z] is an additive
complement of the valuation ring k[[t]] in k((¢)). But this is clear since k((t)) is the set
of formal Laurent series

Z Cz‘lfZ = Z Citz + Z Citl
=N =N 1=0

where N € Z and ¢; € k. The first sum lies in k[t™ | 0 > m € Z] and the second sum in
K[t

Part a) of Lemma 30 shows that £[Q<"] is also an additive complement of the valuation
ring in the completion of PSF (k).

The assertions about the ordered case follow from Lemma 31 together with part b) of
Lemma 30. a

From this proposition together with Lemma 29, we obtain the following corollary,
which in turn proves Theorem 5.

Corollary 33 Suppose that k is a countable field. If R is any subring which is an
additive complement of the valuation ring of PSF (k), then Quot R is countable and
trdeg PSF (k)|Quot R is uncountable.

If in addition k is an ordered field and I an integer part of PSF (k), then Quot I is
countable and trdeg PSF (k)|Quot I is uncountable.

The same remains true if PSF (k) is replaced by its completion.

Proof: ~ The quotient field of a countable ring is again countable. So it only remains
to prove the assertion about the transcendence degree. It follows from the fact that the
algebraic closure of a countable field is again countable. So if 7" would be a countable
transcendence basis of PSF (k)|Quot R, then (Quot R)(T") and hence also PSF (k) would
be countable, which is not the case. O

Denote by k((G)) = k((t%)) the power series field with coefficients in k and exponents
in G, and by k(G) the smallest subfield of £((G)) which contains all monomials ct9, ¢ € k,
g € G. Denote by k(G)° its completion; it can be chosen in k((G)). Note that the
completion of PSF (k) is equal to k(Q)°. Further, denote by k[G<°] the subring of k(G)
generated by k£ and all monomials c¢t? where ¢ € k and 0 > g € G.
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Proposition 34 Suppose that k is a countable field and G is a countable archimedean
ordered abelian group. Then the countable ring k[G<] is an additive complement of the
valuation ring of the uncountable henselian valued field k(G)°.

If R is any subring which is an additive complement of the valuation ring of k(G)°,
then Quot R is countable and trdeg k(G)¢|Quot R is uncountable.

If in addition k is an ordered field and I is an integer part of the ordered field k(G)¢,
then Quot I is countable and trdeg k(G)°|Quot I is uncountable.

Proof: By Lemma 19, k(G)¢ is henselian. (Therefore, it is real closed if and only if £ is
real closed and G is divisible.)

We show that the ring k[G<] is an additive complement of the valuation ring in k(G).
Every element a of the latter is a quotient of the form

ottt 4t et
Codyth 4 dthe

with ¢1,...,¢n,dq,...,d, € kand g1,...,Gm, h1,...,h, € G. Without loss of generality
we may assume that hy is the unique smallest element among the hy, ..., h,. Then we
rewrite a as follows: o . )

erpgr=hi 4 Guggm—h

1+ %thzfm o+ LZTrllthn*M '

By our assumption on A, all summands in the denominator except for the 1 have positive
value. Hence, we can rewrite a as

= (T TR ) LT (1) e i) )
“ (dl + + d ( + i:l( ) (dl + dl ) )

1

In the power series determined by this geometric series, only finitely many summands will
have negative value; this is true since G is archimedean by hypothesis. Let b € k[G<Y] be
the sum of these summands. Then v(a —b) > 0. This proves that k[G<°] is an additive
complement of the valuation ring in k(G). Part a) of Lemma 30 shows that k[G<?] is also
an additive complement of the valuation ring in k(G)°.

All other assertions are deduced like the corresponding assertions of Corollary 33. O

5 Proof of Theorem 6

We take k to be any field of characteristic 0 and

L= Uk(C))

<A
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to be the henselian valued field constructed in Example 1. The set Negk((C,)) of all
power series in k((C))) with only negative exponents is a k-algebra which is an additive
complement of the valuation ring k[[C,]] of k((C,)). It follows that

R = |J Negk((C))

<A

is a k-algebra which is an additive complement of the valuation ring U, k[[C,]] of L. We
wish to show that its quotient field is L. Take any element a € L. Since L is the union of
the k((C,)), there is some v such that a € k((C,)). Pick some negative o € C,,11 \ C,, .
Then o < C,, . Denote by t* the monic monomial of value o in k((C,11)). Then at® has
only negative exponents, so t* and at® are both elements of Negk((C,41)). Therefore,
a € Quot Neg (k((Cy+1)) € Quot R.

Now take any non-zero cardinal number x < A. We modify the construction in the
final part of the proof of Proposition 27 in that we start with K/, = k((C,)), and replace
tyy by t,, — tus1, (or by t,, — tyi1, in the limit case) only as long as v < k. Then
the elements ¢, , v < k, will be algebraically independent over K = U, ., K,, we have
trdeg L| K = k, and K will be dense in L.

For every v < A, w, induces a valuation preserving isomorphism from (k((C,)),v) and
from (K,,v) onto (Lw,,w,). Hence, ¢, := (w,|k,) " o w,|k(c,) is a valuation preserving
isomorphism from (k((C,)),v) onto (K,,v). For v < u < A, ¢, is an extension of ¢, .
Hence, ¢ := U, <y ¢y is a valuation preserving isomorphism from (L, v) onto (K, v). The
image R, of R under ¢ is a k-algebra which is an additive complement of the valuation
ring of K and has quotient field K. Consequently, trdeg L|Quot R, = k. Since K is dense
in L, R, is also an additive complement of the valuation ring of L.

If in addition k is an archimedean ordered field and < is any ordering on L compatible
with v, then v is the natural valuation of (L, <). Hence by Lemma 31, R+Z and R, +Z
are integer parts of (L, <). Since Quot (R + Z) = Quot R and Quot (R, +Z) = Quot R, ,
this completes our proof. O

6 Weak complements

Lemma 35 Let I be an integer part of the ordered field (K, <). If v denotes the natural
valuation of (K, <), then I is a weak complement in (K,v).

Proof: Take 0 < z € K and assume that vx > 0. Then for all n € N, also vnx > 0 = vl
which by (1) implies that 0 < nz < 1. Consequently, 0 < = < 1 and thus, = ¢ I. This
proves that vr <0 for all r € I.

For every a € K there is € I such that 0 < a —r < 1. Again by (1), this implies
that v(a —7) > vl = 0. O
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In what follows, let R be a weak complement in a valued field (K, v). For every convex
subgroup I' of vK, we define

Rr .= {reR|vrelTU{oo}}.

Lemma 36 For every convex subgroup I' of vK, Rr is a subring of K. Denote by Kt its
quotient field. Then vKr =T.

Proof:  Take r,s € Rp. Then vr,vs € I'. Since r — s € R, we have 0 > v(r — s) >
min{vr,vs}, showing that v(r —s) € I' and thus r — s € Rp. Further, rs € R and
vrs = vr +vs € I', showing that rs € Rr. This proves that Rr is a subring of K.

Since vRp := {vr | r € Rr} CT', we know that vKr C {a—f |, € '} =T. On the
other hand, for every a € K with va € T<? there is some r € R such that v(a —r) > 0.
It follows that vr = va € I' and thus » € Rp and va = vr € vRr. Hence, 'Y C vRp,
which implies that v K =T". O

Note that K is a subfield of the quotient field of R. Since vKr = I', we have that
vpKr = {0}. This means that the residue map associated with vr induces an isomorphism
on Kr. This is in fact an isomorphism

(Kr,v) ~ (Kpur,or)
of valued fields.

Lemma 37 For every non-trivial conver subgroup I' of vK, the valued residue field
(Krur,or) lies dense in (Kovr,or).

Proof: We have to show: if @ € K such that va € T', then for every positive v € I’
such that v > va there is some b € Kt such that v(a — b) > . Since ' C vRr by

the foregoing lemma, we may pick some ¢ € Rr such that vc = —~. Then there is some
r € R such that v(ac —r) > 0. Since vac = va — v € I'?, we have vr = vac € I'<? and
therefore, r € Rr. Setting b= £ € K, we obtain v(a —b) > —vc = 7. O

Now we give examples for valued fields and ordered fields without weak complements
or integer parts.

Basic construction: Take an arbitrary field k£ and ¢t a transcendental element over k.
Denote by v; the t-adic valuation on k(t). Choose some countably generated separable-
algebraic extension (ki,v:) of (k(t),v;). Take two algebraically independent elements
z,y over k(t). Then by Theorem 1.1 of [K1] there exists a non-trivial valuation w on
K := k(t, x,y) whose restriction to k(t) is trivial, whose value group is Z and whose residue
field is ky ; since w is trivial on k(t), we may assume that the residue map associated with
w induces the identity on k(t). Now we take the valuation v on the rational function field
K to be the composition of w with v;:

V= wWOou.
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Example 2 We take £ to be one of the prime fields Q or F,, for some prime p. We choose
ki such that kjv; = k and that vk /v.k(t) is infinite. Take I' to be the convex subgroup
of vK such that vr = w; in fact, I" is the minimal convex subgroup containing vt.

Suppose K admits a weak complement R. Then by Lemma 37 the isomorphic image
Krw of the subfield K1 of K is dense in the valued residue field (kq,v;). It follows from
Lemma 12 that v;(Krw) = v;k; . Note that the isomorphism Kr — Krw preserves the
prime field k& of K. Since v;(Krw) # {0}, it follows from Corollary 11 that Krw cannot
be algebraic over the trivially valued subfield k. Hence, trdeg Krw|k = 1, and we take
some t' € K such that #'w is transcendental over k. It follows that Kr|k(t') is algebraic.
As viky /vk(t) is infinite, Lemma 10 shows that Krw|k(t) and hence also Kr|k(t') must
be an infinite extension.

Since trdeg K|k = 3, we have that trdeg K|k(t') = 2. Let {2/,y'} be a transcendence
basis for this extension. Because the algebraic extension Kr|k(t') is linearly disjoint from
the purely transcendental extension k(t',z’,vy')|k(t'), the extension Kr(z',y")|k(t, 2',y)
is infinite. But it is contained in the finite extension K|k(t',2’,y"). This contradiction
shows that K cannot admit weak complements. Note that by construction,

Kv=Fkv =kt C K.
¢

Example 3 In the foregoing example, take £ = Q. By Lemma 8, there is an ordering
< on the rational function field K = k(¢,z,y) which is compatible with the valuation v.
Then (K, <) does not admit an integer part, because any such integer part would be a
weak complement for v. O

Example 4 In Example 2, take k& = Q. By Lemma 8 there is an ordering on k(t)
compatible with the v;-adic valuation. The real closure k()™ of k(t) with respect to this
ordering is a countably generated infinite algebraic extension of k(t). So we may take
k1 = k(t)*°. The valuation v; extends to a valuation of k; which is compatible with its
ordering. Again by Lemma 8 we may choose a lifting of the ordering of k; to K through
the valuation w. This ordering on K induces through v = w o v; the same ordering on
the residue field k as the ordering on k(¢)™ induces through v, ; in particular, we find that
the chosen ordering on K is compatible with the valuation v.

Now pick any positive integer n and consider the n-real closure K™® of (K, <) as
defined in [Bg]. It is encluded in the real closure K™ of (K, <), so we can extend w to the
real closure (cf. Lemma 9) and then restrict it to K™®); the valuation so obtained is still
compatible with the ordering. As K™w = (Kw)™ = k(t)** = Kw by Lemma 9, we have
that K™™w = k(t)™. So w o v, is an extension of v to K™™ and we denote it again by
v. As before, we see that it is compatible with the ordering.

Suppose K™ admits a weak complement R. We proceed as in Example 2, with K
replaced by L := K™, As Lpw is dense in (Lw,v;) = (k(t)",v;) we can infer from
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Lemma 12 that v,(Lrw) = vk(¢)*. This in turn is the divisible hull of vk(t) = Z (cf.
Lemma 9). Hence, v;(Lrw) = Q and thus also vLr = Q. But as in Example 2 one shows
that the relative algebraic closure of k(t') in K (t') must be a finite extension E of k(t').
Now Lr lies in the relative algebraic closure E’ of F in L, which is just the n-real closure
of E. But the value group of the n-real closure of E is the n-divisible hull of vE, which
in turn is a finite extension of vk(t') = Z. So the value group of E’ is still isomorphic to
the n-divisible hull of Z. This contradicts the fact that its subfield L has value group Q.
This contradiction proves that K™ does not admit weak complements for its compatible
valuation v, and therefore does not admit integer parts. &

In order to obtain an example where the valued field (K, v) admits an embedded
residue field and a cross-section, we modify Example 2 as follows.

Example 5 In our basic construction, we take k = ko(z) where kg is any prime field and
z is transcendental over ko. The henselization ko(2)" of ko(2) with respect to the z-adic
valuation v, is a countably generated separable-algebraic extension of ky(z). Therefore,
we may choose k; to be a countably generated separable-algebraic extension of k() such
that vk = Z and kv, = ko(2)" (cf. Theorem 2.14 of [K1]). Then we take

v = vowv, = wov;ou,.

Let I' be the convex subgroup of 'K such that v = w; now I' is the minimal convex
subgroup containing v't. Suppose that (K, v’) admits a weak complement R. Then by
Lemma 37 the isomorphic image Krw of the subfield Kr of K is dense in the valued
residue field (ki,v; o v,). The isomorphism Kt — Krw preserves the prime field kg of
Kr. From Lemma 12 we infer that v; o v,(Krw) = v; o v,(ky). This value group has
two non-trivial convex subgroups, namely, itself and the smallest convex subgroup which
contains v; o v,(z). We choose elements t', 2’ € Kr such that v; o v,(t'w) > 0 lies in the
former, but not in the latter, and v; ov,(z'w) > 0 lies in the latter. Then these two values
are rationally independent. Thus by Theorem 1 of [Br], Chapter VI, §10.3, t'w, z'w are
algebraically independent over the trivially valued field ky. But as Krw C ki, we must
have trdeg Krw|ko = 2. Hence Krw|ko(t'w, z'w) is algebraic, and so is Kr|ko(t, ).

By Lemma 16, Krw is also dense in (ky,v;). Hence (Ktw)v; = kiv; = ko(2)" by
Lemma 12. Hence, z € (Krw)v; and we can in fact choose 2’ such that (2'w)v; = =z.
Consequently, ko(t'w, z'w)v; = ko(z) (cf. the already cited Theorem 1 of [Br]). Since
(Ktw)v; = ko(2)" is an infinite extension of ky(z) by part a) of Proposition 21, it follows
from Lemma 10 that Krw is an infinite extension of ko(t'w, z'w). Thus, Kr is an infinite
extension of ko(Z,t').

Since trdeg K|k = 4 and trdeg ko(2',t")|ky = trdeg ko(z'w, t'w)|ky = 2, we have that
trdeg K |ko(2',t') = 2. Let {2/,y'} be a transcendence basis for this extension. Because
the algebraic extension Kr|ko(z',t’) is linearly disjoint from the purely transcendental
extension ko(z',t', 2’y )|ko(2',t'), the extension Kr(z',y')|ko(2',t',2,y’) is infinite. But
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it is contained in the finite extension K|ko(z',t',2’,4’). This contradiction shows that
(K,v") cannot admit weak complements.

The value group v'K is the lexicographic product wK x viky X v,ko(2) ~ Z X 7 X Z
since v,ko(z) = v,ko(2)" = Z. This shows that (K,v') admits a cross-section. The residue
field Kv' = kg is embedded in K. Note that K is a rational function field of transcendence
degree 4 over its residue field. &

Example 6 In the foregoing example, take ky = Q. By Lemma &, there is an ordering
< on the rational function field K = k(t,x,y, z) which is compatible with the valuation
v'. Then (K, <) does not admit an integer part. Nevertheless, the valuation v, which is
the natural valuation of the ordering < since Kv' = Q is archimedean ordered, admits an
embedding of its residue field and a cross-section. &

Finally, let us note that Proposition 21 shows:

Proposition 38 None of the valued fields in the above examples are henselian. Also, the
natural valuation of the example constructed by Boughattas in [Bg] is not henselian.

Proof: It follows from part a) of Proposition 21 that the rational function fields of
Examples 2 and 3 are not henselian. The fields of Example 4 and Boughattas’ example
are n-real closures of algebraic function fields. The “n-algebraic closures” of part b) of
Proposition 21 are algebraic extensions of the n-real closures. Since they are not henselian,
Lemma 15 shows that the same holds for the n-real closures. O
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