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MODEL THEORY OF THE FROBENIUS ON THE WITT VECTORS

By LUC BÉLAIR, ANGUS MACINTYRE, and THOMAS SCANLON

Abstract. We give axiomatizations and prove quantifier elimination theorems for first-order theories
of unramified valued fields with an automorphism having a close interaction with the valuation. We
achieve an analogue of the classical Ostrowski theory of pseudoconvergence. In the outstanding
case of Witt vectors with their Frobenius map, we use the ∂-ring formalism from Joyal.

0. Introduction. Our main objective is to understand the model theory of
the rings of Witt vectors carrying the (relative) Frobenius automorphism. As
generally happens in model theory, the objective is achieved by studying a much
wider class of models, most of which have no particular mathematical interest.

A model for our enterprise is the work of Ax-Kochen and Ershov, henceforth
AEK. In a fundamental series of papers [2], [13] they studied the model theory
of henselian valued fields (K, v, k, Γ), where v: K∗ → Γ is a henselian valuation
with residue field k, subject only to the restrictions:

(a) K has characteristic 0
(b) if k has finite characteristic p then v(p) is the least positive element in

the value group.
We call valued fields satisfying conditions (a) and (b) unramified.

In this case, AEK showed that the theory of K is determined by those of Γ
and k.

The most important case is when K = Qp or an unramified algebraic exten-
sion of Qp, but the general setting also reveals information about variation in p,
codified by taking ultraproducts of p-adic fields. In this way mixed characteristic
theories converge to theories with characteristic zero residue fields (the pseu-
dofinite fields of Ax [1]). One gets the famous AEK analogy between generic Qp

and generic Fp((t)) (though, alas, the theory of fixed Fp((t)) remains unknown).
Many subsequent authors refined the analysis, linking the type structure of

K with those of Γ and k. Denef’s angular component maps (see [9]) come in at
the level of quantifier-elimination, and have remained prominent in recent very
sophisticated work of Denef and Loeser on motivic integration (see [10]).

We will achieve something similar. The (K, v, k, Γ) of most importance to
us are the completions of the maximal unramified extensions Qnr

p of Qp, where
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k = Falg
p , the algebraic closure of Fp. These are the fraction fields W(Falg

p ) of the
rings W[Falg

p ] of Witt vectors over Falg
p , and carry σp, the Witt Frobenius (see

Example 1.2), satisfying σp(x) ≡ xp (mod p). A field with an automorphism is
called a difference field. We will usually denote the distinguished automorphism
by σ. To study the theory of those (K, v, k, Γ,σ) we make a more general study
of difference fields carrying a valuation. Though the model theory of difference
fields has seen spectacular development (and applications) (see [7]), this does not
help us much, except at the end of this paper when we study the variation in p of
the completions of Qnr

p , and get information on types via the work of Hrushovski
and Macintyre [15], [21] on variation of the Frobenius x �→ xp.

Our main achievement is an analogue, in the setting of difference fields
carrying a valuation, of the classical Ostrowski theory of pseudoconvergence
(used by AEK). This is quite delicate, and requires some restrictions on how σ
interacts with k and Γ. For example, we shall require that σ induces the identity
map on the value group and that it reduces to some given automorphism σ̄ on the
residue field. Under these restrictions maximal immediate σ-extensions behave
well, and from there we can proceed to analogues of the AEK results, for example
showing that in the case k has characteristic 0 the theory is determined by of those
of (k, σ̄) and Γ. In the mixed case, with k of characteristic p , v(p) = 1, and σ̄ =
Frobenius, the theory is determined by those of k and Γ. In all cases we describe
the types of K in terms of those of (k, σ̄) and Γ, using angular components.

In the analysis of the Witt-Frobenius case, we make use of the ∂-ring formal-
ism from Joyal’s [16]. However we do not pursue the issue of an axiomatization
in those terms.

The paper is organized as follows. In Section 1, we establish basic notation
and assumptions and recall some key facts from valuation theory and the notion
of angular component map. Section 2 contains a precise statement of the key
result, a general Embedding Theorem. The main model theoretic results of this
paper are applications of this Embedding Theorem: for valued difference fields
for which it applies we obtain completeness and model-completeness theorems
(Sections 9, 10), quantifier elimination (Section 11), completeness and decidabil-
ity theorems when we vary p (Section 12). In Section 3, we axiomatize the basic
properties involved in our work and single out the key base fields for which
we are successful. In Section 4, we introduce the formalism of ∂-rings. In Sec-
tion 5, we develop the theory of pseudoconvergence in the σ-setting. The main
new feature here is the failure of continuity of σ-polynomials with respect to
pseudoconvergence, in contrast to the purely algebraic setting where polynomials
have this kind of continuity (Lemma 5.1). The crucial observation is that enough
continuity can be preserved modulo an equivalence relation on pseudoconvergent
sequences (Definition 5.3). This section is devoted to establishing the appropriate
version of the new continuity (Theorem 5.9), and valued difference fields for
which we have it will be called pliable. In Section 6, we establish some basic
facts about the σ-Hensel scheme, which plays the role of Hensel’s lemma in the
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classical setting, particularly with respect to pseudoconvergence. In Section 7, we
establish the existence and uniqueness of maximal immediate σ-extensions for
pliable valued difference fields, in analogy with the classical setting. In Section 8,
we prove the Embedding Theorem, again in analogy with the classical situation
(see e.g. [18]).

For basic model theory we refer to [23]. For the basic theory of pseudocon-
vergence and valuations we refer to [26], [18], [30], and for Witt vectors to [32].
For the basic theory of difference fields we refer to [8]. Our difference fields are
the inversive difference fields of [8].

Acknowledgments. We wish to express our thanks to Marie-Claude Côté
for having “LaTeXified” the very first draft of this paper with a formidable effi-
ciency. We also wish to thank Lou van den Dries for the preprint of his inspiring
paper [11]. We thank our referees for their tireless efforts and their useful sug-
gestions.

1. Preliminaries. We will use boldface notation for multivariables and up-
les, e.g. x = (x0, . . . , xn). For a ring A, A∗ will denote its multiplicative group of
units.

We will be working with fields K of characteristic 0 with valuation v: K∗ → Γ
and residue field k, V will be the valuation ring, and ¯ will be used (in a variety
of contexts) for reduction to k from V . In particular, if F ∈ V[x0, . . . , xn], F̄
is the reduced element in k[x0, . . . , xn]. The field K will carry in addition an
automorphism σ, and we generally denote this structure as (K, v, k, Γ,σ). We will
denote by Fix(σ) the fixed field of σ.

From the outset we require σ be an isometry. (This terminology is taken from
the literature [12].):

Axiom 1. ∀x v(σ(x)) = v(x).

Definition 1.1. We say that (K, v, k, Γ,σ) is a valued field with isometry if it
satisfies Axiom 1.

On model theoretic grounds requiring that σ induce the identity on Γ is natural
if we aim for the existence of model companions of theories of (K, v, k, Γ,σ), by
a result of Kikyo [17]. The axiom obviously implies that σ is continuous for the
valuation topology, and σ reduces to an automorphism σ̄ of k.

Example 1.2. Take k perfect, characteristic p, K = W(k) = the field of frac-
tions of the ring of Witt vectors W[k]. Let τ : k→ W[k] be the Teichmüller map,
i.e. the (unique) multiplicative section of the reduction map. Every x ∈ W(k) has a
unique representation x =

∑
n≥n0

τ (xn)pn, n0 ∈ Z, and one has the automorphism
σp(x) =

∑
n≥n0

τ (xn)ppn, the Witt Frobenius.
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Example 1.3. Let k be as in the previous example and f any automorphism
of k. Then, as above, one has the automorphism of W(k) given by σf (x) =∑

n≥n0
τ ( f (xn))pn. In fact, by the universal property of Witt vectors ([32], II.5,

Prop. 10), any isometry of W(k) is of this form.

Example 1.4. Take k a field of characteristic 0, K = k((t)), and f an auto-
morphism of k. Then we get the automorphism of K defined by σf (

∑
xntn) =∑

f (xn)tn.

These examples satisfy another property, namely:

Axiom 2. ∀x∃y(σ(y) = y ∧ v(x) = v(y)).

Definition 1.5. We say that (K, v, k, Γ,σ) has enough constants if it satisfies
Axiom 2.

One should note a minor logical difference between the two axioms. In our
category of structures (K, v, k, Γ,σ) substructures are fields closed under σ. Being
a valued field with an isometry passes to substructures, while having enough
constants does not.

We say an extension of valued fields carrying an automorphism is immediate
if it is immediate as an extension of valued fields. We assume known the theory of
pseudoconvergence, which elucidates these extensions. We use the variant where
only eventual behavior is required: e.g. an ordinal-indexed (without a maximum)
sequence {aρ} is a pseudoconvergent series (henceforth p.c.) if there is an index
ρ0 such that for all ρ3 > ρ2 > ρ1 ≥ ρ0 we have v(aρ3 − aρ2 ) > v(aρ2 − aρ1 )
([26], or see [18]). We will use the notation {aρ}❀ a for the statement that {aρ}
pseudoconverges to a (or, a is a pseudolimit of {aρ}). It will be very useful to
use the notation γρ for the eventual (δ-independent) value v(aδ − aρ) for δ > ρ.
The width of {aρ} is {γ ∈ Γ ∪ {∞}: γ > γρ all ρ}, and is important precisely
because if {aρ} ❀ a then {aρ} ❀ b if and only if v(a − b) is in the width
of {aρ}.

A useful observation is that if {aρ} is p.c. in a valued field, possibly with
extra structure, then {aρ} has a pseudolimit in an elementary extension.

One should observe that under immediate extensions having enough constants
is preserved. The isometry axiom is also preserved, provided the automorphism
is a valued field automorphism (as it will be if we work in an ambient valued
field with an isometry).

We will extend the classical theory of henselisation, and we will make heavy
use of the classical theory. We review the crucial fact. The property henselian
(for fields) is first-order, and every valued field K has a henselisation K −→ Kh,
immediate algebraic over K. Any isomorphism of valued fields extends uniquely
to an isomorphism of their henselisations. A reference for all this material is [27].

This leads to a very useful lemma.
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LEMMA 1.6. If (K, v, k, Γ,σ) is a valued field with an automorphism σ of valued
fields, then σ extends uniquely to a valued field automorphism σh of Kh. If (K,σ)
is a valued field with isometry having enough constants, then so is (Kh,σh).

We will make some use of the so-called coarse valuation, a standard tool in
the classical setting. The following lemma gathers the basic facts needed.

LEMMA 1.7. (The coarse valuation) Suppose (K, v, k, Γ,σ) is unramified and the
characteristic of k is p > 0. Let Γ0 be the convex subgroup of Γ generated by
v(p) and v̇: K∗ → Γ/Γ0 be the composition of v and the canonical quotient map
Γ→ Γ/Γ0.

(i) The map v̇ is a valuation.
(ii) If (K, v, k, Γ,σ) is a valued field with isometry (resp. having enough con-

stants), then (K, v̇, k̇, Γ/Γ0,σ) is also a valued field with isometry (resp. also has
enough constants), where k̇ is the residue field for v̇.

(iii) The residue field k̇ of v̇ has characteristic 0 and is isomorphic to a subfield
of W(k). If k is perfect and σf is the automorphism of W(k) induced by f = σ̄ as in
Example 1.3, then k̇ is isomorphic to a difference subfield of (W(k),σf ).

Proof. (i) This is routine and well known (e.g. see [30], chap. 1).
(ii)–(iii). Let V̇ be the valuation ring of v̇, and µ̇ the maximal ideal. Then

V̇ = {x: v(x) ≥ γ, some γ ∈ Γ0}
µ̇ = {x: v(x) > Γ0}.

No ramification gives p �∈ µ̇, so k̇ = V̇/µ̇ has characteristic 0. The field V̇/µ̇
carries a valuation given by v0(x + µ̇) = v(x). The map σ induces σ̇ on k̇ by
σ̇(x + µ̇) = σ(x) + µ̇. It bears noting that the reduction map from V to k factors
as the composition of the reduction map from the valuation ring of v0 to k with
the reduction map on V̇ restricted to V so that σ̇ induces σ̄ on k. Obviously,
(k̇, v0, k, Γ0, σ̇) is a valued field with isometry having enough constants, and has
value group Γ0 = Zv(p), so is isomorphic to a subfield of W(k), and if k is perfect
to a difference subfield of (W(k),σf ).

Angular component maps are natural in the context of quantifier-elimination
results in valued fields (mainly in the work of Denef’s school (see [24])), and
exist for ℵ1-saturated K (see below).

Definition 1.8. Let (K, v, k, Γ) be a valued field. An angular component map
(or coefficient map) is a map ac: K∗ → k∗ so that:

(i) ac is a multiplicative homomorphism;
(ii) the restriction of ac to {y: v(y) = 0} is y �→ y.

An angular component map corresponds to a splitting of the exact sequence
(Krasner’s “corpoı̈de”, see [4])

1 −→ k∗ −→ K∗/1 + max V −→ Γ −→ 0
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where max V is the maximal ideal of V (see e.g. [4]). Note that ac exists whenever
k∗ is pure-injective, in particular when (K, v, k, Γ) is ℵ1-saturated. Also, if π: Γ→
K∗ is a cross-section then x �→ x/π(v(x)) is an angular component map.

In fact we will need only an angular component map ac on Fix(σ). Indeed,
under the assumption that the valued field with isometry has enough constants,
if ac is an angular component map on Fix(σ) it can be extended uniquely to
the whole of K: for x ∈ K, let y ∈ Fix(σ) such that v(x) = v(y), then ac(x) =
ac(y) · y−1x.

Definition 1.9. Let (K, v, k, Γ) now be an unramified valued field of charac-
teristic 0 with k of characteristic p > 0 and consider the natural maps

resn: V → V/(pn), n = 1, 2 . . .

A system of angular component maps is a system acn: K∗ → (V/(pn))∗ such that:
(i) each acn is a multiplicative homomorphism;
(ii) the restriction of acn to {y: v(y) = 0} is resn;
(iii) acn is the composition K∗

acn+1−→ (V/(pn+1))∗ → (V/(pn))∗ where→ is the
natural map.

Example 1.10. In W(k), the maps x �→ resn(xp−v(x)) yield a system of angular
component maps.

Again, suitable acn exist if k∗ is pure-injective or if one has a normalized
cross-section, thus under ℵ1-saturation. As above, if (K, v, k, Γ,σ) has enough
constants, it suffices to have angular component maps acn for Fix(σ).

When using angular component maps for (K, v, k, Γ,σ) we require in addition
that they commute with the action of the distinguished automorphism. This is
equivalent to asking that the angular component functions on K restrict to such
functions on Fix(σ).

Remark 1.11. In particular, in the case of W(Falg
p ) the fixed field is Qp, where

the above angular component maps are definable (see [9]) and hence we have
definability, more precisely ∃-definability, of the angular component maps in
(W(Falg

p ), v,Falg
p ,Z,σp).

The following variant of an unpublished lemma of van den Dries (cf. [4],
Lemma 3.6) suggests the flexibility of angular component maps.

LEMMA 1.12. Let L′1 and L′2 be unramified valued fields equipped with one of
the angular component maps above, say ac∗, and let Li ⊂ L′i, i = 1 and 2 be sub-
valued fields closed under ac∗. Let ψ: L1 → L2 be a valued field isomorphism
which respects ac∗, i.e. ψr,∗(ac∗(x)) = ac∗(ψ(x)) where ψr,∗ denotes the induced
isomorphism between residue rings corresponding to ac∗, and let ψ′: L′1 → L′2 be
a valued field isomorphism extending ψ. Suppose there exist a subgroup H of L′1

∗

such that vL′1 = vL1 + vH and a set of generators H0 of H such that for all h ∈ H0,
ψ′r,∗(ac∗(h)) = ac∗(ψ′(h)). Then ψ′ also respects ac∗.
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Proof. Note then that ψ′r,∗(ac∗(z)) = ac∗(ψ′(z)) for all z ∈ H. Now any y ∈ L′1
can be written as y = xzu, for some x ∈ L1, z ∈ H, u ∈ L′1 such that v(u) = 0, and
so we are done.

Let ψ: k → k′ be any map between fields k and k′ and f a polynomial over
k. Then fψ will denote the transform of f obtained by having ψ to act on the
coefficients.

We will be dealing with simple extensions of (valued) difference fields. Sup-
pose (K1,σ1) ⊆ (K2,σ2) is an extension of difference fields. For a ∈ K2 \ K1,
K1〈a〉 is the smallest difference subfield of (K2,σ2) containing K1 and a. Clearly,
its underlying field is K1({σj

2(a)}j∈Z). Here, as throughout this paper, σj stands
for the jth iterate of σ if j ≥ 0, and the (− j)th iterate of σ−1 if j ≤ 0.

It turns out that we need to consider only difference polynomials of one
variable. Each polynomial F(x0, . . . , xn) ∈ K[x0, . . . , xn] gives rise to a difference
polynomial G(x) = F(x,σ(x), . . . ,σn(x))) in the variable x over K, and we refer
to G(x) as a σ-polynomial. We put deg (G) := deg (F) ∈ N∪{∞}, where deg (F)
is the total degree of F. If G is not constant, that is, G �∈ K, then let F(x0, . . . , xn)
be as above with least possible n (which makes F unique), and put

order(G) := n, complexity(G) := (n, degxn
(F), deg (F)) ∈ N3.

If G ∈ K, G �= 0, then order(G) = −∞ and complexity(G) = (−∞, 0, 0). Finally,
order(0) = −∞, and complexity(0) = ( −∞,−∞,−∞). We order complexities
lexicographically. For example, let F1, F2, R ∈ K[x0, . . . , xn] such that R is ob-
tained by euclidean division of F1 by F2 with respect to xn and clearing out
denominators, then the σ-polynomial associated to R has lower complexity than
the one associated to F2. (Finer complexity measures would do, e.g. considering
vector degrees of monomials.)

We say a is σ-transcendental over K if there is no nonzero G as above with
G(a) = 0. Otherwise a is σ-algebraic over K. Note that nontrivial G may have
infinitely many a with G(a) = 0 (e.g. G(x) = σ(x)− x).

For future use, we introduce some notation concerning σ-polynomials G(x)
as above.

Let x0, . . . , xn, y0, . . . , yn be distinct indeterminates, and put x = (x0, . . . , xn),
y = (y0, . . . , yn). For l ∈ Nn+1, let |l| =

∑
i li. For a polynomial F(x) over a field

K we have a unique Taylor expansion in K[x, y]:

F(x + y) =
∑

l

Fl(x) · yl,

where the sum is over all l = (l0, . . . , ln) ∈ Nn+1, each Fl ∈ K[x], with Fl = 0 if
|l| > deg(F), and yl = yl0

0 · · · yln
n (likewise, for a with components in any field we

put al = al0
0 · · · aln

n ). Thus, l!Fl = ∂lF, where ∂l is the operator ∂l0/∂x0 . . . ∂
ln/∂xn

on K[x], and l! = l0! . . . ln!. We construe Nn+1 as a monoid under pointwise
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addition, and let ≤ be the partial order on Nn+1 induced by the natural order on

N. Define

(
l
j

)
as

(
l0
j0

)
. . .

(
ln
jn

)
∈ N, when j ≤ l in Nn+1. Then clearly:

LEMMA 1.13. For j, l ∈ Nn+1 we have (F j)l =

(
j + l

j

)
F j+l.

In particular, if | l | = 0, Fl = F, and if | l | = 1, Fl is one of the ∂F
∂xi

. Also,
deg(Fl) < deg(F), if |l| ≥ 1 and F �= 0.

Let now (K,σ) be a difference field, and x an indeterminate. When n is clear
from context we set σ(x)=(x,σ(x), . . . ,σn(x)), and also σ(a)=(a,σ(a), . . . ,σn(a))
for a ∈ K. Then for F as above and G(x) = F(σ(x)) we have the following identity
in the ring of difference polynomials in the distinct indeterminates x and y over K:

G(x + y) = F(σ(x + y)) = F(σ(x) + σ(y))

=
∑

l

Fl(σ(x)) · σ(y)l

=
∑

l

Gl(x) · σ(y)l,

where Gl(x) := Fl(σ(x)). A key point will be that for G �= 0 and |l| ≥ 1, Gl has
lower complexity than G.

2. Statement of the main result: an embedding theorem. The main result
is a general embedding theorem, Theorem 2.2, which will give us a quantifier
elimination result. We first isolate the relevant axioms for valued fields with an
automorphism (K, v, k, Γ,σ). We recall the two basic axioms presented above.

Axiom 1. (isometry) For all x, v(σ(x)) = v(x).

Axiom 2. (enough constants) For all x, there is y so that (σ(y) = y ∧ v(x) =
v(y)).

The σ-Hensel Scheme. Let G be a σ−polynomial of order n. Let β = α + ε,
so G(β) = G(α) +

∑
l≥1

Gl(α) · σ(ε)l. If v(G(α)) = γ + min
|l|=1

v(Gl(α)) and v(G(α)) <

j · γ + v(Gl(α)), whenever |l| = j > 1, then there is β in K with v(α− β) = γ and
G(β) = 0.

Axiom R. For every λ ∈ k∗, the equation σ̄(x) = λx has a non-zero solution
in k.

Axiom RG. (Genericity Axiom) For each n ∈ N, n > 0, a0, . . . , an, b ∈ k
such that a0an �= 0, and F ∈ k[x0, . . . , xn], F �= 0, there is x ∈ k such that
a0x + a1σ̄(x) + · · · + anσ̄

n(x) = b and F(σ̄(x)) �= 0.
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Axioms R and RG allow us to proceed “generically” in the proof of the
Embedding Theorem. This is further discussed in the next section.

Definition 2.1. We say that the valued field with isometry (K, v, k, Γ,σ) is a
Witt-Frobenius case if char(k) = p > 0, v(p) is the least positive element of Γ
and σ̄(x) = xp.

Next we describe the embeddings. Let (Ki, vi, ki, Γi,σi) for i = 1 and 2 be
unramified valued fields with an automorphism and with appropriate angular
component maps. Let Li be difference subfields of the respective Ki. Namely,
each Li has residue field li, and value group Gi, for the induced valuation, and Li

is closed under the angular components in the obvious sense. We say a bijection
ψ: L1 → L2 is an admissible isomorphism if it has the following properties:

(A) ψ is an isomorphism of valued fields with isometry,
(B) the induced isomorphism ψr: l1 ←→ l2 of difference fields is elementary,

in the sense that for all formulas ϕ(x1, . . . xn) of the language of difference fields,

k1 |= ϕ(α1, . . . ,αn)⇐⇒ k2 |= ϕ(ψr(α1), . . . ,ψr(αn)),

(C) the induced ψv : G1 ←→ G2 is elementary, in the sense that for all
formulas ϕg(x1, . . . xn) of the language of ordered abelian groups,

Γ1 |= ϕg(γ1, . . . , γn)⇐⇒ Γ2 |= ϕg(ψv(γ1), . . . ,ψv(γn)),

(D) ψ respects the angular component maps.
We can now state the Embedding Theorem.

THEOREM 2.2. (Embedding Theorem) Let (Ki, vi, ki, Γi,σi) for i = 1 and 2 be
suitably saturated unramified valued difference fields with k1 and k2 perfect of the
same characteristic p. Suppose either:

(1) Each Ki carries an angular component map ac(i) (resp. a system ac(i)
n of

angular components) when p = 0 (resp. p > 0), and is a valued field with isometry
which has enough constants and satisfies Axiom RG and the σ-Hensel scheme; or

(2) Each Ki is a Witt-Frobenius case, carries a system ac(i)
n of angular compo-

nents, and is a valued field with isometry which has enough constants and satisfies
Axiom R and the σ-Hensel scheme.

Let Li for i = 1 and 2 be small difference subfields of the respective Ki.
Namely, they have residue fields li and value groups Gi for the induced valua-
tions, the Li are closed under the angular components in the obvious sense, and Ki

is ( max (card(li), card(Gi))+-saturated.
Assume we have an admissible isomorphismψ: L1 ←→ L2 and let a ∈ K1. Then

there exist b ∈ K2 and an admissible isomorphism ψ′: L1〈a〉 ∼= L2〈b〉 extending ψ
with ψ′(a) = b.

We formalize the hypotheses in the Embedding Theorem in terms of the
σ-AEK axioms.
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Definition 2.3. We say that the valued field with isometry (K, v, k, Γ,σ) satis-
fies the σ-AEK axioms if it satisfies the hypotheses of the Embedding Theorem.

In the course of the proof of the Embedding Theorem, we work primar-
ily with pliable valued fields with isometries. This is the context in which
the theory of pseudoconvergent sequences works best for valued fields with
isometries.

Definition 2.4. We say that a valued field with isometry is pliable if it is
unramified, has enough constants, and is either a Witt-Frobenius case with an
infinite residue field or the induced automorphism on the residue field satisfies
no identities.

The proof of Theorem 2.2 will occupy us through Section 8.4.
Our arguments adapt easily to the case σ̄(x) = xq, q a finite power of p > 0.
Once one has proven Theorem 2.2, one deduces quantifier-elimination (see

e.g. [23], Lemma 3.1.6 and Prop. 4.3.28), completeness and model-completeness
(ibid., Lemma 2.4.11) and various model-theoretic consequences which are given
beginning in Section 9. In particular, we produce an axiomatization for and deduce
the decidability and model-completeness of the first-order theory of the Witt
vectors W(Falg

p ) with their Frobenius automorphism (Example 1.2).

3. Discussion of axioms and key base fields. During the work leading to
the proof of the Embedding Theorem, further basic properties come into play. We
also present them as axioms and indicate briefly their relevance and relationship
to the main axioms appearing in the Embedding Theorem. We also single out
some categories of fields we will be working with.

To discuss various closure properties of the residue field (viz. Axiom RG),
it is convenient to phrase them in terms of difference operators. In the following
(k,σ) is a difference field. We write k[σ] for the noncommutative ring of linear
difference operators over k. That is, k[σ] is the associative ring generated by k
and a symbol σ subject to the commutation rule σa = σ(a)σ for a ∈ k. This ring
is right euclidean, therefore an Ore domain. Any nonzero L ∈ k[σ] can be written
as L =

∑n0+d
n=n0

anσ
n for natural numbers n0 and d and an ∈ k with an0 · an0+d �= 0.

We call d the essential degree of L, ess.deg(L). Recall that the kernel of L is a
vector space over Fix(σ). We consider a difference closed field (Ω,σ) (i.e. an
existentially closed, or model of ACFA, see [7]) extending (k,σ) and write the
fixed field of σ in Ω as FixΩ(σ).

We rephrase Axiom RG in these terms and consider five additional properties.

Axiom RG. For all L ∈ k[σ], ess.deg(L) = d > 0, and F ∈ k[x0, . . . , xd−1],
F �= 0, and b ∈ k, there is some x ∈ k for which L(x) = b and F(σ(x)) �= 0.

Axiom R0. The fixed field Fix(σ) is infinite.
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Axiom R1. For all L ∈ k[σ], L �= 0 and y ∈ k, there is some x ∈ k with
L(x) = y.

Definition 3.1. We say that the difference field (L,σ) is linearly difference
closed if it satisfies Axiom R1.

Axiom R2. For all L ∈ k[σ], ess.deg(L) > 0, there is some x ∈ k∗ with
L(x) = 0.

The next axiom was pointed out by a referee as an alternative to Axiom RG.

Axiom R3. For all L ∈ k[σ], L �= 0, we have dimFix(σ)ker L = ess.deg(L).

Axiom R4. (No σ-identities) For all n ∈ N and L ∈ k[X0, . . . , Xn] � {0}
there is some x ∈ k for which L(x,σ(x), . . . ,σn(x)) �= 0.

As we shall see, while these various axioms are not equivalent, there is a
web of implications between them. We work with Axiom RG as it permits us
to avoid accidental equalities and thereby develop a cleaner theory of immediate
valued difference field extensions.

The basic properties which enable us to adapt to our context the classical
tools are the conditions of having an isometry and enough constants, and either
the residue field being infinite or satisfying Axiom R4, namely, those properties
of pliability. Making the σ-Hensel scheme work requires Axiom R1.

Concerning Axiom R4, by [8] (page 201) if a difference field (k,σ) satisfies
an identity, then it satisfies an identity of the form σn(x) = xqm

, for some integers
m and n �= 0 with q = char(k) if this is not zero and q = 1 if char(k) = 0. So in
characteristic p > 0 we are essentially left with a power of the Frobenius map
x �→ xp, and in characteristic 0 with a σ of finite order . In particular, (W(k),σp)
satisfies no σ-identity provided k is infinite.

Axiom R and Axiom RG are used (only) in the proof of the Embedding
Theorem in order to extend a basic admissible isomorphism ψ: L1 → L2 to
another one ψ′: L′1 → L′2 in a “generic way,” where each L′i is pliable with a
linearly difference closed residue field.

Axioms R0, R2, R3 are discussed below to shed some light on Axioms R
and RG. They appear again only at the end of the paper (Section 12).

LEMMA 3.2. (see [28], Prop. 5.3) Suppose (K, v, k, Γ,σ) is a valued field with
isometry having enough constants for which the σ-Hensel scheme holds and the
valuation is not trivial. Then (k, σ̄) satisfies Axiom R1.

LEMMA 3.3. Suppose (k,σ) satisfies Axiom RG. Then (k,σ) satisfies Axiom R4.

Proof. Consider a putative identity F(x,σ(x), . . . ,σd(x)) ≡ 0 for some nonzero
polynomial F. By Axiom RG applied to L = σd+1 − 1, b = 1, and F, there is
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some c ∈ k with σd+1(c) − c = 1 and F(σ(c)) �= 0, showing that the identity
F(σ(x)) ≡ 0 fails.

LEMMA 3.4. Suppose (K, v, k, Γ,σ) is a valued field with isometry satisfying
Axiom R and the σ-Hensel scheme. Then (K, v, k, Γ,σ) satisfies Axiom 2.

Proof. Let a ∈ K∗. Then a/σ(a) has valuation 0. Consider σ(x) = x · a/σ(a).
By Axiom R, this can be solved in k, nontrivially, say by x̄0. Then by the σ-
Hensel scheme there is a solution x in V with x̄ = x0. So v(x) = 0, σ(xa) = xa
and v(xa) = v(a).

Axiom R is a particular case of Axiom R2, and has a rather different char-
acter from Axiom R1. In a Witt situation W[k] it requires k to be closed under
extracting (p−1)st roots. The two axioms R, R1 are essentially independent (see
Propositions 3.7, 3.8).

PROPOSITION 3.5. Axiom R3 =⇒ Axiom R2.

Proof. Let λ ∈ k∗. Set P := σ−λ. By Axiom R3, the dimension of the kernel
of P on k is 1. In particular, there is a a ∈ k∗ with P(a) = 0, or σ(a) = λa.

PROPOSITION 3.6. Axiom R1 + Axiom R2 =⇒ Axiom R3.

Proof. Let L ∈ k[σ] be a nonzero difference operator of essential degree
ess.deg(L) = d. The kernel of L on k is a vector space over Fix(σ) of dimension
e ≤ d. It is easy to find M ∈ k[σ] with ess.deg(M) = e and ker M = ker L.

Indeed, any finite dimensional Fix(σ)-vector subspace V of k is the kernel of
some M ∈ k[σ] with ess.deg(M) = dimFix(σ) (V). We check this by induction on
dim V where in the case of dim V = 0 we take M to be the identity operator. More
generally, let α ∈ V be any nonzero element of V . The kernel of the operator
Φ := (σ − σ(α)

α ) is exactly Fix(σ)α. The vector space Φ(V), thus, has dimension
one less than that of V and by induction is the kernel of some Ψ ∈ k[σ] with
ess.deg(Ψ) = dim Φ(V). Set M := Ψ ◦Φ.

Factoring, we can write L = QM for some Q ∈ k[σ]. If e �= d, then
ess.deg(Q) > 0 so by Axiom R2 there is some y ∈ k∗ with Q(y) = 0. By
Axiom R1, there is some x ∈ k with M(x) = y. As y �= 0, x �∈ ker M = ker L.
However, L(x) = QM(x) = Q(y) = 0. With this contradiction, we see that e = d as
desired.

PROPOSITION 3.7. Axiom R2 + Axiom R0 �=⇒ Axiom R1.

Proof. Let p be any prime number. We produce an example of (k,σ) satisfying
Axiom R2 for which σ is an automorphism and Axiom R1 fails and Fix(σ) = Fp.
The example having an infinite fixed field is obtained by the compactness theorem
of first-order logic (or taking an ultraproduct).

Let k be the direct limit of the finite fields Fpn over all natural numbers n
which are not divisible by p. Let σ: k → k be the Frobenius automorphism
x �→ xp.
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Let L ∈ k[σ] be a difference operator with ess.deg(L) = d > 0. Write L(x) =∑n0+d
i=n0

aiσ
i (with an0an0+d �= 0). As σ is an automorphism, L has a nontrivial zero

if and only if L′ =
∑d

i=0 an0+iσ
i has a nontrivial zero; and, in view of our choice

of σ, this is so if and only if the polynomial P(x) =
∑d

i=0 an0+ixpi−1 has a zero.
As p does not divide pd − 1, some irreducible factor, Q say, of P has degree
not divisible by p. Hence, there is a root to Q in k. That is, there is a nonzero
point in the kernel of L. So (k, σ̄) satisfies Axiom R2. However, the difference
polynomial σ − σ0 is not surjective (e.g. 1 is not in its image).

PROPOSITION 3.8. Axiom R1 + Axiom R0 �=⇒ Axiom R.

Proof. As before, we present examples with arbitrarily large fixed fields and
conclude by compactness that such examples exist with infinite fixed fields.

Let p be a prime number greater than 2. Let k ⊂ Falg
p be a subfield of the

algebraic closure of Fp maximal with respect to the property that k has no solution
to the equations xp−1 = −1. Note that if k0 is some field and ζ ∈ k0 is a solution
to xp−1 = −1 then all other solutions are in k0 (having the form αζ for α ∈ F∗p).

Let ζ ∈ Falg
p be any solution to xp−1 = −1 and let n = [k(ζ) : k]. It follows from

the above observation that n divides p− 1. Indeed, if Q1 and Q2 are irreducible
factors of Xp−1 + 1 over k of degrees d1 and d2, respectively, then there are roots
to Xp−1 +1 = 0 in k[X]/Q1, a degree d1 extension of k and in Fp[X]/Q2, a degree
d2 extension of k. By the above observation, all the roots must be in each of the
fields. So d1 = d2.

Let σ: k → k be the Frobenius automorphism x �→ xp. As 0 is the only
solution to σ(x) = −x in k, the difference field (k,σ) fails to satisfy Axiom R.
However, it does satisfy Axiom R1. Indeed, let a ∈ k and L = σd +

∑d−1
i=0 aiσ

i ∈
k[σ] with d > 0 and ai ∈ k. The polynomial P(X) := Xpd

+
∑

aiXpi−a has degree
pd. As p ≡ 1 mod n, pd ≡ 1 mod n. Thus some irreducible factor Q of P over k
has degree not divisible by n. Then k[X]/(Q) contains a solution to L(X) = a but
no solution to Xp−1 = −1. By maximality of k, the field k[X]/(Q) is naturally
isomorphic to k.

Even though Axiom R1 is a consequence of the σ-Hensel scheme, this is not
the case for Axiom R: for k as in the proof of the previous proposition, the Witt
vectors W(k) will satisfy the σ-Hensel scheme (see Cor. 6.3), but not Axiom R.
Recall that (Ω,σ) is an existentially closed extension of (k,σ).

PROPOSITION 3.9. Axiom R0 + Axiom R1 + Axiom R3 =⇒ Axiom RG.

Proof. Let b ∈ k and L ∈ k[σ] be a nonzero difference operator of essential
degree ess.deg(L) = d > 0, and F ∈ k[x0, . . . , xd−1], F �= 0. Let N(k), N(Ω) be
respectively the kernel of L in k and Ω. Using Axiom R3, we can find e1, . . . , ed ∈
N(k) linearly independent over Fix(σ), and using Axiom R1 we can find a ∈ k
with L(a) = b. The fields Fix(σ) and k are linearly independent over Fix(σ) in
Ω. Thus e1, . . . , ed remains a basis of N(Ω) over FixΩ(σ). Let ψ: Ad

k → A1
k be
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the morphism (x1, . . . , xd) �→ ∑d
i=1 xiei. Note that ψ restricted to Ad(Ω) is an

isomorphism between (Ωd, +) and (N(Ω), +).
Let X(Ω) := {x ∈ N(Ω): F(σ(x)) = 0}. By construction, the σ-degree of

X(Ω) is less than d. Hence, ψ−1(X(Ω)) is not generic and is therefore contained
in a proper subvariety of Ad. Let Y ⊂ Ad be the Zariski closure of ψ−1(X(Ω)).

As Fix(σ) is infinite, Ad(Fix(σ)) = ψ−1(N(k) + a)) is Zariski dense in Ad.
Hence, there is some point x ∈ N(k) + a with ψ−1(x) �∈ Y(Ω). That is, there is
some point x ∈ k with L(x) = b and F(σ(x)) �= 0.

We now show that Axiom RG implies all the other axioms on solutions to linear
difference equations which we have considered.

PROPOSITION 3.10. Axiom RG =⇒ Axioms R0, R1, R2, and R3.

Proof. For Axiom R0, suppose that Fix(σ) = Fq. Applying Axiom RG to
L = σ−1, b = 0, and F(x) = xq−x, we obtain a ∈ k with σ(a) = a and aq−a �= 0
contradicting the hypothesis that Fix(σ) = Fq.

To conclude Axiom R1, taking F = 1, we see that each instance of Axiom
R1 becomes an instance of Axiom RG.

For Axiom R2, given L with ess.deg(L) > 0, apply Axiom RG to L and
F(x0) = x0.

Finally, for Axiom R3, let L ∈ k[σ] be a nonzero difference operator of
essential degree ess.deg(L) = d > 0. Factoring by a sufficiently high power of σ
on the right, we may asssume that L =

∑d
i=0 aiσ

i, with ada0 �= 0.
As before, we can find linear difference operators Q and M in k[σ] with

L = QM, ker L = ker M, and m := ess.deg(M) = dimFix(σ) ker M. If L witnesses
the failure of Axiom R3, then m < d. Write M =

∑m
i=0 biσ

i. Let F(x0, . . . , xd−1) =∑m
i=0 bixi. Then by Axiom RG, there is some a ∈ k with L(a) = 0 and F(σ(a)) �= 0.

That is, a ∈ ker L \ ker M contradicting our choice of M.

4. The ∂-ring formalism. Our treatment of Witt vectors will depend on
the formalism of ∂-rings of Joyal [16].

Let (K, v, k, Γ,σ) be a Witt-Frobenius case. Our arguments adapt easily to
the case σ̄(x) = xq, q a finite power of p, but for notational convenience we stick
to the special case q = p.

Define ∂0(x) = x on V . Then define ∂1(x) = 1
p (σ(x)− xp). This is again a map

V → V , usually called ∂, and satisfying the axioms for a “p-derivation” ([6]) on
V , namely:

∂(1) = 0

∂(x + y) = ∂(x) + ∂(y)−
p−1∑
i=1

p−1

(
p
i

)
· xiyp−i

∂(xy) = xp∂(y) + yp∂(x) + p∂(x)∂(y).
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A ∂-ring is a commutative ring equipped with a unary operation ∂ satisfying
the above identities. The Witt vectors functor k �→ W[k] is right adjoint to the
forgetful functor from ∂-rings to commutative rings. In a ∂-ring, the map σ(x) =
xp + p∂(x) is an endomorphism. In the theory of ∂-rings ([16]) there is a unique
sequence of unary operations ∂0, ∂1, ∂2, . . . (∂0, ∂1, as above) satisfying

σn(x) = ∂0(x)pn
+ p∂1(x)pn−1

+ · · · + pn∂n(x)

In W[k], the ∂n yield the components (sometimes called ghost coordinates) of
Witt vectors, namely, x ∈ W[k] is identified with (∂0(x), ∂1(x), . . .).

LEMMA 4.1. Let k be a perfect field of characteristic p and σ an automorphism
of W[k]. Then for all x ∈ W[k], ∂n(σ(x)) = σ̄(∂n(x)).

Proof. Let x ∈ W[k], then as in Example 1.3, x =
∑

n≥0 τ

(
∂n(x)

p−n
)
·pn and

σ(x) =
∑
n≥0

τ

(
σ̄

(
∂n(x)

p−n
))
· pn =

∑
n≥0

τ

((
σ̄(∂n(x))

)p−n)
· pn

so that ∂n(σ(x)) = σ̄(∂n(x)).

One shows:

LEMMA 4.2. The map V → kn+1 given by x �→ (∂0(x), ∂1(x), . . . , ∂n(x)) is sur-
jective.

Let us write (∂)n(x) for (∂0(x), . . . , ∂n(x)), and (∂̄)n(x) for (∂0(x), . . . , ∂n(x)).
This is supposed to suggest the σ and σ̄ notation. When n is understood we write
∂ and ∂̄. We will use the ∂i’s in σ-polynomials:

F
(
x,σ(x), . . . ,σn(x)

)
= F

(
x, xp + p∂1(x), . . . , xpn

+ p∂1(x)pn−1
+ · · · + pn∂n(x)

)
.

Definition 4.3. For fixed prime p, we will consider the polynomial functions
Dn, n ∈ N (or D if no confusion arises) defined over Z, from affine (n + 1)-space
to itself

D(y0, . . . , yn) = (y0, yp
0 + py1, yp2

0 + pyp
1 + p2y2, . . . , ypn

0 + pypn−1

1 + · · · + pnyn).

Suppose for the moment that F(y) is a homogeneous polynomial of degree
m (the only case we will ever use). Now F(D(y)) is also a polynomial in y. Note
that F(D(y)) is not in general homogeneous, but it has no constant term and total
degree at most mpn. A moment’s reflection on D(y) shows:

LEMMA 4.4. (The universal linear maps) For each prime p and integers m, n,
for each j there is a linear function Λ j({xl}|l|=m) with integer coefficients, so that
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for all homogeneous polynomials in y of degree m with generic coefficients c,
F(y, c) =

∑
|l|=m

cl· yl ∈ Z[y, c] , we have F(D(y)) =
∑

j
d j· y j, where d j = Λ j({cl}|l|=m).

This lemma will be used in the following situation: F(y) is given, so F(σ(x)) =
F(D(∂(x))), and we want to find the coefficients of ∂(x) j.

The following observation will be crucial in Theorem 6.10.

LEMMA 4.5. Suppose (K, v, k, Γ,σ) is a Witt-Frobenius case, and F(y0, . . . , yn)
is a polynomial over the valuation ring of K with at least one coefficient of valu-
ation 0. Then F(D(y)), still a polynomial over the valuation ring, has at least one
coefficient of finite valuation. In particular there exists an integer N ≥ 0 such that
F(D(y)) can be written as F(D(y)) = pNf (y), where f (y) is a polynomial over the
valuation ring with at least one coefficient of valuation 0.

Proof. Consider the coarse valuation v̇ on K (see Lemma 1.7). Then F
has also its coefficients in the valuation ring of v̇. Let Ḟ be its image under
the residue map of v̇. Recall that the residue field k̇ of v̇ is isomorphic to a
valued subfield of W(k), where the valuation on k̇ can be identified with v.
Whence Ḟ is a polynomial over the valuation ring of k̇ with at least one coeffi-
cient of valuation 0. Now we get the required property for Ḟ(D(y)) directly in
W(k). But Ḟ(D(y)) is also the image of F(D(y)) under the residue map of v̇,
so because of the identification of the valuation of k̇ with v we get the desired
property.

5. Pseudoconvergence in the σ-setting.

5.1. Equivalent pseudoconvergent series. Let (K, v, k, Γ,σ) be a valued
field with isometry with enough constants. Let {aρ} be a p.c. series in K and
a a pseudolimit (maybe in an extension, by which we always mean an exten-
sion of valued fields with isometry and when working in the Witt-Frobenius
case we mean that the extension is also a Witt-Frobenius case). A very im-
portant point in the pure valued field case is the following “pseudocontinuity”
(see [18]).

LEMMA 5.1. Let f ∈ K[x]� K. Then {f (aρ)} is p.c., with pseudolimit f (a).

Since the main idea of the proof will be needed later, it is worth recording
the lemma on ordered abelian groups on which it depends.

LEMMA 5.2. Let {γρ} be an increasing series of elements in an ordered abelian
group Γ. Let I be a finite set, and for i ∈ I let ci + nix, ci ∈ Γ, ni ∈ Z, be linear
functions of x with distinct ni. Then there is a µ, and an enumeration i1, i2, . . . of I
so that for ρ > µ, ci1 + ni1γρ < ci2 + ni2γρ < . . ..
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Moreover, if γ is a positive element of Γ with only finitely many positive prede-
cessors, there is aµ and an enumeration as above with (cik +nikγρ)−(cij +nijγρ) > γ
eventually, whenever k < j.

Unfortunately, Lemma 5.1 fails in the difference field situation. The reader
may readily construct a counterexample using G(x) = σ(x) − x instead of the
polynomial f . Fortunately there is an alternative to Lemma 5.1, provided we
make some extra assumptions on (K, v, k, Γ,σ). We first need a natural notion of
equivalence of p.c. series.

Definition 5.3. Two p.c. series {aρ} and {αδ} over a valued field K are
equivalent if for all extension fields L and a ∈ L we have {aρ}❀ a⇔ {αδ}❀ a.

This is evidently an equivalence relation, and we have clearly:

LEMMA 5.4. Two {aρ} and {αδ} are equivalent if and only if they have a
common limit in some extension and have the same width.

A more explicit way to express the relation is given by:

LEMMA 5.5. Two series {aρ} and {αδ} are equivalent if and only if:
(a) for each ρ, eventually (in δ) v(αδ − aρ+1) > v(aρ+1 − aρ) and
(b) for each δ, eventually (in ρ) v(aρ − αδ+1) > v(αδ+1 − αδ).

We now aim for a series of variations on the theme: if (K, v, k, Γ,σ) satisfies
some natural conditions, and {aρ} from K is p.c. with limit a (perhaps in an
extension valued field with isometry), then for each G(x) = F(σ(x)) with F
nonconstant, there is an equivalent p.c. {αδ} from K so that {G(αδ)} ❀ G(a).
We now develop the calculations needed.

5.2. The basic calculation. Let {aρ} be given, with pseudolimit a. Let, as
usual in these matters, γρ = v(aρ − a). The γρ form an increasing series in Γ,
G(x) is given as F(σ(x)), n = order of G, G(x + y) =

∑
l

Gl(x) · σ(y)l.

Now we try for an equivalent series {αρ} = {aρ+µρθρ}, from K, on which G
behaves well. Here θρ ∈ K, µρ ∈ K, v(θρ) = γρ, and (as K has enough constants)
θρ may be chosen in the fixed field. Let θρ be so chosen with µρ to be chosen
later. We demand at least v(µρ) = 0.

Define dρ by aρ − a = θρdρ, so dρ has value 0. So

αρ − a = αρ − aρ + aρ − a

= θρ(µρ + dρ),

so if v(µρ + dρ) = 0 we will ensure {αρ}❀ a. Since also v(µρ + dρ) = 0 implies
that {aρ} and {αρ} have the same width, it will imply they are equivalent. Note
that dρ is forced on us, and it won’t normally be in K.
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Now

G(αρ)− G(a) =
∑
|l|≥1

Gl(a) · σ(αρ − a)l

=
∑
m≥1

∑
|l|=m

Gl(a) · σ(αρ − a)l

=
∑
m≥1

∑
|l|=m

Gl(a)σ(θρ · (µρ + dρ))l

=
∑
m≥1

∑
|l|=m

Gl(a)σ(θρ)l · σ(µρ + dρ)l

=
∑
m≥1

Hm(µρ + dρ),

where Hm is a σ-polynomial over K〈a〉 corresponding to the polynomial∑
|l|=m

Gl(a) · σ(θρ)l · xl = Fm(x).

Now note the value of the coefficients Gl(a) · σ(θρ)l:

v(Gl(a) · σ(θρ)l) = v(Gl(a)) + mγρ

for |l| = m. Here we use the fact that σ is an isometry. We consider only m for
which Fm is nonzero. For such m, pick lm with |lm| = m and v(Glm(a)σ(θρ)lm) is
minimal. Then write

Fm(x) = Glm(a)σ(θρ)lm · fm(x)

where fm is a polynomial over the valuation ring of K〈a〉, with one coefficient 1.
Now

v(Hm(µρ + dρ)) = v(Fm(σ(µρ + dρ)))(1)

= v(Glm(a) · σ(θρ)lm) + v( fm(σ(µρ + dρ)))

= v(Glm(a)) + mγρ + v( fm(σ(µρ + dρ))).

Now suppose we can choose µρ so that v(µρ) = 0, v(µρ+dρ) = 0 and v( fm(σ(µρ+
dρ))) = βm is independent of ρ. Then we succeed in our project, since

v(G(αρ)− G(a)) = v

∑
m≥1

Hm(uρ + dρ)


v(Hm(µρ + dρ)) = v(Glm(a)) + βm + mγρ.
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So, applying Lemma 5.2, eventually for some fixed m,

v(G(αρ)− G(a)) = v(Glm(a)) + βm + mγρ,

so G(αρ) ❀ G(a). (Note v(Glm(a)) is independent of the choice of lm).
There are various ways to achieve this, as we will see.

5.3. Pseudocontinuity up to equivalence. Recall the notion of pliable
(K, v, k, Γ,σ) (Def. 2.4).

THEOREM 5.6. Suppose (K, v, k, Γ,σ) is a pliable and σ̄ satisfies no identies
on k. Suppose {aρ} is p.c. in K and {aρ} ❀ a, possibly in an extension. Let

∑
be a finite set of nonzero polynomials F(x0, . . . , xn) over K. Then there is a p.c.
{αρ} from K, equivalent to {aρ}, so that for each F in

∑
, {G(αρ)}❀ G(a), where

G(x) = F(σ(x)). Furthermore, if one supposes only that {aρ} is p.c., then there is
an equivalent {aρ} from K such that all {G(αρ)} are p.c.

Proof. The last part of the theorem follows from the first by putting in an
a, say in an elementary extension. To prove the theorem, let us first consider
a single σ-polynomial G(x), and as above let γρ = v(aρ − a), αρ = aρ + µρθρ,
v(θρ) = γρ, θρ in the fixed field of K, µρ to be chosen later, aρ − a = θρdρ.

By the previous calculation, it suffices to find µρ such that: µ̄ρ �= 0, µ̄ρ �= −d̄ρ,
v( fm(σ(µρ + dρ))) = 0 and µ̄ρ in the residue field k of K. We want precisely an
element µ of k so that f̄m(σ̄(µ+ d̄ρ)) ·µ · (µ+ d̄ρ) �= 0; i.e. that f̄m(σ̄(µ) + σ̄(d̄ρ)) ·µ ·
(µ+ d̄ρ) �= 0. That is, the difference polynomial f̄m(σ̄(x) + σ̄(d̄ρ)) · x(x + d̄ρ) (which
is over K〈a〉) should not vanish on k. Note that the corresponding polynomial is
f̄m(x + σ̄(d̄ρ)) · x0 · (x0 + d̄ρ) and this is not the zero polynomial since f̄m �= 0 and
the linear change of variables y := x + σ̄(d̄ρ) is invertible.

Now it is not quite obvious that Axiom R4 allows us to select µρ as required,
since the polynomial is over K〈a〉, and we need µ̄ρ ∈ k. We conclude with the
following lemma.

LEMMA 5.7. Let (K1, v1, k1, Γ1,σ1) be an extension, and f (x0, . . . , xn) a nonzero
polynomial over k1. Then there is a y in k with f (σ̄(y)) �= 0.

Proof. Considering the monomials of degree at most the total degree of f as
the basis of a finite dimensional k1-vector space V =

⊕
k1x j, we may construe

f (x) as c · ({xj}), an inner product, where c is the vector of coefficients of f .
Consider the k-subspace S of V generated by all ({σ̄(y) j}) for y in k. To

suppose that f (σ̄(y)) vanishes on k is to suppose that c is orthogonal to S which
is not the zero subspace, as (1, . . . , 1) ∈ S. Choose a finite basis B for S. Then c
is a nonzero solution of the system of linear equations b · w = 0 for b ∈ B. By
elementary linear algebra there is a solution c′ in k. Thus, c′ is orthogonal to S,
and the polynomial with c′ as coefficients contradicts Axiom R4.
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For finitely many Gs the same proof works, since Axiom R4 clearly implies
the analogous version in which several G occur.

5.4. Pseudocontinuity up to equivalence: the ∂-ring argument. In a Witt-
Frobenius case, our treatment depends on the formalism of ∂-rings [16]. The
argument adapts easily to the case σ̄(y) = yq for q a finite power of p, but
for notational convenience we stick to the special case q = p. Again, we need
(K, v, k, Γ,σ) to be pliable (Def. 2.4), and now the key point is that k be infinite.

THEOREM 5.8. Suppose that (K, v, k, Γ,σ) is a pliable Witt-Frobenius case. Sup-
pose {aρ} is p.c. in K and {aρ}❀ a, possibly in an extension. Let

∑
be a finite set of

nonzero polynomials F(x0, . . . , xn) over K. Then there is a p.c. {αρ} from K, equiv-
alent to {aρ}, so that for each F in

∑
, {G(αρ)} ❀ G(a), where G(x) = F(σ(x)).

Furthermore, suppose only that {aρ} is p.c.: then there is an equivalent {aρ} from
K such that all {G(αρ)} are pseudoconvergent.

Proof. Here, as in Theorem 5.6, the last part follows directly from the first,
and we begin by considering only one G(x). We revisit the basic calculation (5.2).

Recall that γρ = v(aρ − a), αρ = aρ + µρθρ, v(θρ) = γρ, θρ in the fixed field
of K, µρ to be chosen later, aρ − a = θρdρ.

We go back to equation (1):

v(Hm(µρ + dρ)) = v(Glm(a)) + mγρ + v( fm(σ(µρ + dρ))).

As before, it suffices to show that we can find µρ such that µ̄ρ �= 0,−d̄ρ, and
v( fm(σ(µρ + dρ))) is independent of ρ.

We have σ(x) = D(∂(x)), where D is our polynomial function from Sec-
tion (4).

If the polynomial fm(D(y0, . . . , yn)) (over K〈a〉) is zero, then Hm(σ(x + dρ))
vanishes identically on the valuation ring of K〈a〉, and we just ignore it, as will
be seen to be harmless at end of our proof.

So let us assume fm(D(y0, . . . , yn)) is not zero. By dividing by a coefficient of
lowest value, we can write fm(D(y0, . . . , yn)) = λm · gm(y0, . . . , yn),λm ∈ K〈a〉∗,
gm over the valuation ring of K〈a〉, and with one coefficient 1. By Lemma 4.5,
v(λm) is actually an integer. So

v(Hm(µρ + dρ)) = v(Glm(a)) + mγρ + v(λm) + v(gm(∂(µρ + dρ)))

and we will succeed if we can arrange µ̄ρ �= 0, µ̄ρ �= −d̄ρ and v(gm(∂(µρ + dρ)))
= 0.

So consider the nonzero polynomial y0(y0 +d̄ρ)ḡm(y0, . . . , yn) over the residue
field of K〈a〉. Since k is infinite, there are t0, . . . , tn ∈ k on which this polynomial
does not vanish. Now by Lemma 4.2 there is t ∈ V with ∂i(t) = ti, i = 0, . . . , n,
and then µρ = t is our solution and we have proved the theorem.

This argument manifestly works as well with finitely many Gs.
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5.5. Pseudoconvergence to 0. We will need a crucial refinement of the
previous Theorems 5.6 and 5.8: roughly, in case v(G(aρ)) ❀ 0 we need to be
able to switch to an equivalent {αρ} such that v(G(αρ)) ❀ 0 still. We stay in
pliable fields (Def. 2.4).

THEOREM 5.9. Let (K, v, k, Γ,σ) be pliable. Suppose {aρ} is p.c. in K, and
{aρ}❀ a, possibly in an extension, which is a Witt-Frobenius case if K is.

Let G(x) be a σ-polynomial over K, with G(x) = F(σ(x)) as usual. Suppose
that:

(i) {G(aρ)}❀ 0;
(ii) for all l with |l| ≥ 1, such that Fl is not a constant, {Gl(aρ)} is p.c., but not

to 0;
(iii) in a Witt-Frobenius case, we also assume that for each m ≤ total degree

of F, and j of the appropriate length {Λ j({Gl(aρ)}|l|≤m)} is p.c., but not to 0.
Then there is {αρ} from K, equivalent to {aρ} so that {Gl(αρ)}❀ Gl(a) if |l| ≥ 0
and Fl is not a constant, and {G(αρ)}❀ 0.

Proof. Recall the notation of the basic calculation (5.2): γρ = v(aρ − a),
αρ = aρ + µρθρ, v(θρ) = γρ, θρ in the fixed field of K, µρ to be chosen later,
aρ − a = θρdρ.

We first prove the case in which σ̄ satisfies no identities on k. By (ii), for
each |l| ≥ 1, v(Gl(aρ)) is eventually constant.

Now

G(αρ) = G(aρ + θρµρ)

= G(aρ) +
∑
m≥1

∑
|l|=m

Gl(aρ) · σ(θρµρ)l

= G(aρ) +
∑
m≥1

θm
ρ ·
∑
|l|=m

Gl(aρ)σ(µρ)l

= G(aρ) +
∑
m≥1

Hm,ρ(µρ),

where Hm,ρ is the σ-polynomial over K corresponding to

Fm,ρ(y) =
∑
|l|=m

Gl(aρ) · θm
ρ · yl.

The value of the coefficient Gl(aρ) · θm
ρ of Fm,ρ is v(Gl(aρ)) + mγρ. Now write

Fm,ρ(y) = cm,ρ · fm,ρ(y),

where v(cm,ρ) is mγρ+(the eventual minimum of v(Gl(aρ)) for |l| = m), and fm,ρ

is a polynomial over the valuation ring V with at least one coefficient 1. Then,



686 L. BÉLAIR, A. MACINTYRE, AND T. SCANLON

exactly as in the proof of Theorem 5.6, we could choose µρ to work for G and
all Gl, and to satisfy v( fm,ρ(σ(µρ))) = 0 for all m such that Fm,ρ �= 0. If such a
choice is made,

v(G(αρ)) = v(G(aρ) +
∑
m≥1

εm,ρθ
m
ρ ),

where εm,ρ =
∑
|l|=m Gl(aρ) · σ(µρ)l, and v(εm,ρ) is eventually constant and inden-

pendent of the choice of µρ. So we still have space to manoeuver. By Lemma 5.2
applied to the above situation, we would have eventually

v

∑
m≥1

εm,ρθ
m
ρ

 = min
m≥1

(v(εm,ρ) + mγρ)

= v(εm0,ρ) + m0γρ

for a unique choice of m0 ≥ 1.
If v(G(aρ)) �= v(εm0,ρθ

m0
ρ ), we do nothing. If v(G(aρ)) = v(εm0,ρθ

m0
ρ ), then

replacing µρ by a variable x consider

G(aρ) +
∑
m≥1

θm
ρ ·
∑
|l|=m

Gl(aρ)σ(x)l = G(aρ)

1 +
∑
|l|≥1

G(aρ)−1θ|l|ρ Gl(aρ)σ(x)l


= G(aρ) Qρ(σ(x)),

where Qρ(y0, . . . , yn) is a polynomial over V with one coefficient 1. So if we add
the extra requirement that Qρ(σ(µρ)) �= 0, easily fulfilled as before, we get that
eventually

v(G(αρ)) = min{v(G(aρ), v(εm0,ρ) + m0γρ}.

Now v(εm0,ρ) is eventually constant, and both v(G(aρ)) and v(εm0,ρ) + m0γρ are
eventually increasing. So v(G(αρ)) is eventually increasing, i.e. {G(αρ)} ❀ 0,
and we are done in this case.

We now prove the Witt-Frobenius case of the theorem.
We proceed as above to obtain Fm,ρ(y) = cm,ρ · fmρ(y), and now do the ∂-

transformation on fm,ρ. If fm,ρ(D(y)) is the zero polynomial then

Hm,ρ(x) = Fm,ρ(σ(x))

= cm,ρ · fm,ρ(σ(x))

= cm,ρ · fm,ρ(D(∂(x)))

vanishes on the valuation ring of K〈a〉, and as in (5.4) we can ignore it.
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So we consider m and ρ so that fm,ρ(D(y)), and so also Fm,ρ(D(y)), is not the
zero polynomial. Now we apply Lemma 4.4 to

Fm,ρ(y) =
∑
|l|=m

Gl(aρ) · θm
ρ · yl

to obtain

Fm,ρ(D(y)) = θm
ρ ·
∑

j

Λ j({Gl(aρ)}|l|=m) · y j.

Now, by (iii), the Λ j({Gl(aρ)}|l|=m) are eventually constant in value. Let λm,ρ be
an eventual minimal value, and write

Fm,ρ(D(y)) = θm
ρ λm,ρ · gm,ρ(y),

where gm,ρ is a polynomial over V with at least one coefficient 1. Now, we
can play the game of (5.4) to get µρ satisfying all preceding constraints and
v(Hm,ρ(µρ)) = mγρ + v(λm,ρ). Note that v(λm,ρ) is eventually constant for each m
and is independent of the choice of µρ.

So we have again:

v(G(αρ)) = v

G(aρ) +
∑
m≥1

εm,ρ · θm
ρ

 ,

where εm,ρ =
∑
|l|=m Gl(aρ) · σ(µρ)l, and v(εm,ρ) = v(λm,ρ) is eventually constant

and independent of the choice of µρ. By Lemma 5.2 we can eventually find an
m0 such that v(εm0,ρ · θm0

ρ ) < v(εm,ρ · θm
ρ ) for all m �= m0, so that

v

∑
m≥1

εm,ρθ
m
ρ

 = min
m≥1

(v(εm,ρ) + mγρ)

= v(εm0,ρ) + m0γρ.

If v(G(aρ)) �= v(εm0,ρθ
m0
ρ ), we do nothing. If v(G(aρ)) = v(εm0,ρθ

m0
ρ ), then consider

G(aρ) + εm0,ρθ
m0
ρ = G(aρ) + Fm0,ρ(D(∂(µρ))).

Since Fm0,ρ(y) is homogeneous of degree m0 ≥ 1, Fm0,ρ(D(y)) has no constant
term. So we can write

G(aρ) + Fm0,ρ(D(y)) = G(aρ) · Qρ(y),
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where Qρ(y0, . . . , yn) is a polynomial over V with constant term 1 and at least one
other coefficient with valuation zero. The extra requirement that v(Qρ(∂(µρ))) = 0
can be fulfilled as before, and we get that eventually

v(G(αρ)) = min{v(G(aρ), v(εm0,ρ) + m0γρ}

and we are done as in the previous case.

We remark that we will also use a small variant of this theorem where we add
finitely many more σ-polynomials to the Gl and Λ j

(
{Gl}|l|=m

)
(see the proofs

of Theorem 6.10 and Lemma 7.2).

6. Around the σ-Hensel Scheme.

6.1. Newton approximation. For the moment we consider the basic problem
of how to start with α ∈ K and G(α) �= 0 and find β ∈ K with v(G(β)) > v(G(α)).

Definition 6.1. Suppose G(x) = F(σ(x)) as usual, and α ∈ K. We say α, G
is in σ-Hensel configuration if

v(G(α)) = γ + min
|l|=1

v(Gl(α))

< j · γ + v(Gl(α))

whenever |l| = j > 1.

Note that with G of order 0, we get one of the equivalent configurations of
the standard Hensel scheme.

LEMMA 6.2. Suppose (K, v, k, Γ,σ) is a valued field with isometry with (k, σ̄)
linearly difference closed. Suppose α, G are in σ-Hensel configuration, with
v(G(α)) = γ + min|l|=1 v(Gl(α)). Then there is β with v(α − β) = γ,β, G in σ-
Hensel configuration, and v(G(β)) > v(G(α)).

Proof. We try β = α + ε, so

G(β) = G(α) +
∑
l≥1

Gl(α) · σ(ε)l.

We first aim for v(G(β)) > v(G(α)) = γ + min|l|=1 v(Gl(α)), suggesting that we
aim for ε with

v

∑
|l|=1

Gl(α) · σ(ε)l + G(α)

 > γ + min
|l|=1

v(Gl(α)).(2)
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Pick λ so that v(λ) = γ and let ε = λu, for u a unit to be determined. Fix
l0 with |l0| = 1, so v(Gl0 (α)) = min|l|=1 v(Gl(α)). Note that for |l| = 1, σ(ε)l =
σ(λ)l · σ(u)l and v(σ(λ)l) = γ.

So we want

v

∑
|l|=1

(
Gl(α)
Gl0 (α)

)
· σ(λ)l

λ
· σ(u)l +

G(α)
λGl0 (α)

 > 0.

Let

cl = Gl(α) · σ(λ)l/λ · Gl0 (α)

d = G(α)/λ · Gl0 (α).

∑
|l|=1 cl · σ(x)l + d is a nontrivial linear σ-polynomial over V , with v(cl0 ) = 0,

and we can find ε satisfying (2) if we can solve

∑
|l|=1

cl σ̄(y)l + d̄ = 0

over k. Note that v(d) = 0, so d̄ �= 0. Since (k, σ̄) is linearly difference closed, let
t be a solution of ∑

|l|=1

cl · σ̄(y)l + d̄ = 0

and choose u so that ū = t. Note that v(ε) = v(λ) = γ. Then (2) holds.
Now

v(G(β)) = v(G(α + ε))

= v

∑
|l|=1

Gl(α) · σ(ε)l + G(α) +
∑
|l|>1

Gl(α) · σ(ε)l

 .

For |l| > 1,

v(Gl(α) · σ(ε)l) = v(Gl(α)) + |l| · γ > v(Gl0 (α)) + γ

by assumption. So

v

∑
|l|>1

Gl(α) · σ(ε)l

 > v(Gl0 (α)) + γ.
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So by (2),

v(G(β)) > v(Gl0 (α)) + γ = v(G(α)).

Now we have to show that β, G is in σ-Hensel configuration.
For |l| ≥ 1,

Gl(β) = Gl(α) +
∑
| j|≥1

(Gl) j(α) · σ(ε) j.

Recall that

(Gl) j(α) =

(
l + j

j

)
Gl+ j(α),

so that if |l| ≥ 1 and | j| ≥ 1

v
(
(Gl) j(α) · σ(ε) j) = v

((
l + j

j

))
+ v(Gl+ j(α)) + | j| · γ

> v(Gl0 (α)) + (1− (|l| + | j|)) · γ + | j| · γ
> v(Gl0 (α)) + (1− |l|) · γ.

In particular, if |l| = 1, and | j| ≥ 1

v
(
(Gl) j(α) · σ(ε) j) > v(Gl0 (α)).

We conclude that

v(Gl0 (β)) = v(Gl0 (α))

and in fact

v(Gl(β)) = v(Gl(α))

if |l| = 1 and v(Gl(α)) = v(Gl0 (α)). By the same argument, if |l| = 1 and
v(Gl(α)) > v(Gl0 (α)) then v(Gl(β)) > v(Gl0 (α)) = v(Gl0 (β)).
Let v(G(β)) = γ1 + v(Gl0 (β)), so γ1 > γ. For |l| > 1

Gl(β) = Gl(α) +
∑
| j|≥1

(Gl) j(α) · σ(ε) j

and as before for | j| ≥ 1

v((Gl) j(α) · σ(ε) j) > v(Gl0 (α)) + (1− |l| − | j|) · γ + | j| · γ
= v(Gl0 (α)) + (1− |l|) · γ.
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Also,

v(Gl(α)) > v(Gl0 (α)) + (1− |l|) · γ

so

v(Gl(β)) + |l|γ > v(Gl0 (α)) + γ.

So, since γ1 > γ,

v(Gl(β)) + |l| · γ1 > v(Gl0 (β)) + γ1.

Thus β, G is in σ-Hensel configuration.

We note the following direct consequence.

COROLLARY 6.3. Let (K, v, k, Γ,σ) be a valued field with isometry such that
(k, σ̄) is linearly difference closed and (K, v) is a complete discrete valued field.
Then whenever α, G is in σ-Hensel configuration, with

v(G(α)) = γ + min
|l|=1

v(Gl(α))

there is a root β of G with v(α− β) = γ.

Definition 6.4. (The σ-Hensel Scheme) We say (K, v, k, γ,σ) satisfies the σ-
Hensel scheme, or is σ-henselian, if whenever α, G is in σ-Hensel configuration
with

v(G(α)) = γ + min
|l|=1

v(Gl(α))

then there is β in K with v(α− β) = γ and G(β) = 0.

Similar schemes were considered for difference operators by Duval [12].
It bears noting that just as the notion of “henselian” may be formulated in

many different ways, so, too, may the condition of being “σ-henselian.” The
reader can consult [29] for another treatment.

Thus, W(k) satisfies the σ-Hensel scheme if k satisfies: all equations

cnxpn
+ cn−1xpn−1

+ · · · + c0 = 0

with ci ∈ k, cn �= 0, c0 �= 0, are solvable in k. This is equivalent to k not having
any finite extension of degree divisible by p [31].

Note that if (K, v, k, γ,σ) satisfies the σ-Hensel scheme then (K, v) is hense-
lian. In analogy with a familiar, important result about henselian fields, we have:
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THEOREM 6.5. Suppose k has characteristic 0 and (K, v, k, Γ,σ) satisfies the
σ-Hensel scheme. Let K0 be a difference subfield of K, maximal with respect to the
property x ∈ K∗0 ⇒ v(x) = 0. Then (K0,σ) is isomorphic to (k, σ̄) via x �→ x̄.

Proof. Suppose that x �→ x̄ is not surjective (it is clearly 1− 1).
Suppose α ∈ K, v(α) = 0, v(α − y) = 0, all y ∈ K0. If for all σ-polynomials

H(x) over the valuation ring of K0 we have v(H(α)) = 0, we are done. Otherwise,
pick G(x) over the valuation ring of K0, of minimal complexity so that v(G(α)) >
0. So for all H(x) of lower complexity v(H(x)) = 0. It follows that α, G is in
σ-Hensel configuration, with γ = v(G(α)). So there is β ∈ K with G(β) =
0, v(α− β) = γ, so ᾱ = β̄.

Now, by the standard minimality considerations,

y ∈ K0〈β〉∗ ⇒ v(y) = 0

So β ∈ K0, and v(α− β) > 0, contradiction.

The previous theorem will be used in particular in the following situation
with the coarse valuation (cf. Lemma 1.7).

LEMMA 6.6. Suppose (K, v, k, Γ,σ) is unramified with k of characteristic p > 0,
and satisfies the σ-Hensel scheme. Let Γ0 be the convex subgroup generated by
v(p) and v̇ the coarse valuation. Then (K, v̇, k̇, Γ/Γ0,σ) also satisfies the σ-Hensel
scheme.

Proof. Suppose a, G is in σ-Hensel configuration for v̇. So we have

v̇(G(a)) = min
|̄l|=1

v̇(Gl̄(a)) + (γ + Γ0)

< v̇(Gj̄(a)) + |̄j|(γ + Γ0) if |̄j| > 1

for some γ ∈ Γ.
Since Γ → Γ/Γ0 is order-preserving, it is easily seen that for some γ1 with

γ1 − γ ∈ Γ0,

v(G(a)) = min
|̄l|=1

v(Gl̄(a)) + γ1

< v(Gj̄(a)) + |̄j| · γ1 , if |̄j| > 1

so there is β with G(β) = 0, v(β − a) = γ, so v(β − a) = γ + Γ.

6.2. Pseudoconvergence of σ-algebraic type. We consider a valued field
with isometry (K, v, k, Γ,σ). Recall the universal polynomials Λ j from the ∂-ring
formalism.
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Definition 6.7. For a σ-polynomial G over K, G(x) = F(σ(x)) as usual, we
denote by H(G) the set of finitely many σ-polynomials obtained from G by
closing under the following operations:

(i) taking all Gl, for which the corresponding polynomials Fl are not constant
and |l| ≥ 1 ;

(ii) in Witt-Frobenius case, taking also all nonconstant Λ j({Gl}), for the
corresponding polynomial Fm(y) =

∑
|l|=m Gl(x) · yl with m ≤ total degree of F.

The set H(G) is finite since operations (i), (ii) yield σ-polynomials of lower
complexity.

Definition 6.8. Suppose {aρ} from K is p.c. We say {aρ} is of σ-algebraic
type over K if there is a an equivalent p.c. series {a′ρ} from K and a σ-polynomial
G(x) over K so that {G(a′ρ)}❀ 0, and for all H ∈ H(G), {H(a′ρ)} is pseudocon-
vergent.

The analogy of this definition with the classical case is not as direct as might
be expected, but it will be sufficient for our purposes (see Theorem 7.5). A referee
has pointed out that one can drop the extra assumptions on H(G), but at the cost
of introducing stronger hypotheses in some of our intermediate results, i.e., in
Theorem 5.9.

Definition 6.9. We say {aρ} is of σ-transcendental type over K if it is not of
σ-algebraic type over K.

6.3. From σ-algebraic type to σ-Hensel configuration.

THEOREM 6.10. Let (K, v, k, Γ,σ) be pliable. Suppose {aρ} is p.c. in K, and
{aρ}❀ a, possibly in an extension, which is a Witt-Frobenius case if K is.

Suppose {aρ} is of σ-algebraic type and G(x) is a σ-polynomial of minimal
complexity witnessing such a fact amongst all series equivalent to {aρ}.

Then there is {αρ} from K, equivalent to {aρ}, so that {G(αρ)} ❀ 0, and for
all H ∈ H(G), {H(αρ)} ❀ H(a), {H(αρ)} �❀ 0, and such that eventually αρ, G
is in σ-Hensel configuration. Moreover, either G(a) = 0, or a, G is in σ-Hensel
configuration.

Proof. Replacing {aρ} by an equivalent series if necessary, we can assume G
witnesses σ-algebraic type for {aρ}. Let G(x) = F(σ(x)) as usual. By minimality,
because of the inductive structure of H(G), we get that {G(aρ}❀ 0 and for all
H ∈ H(G), {H(aρ)} is p.c. but not to 0. We can then return to the calculations in
the proof of Theorem 5.9. The proof produces an equivalent {αρ}, so that for all
H ∈ H(G), {H(αρ)} ❀ H(a). By minimality of G, we also have {H(αρ)} �❀ 0,
all H. In particular, {Gl(αρ)} �❀ 0, all |l| ≥ 1, and for those v(Gl(αρ)) = v(Gl(a))
eventually. Inspection of the proof of Theorem 5.9 yields considerably more. Let
us suppose, without loss of generality, that {αρ} is just {aρ}. The proof actually
gives the following:
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For each l such that Fl is not a constant, there is a unique m(l)) = m ≥ 1,
and natural numbers im, i|k|,l such that

v(Gl(aρ)− Gl(a)) = min
| j|=m

v((Gl) j(a)) + mγρ + im < v((Gl)k(a)) + |k| · γρ + i|k|,l

whenever |k| �= m and |k| ≥ 1 (the i’s appear only in the Witt-Frobenius case).
Moreover, since {v(G(aρ))} is increasing eventually we eventually get

v(G(a)) > v(G(aρ)), and so eventually

v(G(aρ)) = min
| j|=m(0)

v(G j(a)) + m(0) · γρ + im(0)

v(G(aρ)) = min
| j|=m(0)

v(G j(aρ)) + m(0) · γρ + im(0).

We claim that m(0) = 1.
Suppose not, and choose j with | j| = m(0), and

v(G j(a)) = min
|k|=m(0)

v(Gk(a)).

Choose l ≤ j, |l| = 1. Now v(Gl(aρ)) = v(Gl(a)) eventually, so eventually

v(Gl(aρ)) ≤ v((Gl)k(a)) + |k| · γρ + i|k|,l − im(0),

so

v(Gl(aρ)) ≤ v

((
l + k

k

))
+ v(Gl+k(a)) + |k| · γρ + i|k|,l − im(0)

for all k with |k| ≥ 1.
Choose k so l + k = j, and we have eventually

v(Gl(a)) ≤ v

((
j
k

))
+ v(G j(a)) + (| j| − |l|) · γρ + i| j−l|,l − im(0).

Since K is unramified we have eventually, by Lemma 5.2,

v(Gl(a)) < v(G j(a)) + (| j− l|) · γρ + i| j|,l − im(0)

v(Gl(a)) + γρ + im(0) < v(G j(a)) + | j| · γρ + i| j|,l,

a contradiction. So m(0) = 1. Hence we have eventually

v(G(aρ)) = min
| j|=1

G j(a) + γρ + im(0) < v(Gk(a)) + |k| · γρ + i|k|,0
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whenever |k| > 1. Appealing again to Lemma 5.2 we get eventually

v(G(aρ)) = min
| j|=1

v(G j(a)) + γρ + im(0) < v(Gk(a)) + |k| · γρ + |k| · im(0)

< v(Gk(a)) + |k| · (γρ + im(0)),

so aρ, G are eventually in σ-Hensel configuration. Now suppose G(a) �= 0. We
already observed that v(G(a)) > v(G(aρ)) eventually. Then the same argument
as in the last part of Lemma 6.2 shows that a, G are in σ-Hensel configuration
(replacing β by a and α by aρ).

7. Maximal immediate σ-extensions. We now develop a theory of maxi-
mal immediate σ-extensions.

Note that the classical theory tells us that the cardinality of (K, v, k, Γ) is
bounded by a bound depending only on the cardinality of k and Γ (essentially the
cardinality of the power series field k((tΓ))), so that by the usual maximality argu-
ments, any field with isometry (K, v, k, Γ,σ) has at least one maximal immediate
σ-extension, and one maximal immediate σ-algebraic σ-extension.

Let G(x) be a σ-polynomial over K and {aρ} from K so that {aρ} ❀ a (a
anywhere). We will use the notation

{G(aρ)}❀s G(a)

if {G(aρ)}❀ G(a) and for all H ∈ H(G), {H(aρ)}❀ H(a).
The next lemma is a routine extension of a result familiar in the polynomial

setting.

LEMMA 7.1. Suppose (K, v, k, Γ,σ) is pliable. Let {aρ} be p.c. of σ-transcen-
dental type over K, with no pseudolimit in K. Then there is a proper immediate
extension (K〈a〉, v, k, Γ,σ) with a σ-transcendental over K, such that {aρ} ❀ a
and (K〈a〉, v, k, Γ,σ) is pliable. Conversely, suppose b is aσ-transcendental element
over K in some pliable σ-extension of K and {aρ}❀ b. Then (K〈a〉, v, k, Γ,σ) and
(K〈b〉, v, k, Γ,σ) are K-isomorphic by an isomorphism sending a onto b.

Proof. For the first part, let (K2, v2, k2, Γ2,σ2) be an elementary extension of K
containing a pseudolimit a of {aρ}. Let K1 = K〈a〉. If we show K1 is immediate,
the elementarity of K2 clearly gives the rest. Let G(x) be a σ-polynomial over K,
not coming from a constant F. Use Theorems 5.6 and 5.8 to get an equivalent {a′ρ}
so that {G(a′ρ)}❀s G(a). Now, {G(a′ρ)} �❀ 0, since {aρ} is of σ-transcendental
type. So G(a) �= 0 and v(G(a)) = eventual value v(G(a′ρ)) ∈ Γ. Thus K1 has the
same value group as K. A similar, standard argument shows that it has the same
residue field.

For the second part, suppose b is σ-transcendental over K such that {aρ}❀ b.
We claim that the unique σ-isomorphism K〈a〉 ∼= K〈b〉 fixing K and sending a
to b is an isomorphism of valued fields.
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Let H(x) be a non constant σ-polynomial over K. Use sections (5.2)-(5.4) to
get {a′ρ} ∼ {aρ} with {H(a′ρ)} ❀s H(a) and simultaneously {H(a′ρ)} ❀s H(b).
This is straightforward in the Witt-Frobenius case, and not difficult to see in the
case that σ̄ satisfies no identities.

Now {H(a′ρ)} �❀ 0, since {aρ} is not of σ-algebraic type. So v(H(a′ρ)) is
eventually constant and we have

v(H(b)) = eventual value v(H(a′ρ))

= v(H(a)).

To conclude that K〈a〉 ∼= K〈b〉 is an isomorphism of valued fields, observe
that an arbitrary element of K〈a〉 is a quotient of elements of the form σm(H(a))
for some m ∈ Z, H as above.

As in the classical setting, the σ-algebraic case is trickier.

LEMMA 7.2. Suppose (K, v, k, Γ,σ) is pliable. Let {aρ} be p.c. of σ-algebraic
type over K, with no pseudolimit in K. Let G be a σ-polynomial of minimal complex-
ity witnessingσ-algebraic type amongst all equivalent series. Then there is a proper
immediate extension (K〈a〉, v, k, Γ,σ) of K, with G(a) = 0, such that {aρ}❀ a and
(K〈a〉, v, k, Γ,σ) is pliable. Conversely, suppose b is a solution to G(x) = 0 in some
pliableσ-extension of K and {aρ}❀ b. Then (K〈a〉, v, k, Γ,σ) and (K〈b〉, v, k, Γ,σ)
are K-isomorphic by an isomorphism sending a onto b.

Proof. We may assume G witnesses σ-algebraic type for {aρ}.
We prove the first part. Let G = F(σ(x)) have order n. Then F(x0, . . . , xn) is

irreducible in K[x0, . . . , xn]. For if F = F1 ·F2, we may use Theorem 5.9 to get an
equivalent {a′ρ} such that {G(a′ρ)} ❀s G(a), {G1(a′ρ)} ❀s G1(a), {G2(a′ρ)} ❀s

G2(a) and {G(a′ρ)}❀ 0, forcing one of {G1(a′ρ)}❀ 0 or {G2(a′ρ)}❀ 0, contrary
to the minimality of G.

Let L be the field of fractions of the domain K[x0, . . . , xn]/(F).
We first give L the structure of an immediate extension of K.
Let f (x0, . . . , xn) ∈ K[x0, . . . , xn]. Clearly hf − A = bF for some h ∈

K[x0, . . . , xn−1], A, b ∈ K[x0, . . . , xn], A of lower complexity than F.
For convenience, pick a pseudolimit a for {aρ} in an elementary extension

of (K, v, k, Γ,σ).
“Define”

v( f ) = v(A(σ(a)))− v(h(σ(a)))

Many things now have to be checked.
(i) The map is well-defined. Suppose h1f − A1 = b1F, h1 ∈ K[x0, . . . , xn−1],

A1, b1 ∈ K[x0, . . . , xn], A1 of lower complexity than F. Then

h1A− hA1 ∈ (F)
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and has lower xn-degree than F, so = 0.
(This still leaves the “problem” that A(σ(a)), h(σ(a)) might both be 0.)

(ii) h(σ(a)) �= 0, and v(h(σ(a))) ∈ Γ. If h is a constant, this is trivial. If not,
go to equivalent {a′ρ} so that

{h(σ(a′ρ))}❀s h(σ(a)).

But h(σ(x)) has lower complexity than G(x), so {h(σ(a′ρ))} �❀ 0. So h(σ(a)) �= 0,
and v(h(σ(a))) = eventual value v(h(σ(a′ρ))) ∈ Γ.

(iii) v(A(σ(a))) ∈ Γ ∪ {∞}, so v( f ) ∈ Γ ∪ {∞}. By an argument similar
to (ii).

(iv) Suppose for some equivalent {a′ρ} that {f (σ(a′ρ))}❀s f (σ(a)), {f (σ(a′ρ))}
�❀ 0,{h(σ(a′ρ))}❀s h(σ(a)),{A(σ(a′ρ)}❀s A(σ(a)), and{b(σ(a′ρ))}❀s b(σ(a)).
Then v( f ) = the eventual value v( f (σ(a′ρ))) = v( f (σ(a))). Consider the relation
h(σ(a′ρ))f (σ(a′ρ))−A(σ(a′ρ)) = b(σ(a′ρ))F(σ(a′ρ)). The valuation of the right-hand
side is eventually increasing while the valuation of each of h(σ(a′ρ)), f (σ(a′ρ)),
A(σ(a′ρ)) is eventually constant, so eventually we must have v(h(σ(a′ρ))) +
v( f (σ(a′ρ))) = v(A(σ(a′ρ))). But as we have seen previously, v( f ) = eventual
value v(A(σ(a′ρ)))− eventual value v(h(σ(a′ρ))), whence the result.

(v) v is a valuation extending that on K.
(v.1) It clearly is an extension, and takes value ∞ on (F).
(v.2) That v( f + g) ≥ min (v( f ), v(g)) is formal, given (i)–(iii).
(v.3) v( fg) = v( f )+v(g): say hi ∈ K[x0, . . . , xn−1], Ai, bi ∈ K[x0, . . . , xn], Ai of

lower complexity than F such that h1f −A1 = b1F, h2g−A2 = b2F, h3A1A2−A3 =
b3F. Then h3h1h2fg − A3 = bF, for some b ∈ K[x0, . . . , xn], and as in (iv),
v(A1A2) = v(A1(σ(a))) + v(A2(σ(a))), so that by (i), and as in (ii) and (iii) we get:

v( fg) = v(A3(σ(a)))− v(h3(σ(a)))− v(h1(σ(a)))− v(h2(σ(a)))

= v(A1A2)− v(h1(σ(a)))− v(h2(σ(a)))

= v(A1(σ(a))) + v(A2(σ(a)))− v(h1(σ(a)))− v(h2(σ(a)))

= v( f ) + v(g).

By the above arguments, we get a valuation on K[x0, . . . , xn]/(F), and extend
it to L. Clearly the value group does not extend. Since v( f ) = eventual value
v
(

A(σ(a′ρ))/h(σ(a′ρ))
)

, as in (ii), one shows likewise that the residue field does
not extend.

Now let vi = xi + (F) and consider the “map”

K(v0, . . . , vn−1) σ−→ K(v1, . . . , vn)

sending vi to vi+1, (0 ≤ i ≤ n− 1) and extending σ on K.
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Again, there are things to check.
Each of K(v0, . . . , vn−1) and K(v1, . . . , vn) has transcendence degree n over

K. Suppose f (v0, . . . , vn−1) = 0, f ∈ K[x0, . . . , xn−1]. Then f ∈ (F), impossible,
unless f = 0.

Suppose g(v1, . . . , vn) = 0, g ∈ K[x1, . . . , xn]. So g ∈ (F), say g = g1 ·F. Then
either g is constant, or by Theorem 5.9 there is some equivalent {a′ρ} so that
{g(σ(a′ρ))} ❀s g(σ(a)), {g1(σ(a′ρ))} ❀ g1(σ(a)), and {G(a′ρ) = F(σ(a′ρ))} ❀ 0.
This forces also {g(σ(a′ρ))}❀ 0.

But then

{σ(gσ
−1

(σ−1(σ(a′ρ))))}❀s σ(gσ
−1

(σ−1(σ(a))))

{σ(gσ
−1

(σ−1(σ(a′ρ))))}❀ 0

so

{gσ−1
(

a′ρ,σ(a′ρ), . . . ,σn−1(a′ρ)
)
}❀s gσ

−1
(

a,σ(a), . . . ,σn−1(a)
)

{gσ−1
(

a′ρ,σ(a′ρ), . . . ,σn−1(a′ρ)
)
}❀ 0

But gσ
−1 (

x,σ(x), . . . ,σn−1(x)
)

has lower complexity than G, a contradiction.
So

K(v0, . . . , vn−1) σ−→ K(v1, . . . , vn)

where σ(vi) = vi+1 and extending σ on K, is a well-defined field isomorphism
between subfields of L.

Now, by earlier calculations, if f ∈ K[x0, . . . , xn−1]

v( f (v0, . . . , vn−1)) = eventual value v( f (σ(a′ρ)))

for suitable {a′ρ}❀ a, and changing a′ρ if necessary

v(σ( f (v0, , . . . , vn−1))) = v( f σ(v1, . . . , vn))

= eventual value v( f σ(σ(a′ρ), . . . ,σn(a′ρ))), by (iv)

= eventual value v( f (a′ρ, . . . ,σn−1(a′ρ))).

So v( f ) = v(σ( f )), whence σ is value preserving.
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Now consider the henselisation Lh of L, and the picture

Lh

↑
L

↗ ↖
K(v0, . . . , vn−1) K(v1, . . . , vn).

↖ ↗
K

Evidently L is algebraic over K(v0, . . . , vn−1). The proof that K(v1, . . . , vn) has
transcendence degree n, together with F(v0, . . . , vn) = 0, gives v0 algebraic over
K(v1, . . . , vn), so L is algebraic over K(v1, . . . , vn). Thus

K(v0, . . . , vn−1)h = K(v1, . . . , vn)h = Lh.

So σ extends uniquely to an automorphism σ of Lh, which is an immediate
extension of K; σ is clearly value preserving. Note that {aρ}❀ v0, since v(v0−
aρ) = v(a− aρ) = γρ eventually.

Now take K1 = K〈v0〉, finishing the proof of this first part.
For the second part, suppose b satisfies G(b) = 0 and {aρ} ❀ b. We first

observe that b,σ(b), . . . ,σn−1(b) are algebraically independent over K. For if
H(b,σ(b), . . . ,σn−1(b)) = 0 for some non-zero H ∈ K[x0, . . . , xn−1], we can
go to an equivalent {a′ρ} such that H(a′ρ,σ(a′ρ), . . . ,σn−1(a′ρ)) ❀s H(b,σ(b), . . . ,
σn−1(b)), but that would contradict the minimality of G. Similarly, G is of minimal
complexity such that G(b) = 0. We then get a K-isomorphism of difference fields
K〈a〉 " K〈b〉 sending a to b. Now the elements of these fields are described
by σ-polynomials H, in a or b, of lower complexity than G. In particular, for
any equivalent {a′ρ} necessarily {H(a′ρ)} �❀ 0. We can then argue as in the
second part of Lemma 7.1 to conclude that this is also an isomorphism of valued
fields.

We note the following consequences. Recall that according to the classical
theory, (K, v) has no proper immediate extension if and only if every p.c. series
from K has a pseudolimit in K.

THEOREM 7.3. Suppose (K, v, k, Γ,σ) is pliable. Then:
(a) (K, v) has a proper immediate extension if and only if (K, v, k, Γ,σ) has a

proper immediate σ-extension which is pliable.
(b) (K, v, k, Γ,σ) has a proper immediate σ-extension which is σ-algebraic if

and only if there is a p.c. {aρ} of σ-algebraic type over K with no pseudolimit in K.
(c) Let a �∈ K be in some immediate pliable σ-extension of K, and let K2 be a

pliable σ-henselian extension of K such that every p.c. series from K2 of length at
most card(Γ) has a pseudolimit in K2. Then K〈a〉 embeds in K2 over K.
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(d) Let a �∈ K be in some immediate pliable σ-henselian σ-algebraic extension
of K, and let K2 be a pliable σ-henselian extension of K such that every p.c. series
of σ-algebraic type over K2 and of length at most card(Γ) has a pseudolimit in K2.
Then K〈a〉 embeds in K2 over K.

Proof. (a) (⇐): Immediate. (⇒): If (K, v) has a proper immediate extension
then there is some p.c. series {aρ} from K having no pseudolimit in K. By either
Lemma 7.1 or Lemma 7.2 depending on whether {aρ} is of σ-transcendental
or σ-algebraic type, there is an immediate pliable extension of (K, v, k, Γ,σ) in
which {aρ} has a pseudolimit.

(b) (⇐): This is Lemma 7.2. (⇒): let a belong to a proper immediate σ-
extension which is σ-algebraic. Say G(a) = 0, for some nonconstant σ-polynomial
G. By the classical theory, there is a p.c. {aρ} from K which pseudoconverges to a
but has no pseudolimit in K. By Theorems 5.6 and 5.8 there is a p.c. {a′ρ} ∼ {aρ}
s.t. {G(a′ρ)} ❀s G(a) = 0. So {a′ρ} is of σ-algebraic type over K, and with no
pseudolimit in K.

(c) Let K1 be some immediate pliable σ-henselian extension of K containing
a. By the classical theory, there is a p.c. {aρ} from K such that {aρ} ❀ a and
{aρ} has no pseudolimit in K. By the assumption, there is b ∈ K2 such that
{aρ}❀ b.

If {aρ} is of σ-transcendental type, then reasoning as in (b), a and b must
both be σ-transcendental over K and we can apply Lemma 7.1.

If {aρ} is of σ-algebraic type, let G be as in Lemma 7.2, namely, a minimal
witness to σ-algebraicity. By Theorem 6.10, we get an equivalent {a′ρ} from K
so that {G(a′ρ)}❀ 0, {G(a′ρ)}❀ G(a), for all H ∈ H(G), {H(a′ρ)}❀ H(a), but
not to 0, eventually a′ρ, G are in σ-Hensel configuration, and either G(a) = 0 or
a, G are in σ-Hensel configuration. Note that {a′ρ}❀ a and v(G(a)) > v(G(a′ρ))
eventually. If G(a) = 0, we do nothing. Otherwise, by the σ-Hensel scheme, we
get a′ in K1, such that G(a′) = 0 and v(a′ − a) = v(G(a))−min|l|=1 v(Gl(a)). But
eventually, v(Gl(a′ρ)) = v(Gl(a)),|l| ≥ 1, so eventually v(a′ − a) > γρ. Whence
{a′ρ}❀ a′. So in every case, we get a′ in K1, such that {a′ρ}❀ a′ and G(a′) = 0.
Similarly, we get b′ in K2 with {a′ρ}❀ b′ and G(b′) = 0.

By Lemma 7.2, K〈a′〉 is isomorphic to K〈b′〉 as valued fields with isometry
over K, with a′ mapped to b′.

Now, a is immediate over K〈a′〉. If it is not in K〈a′〉, then we may repeat the
argument and conclude by a standard maximality argument.

(d) By the proof of (b), there is a p.c. {aρ} from K of σ-algebraic type
pseudoconverging to a but with no pseudolimit in K. The calculations in (c) work
now noting that every extension or p.c. series considered will be of σ-algebraic
type.

We now tackle the issue of uniqueness of maximal immediate σ-extensions.
At the same time, we consider the analogue for σ-algebraic immediate
extensions.
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LEMMA 7.4. Let (K, v, k, Γ,σ) be a valued field with isometry s.t. (k, σ̄) is lin-
early difference closed. If (K, v, k, Γ,σ) has no proper immediate σ-algebraic ex-
tensions then it satisfies the σ-Hensel scheme.

Proof. Suppose first that (K, v, k, γ,σ) has no proper immediate σ-extension.
Suppose it is not σ-henselian, and start with a counterexample a, G in σ-Hensel
configuration.

Let a0 = a and use the Newton approximation given earlier to start a p.c.
{an}n<ω in σ-Hensel configuration (cf. Def. 6.4 for notation). Note that for all l
with |l| = 1 such that

v(Gl(a0)) = min
| j|=1

v(G j(a0))

we have for each n < ω

v(Gl(an)) = v(Gl(a0))

= min
| j|=1

v(G j(an)).

Fix, as in Section 6.1, l0 with |l0| = 1 so

v(Gl0 (an)) = min
| j|=1

v(G j(a0)).

Now, {an} must have a pseudolimit aω in K. As in the proof of Theorem 6.10,
we get that aω, G are in σ-Hensel configuration. By continuing we eventually
reach a contradiction.

Now suppose (K, v, k, Γ,σ) has no proper immediate σ-algebraic extension.
Since K is unramified, let (K1, v1) be the unique maximal immediate extension of
(K, v). By uniqueness, σ extends to (K1, v1) and we get (K1, v1, k1, Γ1,σ1) which
has no proper immediate σ-extension. By the first case, K1 is σ-henselian. If a, G
from K are in σ-Hensel configuration, there is an appropriate root of G in K1,
which is now forced to be in K.

THEOREM 7.5. Suppose (K, v, k, Γ,σ) is pliable with (k, σ̄) linearly difference
closed. Then

(i) (K, v, k, Γ,σ) has a maximal immediate σ-extension, which is pliable, and
is unique up to isomorphism over (K, v, k, Γ,σ).

(ii) (K, v, k, Γ,σ) has a maximal σ-algebraic immediate extension, which is
pliable, and is unique up to isomorphism over (K, v, k, Γ,σ).

Proof. We have already noticed the existence of both kinds of maximal imme-
diate σ-extensions, and they will necessarily be pliable since they are immediate
extensions of K. By the previous lemma they are also σ-henselian. The desired
uniqueness then follows by a standard maximality argument using Theorem 7.3(c)
and (d).
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We note the following:

LEMMA 7.6. Let (K, v, k, Γ,σ) be pliable with (k, σ̄) linearly difference closed.
Then the maximal immediate σ-extension of K embeds in any pliable σ-henselian
extension of K which is max (card(k), card(Γ))+-saturated.

Proof. Let K′ be the maximal immediate σ-extension of K. The saturation
assumption ensures that any p.c. {aρ} from K or K′ will have a pseudolimit in
the saturated extension. The result then follows again from Theorem 7.3(c) by a
standard maximality argument.

8. Proof of the embedding theorem. In this section we complete the proof
of the Embedding Theorem 2.2 which the reader should consult for notation.

We wish to exploit our work on pseudoconvergence and maximal immediate
σ-extensions, but these do not apply directly to general Li as above.

The main remaining work involves making the Li pliable with a linearly
difference closed residue field. We then exploit uniqueness of maximal immediate
σ-extensions and fall into the trichotomy of the classical setting: extensions where
only the residue field extends (so-called unramified), extensions where only the
value group extends (so-called totally ramified), and immediate extensions.

We shall show a series of intermediate lemmas where we extend ψ to a σ-
extension L′i of Li, still small, with a desired property. Concerning the issue of
smallness, typically the basic step is to go to some L′i = Li〈a〉, which is obviously
small if Li is, and then iterate the procedure card(li) or card(Gi) many times,
which also preserves smallness. Eventually we iterate this process countably many
times and take union of an increasing sequence of countably many small fields,
which also preserves smallness. We will make no further reference to smallness
in the proof.

In all cases, the extension ψ′ of ψ should be admissible, i.e. satisfy conditions:
(A) ψ′ is an isomorphism of valued fields with isometry.
(B) The induced isomorphism ψ′r: l′1 ←→ l′2 of difference fields is elementary.
(C) The induced ψ′v : G′1 ←→ G′2 is elementary.
(D) ψ′ respects the angular component maps.
We note that by Lemma 1.6 and Lemma 1.12 we can always assume that Li

is henselian. Recall the notation fψ (Section 1).

8.1. Making a valued field with isometry pliable. We want to make the
Li of the Embedding Theorem pliable with linearly difference closed residue
fields. This involves using Axioms R and RG of the ambient models and some
dovetailing.

LEMMA 8.1. Let ψ: L1 → L2 be an admissible isomorphism, with Li small,
Witt-Frobenius case and henselian.
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(1) Suppose α ∈ k1 is algebraic over l1. Then there exist a ∈ K1, b ∈ K2 such
that ā = α andψ can be extended to an admissible isomorphismψ′: L1〈a〉 → L2〈b〉
such that ψ′(a) = b.

(2) We can extend ψ to an admissible isomorphism ψ′ between small valued
subfields with isometry L′i whose residue fields l′i are relatively algebraically closed
in ki.

Proof. Item (2) follows directly from item (1). To prove (1), the basic task is
to select α algebraic over l1, select a suitable a ∈ K1 with ā = α, and extend ψ
to L〈a〉.

Note that since L1 is closed under σ and σ−1, l1 is perfect. For we are in a
Witt situation and σ̄(x) = xp.

Now, select irreducible monic f ∈ l1[x] of degree n with f (α) = 0. Since l1
is perfect, f ′(α) �= 0. Lift f to some monic g ∈ L1[x] of degree n, ḡ = f . Use
Hensel’s lemma to get a ∈ K1, g(a) = 0, ā = α, a unique with these properties.
Also, g is clearly irreducible.

Then L1(a) = L1[a] = {h(a): h ∈ L1[x], deg (h) < n}. Pick any such h(x), h �=
0, and write h = c · h1, c ∈ L1, h1 over the valuation ring, and with at least one
coefficient 1. Then h̄1(α) �= 0, so v(h1(a)) = 0, and v(h(a)) = v(c). So L1(a) is
unramified over L1, with residue field l1(α).

Now, σ(a) need not be in L1(a). However, we do know that σ(a) is the unique
root λ of gσ such that λ̄ = σ̄(α), a root of f σ̄. Now f σ̄ is irreducible over l1,
though perhaps not over l1(α). So factor f σ̄ into coprime irreducibles over l1(α),
say f σ̄ = Πfi, and lift this to a factorization of gσ over the henselian field L1(a),
say gσ = Πgi, with ḡi = fi. Now, σ̄(α) is a root of f1 say, and of no other fi, so
σ(a) is a root of g1, say, and of no other gi. The gi are of course irreducible.

So now we repeat our earlier procedure, working over L1(a) with f1 and σ(a),
to get L1(a,σ(a)), an unramified extension, with uniquely determined valuation
structure, and residue field l1(α, σ̄(α)).

Now obtain σ−1(a) and then σ2(a),σ−2(a), and so on, until we have an
unramified extension L1〈a〉 with residue field l1〈α〉.

Our task now is to find ψ′, i.e. to find a suitable b ∈ K2. We make essential
use of ψr. The saturation allows us to extend ψr to an elementary map

ψ′r: l1〈α〉 ←→ l2〈β〉

with ψ′(α) = β. Now we use ψ′r to mimic what we just explained about L1〈a〉.
Use Hensel’s lemma to get a unique b so that gψ(b) = 0 and b̄ = ψ′r(α) = β.
Then by our discussion of the valued field structure of L1(a) it is clear that ψ
extends uniquely to a valued field isomorphism ψ1: L1(a) ∼= L2(b) sending a to
b. Also,ψ1,r = ψ′r |l1(α).

Now repeat to extend to ψ2: L1(a,σ(a)) ∼= L2(b,σ(b)), and so on till we get
ψ′: L1〈a〉 ∼= L2〈b〉, as a map of valued fields, and ψ′r = ψ′r.

Finally, ψ′ does respect σ, just by construction.
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Since the extension is unramified, (C) and (D) are automatic, and ψ′r = ψ′r
gives (B).

LEMMA 8.2. Let ψ: L1 → L2 be an admissible isomorphism, with Li small.
(1) Given an inhomogeneous non trivial linear σ̄-equation over l1, there exist

a ∈ K1, b ∈ K2 such that ā is a solution to the given equation andψ can be extended
to an admissible isomorphism ψ′: L1〈a〉 → L2〈b〉 such that ψ′(a) = b.

(2) We can extend ψ to an admissible isomorphism ψ′ between small valued
subfields with isometry L′i whose residue fields are linearly difference closed.

Proof. In the Witt-Frobenius case, this is subsumed by Lemma 8.1, since
σ̄(x) = xp.

As (2) is a routine consequence of (1), it suffices to prove (1) in case we
have Axiom RG. So, let

cn · σ̄n(x) + · · · + c0 · x + d̄ = 0

be a linear σ̄-equation over l1, with n �= 0, cn �= 0, d̄ �= 0, all ci in L1.
Use Axiom RG and saturation to get a solution α in k1, so that α is not a root

of any F(σ(x)) = 0, F ∈ l1[x0, . . . , xn−1], F �= 0. Now use the σ-Hensel scheme
to lift α to a solution a (in K1) of cnσ

n(x) + · · · + d = 0.
Consider L1(a,σ(a), . . . ,σn−1(a)). This is closed under σ. But, noting for

example that σ−1(cnσ
n(a)+ · · ·+d) = 0 we get σ−1(a) ∈ L1(a,σ(a), . . . ,σn−1(a)),

and see easily that L1(a,σ(a), . . . ,σn−1(a)) is closed under σ−1.
Now we check the valuation structure of L1(a,σ(a), . . . ,σn−1(a)). Consider

f (a,σ(a), . . . ,σn−1(a)), f ∈ L1[x0, . . . , xn−1] � {0}. Write, as usual, f = c · f1,
c ∈ L1, f1 over the valuation ring, one coefficient 1.

f 1(α, σ̄(α), . . . , σ̄n−1(α)) �= 0, so

v( f1(a,σ(a), . . . ,σn−1(a))) = 0, so

v( f (a,σ(a), . . . ,σn−1(a))) = v(c).

So v is uniquely determined, the extension is unramified over L1, and has residue
field l1(α).

Now use saturation and the elementarity of ψr to find a match β in k2 for α.
Let b be an appropriate lifting. The existence of ψ′ is routine.

LEMMA 8.3. Let ψ: L1 → L2 be an admissible isomorphism, with Li small.
Suppose the Li henselian and the li linearly difference closed.

(1) Let c ∈ L1, then there exist a ∈ K1, b ∈ K2 such that v(c) ∈ v(Fix(L1〈a〉))
and ψ can be extended to an admissible isomorphism ψ′: L1〈a〉 → L2〈b〉 such that
ψ′(a) = b.
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(2) We can extend ψ to an admissible isomorphism ψ′ between small valued
subfields with isometry L′i such that for all c ∈ Li there is a ∈ L′i such that σ(a) = a
and v(c) = v(a).

Proof. Again, (2) follows from (1) using Lemmas 8.2 and 1.6. To prove (1),
this time our task is to take an element c ∈ L∗1 and then obtain an extension
containing an element in the fixed field with the same valuation as c.

Pick a nonzero solution α of the equation σ̄(y) =
(
c/σ(c)

)
· y over k1 using

Axiom R. Use the σ-Hensel scheme to lift α to a ∈ K1 with σ(a) = (c/σ(c)) · a.
Then ca is in the fixed field, and v(ca) = v(c), since α �= 0.
So we consider L1(a), which contains an element solving our problem. L1(a)

is obviously closed under σ and σ−1.
If α is transcendental over l1, a by now routine argument shows that the

valuation on L1(a) is uniquely determined, and that L1(a) is unramified over L1,
with residue field l1(α).

Can α be chosen transcendental? We can vary α by multiplying by an element
of Fix(σ̄), so by saturation we can choose α transcendental, provided Fix(σ̄) is
infinite.

If Fix(σ̄) is infinite, the extension to ψ′ is by now routine.
Suppose however Fix(σ̄) is finite, of characteristic p.
Go back to α. By Lemma 8.1, we may assume that l1 is relatively alge-

braically closed in k1 so the α ∈ l1. Let a0 ∈ L1 be any lifting of α. If
σ(a0) − c/σ(c) · a0 = 0, we are done (we need not extend). Otherwise, since
all linear σ̄-equations are solvable in l1, we may do Newton approximation in L1,
to get a1 with v(a1 − a0) = v(σ(a0) − c/σ(c) · a0) and v(σ(a1) − c/σ(c) · a1) >
v(σ(a0)− c/σ(c) ·a0). If a1 is a root of σ(x)− c/σ(c) · x, we are done. Otherwise,
we generate a p.c. {an}n<ω in L1 with

γn = v(am − an) (for any m > n)

= v(σ(an)− c/σ(c) · an)

and v(σ(x)− c/σ(c) · x) increasing on {an}n<ω.
Note that for any pseudolimit aω (anywhere) of {an}n<ω

v(σ(aω)− c/σ(c) · aω) > v(σ(an)− c/σ(c) · an)

for each n.

Case 1. The series {an} has no pseudolimit in L1. Since L1 is henselian,
{an} is of transcendental type over L1, and for any pseudolimit aω of {an} the
isomorphism type of the valued field L1(aω) is uniquely determined.

If some aω is a solution of σ(x) = c/σ(c) · x, the field L1(aω) is closed
under σ,σ−1 and its isomorphism type as valued field with isometry is uniquely
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determined. Note that aω = α. In this case the existence of the required ψ′ is
routine.

If some aω is not a solution, the σ-Hensel scheme gives us a solution a′ω
with

v(a′ω − aω) = v(σ(aω)− c/σ(c) · aω)

> v(σ(an)− c/σ(c) · an)

each n, so a′ω is also a pseudolimit, and we go back to preceding paragraph.

Case 2. The series {an}n<ω has a pseudolimit aω in L1.
Newton approximate against aω. We continue our seach until we are driven

into Case 1.

LEMMA 8.4. Let ψ: L1 → L2 be an admissible isomorphism in the non-Witt-
Frobenius case. Then we can extend ψ to an admissible isomorphism ψ′ between
small valued subfields with isometry L′i whose residue fields satisfy Axiom R4.

Proof. By saturation and Axiom R4 in K1 we get α ∈ k1, σ̄-transcendental
over l1. Lift α to a. Then by now familiar arguments show that the valuation on
L1〈a〉 is uniquely determined, and L1〈a〉 is an unramified extension of L1, with
residue field l1〈α〉; a is σ-transcendental over L1. Obviously l1〈α〉 satisfies Axiom
R4. To lift ψ to L1〈a〉, we (as usual) use the fact that ψr is elementary to extend
ψr to an elementary map ψ′r: l1〈α〉 ←→ l2〈β〉 for suitable β ∈ k2,ψ′(α) = β.
Then lift β to b, and get ψ′: L1〈a〉 ←→ L2〈b〉 with the right behavior for ψ′r,
etc.

Finally, we obtain:

LEMMA 8.5. Letψ: L1 → L2 be an admissible isomorphism, with Li small. Then
we can extend ψ to an admissible isomorphism ψ′ between small valued subfields
with isometry L′i which are pliable with a linearly difference closed residue field.
Furthermore, we can also make the L′i with no immediate σ-extensions.

Proof. Witt-Frobenius case: by Lemmas 8.2 and 8.3, we can construct a
sequence of valued difference field extensions Li = Li,0 ⊆ Li,1 ⊆ Li,2 ⊆ . . . and
isomorphisms ψ = ψ0,ψ1,ψ2, . . . such that

(1) ψj is an admissible isomorphism of L1,j onto L2,j, and ψj+1 extends ψj;
(2) li,j is linearly difference closed if j is odd; and
(3) for all c ∈ Li,j there is a ∈ Li,j+1 such that σ(a) = a and v(c) = v(a) if

j > 0 is even.
Then L′i =

⋃
j Li,j and ψ′ =

⋃
j ψj yield the desired extensions. In the non-Witt-

Frobenius case, do the same dovetailing using in addition Lemma 8.4.
Assume now that each Li is pliable with a linearly difference closed residue

field. By Lemma 7.6, let L′i be a copy in Ki of the maximal immediate σ-extension
of Li. By Theorem 7.5 we can now extend ψ to the L′i, which are also pliable
with a linearly difference closed residue field (since σ-henselian).
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8.2. Unramified extensions.

LEMMA 8.6. Let ψ: L1 → L2 be an admissible isomorphism, with Li small.
Suppose Li are pliable and σ-henselian. Let α ∈ k1 \ l1. Then there exists a ∈
K1, b ∈ K2 such that ā = α and ψ can be extended to an admissible isomorphism
ψ′: L1〈a〉 → L2〈b〉 such that ψ′(a) = b and L1〈a〉/L1 is an unramified extension.

Proof. We want to extend ψ to L′i whose residue field extends that of Li.

Case 1. The ki are of characteristic 0. Use Theorem 6.5 to select difference
subfields, l
i representing li, and then difference subfields k
i ⊇ l
i of Ki, represent-
ing ki.

Then ψr induces naturally ψ
r : l
1 ←→ l
2 elementary in the setting of the
valued difference fields k
i (under σ).

Let α ∈ k1\l1, and α
 the corresponding element of k
1. Consider L1〈α
〉. We
have to detect its isomorphism type and match it in K2.

Pick a basis B of l
1〈α
〉 over l
1. Then any element of L1〈α
〉 can be written
as a quotient of elements having the form x =

∑
λi · bi, λi ∈ L1, bi ∈ B, with

the bi distinct. As usual, if x �= 0, x = λi0 ·
∑

(λi/λi0 ) · bi for some i0, where
v(λi/λi0 ) ≥ 0. Now λi/λi0 = µi + εi,µi ∈ l
1, v(εi) > 0. Also, µi0 = 1.

Thus
∑

(λi/λi0 ) · bi has the same residue as
∑
µi · bi, and this is nonzero, by

the basis property of B. So v(x) = v(λi0 ), so the valuation is uniquely determined
by B.

Also, σ(x) =
∑
σ(λi) · σ(bi), again uniquely determined by B and l1〈α〉.

Thus to extend to ψ′ we let α
 be sent to ψ
r(α
), and match B to ψ
r(B).
The earlier calculations show that L1〈α
〉 is unramified over L1, and has

residue field (naturally isomorphic to) l
1〈α
〉. So (A), (B), (C), (D) are taken
care of.

Case 2. The ki are of characteristic p > 0. To simplify notation we can assume
w.l.o.g. that k1 = k2, by taking suitable ultrapowers (see [23], p. 69).

We work with the coarse valuations v̇, which are σ-henselian on the Li and
Ki by Lemma 6.6; ψ of course respects v̇, but we do not claim its reduction is
elementary on the residue fields of L1 and L2 for v̇. Now use Theorem 6.5 to get
a copy of l̇1, l̇
1 say, as a difference subfield of L1, and similarly a copy of k̇1, k̇
1,
with l̇
1 ⊆ k̇
1.

By saturation k̇
1 is a complete discrete valued field whose residue field nat-
urally identifies with k1, so k̇
1 is isomorphic to W(k1) by a unique isomorphism
which is compatible with the residue map onto k1, and via this isomorphism σ
identifies with the automorphism of W(k1) induced by σ̄ as in Example 1.3. Note
that this isomorphism sends (l̇
1,σ) onto a difference subfield.

Now let c be an element of K1 with v(c) ≥ 0 so that c̄ �∈ l1, and let c
 be the
element of k̇
1 corresponding to the v̇ residue class of c. Note c
 = c̄.
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Then by the argument in Case 1, L1 and l̇
1〈c
〉 are linearly disjoint over l̇
1 and
v̇ on the compositum L1〈c
〉 is determined by (l̇
1〈c
〉, v̇). Also, σ is determined,
and the v̇ value group is not extended, so in fact the extension is unramified for v̇.

Now we look more closely at the argument of Case 1. Note that in the present
case we may pick a basis B (for l̇
1〈c
〉 over l̇
1) with v(b) ≥ 0 all b ∈ B (for
v̇(b) = 0, so v(b) ∈ Z, and if v(b) = −m, m ≥ 0, replace b by pm · b). Now
consider x �= 0 in L1〈c
〉, of the form x =

∑
λi · bi, bi ∈ B,λi ∈ L1. Pick i0 with

v(λi0 ) minimal among the v(λi). Then as before (since v ≥ 0→ v̇ ≥ 0)

v̇(x) = v̇(λi0 ), and

v̇
(∑

(λi/λi0 ) · bi

)
= 0, so

v
(∑

(λi/λ0) · bi

)
∈ Z, and is ≥ 0.

Now we revert to the ∂-formalism, more precisely to the components of Witt
vectors.

We have (cf. Lemma 4.2)

v
(∑

(λi/λ0) · bi

)
= n

⇐⇒

∂n

(∑
(λi/λ0) · bi

)
�= 0 and ∂j

(∑
(λi/λ0) · bi

)
= 0 for 0 ≤ j < n.

(Moreover, if v(y) ≥ 0 then v̇(y) > 0 iff ∂j(y) = 0 j = 0, 1, 2, . . ..) Now, by
[16], (for fixed p) ∂n(x + y) and ∂n(x · y) are given by universal polynomials (over
Z) in the ∂j(x), ∂j(y), 0 ≤ j ≤ n. So once one knows all ∂j(bi), one has determined
all ∂n

(∑
(λi/λ0) · bi

)
, and so knows all v

(∑
(λi/λ0) · bi

)
, and thus v on L1〈c
〉.

In fact, since by Lemma 4.1

∂n(σ(y)) = σ̄(∂n(y))

for all y ∈ k̇
1, it is clear that one knows v on L1〈c
〉 once one knows the sequence

〈∂0(c
), . . . ∂n(c
), . . .〉

or, more precisely, its type over l1. Now we bring the elementarity of ψr into play
(with saturation), to extend ψr to an elementary ψ′r defined on l1(∂0(c
), . . . ∂n(c
),
. . .). Again by saturation there is d
 in K1 with v(d
) ≥ 0 and ∂n(d
) = ψ′r(∂n(c
))
for each n.

We now claim that ψ extends to ψ′: L1〈c
〉 ∼= L2〈d
〉, and ψ′r = ψ′r.
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First, via the components of Witt vectors (∂̄n) and the identifications above,
we have an isomorphism of difference fields

ψ′: l̇
1〈c
〉 ∼= ψ(l̇
1)〈d
〉.

Consider an abstract σ-polynomial G(x) over L1, and write G(x)=e·G1(x), e∈
L1, G1 over the valuation ring with one coefficient equal to 1. If G is over l̇
1 and
G(c
) �= 0 we know

v̇(G(c
)) = 0, so

v(G(c
)) ∈ Z and v(G1(c
)) ≥ 0.

By the preceding analysis in terms of the ∂n, and the choice of d
, Gψ(d
) �= 0
and

v(Gψ(d
)) = v(G(c
)) ∈ Z.

So v̇ is 0 on ψ(l̇
1)〈d
〉, and clearly the latter is a σ-copy of the v̇ residue field.
Moreover we have at least extended ψ on l̇
1 to ψ′: l̇
1〈c
〉 ∼= ψ(l̇
1)〈d
〉 preserving
σ and valuation, and with ψ′(c
) = d
. Now we use ψ′(B) as a basis for ψ(l̇
1)〈d
〉
over ψ(l̇
1), establish the linear disjointness from L2 over ψ(l̇
1) , and again using
the data on the ∂n(c
) and ∂n(d
) we extend ψ to the required ψ′: L1〈c
〉 ∼= L2〈d
〉
preserving σ and v. It is clear that the respective residue fields are l1〈c̄〉 and l2〈d
〉,
and ψ′r = ψr. Also, the extensions are unramified, and we are done, since c was
arbitrary with v(c) ≥ 0.

8.3. Totally ramified extensions.

LEMMA 8.7. Let ψ: L1 → L2 be an admissible isomorphism, with Li small.
Suppose Li are pliable and σ-henselian. Let γ ∈ vK1 \ vL1. Then there exist
a ∈ K1, b ∈ K2 such that v(a) = γ and ψ can be extended to an admissible
isomorphism ψ′: L1〈a〉 → L2〈b〉 with ψ′(a) = b and resL1〈a〉 = l1.

Proof. We want to extend ψ to L′i whose value group extends that of Li.
The task here is to go from L1 to some L′1, to introduce in L′1 an element a

so v(a) ∈ Γ1 is prescribed.

Case 1. The element γ ∈ Γ1 is rationally independent of G1 = v(L∗1). Choose
y ∈ K1,σ(y) = y, v(y) = γ (using the fact that K1 has enough constants). Then
L1(y) is a difference subfield and because of the assumption on γ, v(

∑
cjyj) =

min v(cj) + jγ for cj ∈ L1. Thus v is uniquely determined, and the new field has
value group generated by G1 and γ, and the residue field is not extended. This
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time, use elementarity of ψv to extend it to (ψv)′ on the group generated by G1

and γ. It is routine to extend ψ to ψ′ with (ψ′)v = (ψv)′.
Finally, we deal with angular components. Earlier, we just had to choose ψ′(y)

so that σ(ψ′(y)) = ψ′(y) and v(ψ′(y)) = (ψv)′(v(y)). To get angular components
to match up we need only ensure that ψ′(y) satisfies the extra constraints (recall
that the residue field is not extended, and therefore neither are the residue rings
modulo pn for n ∈ N):

acn(ψ′(G(y))) = ψ′n(acn(G(y)))

for G a σ-polynomial over L1. So by Lemma 1.12 we need just

ψ′r,n(acn(y)) = acn(ψ′(y)).

Thus in addition to fixing v(ψ′(y)) we need to fix acn(ψ′(y)) in the above com-
patible way. By this compatibility, and saturation, it is enough to get, for any n,
some y′ in K2 with σ(y′) = y′, v(y′) = ψ′v(γ) and acn(y′) = ψr,n(acn(y)). But this
is always true, as acn restricts to Fix(σ) and we can always scale by elements of
value 0, and resn is surjective.

Case 2. For some n ∈ N, assumed minimal, n · γ ∈ G1. This time we use
ideas already familiar from quantifier-elimination in the valued field case (for
example, [3]). Let γ1 = n · γ.

We exploit the remark which concluded Case 1. There is, for any m, an
element ym in L1 of value γ with σ(ym) = ym and with acm(ym) = 1. So by
Hensel’s lemma, for m ≥ 2v(n) + 1 there is a unique wm in K1 with wn

m = ym and
acm(wm) = 1.

Now, by uniqueness, σ(wm) = wm. Fix m as above, and let w = wm. Consider
the difference subfield L1(w) = L1[w]. By the minimality of n,

v

(
n−1∑
r=0

cr · wt

)
= min (v(cr) + rv(w))

= v(cr0 ) + r0 · γ,

say (for cr ∈ L1), and so is uniquely determined by v(w) = γ.
Also, the residue field is not extended. Now, Hensel’s lemma provides a

unique t with tn = ψ(ym) and acm(t) = 1. There is a unique ψ′ (extending ψ)

ψ′: L1(w) ∼= L2(t)

ψ′(w) = t.
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ψ′ clearly satisfies (A),(B),(C). For (D), concerning angular components, we argue
that by uniqueness

ack(t) = ψ′r,k(ack(w))

for all k ≥ m. Then, by Lemma 1.12 again, we are done.

8.4. Epilogue. We can now conclude the proof of the Embedding Theorem.
We have an admissible isomorphism ψ: L1

∼= L2, the Li small.
An α ∈ K1 is now given, and we have to find an extension ψ′ of ψ, again

satisfying the above properties, with α ∈ dom(ψ′).
By Lemma 8.5 we can always assume that Li is pliable and σ-henselian.

Then, by Lemma 8.6 and Lemma 8.7 we can define a sequence of small valued
difference field extensions Li = Li,0 ⊆ Li,1 ⊆ . . . and isomorphisms ψ = ψ0,ψ1, . . .
such that

(1) ψj is an admissible isomorphism of L1,j onto L2,j and ψj+1 extends ψj ;
(2) the residue field of L1,j〈α〉 is contained in the residue field of L1,j+1;
(3) the value group of L1,j〈α〉 is contained in the value group of L1,j+1;
(4) L1,j is pliable and σ-henselian.

Let Li,ω =
⋃

j Li,j and ψω =
⋃

j ψj. Then Li,ω are pliable and σ-henselian (so their
residue fields are linearly difference closed), ψω is an admissible isomorphism
of L1,ω onto L2,ω and now L1,ω〈α〉 is an immediate extension of L1,ω. As in the
proof of Lemma 8.5, let L′1 be a maximal σ-extension of L1,ω inside K1 and
containing α, and let L′2 be a maximal immediate σ-extension of L2,ω inside
K2. By Theorem 7.5, we can now extend ψω to an admissible isomorphism
ψ′: L′1 → L′2, and we are done.

9. Completeness and model completeness. Recall that (K, v, k, Γ,σ) sat-
isfies the σ-AEK axioms if it is an unramified valued difference field for which
the Embedding Theorem applies (Definition 2.3).

THEOREM 9.1. Suppose (K, v, k, Γ,σ) satisfies the σ-AEK axioms. Then the ele-
mentary theory of (K, v, k, Γ,σ) is determined by the elementary theory of (k, σ̄)
and the elementary theory of Γ.

Proof. It is clear that on any suitably saturated model there is a system
{acn}n∈N such that if k has characteristic p then acn(pm) = 1 all m. Consider
(Ki, vi, ki, Γi,σi) i = 1, 2 with (k1, σ̄1) ≡ (k2, σ̄2) and Γ1 ≡ Γ2. Let ψ: Q ←→ Q

be the identity, use the above acn, and apply the Embedding Theorem.

COROLLARY 9.2. Suppose (K, v, k, Γ,σ) satisfies the σ-AEK axioms. Then
(K, v, k, Γ,σ) is decidable if and only if (k, σ̄) and Γ are.

Example 9.3. The elementary theory of W(Falg
p ) with the Witt Frobenius is

axiomatized by “Witt-Frobenius case,” the σ-AEK axioms, residue field alge-
braically closed of characteristic p, value group a Z-group with unit v(p). Call
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this theory WFp. One actually has an axiomatization as a difference field since
the p-valuation is algebraically definable. So this theory of (valued) difference
field is decidable.

THEOREM 9.4. Let
∑

be a set of sentences for a class of (K, v, k, Γ,σ) satisfying
the σ-AEK axioms, saying that (k, σ̄) satisfies

∑
1, and Γ satisfies

∑
2, where

∑
1

and
∑

2 are model-complete. Then
∑

is model-complete.

Proof. This is only a minor variant of Theorem 9.1. This time one has to
consider a small model L1 and ψ: L1 ←→ L1 the identity, and extend ψ to a
bigger model L′1 (all inside a suitably saturated K1). By blowing up we can put
a system acn on L1 without loss of generality (assuming L1 �≺ K1), and extend
the acn to (a new) K1 suitably saturated. Then the Embedding Theorem gives the
result.

Example 9.5. The elementary theory of W(Falg
p ) with the Witt Frobenius.

We now know that WFp, the elementary theory of W(Falg
p ) with the Witt

Frobenius, is model-complete. The next proposition ensures that WFp is the model
companion of the theory of “Witt-Frobenius case” valued fields with isometry,
i.e. unramified satisfying σ̄(x) = xp. Call this theory Tp.

PROPOSITION 9.6. (Model Companion) Every model of Tp embeds in a model
of WFp.

Proof. Let (K, v,σ) be a model of Tp. We have seen that we can go to
henselisations, so we can assume (K, v) is henselian. Using the ramification theory
of general valuations (see [30], chap. 3) we can pass to the maximal unramified
extension (K′, v) of (K, v) inside its algebraic closure. This is a Galois extension
whose residue field is the algebraic closure of the residue field of K, its value
group is the same as K, and σ extends to K′ (see Lemma 8.1), v(σ(x)) = v(x) is
automatically fulfilled. We are now in position to use the same arguments as in
Lemma 8.3 but now working inside the (unique) maximal immediate extension
of (K′, v): by uniqueness σ extends and we will have a valued field with isometry
satisfying the σ-Hensel scheme by Lemma 7.4. We have now extended (K, v,σ)
to a model of Tp which is henselian, has an algebraically closed residue field and
has enough constants. To get a Z-group, apply the argument as in p-adic fields
but with minor adjustments for σ (see [25], §3, Thm. 3.1). Finally, to get the
σ-Hensel scheme, go to the maximal immediate extension as before.

10. Teichmüller lifts. In this section we discuss an application of our main
results to the theory of Teichmüller lifts. This material is not used in the sequel.
The reader may wish to consult [14] for background on formal groups.

The usual Teichmüller map is a multiplicative section of the residue map for
the ring of Witt vectors of a perfect field. In terms of limits, if k is a perfect field
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of characteristic p > 0, then the Teichmüller map τ : k→ W[k] is defined by

τ (x) := lim
n→∞

(π(̃x))pn =x

x̃pn

where π: W[k]→ k is the reduction map. The map τ plays a central rôle in the
theory of the Witt vectors. For instance, every element of W[k] may be developed
(uniquely) as a power series in p with coefficients from the image of τ . That is,
for any x ∈ W[k] there is a uniquely associated sequence (xi)i∈ω of elements of
k for which x =

∑∞
i=0 τ (xi)pi.

Work of van den Dries [11] shows that the theory of (W(k), k,π, τ , +,×) is
determined by the theory of k and is, in particular, decidable when k is decidable.

One can define τ , as well as other analogous Teichmüller maps, using the
Witt-Frobenius. Indeed, if σ: W[k]→ W[k] is an automorphism lifting the Frobe-
nius, then τ may be defined by

τ (x) = y⇐⇒ π(y) = x & σ(y) = yp.

So, the structure (W[k], k,π, τ , +,×) is interpretable in (W[k], v,σ, +,×) and
van den Dries’ relative completeness and decidability theorems follow from our
main theorem (at least in the cases where our axioms on solutions of residual
linear difference equations hold).

There are other Teichmüller maps interpretable in (W[k], v,σ, +,×). Suppose,
for instance, that G is a semiabelian scheme over W[k].

We define the Teichmüller map τG: Gk(k)→ G(W[k]) by

τG(x) := lim
n→∞

[pn]π(̃x)=x

[pn](x̃).

It is not true that for every such G the map τG is definable in the valued
difference field (W(k),σ, v, +,×), but it is for sufficiently nice G. Suppose that
there is an isogeny ψ: G → G(σ) which restricts to the Frobenius morphism
F: Gk → G(p)

k on the special fibre. Such an isogeny exists when G is the multi-
plicative group, in which case ψ is just x �→ xp, and more generally for canonical
lifts. In this case τG may be defined by

τG(x) = y⇐⇒ π(y) = x & σ(y) = ψ(y).

Let us check that that this formula correctly defines τG. Using the limit
formula for τG and the continuity of σ and ψ, one sees that τG commutes with
the σ and ψ in the sense that σ ◦ τG = τG(σ) ◦ F and that the Teichmüller maps
are homomorphisms. It follows that for any x ∈ Gk(k) that (σ −G ψ)(τG(x)) =
τG(σ) ((F − F)(x)) = 0. Conversely, we note that there is only one solution to
σ(y) = ψ(y) and π(y) = 0. Indeed, as ψ restricts to the Frobenius, all of the
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eigenvalues of its differential have positive p-adic valuation. Using a formal group
law for G, we may express the kernel of reduction as Ĝ(pW[k]) ∼= ((pW[k])g,⊕G)
where g = dim G and ⊕G is the formal group law. By the above observation,
relative to these coordinates, ψ(x1pt, . . . , xgpt) ≡ (0, . . . , 0) (mod pt+1) while
σ(x1pt, . . . , xgpt) ≡ (xp

1pt, . . . , xp
gpt) (mod pt+1). Clearly, zero is the only solution

to σ(y) = ψ(y) in the kernel of reduction. Thus, for any x ∈ Gk(k), τG(y) is the
unique solution to π(y) = x and σ(y) = ψ(y).

This example of an interpretable Teichmüller map may be generalized slightly
to the case of quasi-canonical lifts for which there is an isogeny ϑ: G → G(σn)

restricting to the pn-Frobenius on the special fibre.

11. Quantifier elimination. In this section we state precisely the quantifier
elimination theorems and point out some formal equivalences between them.

We have to look more closely at Denef’s angular components.
While some angular component functions are already definable in the lan-

guage of valued fields for some valued fields (e.g. Qp, cf. remark 1.11), there
are henselian valued fields in which these functions are not definable (take for
example C((t))). This issue is avoided in the work of Basarab and Kuhlmann by
considering “mixed structures” or “additive-multiplicative congruences” [3], [20].
If K is a valued field and I ⊆ VK is a proper ideal (in our case the maximal ideal
m of V , or some pnm), then we set KI := K∗/(1+I) and πI: K∗ → KI the quotient
map. The structure KI is more than just a group under multiplication. It continues
to carry the valuation of K and addition on K leaves a trace on KI in the form of
a ternary relation AI(x, y, z)⇔ (∃x̃, ỹ ∈ K∗)πI(x̃) = x & πI(ỹ) = y & πI(x̃ + ỹ) = z.
Quantifier elimination relative to the mixed structures (for an appropriate choice
of ideals) holds in fairly general henselian fields. There is a price to be paid for
working only with structures interpretable in the language of valued fields: the
structure of the class of definable sets in the mixed structures may be obscure.

Angular components and mixed structures adapt to valued difference fields
without any substantial changes. If (K, v,σ) is a valued difference field and I ⊆
VK is a proper ideal, then σ induces an automorphism of KI which we continue
to denote by σ. We say that the angular component map acI: K∗ → (VK/I)∗ is
compatible with σ if it commutes with σ. A simple calculation as in section 1
shows that, in our context, this is equivalent to having ac restrict to Fix(σ)
in the natural way. After stating precisely the elimination theorems for those
formalisms, we show how they follow from each other. Our embedding theorem
yielding elimination of quantifiers used the angular component maps.

We need to use many-sorted first-order logic, where variables, constant sym-
bols, function symbols and relation symbols have prescribed sorts. Terms and
formulas are built in the usual manner, and the classical results hold (see [19]).

Let µ be a multisorted signature and L(µ) the associated first-order language.
If f is a function symbol of µ, let dom( f ) designate the sequence of sorts for the
domain of f , and rng( f ) the sort for the range of f . If R is a relation symbol,
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let fld(R) designate the sequence of sorts for the domain of R. Let Σ be a set of
µ-sort symbols. We define a new signature µ′ := µqf−Σ having the same constant,
function, and relation symbols plus new relation symbols Rφ(σ) for each φ ∈ L(µ)
whose free variables are all of sorts belonging to Σ. Fixing an ordering of the
free variables of φ, x(i0)

S0
, . . . , xim−1

Sm−1
, we define fld(Rφ) to be 〈S0, . . . , Sm−1〉. The

theory Tqf−µ,Σ is generated by the (universal closures of) the formulas φ↔ Rφ,
for φ ∈ L(µ) as above.

Definition 11.1. Let µ be a multisorted signature, Σ a set of µ-sort symbols,
and T an L(µ)-theory. We say that T eliminates quantifiers relative to Σ if for
any formula ϕ ∈ L(µ) there is a quantifier-free formula ψ ∈ L(µqf−Σ) such that
T ∪ Tqf−Σ,µ * ϕ↔ ψ.

We intend to prove not only relative quantifier elimination results in a fixed
language but rather such results for any expansion of the language of valued
difference fields by predicates on the mixed structures.

Definition 11.2. Let µ be a multisorted signature, Σ be a nonempty set of
µ-sorts, and T an L(µ)-theory. We say that T resplendently eliminates quantifiers
relative to Σ if for any model M |= T and any signature τ ⊇ (µ |Σ) with exactly Σ
as sorts and only new predicates, and any expansion M′ of M |Σ to a τ -structure
and any formula φ ∈ L(µ ∪ τ ), there is some quantifier-free ψ ∈ L((µ ∪ τ )qf−Σ)
such that T ∪ Tqf−Σ,µ∪τ * φ↔ ψ.

LEMMA 11.3. Let µ ⊆ µ′ be multisorted signatures. Let Σ be a set of µ-sort
symbols. We suppose that the only difference between µ and µ′ is that there may
be new function symbols in µ′. Let T be an L(µ)-theory and T ′ ⊇ T a L(µ′) theory
which eliminates quantifiers in L(µ′) and with T = T ′ |L(µ).

We make the following assumptions.
• If f is a new function symbol of µ′, then dom( f ) ∈ <ωΣ and rng( f ) ∈ Σ.
• If R is a µ-relation symbol, then either all sorts of its domain belong to Σ or

all do not.
• If t is a µ-term with all sorts of its variables belonging to Σ, then rng(t) ∈ Σ.
If in every model M |= T every L(µ)M-definable subset of (M |Σ)n is already

definable in L(µ)(M|Σ), then T eliminates quantifiers in L(µ) relative to Σ.

In what follows we write tp(a) for the type of the tuple a and qftp(a) for its
quantifier-free type.

Proof. Let φ ∈ L(µ) be a formula. By hypothesis, there is some quantifier-
free ψ ∈ L(µ′) such that T ′ * φ ↔ ψ. Write φ as φ(x, y) with x a tuple of
variables ranging over sorts not in Σ and y a tuple of variables ranging over
sorts in Σ. By our hypotheses on µ and µ′, up to equivalence over T ′, we have
ψ(x, y) =

∨n
j=1 θj(x, y) ∧ ϑj(α(t(x), y)), where θj ∈ L(µ) and ϑj ∈ L(µ | Σ) are

quantifier-free formulas, α is a tuple of µ′-terms, and t(x) is a tuple of L(µ)-terms
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with range in Σ. By considering each formula φ ∧ θj separately, it suffices to
work in the case that n = 1 so that we drop the subscripts from θ and ϑ.

If θ(x, y) ∧ ϑ(α(t(x), y)) is not equivalent (modulo T ′ ∪ Tqf−µ,Σ) to a
quantifier-free L(µ ∪ µqf−Σ,µ)-formula, then it is consistent with T ′ that there be
(x′, y′) with tpL(µ|Σ)(t(x), y) = tpL(µ|Σ)(t(x

′), y′) and qftpL(µ)(x, y) = qftpL(µ)(x
′, y′)

and φ(x, y) ∧ ¬φ(x′, y′).
As no new structure is induced on Σ (relative to T), tpL(µ|Σ)(t(x), y) *

tpL(µ)(t(x), y)). Thus, we can find such x, y, x ′, y′ in some model M |= T (which we
may presume to be a reduct to L(µ) of a model of T ′) and a L(µ)-automorphism
τ : M → M with τ (t(x), y) = (t(x ′), y′). If we suppose M |= φ(x, y), then as
(x, y), (x ′, y ′), and (τ (x), τ (y)) all have the same L-quantifier free type, we have
M |= θ(x, y) ∧ θ(x′, y′) ∧ θ(τ (x), τ (y)). We have then

φ(x, y) ⇒ φ(τ (x), τ (y))

⇒ θ(τ (x), τ (y)) ∧ ϑ(α(τ (t(x)), τ (y)))

⇒ θ(x ′, y ′) ∧ ϑ(α(t(x ′), y′))

⇒ φ(x ′, y′)

Let us return now to valued fields with isometry to explain how we shall
consider them as multisorted structures for the current discussion. The multisorted
signature of valued fields with isometry µisom is defined as follows. There are
sort symbols K, Γ, k, “as before”, viz. to be interpreted as the base valued field,
the value group, the residue field, and now extra sorts Kn for each n ∈ ω, to be
interpreted, by abuse of notation, as the previous Kpnm, where p is a constant
symbol to designate the residue characteristic in the case of positive residue
characteristic and 1 when the residue characteristic is zero. There is a function
symbol σ for the distinguished automorphism, v for the valuation map. There
are the various required symbols for K construed as a ring, Γ as an ordered
abelian group plus a constant ∞ = v(0), k as a ring plus a constant ∞̄ to be
interpreted as the reduction of any element not in the valuation ring, and another
constant p̄ for the reduction of p. The sort Kn is construed as the truncated ring
already described, with a full multiplication and a ternary predicate for addition
whenever it is defined and a constant pn for the reduction of p. We have extra
function symbols ρ for the previous reduction map ¯ extended as just prescribed,
vn for the induced valuation on Kn, σ̄ for the reduction of σ, σn for the reduction
of σ in Kn, πn for the quotient map K → Kn, πn,m for the natural quotient map
Kn → Km, ρn for the induced reduction map on Kn. So, as µisom-structures, our
valued fields with isometry can be presented, by abuse of notation, as follows
(K, k, Γ, Kn, v, vn,σ, σ̄,σn, p, p̄, pn,∞, ∞̄, ρ, ρn,πn,πn,m) .

Let (L, v, k, Γ,σ) be a valued field with isometry. In the case that pL is a
unit, the maps πn,m: KL

n → KL
m are isomorphisms so that there is no need to go
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beyond the reduct to (K, Γ, K0). In order to make a uniform statement, we do not
explicitly specify the value of p. However, in mixed characteristic, we require
that v(pL) is at least that of p, the residue characteristic.

For our discussion, we will construe angular component maps as splittings
of the exact sequences

1 −→ (V/pn
m)∗ −→ K∗/(1 + pn

m) −→ Γ −→ 0

as in Section 1. We thus set the language of valued difference fields with angular
components by adjoining to L(µisom) function symbols acn having domain sort
and range sort Kn, as the natural range of an angular component acn is the group
(V/pnm)∗ which is now definable as the kernel of the induced valuation vn on Kn.

We can now state the elimination theorems.

THEOREM 11.4. The theory of σ-henselian fields satisfying the σ-AEK axioms
with angular component functions resplendently eliminates quantifiers relative to
{Γ, k} (and also relative to {Kn: n ∈ ω}).

We have a similar statement without angular component functions.

THEOREM 11.5. The theory of σ-henselian fields satisfying the σ-AEK axioms
resplendently eliminates quantifiers relative to {Γ, k} ∪ {Kn: n ∈ ω}.

For residue characteristic zero, we get quantifier elimination relative to
just K0.

THEOREM 11.6. The theory of σ-henselian fields satisfying the σ-AEK axioms
and of residue characteristic zero with an angular component function, in the
reduct to {K, K0, k, Γ}, resplendently eliminates quantifiers relative to {Γ, k} (and
also relative to {K0}).

Likewise, we have a better statement for residue characteristic zero without
angular components.

THEOREM 11.7. The theory of σ-henselian fields satisfying the σ-AEK axioms
and residue characteristic zero, in the reduct to {K, K0, k, Γ}, resplendently elimi-
nates quantifiers relative to K0.

Theorems 11.4, 11.6 follow directly from the Embedding Theorem. More
general theorems are proved in [29] in the slightly different setting of valued
D-fields.

As the forms of Theorems 11.4 to 11.7 are so similar, it should come as no
surprise to the reader that there are formal implications between these statements.

Before proving the formal implications we need a lemma on expansions of
valued fields with isometry to valued fields with isometry with angular compo-
nents, which follows from the remarks in section 1 (or see [29]).
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LEMMA 11.8. If K is a valued field with isometry and enough constants and
τ :
⋃

n∈ω Kn →
⋃

n∈ω Kn is an automorphism of the reduct to {Kn: n ∈ ω}, then
there is an elementary extension (K�, τ�) of (K, τ ) which admits the structure of a
valued field with isometry with angular components with respect to which τ∗ is an
automorphism.

PROPOSITION 11.9. Theorem 11.4 implies Theorem 11.5 and Theorem 11.6 im-
plies Theorem 11.7.

Proof. We begin with Theorem 11.4 ⇒ Theorem 11.5. Let L′ ⊇ L(µisom)
be some expansion of the language of valued fields with isometry by relations
on {Kn: n ∈ ω}. Let K be a σ-henselian field satisfying the σ-AEK axioms,
considered as an L′-structure. By Lemma 11.8 applied to τ = id there is an
elementary extension K� - K which admits an expansion to L′({acn: n ∈ ω}).

We check that the hypotheses of Lemma 11.3 apply. As K is a σ-henselian
field satisfying the σ-AEK axioms, the main point is that K induces no new
structure on {Kn: n ∈ ω}. For this it suffices to show that every automorphism
of {Kn: n ∈ ω} extends to an L′-automorphism of some elementary extension
of K.

Let K be considered as an L′-structure and let τ be any automorphism of
K |{Kn: n∈ω}. By Lemma 11.8 there is a σ-henselian field K� with angular com-
ponents considered as an L′({acn: n ∈ ω})-structure such that K . (K� |L) and
there is some τ� ∈ AutL′({acn: n∈ω})(K

� |{Kn: n∈ω}) with τ� ⊇ τ . By our hypothe-
ses and Theorem 11.4, there is an elementary extension L - K� on which τ�

extends to an automorphism of all of L. This automorphism is, of course, also an
automorphism of L |L. Thus, every L′-automorphism of K |{Kn: n∈ω} extends to
some L′-automorphism of some elementary extension of K. Thus, the implication
Theorem 11.4 ⇒ Theorem 11.5 now follows from Lemma 11.3.

The argument in the case of Theorem 11.6 ⇒ Theorem 11.7 is the same as
that in the case of Theorem 11.4 ⇒ Theorem 11.5 with the exception that we
talk only about K0 instead of all the mixed structures.

We also observe that quantifier elimination with angular components also
follows from quantifier elimination with the mixed structures, in our unramified
case.

PROPOSITION 11.10. Theorem 11.5 implies Theorem 11.4 and Theorem 11.7
implies Theorem 11.6 .

Proof. To see this we need to reinterpret the quantifier elimination with mixed
structures in terms of embeddings. Then, arguments as in [4] (Lemma 4.3 and
Theorem 5.3), apply mutatis mutandis to recover quantifier elimination with an-
gular components. The point is the interpretation of the angular component map
as a splitting of the corresponding exact sequence of the mixed structure. An
embedding of the underlying groups will then readily induce an embedding of
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the corresponding exact sequence. To take care of the extra structure one uses
finite ramification. In the end, the embedding of valued fields is compatible with
angular components by construction.

Finally, we note that since in W(Falg
p ) angular components are existentially

definable relative to the fixed field Qp (remark 1.11), if ϕ(x) is a “relative”
quantifier free formula given by Theorem 11.4, with base field free variables
x, then by replacing the acn’s by their definition we get an equivalent formula
ϕ(x, x′), where x′ are new base field variables and the acn’s do not occur, but the
only occurences of base field quantifiers are of the form ∃x′(σ(x′) = x′∧ · · ·), i.e.,
∃ x′ ∈ Fix(σ).

12. From characteristic p to characteristic 0. Fix a Witt-Frobenius case
(Kp, vp, kp, Γp,σp) satisfying the σ-AEK axioms for each prime p, and let
(K, v, k, Γ,σ) be a nonprincipal ultraproduct of the (Kp, vp, kp, Γp,σp). Note that
(Kp, vp, kp, Γp,σp) is elementarily equivalent to W(kp) with the Witt Frobenius.

LEMMA 12.1. The difference field (k, σ̄) satisfies no σ̄-identities.

Proof. It follows from our previous discussion on σ-identities (section 3), but
in this case there is a simple direct argument: consider any putative σ̄-identity

F(x, σ̄(x), . . . σ̄(n)(x)) ≡ 0, x ∈ k

i.e.,

F(x, xp, . . . xpn
) ≡ 0, x ∈ k.

Now if F(x0, . . . xn) =
∑

cl · xl, and p > max |l|, F(x, xp, . . . xpn
) is not the zero

polynomial over kp, so, since kp is infinite, doesn’t vanish identically.

To get Axiom RG satisfied in the ultraproduct we (apparently) need to make
some assumptions on the kp. Since Kp is σ-henselian, kp is linearly difference
closed, and if we require Axiom R2 or Axiom R3 for each (kp, σ̄p), by Propositions
3.9 and 3.6 this will make Axiom RG true in the ultraproduct. In particular:

LEMMA 12.2. If the kp are algebraically closed, the ultraproduct satisfies Ax-
iom RG.

Now consider the characteristic p field (kp((t)), vp, kp,Z,σp,t) where σp,t is
genuine Frobenius on kp, and σp,t(t) = t, as in Example 1.4. The following
theorem subsumes the AEK theorem relating Qp and Fp((t)) (by considering the
Fix(σ)): taking ultraproducts we get fields satisfying the σ-AEK axioms with
identical residue fields and value groups, whence elementarily equivalent.
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THEOREM 12.3. If D is any nonprincipal ultraproduct on the primes, then∏
D

(W(kp), vp, kp,Z,σp) ≡
∏
D

(kp((t)), vp, kp,Z,σp,t).

COROLLARY 12.4. Any sentence true in all (W(Falg
p ),σp) is true in all but finitely

many (Falg
p ((t)), σp,t), and vice versa.

The model companion of the theory of difference fields of characteristic 0 is
known as ACFA0 (“algebraically closed fields with an automorphism”, see [7]).
Nonprincipal ultraproducts of the (W(Falg

p ), vp,Falg
p ,Z,σp) lead to (K, v, k, Γ,σ)

where k is algebraically closed of characteristic 0, and (k, σ̄) |= ACFA0 (by unpub-
lished work of Hrushovski and Macintyre [15], [22]). Since ACFA0 is decidable
we get:

THEOREM 12.5. The theory of the class of all (W(Falg
p ), vp,Falg

p ,Z,σp) is decid-
able.

Note. Using the (quite intricate) quantifier-elimination for ACFA0 given
in [21], one can give one for the class of all (W(Falg

p ), vp,Falg
p ,Z,σp), but in

view of the complexity of this we omit the details.
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