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MODEL THEORY OF THE FROBENIUS ON THE WITT VECTORS

By Luc BELAIR, ANGUS MACINTYRE, and THOMAS SCANLON

Abstract. We give axiomatizations and prove quantifier elimination theorems for first-order theories
of unramified valued fields with an automorphism having a close interaction with the valuation. We
achieve an analogue of the classical Ostrowski theory of pseudoconvergence. In the outstanding
case of Witt vectors with their Frobenius map, we use the O-ring formalism from Joyal.

0. Introduction. Our main objective is to understand the model theory of
the rings of Witt vectors carrying the (relative) Frobenius automorphism. As
generally happens in model theory, the objective is achieved by studying a much
wider class of models, most of which have no particular mathematical interest.

A model for our enterprise is the work of Ax-Kochen and Ershov, henceforth
AEK. In a fundamental series of papers [2], [13] they studied the model theory
of henselian valued fields (K, v, k,I"), where v: K* — T is a henselian valuation
with residue field k, subject only to the restrictions:

(a) K has characteristic 0

(b) if k has finite characteristic p then v(p) is the least positive element in
the value group.

We call valued fields satisfying conditions (a) and (b) unramified.

In this case, AEK showed that the theory of K is determined by those of I"
and k.

The most important case is when K = QQ, or an unramified algebraic exten-
sion of Q,, but the general setting also reveals information about variation in p,
codified by taking ultraproducts of p-adic fields. In this way mixed characteristic
theories converge to theories with characteristic zero residue fields (the pseu-
dofinite fields of Ax [1]). One gets the famous AEK analogy between generic Q,
and generic [F,((?)) (though, alas, the theory of fixed FF,((r)) remains unknown).

Many subsequent authors refined the analysis, linking the type structure of
K with those of I' and k. Denef’s angular component maps (see [9]) come in at
the level of quantifier-elimination, and have remained prominent in recent very
sophisticated work of Denef and Loeser on motivic integration (see [10]).

We will achieve something similar. The (K, v,k,I') of most importance to
us are the completions of the maximal unramified extensions Q)" of Q,, where
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k= Fglg , the algebraic closure of F,. These are the fraction fields W(Ff,’lg ) of the

rings W[F4a*] of Witt vectors over [y, and carry o, the Witt Frobenius (see
Example 1.2), satisfying 0,(x) = x” (mod p). A field with an automorphism is
called a difference field. We will usually denote the distinguished automorphism
by o. To study the theory of those (K, v,k,T’,0) we make a more general study
of difference fields carrying a valuation. Though the model theory of difference
fields has seen spectacular development (and applications) (see [7]), this does not
help us much, except at the end of this paper when we study the variation in p of
the completions of ()", and get information on types via the work of Hrushovski
and Macintyre [15], [21] on variation of the Frobenius x — x”.

Our main achievement is an analogue, in the setting of difference fields
carrying a valuation, of the classical Ostrowski theory of pseudoconvergence
(used by AEK). This is quite delicate, and requires some restrictions on how o
interacts with k£ and I'. For example, we shall require that o induces the identity
map on the value group and that it reduces to some given automorphism & on the
residue field. Under these restrictions maximal immediate o-extensions behave
well, and from there we can proceed to analogues of the AEK results, for example
showing that in the case k has characteristic 0 the theory is determined by of those
of (k,5) and I'. In the mixed case, with k of characteristic p , v(p) =1, and 6 =
Frobenius, the theory is determined by those of k£ and I'. In all cases we describe
the types of K in terms of those of (k, &) and I', using angular components.

In the analysis of the Witt-Frobenius case, we make use of the J-ring formal-
ism from Joyal’s [16]. However we do not pursue the issue of an axiomatization
in those terms.

The paper is organized as follows. In Section 1, we establish basic notation
and assumptions and recall some key facts from valuation theory and the notion
of angular component map. Section 2 contains a precise statement of the key
result, a general Embedding Theorem. The main model theoretic results of this
paper are applications of this Embedding Theorem: for valued difference fields
for which it applies we obtain completeness and model-completeness theorems
(Sections 9, 10), quantifier elimination (Section 11), completeness and decidabil-
ity theorems when we vary p (Section 12). In Section 3, we axiomatize the basic
properties involved in our work and single out the key base fields for which
we are successful. In Section 4, we introduce the formalism of O-rings. In Sec-
tion 5, we develop the theory of pseudoconvergence in the o-setting. The main
new feature here is the failure of continuity of o-polynomials with respect to
pseudoconvergence, in contrast to the purely algebraic setting where polynomials
have this kind of continuity (Lemma 5.1). The crucial observation is that enough
continuity can be preserved modulo an equivalence relation on pseudoconvergent
sequences (Definition 5.3). This section is devoted to establishing the appropriate
version of the new continuity (Theorem 5.9), and valued difference fields for
which we have it will be called pliable. In Section 6, we establish some basic
facts about the o-Hensel scheme, which plays the role of Hensel’s lemma in the
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classical setting, particularly with respect to pseudoconvergence. In Section 7, we
establish the existence and uniqueness of maximal immediate o-extensions for
pliable valued difference fields, in analogy with the classical setting. In Section 8§,
we prove the Embedding Theorem, again in analogy with the classical situation
(see e.g. [18]).

For basic model theory we refer to [23]. For the basic theory of pseudocon-
vergence and valuations we refer to [26], [18], [30], and for Witt vectors to [32].
For the basic theory of difference fields we refer to [8]. Our difference fields are
the inversive difference fields of [8].

Acknowledgments. We wish to express our thanks to Marie-Claude Coté
for having “LaTeXified” the very first draft of this paper with a formidable effi-
ciency. We also wish to thank Lou van den Dries for the preprint of his inspiring
paper [11]. We thank our referees for their tireless efforts and their useful sug-
gestions.

1. Preliminaries. We will use boldface notation for multivariables and up-
les, e.g. x = (xp, . ..,X,). For aring A, A* will denote its multiplicative group of
units.

We will be working with fields K of characteristic 0 with valuation v: K* — T
and residue field k, V will be the valuation ring, and ~ will be used (in a variety
of contexts) for reduction to k from V. In particular, if F € V[xq,...,x,], F
is the reduced element in k[xo,...,x,]. The field K will carry in addition an
automorphism o, and we generally denote this structure as (K, v, k,I', o). We will
denote by Fix(o) the fixed field of o.

From the outset we require o be an isometry. (This terminology is taken from
the literature [12].):

Axiom 1. Vx v(o(x)) = v(x).

Definition 1.1. We say that (K, v,k,I',0) is a valued field with isometry if it
satisfies Axiom 1.

On model theoretic grounds requiring that ¢ induce the identity on I is natural
if we aim for the existence of model companions of theories of (K, v, k, I, o), by
a result of Kikyo [17]. The axiom obviously implies that o is continuous for the
valuation topology, and ¢ reduces to an automorphism & of k.

Example 1.2. Take k perfect, characteristic p, K = W(k) = the field of frac-
tions of the ring of Witt vectors W[k]. Let 7: k — W[k] be the Teichmiiller map,
i.e. the (unique) multiplicative section of the reduction map. Every x € W(k) has a
unique representation x = an” 0 T(xp)p", no € Z, and one has the automorphism
Op(X) =3 >, TP, the Witt Frobenius.
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Example 1.3. Let k be as in the previous example and f any automorphism
of k. Then, as above, one has the automorphism of W(k) given by oy(x) =
> n>n, T(f(n))p". In fact, by the universal property of Witt vectors ([32], ILS5,
Prop. 10), any isometry of W(k) is of this form.

Example 1.4. Take k a field of characteristic 0, K = k((¢)), and f an auto-
morphism of k. Then we get the automorphism of K defined by o7(}_ x,t") =

oS Cent"

These examples satisfy another property, namely:
Axiom 2. Vxdy(a(y) =y A v(x) = v(y)).

Definition 1.5. We say that (K, v,k,1', o) has enough constants if it satisfies
Axiom 2.

One should note a minor logical difference between the two axioms. In our
category of structures (K, v, k, I', o) substructures are fields closed under o. Being
a valued field with an isometry passes to substructures, while having enough
constants does not.

We say an extension of valued fields carrying an automorphism is immediate
if it is immediate as an extension of valued fields. We assume known the theory of
pseudoconvergence, which elucidates these extensions. We use the variant where
only eventual behavior is required: e.g. an ordinal-indexed (without a maximum)
sequence {a,} is a pseudoconvergent series (henceforth p.c.) if there is an index
po such that for all p3 > p» > p1 > po we have v(a,, — a,,) > v(a,, — a,,)
([26], or see [18]). We will use the notation {a,} ~» a for the statement that {a,, }
pseudoconverges to a (or, a is a pseudolimit of {a,}). It will be very useful to
use the notation vy, for the eventual (6-independent) value v(as — a,) for 6 > p.
The width of {a,} is {y € T U {oo}: v > =, all p}, and is important precisely
because if {a,} ~» a then {a,} ~ b if and only if v(a — b) is in the width
of {a,}.

A useful observation is that if {a,} is p.c. in a valued field, possibly with
extra structure, then {a,} has a pseudolimit in an elementary extension.

One should observe that under immediate extensions having enough constants
is preserved. The isometry axiom is also preserved, provided the automorphism
is a valued field automorphism (as it will be if we work in an ambient valued
field with an isometry).

We will extend the classical theory of henselisation, and we will make heavy
use of the classical theory. We review the crucial fact. The property henselian
(for fields) is first-order, and every valued field K has a henselisation K — K",
immediate algebraic over K. Any isomorphism of valued fields extends uniquely
to an isomorphism of their henselisations. A reference for all this material is [27].

This leads to a very useful lemma.
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Lemma 1.6. If (K, v, k, T, 0) is a valued field with an automorphism o of valued
fields, then o extends uniquely to a valued field automorphism o of K. If (K, o)
is a valued field with isometry having enough constants, then so is (K", o™).

We will make some use of the so-called coarse valuation, a standard tool in
the classical setting. The following lemma gathers the basic facts needed.

LeMMA 1.7. (The coarse valuation) Suppose (K, v,k, T, o) is unramified and the
characteristic of k is p > 0. Let T'g be the convex subgroup of I generated by
v(p) and v: K* — T'/T be the composition of v and the canonical quotient map
I — I'/T.

(i) The map v is a valuation.

(1) If (K, v,k,T',0) is a valued field with isometry (resp. having enough con-
stants), then (K, 0, k, I'/Ty,0) is also a valued field with isometry (resp. also has
enough constants), where k is the residue field for ©.

(iii) The residue field k of © has characteristic 0 and is isomorphic to a subfield
of W(k). If k is perfect and oy is the automorphism of W(k) induced by f = & as in
Example 1.3, then k is isomorphic to a difference subfield of (W(k), of).

Proof. (i) This is routine and well known (e.g. see [30], chap. 1).
(ii)—(iii). Let V be the valuation ring of #, and pi the maximal ideal. Then

V = {x: v(x) >, some v € Iy}
o= {x: v(x) >To}.

No ramification gives p & i, so k = V/;i has characteristic 0. The field V/z
carries a valuation given by zp(x + /i) = v(x). The map o induces & on k by
0(x + f1) = o(x) + pi. It bears noting that the reduction map from V to k factors
as the composition of the reduction map from the valuation ring of ¢y to k with
the reduction map on V restricted to V so that ¢ induces & on k. Obviously,
(k, vy, k, T, 6) is a valued field with isometry having enough constants, and has
value group I'g = Zuv(p), so is isomorphic to a subfield of W(k), and if k is perfect
to a difference subfield of (W(k), o). O

Angular component maps are natural in the context of quantifier-elimination
results in valued fields (mainly in the work of Denef’s school (see [24])), and
exist for N;-saturated K (see below).

Definition 1.8. Let (K, v,k,T") be a valued field. An angular component map
(or coefficient map) is a map ac: K* — k* so that:

(i) ac is a multiplicative homomorphism;

(ii) the restriction of ac to {y: v(y) =0} is y — V.

An angular component map corresponds to a splitting of the exact sequence
(Krasner’s “corpoide”, see [4])

l — k" — K/l+max V—T —0
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where max V is the maximal ideal of V (see e.g. [4]). Note that ac exists whenever
k* is pure-injective, in particular when (K, v, k, ') is N-saturated. Also, if 7: I" —
K* is a cross-section then x — x/7(v(x)) is an angular component map.

In fact we will need only an angular component map ac on Fix(o). Indeed,
under the assumption that the valued field with isometry has enough constants,
if ac is an angular component map on Fix(c) it can be extended uniquely to
the whole of K: for x € K, let y € Fix(o) such that v(x) = ©(y), then ac(x) =
ac(y) - y~lx.

Definition 1.9. Let (K, v,k,I') now be an unramified valued field of charac-
teristic O with k of characteristic p > 0 and consider the natural maps

res,: V. — V/(p"), n=12...

A system of angular component maps is a system ac,: K* — (V/(p"))* such that:
(i) each ac, is a multiplicative homomorphism;
(ii) the restriction of ac, to {y: v(y) =0} is res,;
(iii) ac, is the composition K* “** (V/(p™)* — (V/(p")* where — is the
natural map.

Example 1.10. In W(k), the maps x — res,(xp~*®) yield a system of angular
component maps.

Again, suitable ac, exist if k* is pure-injective or if one has a normalized
cross-section, thus under N;-saturation. As above, if (K, v,k,I',0) has enough
constants, it suffices to have angular component maps ac, for Fix(o).

When using angular component maps for (K, v, k, I', o) we require in addition
that they commute with the action of the distinguished automorphism. This is
equivalent to asking that the angular component functions on K restrict to such
functions on Fix(o).

Remark 1.11. In particular, in the case of W(leg ) the fixed field is Q,, where
the above angular component maps are definable (see [9]) and hence we have
definability, more precisely 3-definability, of the angular component maps in
(W(ESS), 0, FS8 7, 0,).

The following variant of an unpublished lemma of van den Dries (cf. [4],
Lemma 3.6) suggests the flexibility of angular component maps.

LEMMA 1.12. Let L} and L}, be unramified valued fields equipped with one of
the angular component maps above, say ac,, and let L; C Ll,i = 1 and 2 be sub-
valued fields closed under acy. Let 1. Ly — Ly be a valued field isomorphism
which respects acs, i.e. Yy (ac«(x)) = ac.(y(x)) where 1), .. denotes the induced
isomorphism between residue rings corresponding to ac., and let \': L} — L}, be
a valued field isomorphism extending 1. Suppose there exist a subgroup H of L}
such that vL; = vLy + vH and a set of generators Hy of H such that for all h € H,,
1y (acy(h)) = ac,(Y'(h)). Then 1)’ also respects ac,.



MODEL THEORY OF THE FROBENIUS ON THE WITT VECTORS 671

Proof. Note then that ¢); , (ac.(z)) = ac.('(z)) for all z € H. Now any y € L]
can be written as y = xzu, for some x € L,z € H,u € L’l such that v(x) = 0, and
so we are done. O

Let ¢: k — k' be any map between fields k and X’ and f a polynomial over
k. Then f¥ will denote the transform of f obtained by having 1 to act on the
coefficients.

We will be dealing with simple extensions of (valued) difference fields. Sup-
pose (Kj,01) C (Kj,07) is an extension of difference fields. For a € K; \ K|,
K(a) is the smallest difference subfield of (K3, 02) containing K; and a. Clearly,
its underlying field is K ({c%(a)}jcz). Here, as throughout this paper, o/ stands
for the j™ iterate of & if j > 0, and the ( — )™ iterate of o~ if j < 0.

It turns out that we need to consider only difference polynomials of one
variable. Each polynomial F(xy,...,x,) € K[xo,...,x,] gives rise to a difference
polynomial G(x) = F(x,o(x),...,0"(x))) in the variable x over K, and we refer
to G(x) as a o-polynomial. We put deg (G) := deg (F) € NU {oo}, where deg (F)
is the total degree of F. If G is not constant, that is, G ¢ K, then let F(xo, .. ., x;)
be as above with least possible n (which makes F unique), and put

order(G) :=n, complexity(G) := (n,deg, (F),deg(F)) € N3,

If G € K,G #0, then order(G) = —oo and complexity(G) = ( — 00, 0,0). Finally,
order(0) = —oo, and complexity(0) = ( — 0o, —00, —0o0). We order complexities
lexicographically. For example, let F, F5,R € K[xo,...,x,] such that R is ob-
tained by euclidean division of F; by F, with respect to x, and clearing out
denominators, then the o-polynomial associated to R has lower complexity than
the one associated to F,. (Finer complexity measures would do, e.g. considering
vector degrees of monomials.)

We say a is o-transcendental over K if there is no nonzero G as above with
G(a) = 0. Otherwise a is o-algebraic over K. Note that nontrivial G may have
infinitely many a with G(a) =0 (e.g. G(x) = o(x) — x).

For future use, we introduce some notation concerning o-polynomials G(x)
as above.

Let xg,...,Xn, Y0, .., ¥, be distinct indeterminates, and put x = (xo, . . . , X),
¥y =(y0,...,yn). For I € N**! let |I| = 3, ;. For a polynomial F(x) over a field
K we have a unique Taylor expansion in K[x, y]:

Flx+y)=)Y Fix)-y'
1

where the sum is over all I = (I, . ..,1,) € N**!| each F, € K[x], with F;, =0 if
[I] > deg(F), and y' = yé) -yl (likewise, for a with components in any field we
puta' = aé’ ---am). Thus, I'F; = ,F, where 9, is the operator 9 /dx ... 0" /Ox,
on K[x], and I! = Iy!...1,!. We construe N"*! as a monoid under pointwise
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addition, and let < be the partial order on N1 induced by the natural order on

N. Define l as Z.O l." €N, when j <lin N1 Then clearly:
J Jo Jn

LemMa 1.13. For j,1 € N we have (Fjh = (";l> Fi.

In particular, if [I| = 0,F; = F, and if [I| = 1, F; is one of the 5. Also,
deg(F;) < deg(F), if |I| > 1 and F #0.

Let now (K, o) be a difference field, and x an indeterminate. When # is clear
from context we set o/(x)=(x, o0(x),...,c"(x)), and also o(a)=(a, c(a),...,c"(a))
for a € K. Then for F as above and G(x) = F(o(x)) we have the following identity
in the ring of difference polynomials in the distinct indeterminates x and y over K:

Gx+y) = F(o(x+y)) = F(o(x) + o(y))

Y Fiow) - o(y)
1

=3 G-y,
l

where G)(x) := F(o(x)). A key point will be that for G # 0 and |I| > 1, G; has
lower complexity than G.

2. Statement of the main result: an embedding theorem. The main result
is a general embedding theorem, Theorem 2.2, which will give us a quantifier
elimination result. We first isolate the relevant axioms for valued fields with an
automorphism (K, v, k, I, o). We recall the two basic axioms presented above.

Axiom 1. (isometry) For all x, v(o(x)) = v(x).

Axiom 2. (enough constants) For all x, there is y so that (o(y) =y A v(x) =
().

The o-Hensel Scheme. Let G be a o—polynomial of order n. Let § = a+¢,

s0 G(B) = G(a) + Y Gi(a) - o(e). If (G(a)) =+ r‘}|11r11 v(G(a)) and v(G()) <
>1 =

Jo v+ v(Gla)), whenever || =j > 1, then there is § in K with v(a — ) =~y and
G(B)=0.

Axiom R. For every )\ € k*, the equation &(x) = Ax has a non-zero solution
in k.

Axiom RG. (Genericity Axiom) For each n € N,n > 0,q9,...,a,,b € k
such that apa, # 0, and F € k[xo,...,x,],F # 0, there is x € k such that
apx +a 6(x)+ - -+ a,d"(x) = b and F(&(x)) #O0.
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Axioms R and RG allow us to proceed “generically” in the proof of the
Embedding Theorem. This is further discussed in the next section.

Definition 2.1. We say that the valued field with isometry (K, v,k,T,0) is a
Witt-Frobenius case if char(k) = p > 0, v(p) is the least positive element of I
and &(x) = xP.

Next we describe the embeddings. Let (K, v;, ki, I'j,0;) for i = 1 and 2 be
unramified valued fields with an automorphism and with appropriate angular
component maps. Let L; be difference subfields of the respective K;. Namely,
each L; has residue field /;, and value group G;, for the induced valuation, and L;
is closed under the angular components in the obvious sense. We say a bijection
. Ly — Ly is an admissible isomorphism if it has the following properties:

(A) v is an isomorphism of valued fields with isometry,

(B) the induced isomorphism ,: [} «— [, of difference fields is elementary,
in the sense that for all formulas ¢(x1, . . . x;,) of the language of difference fields,

ki '= plat,...,op) =k ): e(pr(an), ..., P(an)),

(C) the induced v,: G; «— G, is elementary, in the sense that for all
formulas ¢g4(x1,...x,) of the language of ordered abelian groups,

T E ey ) = To (o), - - 5 Do),

(D) 9 respects the angular component maps.
We can now state the Embedding Theorem.

THEOREM 2.2. (Embedding Theorem) Let (K;, v;, k;, i, 07) fori = 1 and 2 be
suitably saturated unramified valued difference fields with k| and k, perfect of the
same characteristic p. Suppose either:

(1) Each K; carries an angular component map ac® (resp. a system ac\’ of
angular components) when p = 0 (resp. p > 0), and is a valued field with isometry
which has enough constants and satisfies Axiom RG and the o-Hensel scheme; or

(2) Each K; is a Witt-Frobenius case, carries a system ac\ of angular compo-
nents, and is a valued field with isometry which has enough constants and satisfies
Axiom R and the o-Hensel scheme.

Let L; for i = 1 and 2 be small difference subfields of the respective K;.
Namely, they have residue fields l; and value groups G; for the induced valua-
tions, the L; are closed under the angular components in the obvious sense, and K;
is (max (card(ly), card(G;))"-saturated.

Assume we have an admissible isomorphism): L1 «—— Ly andleta € K,.Then
there exist b € K, and an admissible isomorphism v': Ly (a) = L,(b) extending 1
with v'(a) = b.

We formalize the hypotheses in the Embedding Theorem in terms of the
0-AEK axioms.
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Definition 2.3. We say that the valued field with isometry (K, v, k, I, o) satis-
fies the 0-AEK axioms if it satisfies the hypotheses of the Embedding Theorem.

In the course of the proof of the Embedding Theorem, we work primar-
ily with pliable valued fields with isometries. This is the context in which
the theory of pseudoconvergent sequences works best for valued fields with
isometries.

Definition 2.4. We say that a valued field with isometry is pliable if it is
unramified, has enough constants, and is either a Witt-Frobenius case with an
infinite residue field or the induced automorphism on the residue field satisfies
no identities.

The proof of Theorem 2.2 will occupy us through Section 8.4.

Our arguments adapt easily to the case 5(x) = x?, ¢ a finite power of p > 0.

Once one has proven Theorem 2.2, one deduces quantifier-elimination (see
e.g. [23], Lemma 3.1.6 and Prop. 4.3.28), completeness and model-completeness
(ibid., Lemma 2.4.11) and various model-theoretic consequences which are given
beginning in Section 9. In particular, we produce an axiomatization for and deduce
the decidability and model-completeness of the first-order theory of the Witt
vectors W(leg ) with their Frobenius automorphism (Example 1.2).

3. Discussion of axioms and key base fields. During the work leading to
the proof of the Embedding Theorem, further basic properties come into play. We
also present them as axioms and indicate briefly their relevance and relationship
to the main axioms appearing in the Embedding Theorem. We also single out
some categories of fields we will be working with.

To discuss various closure properties of the residue field (viz. Axiom RG),
it is convenient to phrase them in terms of difference operators. In the following
(k,0) is a difference field. We write k[o] for the noncommutative ring of linear
difference operators over k. That is, k[o] is the associative ring generated by k
and a symbol o subject to the commutation rule ca = o(a)o for a € k. This ring
is right euclidean, therefore an Ore domain. Any nonzero L € k[o] can be written
as L = ZZOZ;;[ ayo” for natural numbers ng and d and a, € k with ay, - any+a 7 0.
We call d the essential degree of L, ess.deg(L). Recall that the kernel of L is a
vector space over Fix(o). We consider a difference closed field (Q2,0) (i.e. an
existentially closed, or model of ACFA, see [7]) extending (k, o) and write the
fixed field of o in Q as Fixq(o).

We rephrase Axiom RG in these terms and consider five additional properties.

Axiom RG. For all L € k[o],ess.deg(L) =d > 0, and F € k[xg,...,X4—1],
F #0, and b € k, there is some x € k for which L(x) = b and F(o(x)) # 0.

Axiom RO. The fixed field Fix(o) is infinite.
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Axiom R1. For all L € k[o],L # 0 and y € k, there is some x € k with
L(x) = y.

Definition 3.1. We say that the difference field (L, o) is linearly difference
closed if it satisfies Axiom R1.

Axiom R2. For all L € k[o],ess.deg(L) > 0, there is some x € k* with
L(x) = 0.

The next axiom was pointed out by a referee as an alternative to Axiom RG.
Axiom R3. For all L € k[o],L #0, we have dimgixker L = ess.deg(L).

Axiom R4. (No o-identities) For all n € N and L € k[Xy,...,X,] ~ {0}
there is some x € k for which L(x, o(x), ..., 0" (x)) #0.

As we shall see, while these various axioms are not equivalent, there is a
web of implications between them. We work with Axiom RG as it permits us
to avoid accidental equalities and thereby develop a cleaner theory of immediate
valued difference field extensions.

The basic properties which enable us to adapt to our context the classical
tools are the conditions of having an isometry and enough constants, and either
the residue field being infinite or satisfying Axiom R4, namely, those properties
of pliability. Making the o-Hensel scheme work requires Axiom R1.

Concerning Axiom R4, by [8] (page 201) if a difference field (k, o) satisfies
an identity, then it satisfies an identity of the form o"(x) = x¢", for some integers
m and n # 0 with g = char(k) if this is not zero and ¢ = 1 if char(k) = 0. So in
characteristic p > 0 we are essentially left with a power of the Frobenius map
x +— x”, and in characteristic 0 with a o of finite order . In particular, (W(k), 0},)
satisfies no o-identity provided k is infinite.

Axiom R and Axiom RG are used (only) in the proof of the Embedding
Theorem in order to extend a basic admissible isomorphism : L; — L, to
another one ¢: L| — L) in a “generic way,” where each L] is pliable with a
linearly difference closed residue field.

Axioms RO, R2, R3 are discussed below to shed some light on Axioms R
and RG. They appear again only at the end of the paper (Section 12).

LemMmA 3.2. (see [28], Prop. 5.3) Suppose (K, v,k, 1, 0) is a valued field with
isometry having enough constants for which the o-Hensel scheme holds and the
valuation is not trivial. Then (k, &) satisfies Axiom R1.

LEMMA 3.3. Suppose (k, o) satisfies Axiom RG. Then (k, o) satisfies Axiom R4.

Proof. Consider a putative identity F(x, o(x), ..., o?(x)) = 0 for some nonzero
polynomial F. By Axiom RG applied to L = 0! — 1, b = 1, and F, there is
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some ¢ € k with 09!(c) — ¢ = 1 and F(o(c)) # 0, showing that the identity
F(o(x)) = 0 fails. O

LeEmMA 3.4. Suppose (K, v,k,T',0) is a valued field with isometry satisfying
Axiom R and the o-Hensel scheme. Then (K, v,k, T, o) satisfies Axiom 2.

Proof. Let a € K*. Then a/o(a) has valuation 0. Consider o(x) = x - a/o(a).
By Axiom R, this can be solved in k, nontrivially, say by Xp. Then by the o-
Hensel scheme there is a solution x in V with ¥ = xo. So v(x) = 0, o(xa) = xa
and v(xa) = v(a). O

Axiom R is a particular case of Axiom R2, and has a rather different char-
acter from Axiom R1. In a Witt situation W[k] it requires k to be closed under
extracting (p — 1)* roots. The two axioms R, R1 are essentially independent (see
Propositions 3.7, 3.8).

ProprosITION 3.5. Axiom R3 =—> Axiom R2.

Proof. Let A € k*. Set P := 0 — A. By Axiom R3, the dimension of the kernel
of P on k is 1. In particular, there is a a € k* with P(a) =0, or o(a) = \a. O

ProPOSITION 3.6. Axiom R1 + Axiom R2 = Axiom R3.

Proof. Let L € k[o] be a nonzero difference operator of essential degree
ess.deg(L) = d. The kernel of L on k is a vector space over Fix(c) of dimension
e <d. It is easy to find M € k[o] with ess.deg(M) = e and ker M = ker L.

Indeed, any finite dimensional Fix(o)-vector subspace V of k is the kernel of
some M € k[o] with ess.deg(M) = dimgix) (V). We check this by induction on
dim V where in the case of dim V = 0 we take M to be the identity operator. More
generally, let @ € V be any nonzero element of V. The kernel of the operator
D :=(oc— %) is exactly Fix(o)a. The vector space ®@(V), thus, has dimension
one less than that of V and by induction is the kernel of some ¥ € k[o] with
ess.deg('t) = dim d(V). Set M :=¥ o .

Factoring, we can write L = QM for some Q € k[o]. If e # d, then
ess.deg(@Q) > 0 so by Axiom R2 there is some y € k* with Q(y) = 0. By
Axiom RI1, there is some x € k with M(x) =y. As y #0,x ¢ ker M = ker L.
However, L(x) = OM(x) = Q(y) = 0. With this contradiction, we see that e = d as
desired. O

ProposITION 3.7. Axiom R2 + Axiom RO #= Axiom RI.

Proof. Let p be any prime number. We produce an example of (k, o) satisfying
Axiom R2 for which o is an automorphism and Axiom R1 fails and Fix(o) = F),.
The example having an infinite fixed field is obtained by the compactness theorem
of first-order logic (or taking an ultraproduct).

Let k be the direct limit of the finite fields [F,» over all natural numbers n
which are not divisible by p. Let o: k — k be the Frobenius automorphism
X — X
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Let L € k[o] be a difference operator with ess.deg(L) = d > 0. Write L(x) =
Z?j:{f a;jo’ (with Anylng+d 7 0). As o is an automorphism, L has a nontrivial zero
if and only if L' = Ed_o anoﬂa' has a nontrivial zero; and, in View of our choice
of o, this is so if and only if the polynomial P(x) = Zl Oanoﬂx ! has a zero.
As p does not divide p — 1, some irreducible factor, Q say, of P has degree
not divisible by p. Hence, there is a root to Q in k. That is, there is a nonzero
point in the kernel of L. So (k, &) satisfies Axiom R2. However, the difference
polynomial o — ¢ is not surjective (e.g. 1 is not in its image). O

PROPOSITION 3.8. Axiom RI + Axiom RO 7= Axiom R.

Proof. As before, we present examples with arbitrarily large fixed fields and
conclude by compactness that such examples exist with infinite fixed fields.

Let p be a prime number greater than 2. Let k C F4%¢ be a subfield of the
algebraic closure of I, maximal with respect to the property that k has no solution
to the equations x’~! = —1. Note that if ky is some field and ¢ € ko is a solution
to x*~! = —1 then all other solutions are in ko (having the form a( for o € ]F;).

Let ¢ € leg be any solution to x’~! = —1 and let n = [k(¢) : k]. It follows from
the above observation that n divides p — 1. Indeed, if Q; and Q, are irreducible
factors of XP~! +1 over k of degrees d; and d», respectively, then there are roots
to XP~1+1 =0 in k[X]/Q1, a degree d; extension of k and in F,[X1/Q>, a degree
d, extension of k. By the above observation, all the roots must be in each of the
fields. So d; = d».

Let 0: k — k be the Frobenius automorphism x — x”. As O is the only
solution to o(x) = —x in k, the difference field (k, o) fails to satisfy Axiom R
However, it does satisfy Axiom R1. Indeed, let a € k and L=c%+%¢ 01 a0’ €
k[a] with d > 0 and q; 6 k. The polynomial P(X) := = x" +> a; X —a has degree
p%. As p =1 mod n, p? = 1 mod n. Thus some irreducible factor Q of P over k
has degree not divisible by n. Then k[X]/(Q) contains a solution to L(X) = a but
no solution to X?~! = —1. By maximality of k, the field k[X]/(Q) is naturally
isomorphic to k. O

Even though Axiom R1 is a consequence of the o-Hensel scheme, this is not
the case for Axiom R: for k as in the proof of the previous proposition, the Witt
vectors W(k) will satisfy the o-Hensel scheme (see Cor. 6.3), but not Axiom R.
Recall that (€2, o) is an existentially closed extension of (k, o).

ProposITION 3.9. Axiom RO + Axiom R1 + Axiom R3 = Axiom RG.

Proof. Let b € k and L € k[o] be a nonzero difference operator of essential
degree ess.deg(L) =d > 0, and F € k[xp,...,xq—11,F # 0. Let N(k), N(Q2) be
respectively the kernel of L in k and Q. Using Axiom R3, we can find ey, ..., e4 €
N(k) linearly independent over Fix(c), and using Axiom R1 we can find a € k
with L(a) = b. The fields Fix(o) and k are linearly independent over Fix(o) in
Q. Thus ey, ..., e, remains a basis of N(Q2) over Fixq(o). Let 1: Ag — A}{ be



678 L. BELAIR, A. MACINTYRE, AND T. SCANLON

the morphism (xi,...,x;) — Z?zlx,-e,-. Note that v restricted to AYQ) is an
isomorphism between (Q4,+) and (N(Q), +).

Let X(Q2) := {x € N(Q): F(o(x)) = 0}. By construction, the o-degree of
X(Q) is less than d. Hence, 1/~ !(X(€)) is not generic and is therefore contained
in a proper subvariety of A?. Let Y C A be the Zariski closure of 1)~ 1(X(Q)).

As Fix(o) is infinite, AY(Fix(c)) = ¥~ (N(k) + a)) is Zariski dense in A<,
Hence, there is some point x € N(k) + a with P (x) ¢ Y(Q). That is, there is
some point x € k with L(x) = b and F(o(x)) # 0. O

We now show that Axiom RG implies all the other axioms on solutions to linear
difference equations which we have considered.

ProprosITION 3.10. Axiom RG = Axioms RO, R1, R2, and R3.

Proof. For Axiom RO, suppose that Fix(c) = [F,. Applying Axiom RG to
L=0—1,b=0,and F(x) = x?—x, we obtain a € k with o(a) =aand a? —a #0
contradicting the hypothesis that Fix(c) = F,.

To conclude Axiom RI1, taking F = 1, we see that each instance of Axiom
R1 becomes an instance of Axiom RG.

For Axiom R2, given L with ess.deg(L) > 0, apply Axiom RG to L and
F (XO) = X0.

Finally, for Axiom R3, let L € k[o] be a nonzero difference operator of
essential degree ess.deg(L) = d > 0. Factoring by a sufficiently high power of ¢
on the right, we may asssume that L = Zflzo a;o’, with agag #0.

As before, we can find linear difference operators Q and M in k[o] with
L =0M, ker L =ker M, and m := ess.deg(M) = dimgix) ker M. If L witnesses
the failure of Axiom R3, then m < d. Write M = >, biol. Let F(xg, ..., X4_1) =
> bixi. Then by Axiom RG, there is some a € k with L(a) = 0 and F(o(a)) # 0.
That is, a € ker L \ ker M contradicting our choice of M. O

4. The O-ring formalism. Our treatment of Witt vectors will depend on
the formalism of O-rings of Joyal [16].

Let (K, v,k,T',0) be a Witt-Frobenius case. Our arguments adapt easily to
the case 6(x) = x4, g a finite power of p, but for notational convenience we stick
to the special case g = p.

Define dyg(x) = x on V. Then define 9;(x) = %(a(x) — x7). This is again a map
V — V, usually called 0, and satisfying the axioms for a “p-derivation” ([6]) on
V, namely:

o) =0
p_l . .
dx+y) = 0x)+9(y) — > p~! (’;) Xy
i=1

d(xy) = x*0(y) +y’0(x) + po(x)O(y).
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A O-ring is a commutative ring equipped with a unary operation O satisfying
the above identities. The Witt vectors functor k — W/[k] is right adjoint to the
forgetful functor from O-rings to commutative rings. In a 0-ring, the map o(x) =
X + pO(x) is an endomorphism. In the theory of J-rings ([16]) there is a unique
sequence of unary operations dy, 91, 0, . . . (0o, 01, as above) satisfying

o"(x) = Qo) + pAi ey -+ P (x)

In W[k], the 0, yield the components (sometimes called ghost coordinates) of
Witt vectors, namely, x € W[k] is identified with (Jy(x), 01(x), . . .).

LeEmMA 4.1. Let k be a perfect field of characteristic p and o an automorphism
of W[k]. Then for all x € W[k], 3,(c(x)) = (0, (x)).

Proof. Let x € W[k], then as in Example 1.3, x=3",-,T (an(x)”_") -p" and

ox)=y_7 (5 (T(x)””)) P> T ((5(%))””) -p"

n>0 n>0

so that 0,(c(x)) = 5(0,(x)). O

One shows:

LEMMA 4.2. The map V — k™! given by x — (9y(x), 01(X), . . ., Op(x)) is sur-
Jective.

Let us write (9),(x) for (Op(x), ..., 0n(x)), and (9),(x) for (Dp(x), ..., On(x)).
This is supposed to suggest the o and & notation. When 7 is understood we write
0 and 8. We will use the §;’s in o-polynomials:

F(x,0x),...,0"x)) =F (x,xp +pOi(x), ..., X"+ pdy ()c)"n_1 4+ +p"8,,(x)> .

Definition 4.3. For fixed prime p, we will consider the polynomial functions
D,,n € N (or D if no confusion arises) defined over Z, from affine (n + 1)-space
to itself

2 7 n—1
D(yo,-..,yn) = (yo,y8+py1,yg +py[1’+p2y2,...,yg +py‘1’ + -+ ).

Suppose for the moment that F(y) is a homogeneous polynomial of degree
m (the only case we will ever use). Now F(D(y)) is also a polynomial in y. Note
that F(D(y)) is not in general homogeneous, but it has no constant term and total
degree at most mp". A moment’s reflection on D(y) shows:

LEMMA 4.4. (The universal linear maps) For each prime p and integers m, n,
for each j there is a linear function Aj({xl}m:m) with integer coefficients, so that
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for all homogeneous polynomials in 'y of degree m with generic coefficients c,
F(y.c)= > cry € Zly,cl, wehave F(D(y)) = > d;-y’, where d; = Aj({ci} jy=m)-
J

lt|=m

This lemma will be used in the following situation: F(y) is given, so F(o(x)) =
F(D(8(x))), and we want to find the coefficients of O(x).
The following observation will be crucial in Theorem 6.10.

Lemma 4.5. Suppose (K, v,k, T, o) is a Witt-Frobenius case, and F(yy, . . ., V)
is a polynomial over the valuation ring of K with at least one coefficient of valu-
ation 0. Then F(D(y)), still a polynomial over the valuation ring, has at least one
coefficient of finite valuation. In particular there exists an integer N > 0 such that
F(D(y)) can be written as F(D(y)) = pr(y), where f(y) is a polynomial over the
valuation ring with at least one coefficient of valuation 0.

Proof. Consider the coarse valuation © on K (see Lemma 1.7). Then F
has also its coefficients in the valuation ring of o. Let F be its image under
the residue map of #. Recall that the residue field k of # is isomorphic to a
valued subfield of W(k), where the valuation on k can be identified with 0.
Whence F is a polynomial over the valuation ring of k with at least one coeffi-
cient of valuation 0. Now we get the required property for F(D(y)) directly in
W(k). But F(D(y)) is also the image of F(D(y)) under the residue map of 2,
so because of the identification of the valuation of k with v we get the desired
property. O

5. Pseudoconvergence in the o-setting.

5.1. Equivalent pseudoconvergent series. Let (K, v,k,1",0) be a valued
field with isometry with enough constants. Let {a,} be a p.c. series in K and
a a pseudolimit (maybe in an extension, by which we always mean an exten-
sion of valued fields with isometry and when working in the Witt-Frobenius
case we mean that the extension is also a Witt-Frobenius case). A very im-
portant point in the pure valued field case is the following “pseudocontinuity”
(see [18]).

LemMaA 5.1. Let f € K[x] \ K. Then {f(a,)} is p.c., with pseudolimit f(a).

Since the main idea of the proof will be needed later, it is worth recording
the lemma on ordered abelian groups on which it depends.

LEMMA 5.2. Let {~,} be an increasing series of elements in an ordered abelian
group I'. Let I be a finite set, and for i € I let c; + nix, ¢; € 1',n; € Z, be linear
functions of x with distinct n;. Then there is a u, and an enumeration iy, ip, . .. of 1
so that for p > i, ¢i; +n; Y, < Ci, + Yy < ..
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Moreover, if v is a positive element of I with only finitely many positive prede-
cessors, there is a j1 and an enumeration as above with (¢, +n;,y,) — (c,-j +n,-j'yp) >y
eventually, whenever k < j.

Unfortunately, Lemma 5.1 fails in the difference field situation. The reader
may readily construct a counterexample using G(x) = o(x) — x instead of the
polynomial f. Fortunately there is an alternative to Lemma 5.1, provided we
make some extra assumptions on (K, v, k,I', o). We first need a natural notion of
equivalence of p.c. series.

Definition 5.3. Two p.c. series {a,} and {as} over a valued field K are
equivalent if for all extension fields L and a € L we have {a,} ~ a < {as} ~ a.

This is evidently an equivalence relation, and we have clearly:

Lemma 5.4. Two {a,} and {as} are equivalent if and only if they have a
common limit in some extension and have the same width.

A more explicit way to express the relation is given by:

LEMMA 5.5. Two series {a,} and {cs} are equivalent if and only if:
(a) for each p, eventually (in 6) v(cs — ape1) > v(ape1 — a,) and
(b) for each 6, eventually (in p) v(a, — ase1) > v(ase — as).

We now aim for a series of variations on the theme: if (K, v,k, T, o) satisfies
some natural conditions, and {a,} from K is p.c. with limit a (perhaps in an
extension valued field with isometry), then for each G(x) = F(o(x)) with F
nonconstant, there is an equivalent p.c. {as} from K so that {G(as)} ~ G(a).
We now develop the calculations needed.

5.2. The basic calculation. Let {a,} be given, with pseudolimit a. Let, as
usual in these matters, vy, = v(a, — a). The v, form an increasing series in I,
G(x) is given as F(o(x)), n = order of G, G(x+y) = > Gi(x) - o(y)".

1

Now we try for an equivalent series {a,} = {a,+p,0,}, from K, on which G
behaves well. Here 0, € K, u, € K, v(0,) = 7y,, and (as K has enough constants)
6/, may be chosen in the fixed field. Let 6, be so chosen with ., to be chosen
later. We demand at least v(u,) = 0.

Define d, by a, — a =0,d,, so d, has value 0. So

ap, —a = ap—ap+ap—a

Hp(,up + dp),

so if v(u, +d,) =0 we will ensure {a,} ~» a. Since also v(y, +d,) = 0 implies
that {a,} and {a,} have the same width, it will imply they are equivalent. Note
that d,, is forced on us, and it won’t normally be in K.
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Now

G(ay) — Gla) = Y _ Gia) - o(a, —a)

I >1

=Y Y Gia)-o(a, —a)

m2>1 |l|l=m

= > G, (ny+d,))

m2>1 |l|=m

=3 Y Glayo(6,) - oy +dp)

le m:m

= Z Hm(ﬂp + dp),

m>1

where H,, is a o-polynomial over K(a) corresponding to the polynomial

> Gia)-o(8,) - x' = Fu(x).

=
Now note the value of the coefficients G;(a) - a'(Hp)’:
v(Gi(a) - 0(0,)) = v(Gi(a)) + my,
for |I| = m. Here we use the fact that o is an isometry. We consider only m for

which F,, is nonzero. For such m, pick I, with |l,,| = m and v(Gy, (a)o(6,)") is
minimal. Then write

F(x) = G, (@)a (@)™ - fin(x)

where f,, is a polynomial over the valuation ring of K(a), with one coefficient 1.
Now

ey VHn(pp +dp)) = v(Fu(o(pp +dp)))
UGy, (@) - 3 (0p)™) + v (T (1 + dp)))

UGy, (@) + my, + v( fin(a(pp + dp))).

Now suppose we can choose 1, so that v(u,) = 0, v(p,+d,) = 0 and v( fr(o(pp+
d,))) = By is independent of p. Then we succeed in our project, since

m>1

(G(a,) — G(a)) = v (Z Hy(u, + dp))

U(Hm(/J/p + dp)) = U(Glm(a)) + B + m7py.
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So, applying Lemma 5.2, eventually for some fixed m,
UG(ap) — G(a)) = UGy, (@) + B + mry,,

so G(ay) ~ G(a). (Note v(Gy,(a)) is independent of the choice of [,,).
There are various ways to achieve this, as we will see.

5.3. Pseudocontinuity up to equivalence. Recall the notion of pliable
(K, v,k,T,0) (Def. 2.4).

THEOREM 5.6. Suppose (K, v,k,1',0) is a pliable and & satisfies no identies
on k. Suppose {a,} is p.c. in K and {a,} ~ a, possibly in an extension. Let
be a finite set of nonzero polynomials F(xy, . ..,x,) over K. Then there is a p.c.
{a,} from K, equivalent to {a,}, so that for each F in y, {G(c,)} ~ G(a), where
G(x) = F(o(x)). Furthermore, if one supposes only that {a,} is p.c., then there is
an equivalent {a,} from K such that all {G(a,)} are p.c.

Proof. The last part of the theorem follows from the first by putting in an
a, say in an elementary extension. To prove the theorem, let us first consider
a single o-polynomial G(x), and as above let v, = v(a, — a), a, = a, + p,0,,
v(0,) =, 0, in the fixed field of K, p, to be chosen later, a, — a = 0,d,,.

By the previous calculation, it suffices to find ji,, such that: fi, # 0, fi, # —c_ip,
V(fm(o(pp +dy))) = 0 and ji, in the residue field k of K. We want precisely an
element p of k so thatfm(d'(,u+ﬂp)) fh (u+5?p) #0;i.e. thatf_m(&(u)+&(ﬂp)) e
(u +a_7p) # 0. That is, the difference polynomial f,,(&(x) + &(c_lp)) ~x(x+a_7p) (which
is over K(a)) should not vanish on k. Note that the corresponding polynomial is
Fn(x + &(c_ip)) - xg - (xo + (_ip) and this is not the zero polynomial since f,, # 0 and
the linear change of variables y :=x + &(c?p) is invertible.

Now it is not quite obvious that Axiom R4 allows us to select y, as required,
since the polynomial is over K(a), and we need ji, € k. We conclude with the
following lemma. O

LEMMA 5.7. Let (Ky, vy, k1,11, 01) be an extension, andf(xy, . . . , X,) a nonzero
polynomial over ki. Then there is a y in k with f(&(y)) # 0.

Proof. Considering the monomials of degree at most the total degree of f as
the basis of a finite dimensional k;-vector space V = @ kix/, we may construe
f(x) as ¢ - ({x’}), an inner product, where ¢ is the vector of coefficients of f.

Consider the k-subspace S of V generated by all ({G(y)’}) for y in k. To
suppose that f(&(y)) vanishes on k is to suppose that ¢ is orthogonal to S which
is not the zero subspace, as (1,...,1) € S. Choose a finite basis B for S. Then ¢
is a nonzero solution of the system of linear equations b - w = 0 for b € B. By
elementary linear algebra there is a solution ¢’ in k. Thus, ¢’ is orthogonal to S,
and the polynomial with ¢’ as coefficients contradicts Axiom R4. O
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For finitely many Gs the same proof works, since Axiom R4 clearly implies
the analogous version in which several G occur.

5.4. Pseudocontinuity up to equivalence: the J-ring argument. In a Witt-
Frobenius case, our treatment depends on the formalism of O-rings [16]. The
argument adapts easily to the case (y) = y? for g a finite power of p, but
for notational convenience we stick to the special case ¢ = p. Again, we need
(K, v,k,T',0) to be pliable (Def. 2.4), and now the key point is that k£ be infinite.

THEOREM 5.8. Supposethat (K, v, k, T, o) is a pliable Witt-Frobenius case. Sup-
pose{a,}isp.c.inK and{a,} ~ a, possibly in an extension. Let ), be a finite set of
nonzero polynomials F(xo, . . ., x,) over K. Then there is a p.c. {a,} from K, equiv-
alent to {a,}, so that for each F in y_,{G(c,)} ~ G(a), where G(x) = F(o(x)).
Furthermore, suppose only that {a,} is p.c.: then there is an equivalent {a,} from
K such that all {G(c,)} are pseudoconvergent.

Proof. Here, as in Theorem 5.6, the last part follows directly from the first,
and we begin by considering only one G(x). We revisit the basic calculation (5.2).

Recall that v, = v(a, — a), o, = a, + p,0,, v(0,) = ,, 0, in the fixed field
of K, i, to be chosen later, a, —a = 0,d,,.

We go back to equation (1):

V(Hn(pp + dp)) = U(Gy, (@) + myp + U( fin(o (1 + dp))).

As before, it suffices to show that we can find p, such that i, # 0, —d,, and
V( fm(o(pp +dp))) is independent of p.

We have o(x) = D(9(x)), where D is our polynomial function from Sec-
tion (4).

If the polynomial f,,(D(yo, . ..,yn)) (over K(a)) is zero, then H,(o(x + d,))
vanishes identically on the valuation ring of K(a), and we just ignore it, as will
be seen to be harmless at end of our proof.

So let us assume f,,(D(yo, - . ., y»)) is not zero. By dividing by a coefficient of
lowest value, we can write f,,(D(yo, - ->Yn)) = Am - €m(Y0s - - -»Yn)s Am € K{a)*,
gm over the valuation ring of K(a), and with one coefficient 1. By Lemma 4.5,
v(Am) 1s actually an integer. So

V(Hpy(pp +dp)) = 0(Gy,, (@) + my, + v(\y) + 0(gm(A )y + d,)))

and we will succeed if we can arrange ji, # 0, fi, # —d, and v(gu(O(1, +d,)))
=0.

So consider the nonzero polynomial yo(yo +Elp)gm( Y0, - - - » Yu) Over the residue
field of K(a). Since k is infinite, there are fo, . ..,#, € k on which this polynomial
does not vanish. Now by Lemma 4.2 there is t € V with 0;(¢) = ¢;,i = 0,...,n,
and then p, =t is our solution and we have proved the theorem.

This argument manifestly works as well with finitely many Gs. O
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5.5. Pseudoconvergence to 0. We will need a crucial refinement of the
previous Theorems 5.6 and 5.8: roughly, in case v(G(a,)) ~» 0 we need to be
able to switch to an equivalent {c,} such that v(G(c,)) ~ 0 still. We stay in
pliable fields (Def. 2.4).

THEOREM 5.9. Let (K, v,k,T',0) be pliable. Suppose {a,} is p.c. in K, and
{a,} ~ a, possibly in an extension, which is a Witt-Frobenius case if K is.

Let G(x) be a o-polynomial over K, with G(x) = F(o(x)) as usual. Suppose
that:

() {G(ap)} ~ 0;

(ii) for all l with
to 0;

(iii) in a Witt-Frobenius case, we also assume that for each m < total degree
of F, and j of the appropriate length { Aj({Gi(a,)}j<m)} is p-c., but not to 0.
Then there is {c,} from K, equivalent to {a,} so that {G,(c,)} ~ Gy(a) if |I| > 0
and Fy is not a constant, and {G(c,)} ~ 0.

I| > 1, such that Fy is not a constant, {G,(a,)} is p.c., but not

Proof. Recall the notation of the basic calculation (5.2): v, = v(a, — a),
ap = ay + ey, v(0,) = 7,, 0, in the fixed field of K, p, to be chosen later,
a, —a="0,d,.

We first prove the case in which & satisfies no identities on k. By (ii), for
each |I| > 1, v(Gi(a,)) is eventually constant.

Now
G(a,) = Gla, +0,pp)
= G(ap) + z>:1 ||2: Gi(ap) - a(ﬁpup)l
m>1 |l|=m
= G(a,) + 2 0> Gilay)o(u,)
m> I|l=m
= G(a,) + 2;1 Hyp p(11p),

where H,, , is the o-polynomial over K corresponding to

Fup(» =Y _ Giay) -0 -y

|7]=m
The value of the coefficient Gy(a,) - GZ’ of Fyp is v(Gy(ay)) + my,. Now write
Fm,p(y) =Cm,p 'fm,p(y)’

where v(cy, ) is my,+(the eventual minimum of v(Gy(a,)) for |I| = m), and f,, ,
is a polynomial over the valuation ring V with at least one coefficient 1. Then,
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exactly as in the proof of Theorem 5.6, we could choose ji, to work for G and
all Gy, and to satisfy o( fy,,,(a(11p))) = 0 for all m such that F, , # 0. If such a
choice is made,

v(Glap)) = (Glap) + Y empty),

m>1
where €, , = Z|l|=m Gi(ay) - a(up)’, and v(g,,,) is eventually constant and inden-

pendent of the choice of y,. So we still have space to manoeuver. By Lemma 5.2
applied to the above situation, we would have eventually

v (Z 5m,p0?>
m>1

in (v +
rnglll( (Em,p) + M)

U(gmo,p) +mo7,

for a unique choice of my > 1.
If v(G(ay)) # v(Empb,"°), we do nothing. If v(G(ap)) = v(Emp0),°), then
replacing 11, by a variable x consider

Glay)+ Y 00> Gilay)ox)

Ga,) (1 +3 G(ap)19g|G,(ap)a(x)’)

m>1 ll|=m >1
= G(ap) Qp(o(x)),
where Q,(yo, .. .,ys) is a polynomial over V with one coefficient 1. So if we add

the extra requirement that Qp(ﬁ(ﬁp)) # 0, easily fulfilled as before, we get that
eventually

(G(ap)) = min{v(G(ap), V(Em, p) + Moy}

Now v(g,,) is eventually constant, and both v(G(a,)) and v(e,,,) + mo7y, are
eventually increasing. So v(G(a,)) is eventually increasing, i.e. {G(a,)} ~ 0,
and we are done in this case.

We now prove the Witt-Frobenius case of the theorem.

We proceed as above to obtain F, ,(¥) = Cpp - fmp(¥), and now do the O-
transformation on fy, ,. If f, ,(D(y)) is the zero polynomial then

Hm,p(x) Fm,p(o'(x))
Cm,p * fm,p(a(x))

Cm,p : fm,p(D(a(x)))

vanishes on the valuation ring of K({a), and as in (5.4) we can ignore it.
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So we consider m and p so that f,, ,(D(y)), and so also F, ,(D(y)), is not the
zero polynomial. Now we apply Lemma 4.4 to

Fup(y)=>_ Gilap) - 05 -y’

|T]=m
to obtain

Funp(D(y)) = 05 - >~ A ({Gi@p)}gj=m) - ¥
J

Now, by (iii), the Aj({Gl(ap)}|,|:m) are eventually constant in value. Let A, , be
an eventual minimal value, and write

Fm,p(D(y)) = 9,’;1)\mp : gm,p(y)a

where g,,, is a polynomial over V with at least one coefficient 1. Now, we
can play the game of (5.4) to get u, satisfying all preceding constraints and
V(Hyp p (1)) = my, + v(Ap,p). Note that v(),, ) is eventually constant for each m
and is independent of the choice of 1.

So we have again:

(G(ay) = v (G(ap) +Y ey e’p") ,

m>1

where ¢, , = Z|l|:m Gi(ay) - a(,up)’, and v(g;p) = v(Am)p) is eventually constant
and independent of the choice of 1,. By Lemma 5.2 we can eventually find an
mg such that v(ey, , - 9;’,’0) < V(Emyp - 9,’0”) for all m # my, so that

v (Z em,peﬁ)
m>1

If v(G(a,)) # u(amo,pegm), we do nothing. If ©(G(a,)) = U(Emo’pGZ’O), then consider

i +
rmnélg (V(Em,p) +myp)

= U(gmo,p) + mo7p.

G(ap) + Emg p8,° = G(ap) + Fiuy o(D(A11)).

Since Fiy,p(y) is homogeneous of degree mg > 1, Fy, ,(D(y)) has no constant
term. So we can write

G(ap) + Finy,p(D(y)) = G(ap) - Qp(y),
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where Q,(yo, - . .,y,) is a polynomial over V with constant term 1 and at least one
other coefficient with valuation zero. The extra requirement that v(Q,(9(u,,))) = 0
can be fulfilled as before, and we get that eventually

(G(ap)) = min{v(G(a,), v(emy,p) + Moy}
and we are done as in the previous case. O

We remark that we will also use a small variant of this theorem where we add
finitely many more o-polynomials to the G; and A; ({G,}|,|=m) (see the proofs
of Theorem 6.10 and Lemma 7.2).

6. Around the oc-Hensel Scheme.

6.1. Newton approximation. For the moment we consider the basic problem
of how to start with @ € K and G(«) # 0 and find 8 € K with v(G(3)) > v(G(w)).

Definition 6.1. Suppose G(x) = F(o(x)) as usual, and a € K. We say o, G
is in o-Hensel configuration if

uWG() = v+ fmllf]l UGi(@))
< Jj-v+vGle)
whenever |I| =j > 1.

Note that with G of order 0, we get one of the equivalent configurations of
the standard Hensel scheme.

LeEMMA 6.2. Suppose (K, v,k, T, 0) is a valued field with isometry with (k, &)
linearly difference closed. Suppose o,G are in o-Hensel configuration, with
UG()) = 7y + miny -y (G()). Then there is 3 with v(a — ) = v,6,G in o-
Hensel configuration, and v(G(03)) > v(G()).

Proof. We try § = a +¢, so

G(B)=G(a)+ > _ Gla) - a(e).

>1
We first aim for v(G(5)) > v(G(a)) = v+ miny - ¥(G(@)), suggesting that we

aim for ¢ with

2) v (Z Gi(@) - o) + G(a)) > 7+ min v(G()).

lil=1
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Pick X so that v(\) = v and let € = A\u, for u a unit to be determined. Fix
Iy with |ly| = 1, so v(Gy(a)) = min-; v(Gi()). Note that for |I| = 1, o) =
o\ - o)’ and v(a(\)) = 7.

So we want

Gl@)\ o . G
v (MZ] (G,0<a)) N oo AGlo(oo) =0

Let

Gi(@) - V) /X - Gyy(@)
G(a)/ X - G(a).

Cy

d

Z\z\:l ¢; - o(x)! +d is a nontrivial linear o-polynomial over V, with v(cy) = 0,
and we can find ¢ satisfying (2) if we can solve

Y aa(y)+d=0

=1

over k. Note that v(d) = 0, so d # 0. Since (k, ) is linearly difference closed, let
t be a solution of

ZE} . &(y)l+6_l=0
[7]=1

and choose u so that i = ¢. Note that v(¢) = v(\) = . Then (2) holds.
Now

v(G(B) = v(G(a+¢))

v (Z Gi(o) - o(e) + G + > Ga) - a(e)’) :

|7]=1 [7]>1

For |I| > 1,

U(Gi(@) - a(e)) = (Gl) + 1] - v > (Gyy(@) +

by assumption. So

v (Z Gi(a) - cr(f—:)l) > v(Gyy(a)) + 7.

[7|>1
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So by (2),
(G(B)) > v(G(a) +7 = v(G(a)).

Now we have to show that 8, G is in o-Hensel configuration.
For |I| > 1,

Gi(f) = Gla) + Y (Gj() - o).

i1

Recall that

"
(Gp)j(e) = ( j’) Giej(),

Ly
v (( J;J>> + 0(Gpj(@) + |j| -y

U(Gry() + (= (I + i) - v+ 1l -~
U(Gr(a)) + (1 = [I) - 7.

so that if |I| > 1 and |j| > 1

v((Gj(a) - a(ey)

V

V

In particular, if |I| = 1, and |j| > 1

v ((G)j() - a(e)) > v(Gy(a)).
We conclude that
UGy, (B) = (G ()
and in fact
(Gi(B)) = v(Gi(@))

if I = 1 and v(G)(a)) = v(Gj (). By the same argument, if |I| = 1 and
U(Gi(@)) > v(Gy()) then v(Gi(B)) > (G () = V(G (B)).
Let 2(G(5)) = v1 + (G}, (5)), so y1 > ~. For |I| > 1

Gi(B) = Gla) + Y (Gj(a) - o(e)

lil=1

and as before for |j| > 1

W(Gj(@) - oY) > (Gy(@) +(1 =[] = i) -y +1jl -7
= 0G@)+ (1 — |- 7.
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Also,

U(Gi(@)) > v(Gyy(a)) + (1 = [I]) -
50
u(G(B) + [I]y > v(Giy(a)) + -
So, since v; > 7,
u(GU(B) + 1] - 71 > (G (B)) + 1
Thus 8,G is in o-Hensel configuration. O

We note the following direct consequence.

COROLLARY 6.3. Let (K, v,k,T',0) be a valued field with isometry such that
(k,7) is linearly difference closed and (K, v) is a complete discrete valued field.
Then whenever «, G is in o-Hensel configuration, with

v(G(a) =~ + ‘ﬁ}i‘} v(Gy())

there is a root 3 of G with v(a — [3) = 7.

Definition 6.4. (The o-Hensel Scheme) We say (K, v, k, 7, o) satisfies the o-
Hensel scheme, or is o-henselian, if whenever «, G is in o-Hensel configuration
with

(G(a) =7+ Iﬁllllll (Gi(@))

then there is § in K with v(a — ) = v and G() = 0.

Similar schemes were considered for difference operators by Duval [12].

It bears noting that just as the notion of “henselian” may be formulated in
many different ways, so, too, may the condition of being “o-henselian.” The
reader can consult [29] for another treatment.

Thus, W(k) satisfies the o-Hensel scheme if k satisfies: all equations

' n—1
e +ep X+ 4+¢p=0

with ¢; € k, ¢, #0,co # 0, are solvable in k. This is equivalent to k not having
any finite extension of degree divisible by p [31].

Note that if (K, v, k, 7, 0) satisfies the o-Hensel scheme then (K, v) is hense-
lian. In analogy with a familiar, important result about henselian fields, we have:
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THEOREM 6.5. Suppose k has characteristic 0 and (K, v, k, T, o) satisfies the
o-Hensel scheme. Let K be a difference subfield of K, maximal with respect to the
property x € Ki = v(x) = 0. Then (Ko, 0) is isomorphic to (k,5) via x — X.

Proof. Suppose that x — X is not surjective (it is clearly 1 — 1).

Suppose a € K, v(a) =0, v(a —y) =0, all y € K. If for all o-polynomials
H(x) over the valuation ring of Ky we have v(H(«)) = 0, we are done. Otherwise,
pick G(x) over the valuation ring of Ky, of minimal complexity so that v(G(«)) >
0. So for all H(x) of lower complexity v(H(x)) = 0. It follows that o, G is in
o-Hensel configuration, with v = 2(G(«)). So there is § € K with G(§) =
0,(a — B) =7, s0 a=p.

Now, by the standard minimality considerations,

y € Ko(B)" = v(y)=0
So 3 € Ky, and v(a — 3) > 0, contradiction. O

The previous theorem will be used in particular in the following situation
with the coarse valuation (cf. Lemma 1.7).

LeEMMA 6.6. Suppose (K, v, k, T, o) is unramified with k of characteristicp > 0,
and satisfies the o-Hensel scheme. Let Iy be the convex subgroup generated by
v(p) and © the coarse valuation. Then (K, 0, k, I'/T, o) also satisfies the o-Hensel
scheme.

Proof. Suppose a, G is in og-Hensel configuration for . So we have
(Gla)) = I‘ﬂl? (Gi(a)) + (v +To)

< o(GH@) +[fI(y+To) if [f| > 1

for some v € T'.
Since ' — T'/T is order-preserving, it is easily seen that for some ~; with
7 —7 €T,
u(G(a) = ﬁljrll v(Ga) +m
< v(Gi(a)) + Ul -y L if ] >1

so there is 3 with G(3) =0,v(3 —a) =, so v(B —a)=~v+T. O
6.2. Pseudoconvergence of o-algebraic type. We consider a valued field

with isometry (K, v, k,T", o). Recall the universal polynomials A; from the 0-ring
formalism.
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Definition 6.7. For a o-polynomial G over K, G(x) = F(o(x)) as usual, we
denote by H(G) the set of finitely many o-polynomials obtained from G by
closing under the following operations:

(1) taking all Gy, for which the corresponding polynomials F; are not constant
and |I| > 1;

(i) in Witt-Frobenius case, taking also all nonconstant A;({G;}), for the
corresponding polynomial F,,(y) = Z|l|=m Gi(x) - y* with m < total degree of F.
The set H(G) is finite since operations (i), (ii) yield o-polynomials of lower
complexity.

Definition 6.8. Suppose {a,} from K is p.c. We say {a,} is of o-algebraic
type over K if there is a an equivalent p.c. series {a;)} from K and a o-polynomial
G(x) over K so that {G(a;))} ~» 0, and for all H € H(G), {H(afo)} is pseudocon-
vergent.

The analogy of this definition with the classical case is not as direct as might
be expected, but it will be sufficient for our purposes (see Theorem 7.5). A referee
has pointed out that one can drop the extra assumptions on H(G), but at the cost
of introducing stronger hypotheses in some of our intermediate results, i.e., in
Theorem 5.9.

Definition 6.9. We say {a,} is of o-transcendental type over K if it is not of
o-algebraic type over K.

6.3. From o-algebraic type to o-Hensel configuration.

THEOREM 6.10. Let (K, v,k,T’,0) be pliable. Suppose {a,} is p.c. in K, and
{a,} ~ a, possibly in an extension, which is a Witt-Frobenius case if K is.

Suppose {a,} is of o-algebraic type and G(x) is a o-polynomial of minimal
complexity witnessing such a fact amongst all series equivalent to {a,}.

Then there is {c,} from K, equivalent to {a,}, so that {G(a,)} ~ 0, and for
all H € H(G), {H(a)} ~ H(a), {H(a,)} + 0, and such that eventually o, G
is in o-Hensel configuration. Moreover, either G(a) = 0, or a,G is in oc-Hensel
configuration.

Proof. Replacing {a,} by an equivalent series if necessary, we can assume G
witnesses o-algebraic type for {a,}. Let G(x) = F(o(x)) as usual. By minimality,
because of the inductive structure of H(G), we get that {G(a,} ~» 0 and for all
H € 'H(G), {H(a,)} is p.c. but not to 0. We can then return to the calculations in
the proof of Theorem 5.9. The proof produces an equivalent {c,}, so that for all
H € H(G), {H(cp)} ~» H(a). By minimality of G, we also have {H(a,)} 7% 0,
all H. In particular, {Gy(a,)} 7% 0, all |I| > 1, and for those v(G)(a,)) = v(Gi(a))
eventually. Inspection of the proof of Theorem 5.9 yields considerably more. Let
us suppose, without loss of generality, that {c,} is just {a,}. The proof actually
gives the following:
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For each I such that F; is not a constant, there is a unique m(l)) = m > 1,
and natural numbers iy, ij|; such that

v(Giap) — G(@) = min v((Gp (@) + myp + im < V(GP(@)) + k| - 7 + i

lil=m

whenever |k| #m and |k| > 1 (the i’s appear only in the Witt-Frobenius case).
Moreover, since {v(G(a,))} is increasing eventually we eventually get
v(G(a)) > v(G(ayp)), and so eventually

(Glap)) = |j1‘l:l’311(10) (Gj(@) +m(0) - 7y + im(0)

v(G(ap)) = | min ) v(Gj(ap)) + m(0) - v, +i,,(0).

j|=m(0

We claim that m(0) = 1.
Suppose not, and choose j with |j| = m(0), and

v(Gj(a)) = min v(Gi(a)).
[k |=m(0)

Choose I <,

I| = 1. Now v(Gy(a,)) = v(G)(a)) eventually, so eventually

(Gi(ap)) < v((G(@) + k| - Yp + i) s — im(o)s

SO

l+k
(Gap)) < v (( ; )) + (G (@) + k| - vp + i) — Emo)

for all k with |k| > 1.
Choose k so I +k = j, and we have eventually

uGla)) < v ((i)) +u(Gj(@) + ([J| = 1)) - vp + -0 — im()-
Since K is unramified we have eventually, by Lemma 5.2,
u(Gi@) < v(Gi@)+(J =) - vp +ijj10 — im)

UG@)) +p + im) < V(Gj(@) + ]| -7+ )jl>
a contradiction. So m(0) = 1. Hence we have eventually

v(G(ap)) = Tr|11111 Gi(@) +vp + ime) < v(Gr(a)) + |k| - v, + ], 0
il=
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whenever |k| > 1. Appealing again to Lemma 5.2 we get eventually
2(Gla) = min o(Gy@) +7 + iy < 0(Gel@) + K] -7 + K] i
< v(Gr(@) + k| - (7p + (),

so a,, G are eventually in o-Hensel configuration. Now suppose G(a) # 0. We
already observed that v(G(a)) > ©(G(a,)) eventually. Then the same argument
as in the last part of Lemma 6.2 shows that a, G are in o-Hensel configuration
(replacing 3 by a and « by a,). O

7. Maximal immediate o-extensions. We now develop a theory of maxi-
mal immediate o-extensions.

Note that the classical theory tells us that the cardinality of (K, v,k,T") is
bounded by a bound depending only on the cardinality of k and I" (essentially the
cardinality of the power series field k((f"))), so that by the usual maximality argu-
ments, any field with isometry (K, v, k,T’, o) has at least one maximal immediate
o-extension, and one maximal immediate o-algebraic o-extension.

Let G(x) be a o-polynomial over K and {a,} from K so that {a,} ~ a (a
anywhere). We will use the notation

{G(ap)} ~; G(a)

if {G(a,)} ~ G(a) and for all H € H(G), {H(a,)} ~ H(a).
The next lemma is a routine extension of a result familiar in the polynomial
setting.

LemMa 7.1. Suppose (K, v,k, T, 0) is pliable. Let {a,} be p.c. of o-transcen-
dental type over K, with no pseudolimit in K. Then there is a proper immediate
extension (K(a), v,k,T’, o) with a o-transcendental over K, such that {a,} ~ a
and (K {a), v,k,T, o) is pliable. Conversely, suppose b is a o-transcendental element
over K in some pliable c-extension of K and {a,} ~» b. Then (K(a), v,k,T', o) and
(K(b), v,k,T', o) are K-isomorphic by an isomorphism sending a onto b.

Proof. For the first part, let (K3, t», k2,12, 02) be an elementary extension of K
containing a pseudolimit a of {a,}. Let K| = K(a). If we show K, is immediate,
the elementarity of K, clearly gives the rest. Let G(x) be a o-polynomial over K,
not coming from a constant F'. Use Theorems 5.6 and 5.8 to get an equivalent {a;}
so that {G(a))} ~; G(a). Now, {G(a},)} > 0, since {a,} is of o-transcendental
type. So G(a) # 0 and v(G(a)) = eventual value U(G(a;)) € I'. Thus K; has the
same value group as K. A similar, standard argument shows that it has the same
residue field.

For the second part, suppose b is o-transcendental over K such that {a,} ~ b.
We claim that the unique o-isomorphism K(a) = K(b) fixing K and sending a
to b is an isomorphism of valued fields.
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Let H(x) be a non constant o-polynomial over K. Use sections (5.2)-(5.4) to
get {a,} ~ {a,} with {H(a,)} ~ H(a) and simultaneously {H(a,)} ~; H(D).
This is straightforward in the Witt-Frobenius case, and not difficult to see in the
case that & satisfies no identities.

Now {H(a},)} +» 0, since {a,} is not of o-algebraic type. So v(H(a})) is
eventually constant and we have

v(H(b)) = eventual value v(H(a;,))

v(H(a)).

To conclude that K(a) = K(b) is an isomorphism of valued fields, observe
that an arbitrary element of K(a) is a quotient of elements of the form o”(H(a))
for some m € Z, H as above. O

As in the classical setting, the o-algebraic case is trickier.

LemMA 7.2. Suppose (K, v,k, T, 0) is pliable. Let {a,} be p.c. of o-algebraic
type over K, with no pseudolimit in K. Let G be a o-polynomial of minimal complex-
ity witnessing o-algebraic type amongst all equivalent series. Then there is a proper
immediate extension (K(a), v,k,T", o) of K, with G(a) = 0, such that {a,} ~» a and
(K{a), v,k, T, o) is pliable. Conversely, suppose b is a solution to G(x) = 0 in some
pliable o-extension of K and {a,} ~» b. Then (K (a), v,k,T", o) and (K(b), v, k,T", o)
are K-isomorphic by an isomorphism sending a onto b.

Proof. We may assume G witnesses o-algebraic type for {a,}.

We prove the first part. Let G = F(o(x)) have order n. Then F(xy,...,x,) is
irreducible in K[xo, . . ., x,]. For if F = F - F,, we may use Theorem 5.9 to get an
equivalent {a}} such that {G(a},)} ~; G(a), {Gi(a,)} ~; Gi(a), {Ga(a))} ~s
G»(a) and {G(a;,)} ~» 0, forcing one of {G (a;)} ~ 0 or {Gg(a;)} ~» 0, contrary
to the minimality of G.

Let L be the field of fractions of the domain K[xo, . ..,x,]/(F).

We first give L the structure of an immediate extension of K.

Let f(xo,...,xy,) € Kl[xg,...,x,]. Clearly hf — A = bF for some h €
Klxo,...,xp—1], A,b € K[xop, . ..,x,], A of lower complexity than F.

For convenience, pick a pseudolimit a for {a,} in an elementary extension
of (K,v,k,T,0).

“Define”

v(f) = v(A(o(a))) — v(h(o(a)))
Many things now have to be checked.

(1) The map is well-defined. Suppose hif — Ay = b1F, h; € K[xo,...,X,—1],
A1, by € K[xg, . ..,x,], A1 of lower complexity than F. Then

A — hA; € (F)
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and has lower x,-degree than F, so = 0.
(This still leaves the “problem” that A(o(a)), h(o(a)) might both be 0.)

(ii) h(o(a)) # 0, and v(h(o(a))) € T'. If h is a constant, this is trivial. If not,
go to equivalent {a,} so that

{n(a(a@)} ~ h(o(a)).

But i(o(x)) has lower complexity than G(x), so {h(o-(a:,))} +» 0. So h(o(a)) #0,
and v(h(o(a))) = eventual value U(h(a(afo))) erl.

(iii) v(A(o(a))) € T U {oc}, so v(f) € T'U{oc}. By an argument similar
to (i1).

(iv) Suppose for some equivalent {a,,} that {f (o(a},))} ~ f(o(a)), {f(a(a)))}
* 0, {h(a(a@)))} ~s h(a(a)), {A(a(a,)} ~s A(o(a)), and {b(a(a},))} ~ b(a(a)).
Then v(f) = the eventual value v( f(a(a;,))) = v(f(o(a))). Consider the relation
h(a(a;,))f (cr(a;,)) —A(U(a;))) = b(a(a)))F (O'(Cl;))). The valuation of the right-hand
side is eventually increasing while the valuation of each of h(a(a’p)), f(a(a;)),
A(o(a))) is eventually constant, so eventually we must have v(h(o(a),))) +
o( f(a(afo))) = U(A(a’(a/p))). But as we have seen previously, v(f) = eventual
value U(A(O’(a:))))— eventual value U(h(a(a;))), whence the result.

(v) v is a valuation extending that on K.

(v.1) It clearly is an extension, and takes value co on (F).

(v.2) That o(f + g) > min (¢(f), v(g)) is formal, given (i)—(iii).

(v.3) v(fg) = v(f)+uv(g): say h; € K[xo, . ..,xn—1],Ai,b; € K[xg, ..., x,],A; of
lower complexity than F such that hjf —A; = b F,hog —Ar = byF, h3A1Ay — Az =
bsF. Then hshihyfg — Az = bF, for some b € K[xgp,...,x,], and as in (iv),
U(A1A3) = v(A1(o(a))) + v(Ax(o(a))), so that by (i), and as in (ii) and (iii) we get:

u(fg) = v(As(a(a)) — v(h3(o(a))) — v(hi(o(a))) — v(ha(o(a)))
= U(A1A2) — v(hi(o(a))) — v(ha(o(a)))
= v(A1(0(a)) + v(Ax(0(a)) — v(hi(o(a)) — v(ha(o(a)))
= u(f)+ v(g).
By the above arguments, we get a valuation on K[xo, . .., x,]/(F), and extend

it to L. Clearly the value group does not extend. Since v(f) = eventual value
v (A(a(a;)) / h(a(a;,))), as in (ii), one shows likewise that the residue field does
not extend.

Now let ¢; = x; + (F) and consider the “map”

K2, - .-y 1) — K01, ..., )

sending ¢; to vjy1, (0 <i < n—1) and extending o on K.
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Again, there are things to check.

Each of K(w,...,t,—1) and K(vy,...,v,) has transcendence degree n over
K. Suppose f(wy,...,vn—1) =0, f € K[xo,...,X,—1]. Then f € (F), impossible,
unless f = 0.

Suppose g(vy,...,1,) =0, g € K[x1,...,x,]. S0 g € (F), say g = g1 -F. Then
either g is constant, or by Theorem 5.9 there is some equivalent {a;} so that
{g(a(@)} ~5 g(a(a)), {g1(a(@))} ~ gi(a(a)), and {G(a),) = F(a(a)))} ~ 0.
This forces also {g(a(a/p))} ~ 0.

But then

{0(g7 (07N @@} ~5 (g7 (07 (a@)))

{o(g” (@ (a@)))} ~ 0

SO
{g("_I (a;, U(a;)), e, Jn_l(a;))} g gU_] (a, oa),..., an_l(a))
{g‘f1 (a'p, a(a;), e 0”_1((1;)))} ~ 0
But g7 (x,0(x),...,0" 1(x)) has lower complexity than G, a contradiction.

So

K(20, - tn1) 2 K(v1, . . ., )

where o(2;) = v;1 and extending o on K, is a well-defined field isomorphism
between subfields of L.
Now, by earlier calculations, if f € K[xg, .. .,X;—1]

v(f(2o, ..., v,—1)) = eventual value v(f(o(a),)))
for suitable {a},} ~+ a, and changing a, if necessary

o(f7(vr, ... )

eventual value v(f?(0(a)),...,0"(a,))), by (iv)

(o(f(W,s - s 1))

eventual value v(f(a;, o, a"_l(a;))).

So v(f) = v(o(f)), whence o is value preserving.
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Now consider the henselisation L of L, and the picture

Lh
7
L
/! AN
K(wy,...,0-1) K(v,...,0).
AN /!
K

Evidently L is algebraic over K(zp,. .., ts—1). The proof that K(v,..., v,) has
transcendence degree n, together with F(z,. .., v,) =0, gives ¢y algebraic over
K(vy, ..., ), so L is algebraic over K(vy,...,v,). Thus

K(wo,...,o0-)' =K(vr,..., 00" = L".

So ¢ extends uniquely to an automorphism ¢ of L, which is an immediate
extension of K; o is clearly value preserving. Note that {a,} ~ ¢, since v(zp —
a,) = v(a — ap,) = vy, eventually.

Now take K| = K(zp), finishing the proof of this first part.

For the second part, suppose b satisfies G(b) = 0 and {a,} ~ b. We first
observe that b,o(b),...,o" (b) are algebraically independent over K. For if
Hb,o),...,c" (b)) = 0 for some non-zero H € Kl[xy,...,x,—1], we can
go to an equivalent {a),} such that H(a), o(a}), ..., U”*I(a;))) ~ss H(b,o(b), ...,
"~ 1(b)), but that would contradict the minimality of G. Similarly, G is of minimal
complexity such that G(b) = 0. We then get a K-isomorphism of difference fields
K{a) ~ K(b) sending a to b. Now the elements of these fields are described
by o-polynomials H, in a or b, of lower complexity than G. In particular, for
any equivalent {a),} necessarily {H(a},)} 7 0. We can then argue as in the
second part of Lemma 7.1 to conclude that this is also an isomorphism of valued
fields. O

We note the following consequences. Recall that according to the classical
theory, (K, v) has no proper immediate extension if and only if every p.c. series
from K has a pseudolimit in K.

THEOREM 7.3. Suppose (K, v, k, T, o) is pliable. Then:

(a) (K, v) has a proper immediate extension if and only if (K, v,k,1',0) has a
proper immediate o-extension which is pliable.

(b) (K, v,k,T',0) has a proper immediate o-extension which is o-algebraic if
and only if there is a p.c. {a, } of o-algebraic type over K with no pseudolimit in K.

(¢) Let a & K be in some immediate pliable o-extension of K, and let K, be a
pliable o-henselian extension of K such that every p.c. series from K, of length at
most card(T') has a pseudolimit in K,. Then K {(a) embeds in K, over K.
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(d) Let a € K be in some immediate pliable o-henselian o-algebraic extension
of K, and let K, be a pliable o-henselian extension of K such that every p.c. series
of o-algebraic type over K> and of length at most card(I') has a pseudolimit in K.
Then K (a) embeds in K, over K.

Proof. (a) (<): Immediate. (=-): If (K, v) has a proper immediate extension
then there is some p.c. series {a,} from K having no pseudolimit in K. By either
Lemma 7.1 or Lemma 7.2 depending on whether {a,} is of o-transcendental
or g-algebraic type, there is an immediate pliable extension of (K, v,k,I",0) in
which {a,} has a pseudolimit.

(b) («=): This is Lemma 7.2. (=): let a belong to a proper immediate o-
extension which is o-algebraic. Say G(a) = 0, for some nonconstant o-polynomial
G. By the classical theory, there is a p.c. {a, } from K which pseudoconverges to a
but has no pseudolimit in K. By Theorems 5.6 and 5.8 there is a p.c. {a,} ~ {a,}
s.t. {G(a,)} ~; G(a) = 0. So {a,} is of o-algebraic type over K, and with no
pseudolimit in K.

(c) Let K; be some immediate pliable o-henselian extension of K containing
a. By the classical theory, there is a p.c. {a,} from K such that {a,} ~» a and
{a,} has no pseudolimit in K. By the assumption, there is b € K> such that
{ap} ~ b.

If {a,} is of o-transcendental type, then reasoning as in (b), a and b must
both be o-transcendental over K and we can apply Lemma 7.1.

If {a,} is of o-algebraic type, let G be as in Lemma 7.2, namely, a minimal
witness to o-algebraicity. By Theorem 6.10, we get an equivalent {a’p} from K
so that {G(a;)} ~ 0, {G(a;,)} ~ G(a), for all H € H(G), {H(a’p)} ~» H(a), but
not to 0, eventually a;), G are in o-Hensel configuration, and either G(a) = 0 or
a, G are in o-Hensel configuration. Note that {a’p} ~» a and v(G(a)) > U(G(afo))
eventually. If G(a) = 0, we do nothing. Otherwise, by the o-Hensel scheme, we
get d’ in Kj, such that G(a') = 0 and v(a’ — a) = v(G(a)) — min-; (Gi(a)). But
eventually, v(Gi(a,)) = v(Gi(a)),l] > 1, so eventually v(a’ — a) > ~,. Whence
{a,} ~ d'. So in every case, we get @’ in K, such that {@},} ~ d' and G(a') = 0.
Similarly, we get b’ in K with {a,} ~» b" and G(b) = 0.

By Lemma 7.2, K(d) is isomorphic to K(b') as valued fields with isometry
over K, with @’ mapped to &’

Now, a is immediate over K{a'). If it is not in K(a'), then we may repeat the
argument and conclude by a standard maximality argument.

(d) By the proof of (b), there is a p.c. {a,} from K of o-algebraic type
pseudoconverging to a but with no pseudolimit in K. The calculations in (c) work
now noting that every extension or p.c. series considered will be of o-algebraic
type. O

We now tackle the issue of uniqueness of maximal immediate o-extensions.
At the same time, we consider the analogue for o-algebraic immediate
extensions.
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LeEmMMA 7.4. Let (K, v,k,T,0) be a valued field with isometry s.t. (k,&) is lin-
early difference closed. If (K, v,k,T", o) has no proper immediate o-algebraic ex-
tensions then it satisfies the o-Hensel scheme.

Proof. Suppose first that (K, v, k, v, o) has no proper immediate o-extension.
Suppose it is not o-henselian, and start with a counterexample a, G in o-Hensel
configuration.

Let ap = a and use the Newton approximation given earlier to start a p.c.
{an}n<w in o-Hensel configuration (cf. Def. 6.4 for notation). Note that for all /
with |I| = 1 such that

v(Gi(ap)) = fml} v(Gj(ap))

Jl=
we have for each n < w

(Gi(an)) = v(Gi(ao))

m‘in v(Gj(an)).

lil=1

Fix, as in Section 6.1, Iy with |lp| = 1 so

UGy (ay)) = mirll v(Gj(ap)).

Now, {a,} must have a pseudolimit a,, in K. As in the proof of Theorem 6.10,
we get that a,, G are in o-Hensel configuration. By continuing we eventually
reach a contradiction.

Now suppose (K, v,k,I', o) has no proper immediate o-algebraic extension.
Since K is unramified, let (K, v1) be the unique maximal immediate extension of
(K, v). By uniqueness, o extends to (K, v1) and we get (Ky, vy, k1,11, 01) which
has no proper immediate o-extension. By the first case, K is o-henselian. If a, G
from K are in o-Hensel configuration, there is an appropriate root of G in K,
which is now forced to be in K. O

THEOREM 7.5. Suppose (K, v,k, T, o) is pliable with (k, &) linearly difference
closed. Then

(1) (K, v,k, T, 0) has a maximal immediate o-extension, which is pliable, and
is unique up to isomorphism over (K, v, k,T’, o).

(i) (K, v,k,T',0) has a maximal o-algebraic immediate extension, which is
pliable, and is unique up to isomorphism over (K, v,k, T, o).

Proof. We have already noticed the existence of both kinds of maximal imme-
diate o-extensions, and they will necessarily be pliable since they are immediate
extensions of K. By the previous lemma they are also o-henselian. The desired
uniqueness then follows by a standard maximality argument using Theorem 7.3(c)
and (d). O
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We note the following:

LEMMA 7.6. Let (K, v,k, T, o) be pliable with (k, &) linearly difference closed.
Then the maximal immediate o-extension of K embeds in any pliable o-henselian
extension of K which is max (card(k), card(I'))*-saturated.

Proof. Let K’ be the maximal immediate o-extension of K. The saturation
assumption ensures that any p.c. {a,} from K or K’ will have a pseudolimit in
the saturated extension. The result then follows again from Theorem 7.3(c) by a
standard maximality argument. O

8. Proof of the embedding theorem. In this section we complete the proof
of the Embedding Theorem 2.2 which the reader should consult for notation.

We wish to exploit our work on pseudoconvergence and maximal immediate
o-extensions, but these do not apply directly to general L; as above.

The main remaining work involves making the L; pliable with a linearly
difference closed residue field. We then exploit uniqueness of maximal immediate
o-extensions and fall into the trichotomy of the classical setting: extensions where
only the residue field extends (so-called unramified), extensions where only the
value group extends (so-called totally ramified), and immediate extensions.

We shall show a series of intermediate lemmas where we extend ) to a o-
extension L] of L;, still small, with a desired property. Concerning the issue of
smallness, typically the basic step is to go to some L] = L;{a), which is obviously
small if L; is, and then iterate the procedure card(l;) or card(G;) many times,
which also preserves smallness. Eventually we iterate this process countably many
times and take union of an increasing sequence of countably many small fields,
which also preserves smallness. We will make no further reference to smallness
in the proof.

In all cases, the extension ¢’ of ) should be admissible, i.e. satisfy conditions:

(A) ¢ is an isomorphism of valued fields with isometry.

(B) The induced isomorphism #/.: Ij «— [, of difference fields is elementary.

(C) The induced v): G} «—— G} is elementary.

(D) ¢ respects the angular component maps.

We note that by Lemma 1.6 and Lemma 1.12 we can always assume that L;
is henselian. Recall the notation fd’ (Section 1).

8.1. Making a valued field with isometry pliable. We want to make the
L; of the Embedding Theorem pliable with linearly difference closed residue
fields. This involves using Axioms R and RG of the ambient models and some
dovetailing.

LemMmA 8.1. Let ¢: Ly — L, be an admissible isomorphism, with L; small,
Witt-Frobenius case and henselian.
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(1) Suppose o € ky is algebraic over ). Then there exist a € K1,b € K> such
that a = o and ) can be extended to an admissible isomorphism': Ly {(a) — L,(b)
such that v'(a) = b.

(2) We can extend 1) to an admissible isomorphism 1)’ between small valued
subfields with isometry L; whose residue fields I} are relatively algebraically closed
in k,‘.

Proof. Item (2) follows directly from item (1). To prove (1), the basic task is
to select o algebraic over /i, select a suitable a € K| with @ = «, and extend 1)
to L{a).

Note that since L, is closed under o and o', [; is perfect. For we are in a
Witt situation and &(x) = x”.

Now, select irreducible monic f € [j[x] of degree n with f(a) = 0. Since [
is perfect, f'(ct) # 0. Lift f to some monic g € L;[x] of degree n,g = f. Use
Hensel’s lemma to get a € Kj,g(a) = 0,a = «, a unique with these properties.
Also, g is clearly irreducible.

Then Li(a) = Li[a] = {h(a): h € Li[x],deg(h) < n}. Pick any such h(x),h #
0, and write h = ¢ - hy,c € Ly, h; over the valuation ring, and with at least one
coefficient 1. Then Aj(a) # 0, so v(hi(a)) = 0, and v(h(a)) = v(c). So Li(a) is
unramified over L;, with residue field /;(«).

Now, o(a) need not be in Li(a). However, we do know that o(a) is the unique
root A of g% such that X\ = &(a), a root of f7. Now f° is irreducible over [,
though perhaps not over /;(c). So factor f7 into coprime irreducibles over /1(c),
say f7 = IIf;, and lift this to a factorization of g over the henselian field L;(a),
say g7 =Ilg;, with g; = f;. Now, &(«) is a root of f] say, and of no other f;, so
o(a) is a root of g1, say, and of no other g;. The g; are of course irreducible.

So now we repeat our earlier procedure, working over L(a) with f; and o(a),
to get Li(a,o(a)), an unramified extension, with uniquely determined valuation
structure, and residue field /i (c, 5()).

Now obtain o~ !(a) and then o%(a),o %(a), and so on, until we have an
unramified extension L;{a) with residue field /; («).

Our task now is to find 1)/, i.e. to find a suitable b € K,. We make essential
use of ¢,. The saturation allows us to extend ), to an elementary map

Py Li{a) «— hL(f)

with ¢/(a) = 3. Now we use 1)/ to mimic what we just explained about L;{a).
Use Hensel’s lemma to get a unique b so that g¥(b) = 0 and b = Yi(a) = B.
Then by our discussion of the valued field structure of L;(a) it is clear that ¢
extends uniquely to a valued field isomorphism v1: Li(a) = Ly(b) sending a to
b. AlSO,wl,r = QM, |ll(o<)-

Now repeat to extend to ¢»: Li(a,o(a)) = Ly(b,o(b)), and so on till we get
Y': Li{a) = Ly(b), as a map of valued fields, and ', = 1.

Finally, ¢/" does respect o, just by construction.
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Since the extension is unramified, (C) and (D) are automatic, and ¢/, = 1).
gives (B). O

LEMMA 8.2. Let . L1 — L be an admissible isomorphism, with L; small.

(1) Given an inhomogeneous non trivial linear 5-equation over ly, there exist
a € K1,b € K, such that a is a solution to the given equation and 1 can be extended
to an admissible isomorphism ': Li{a) — Ly(b) such that 1)'(a) = b.

(2) We can extend 1) to an admissible isomorphism 1)’ between small valued
subfields with isometry L] whose residue fields are linearly difference closed.

Proof. In the Witt-Frobenius case, this is subsumed by Lemma 8.1, since
a(x) = xP.

As (2) is a routine consequence of (1), it suffices to prove (1) in case we
have Axiom RG. So, let

Cp-6"(X)+--+Co-x+d=0

be a linear 5-equation over [{, with n #0,¢, #0,d #0, all ¢; in L;.

Use Axiom RG and saturation to get a solution « in k1, so that « is not a root
of any F(o(x)) =0, F € Ii[xg,...,x,—1], F # 0. Now use the o-Hensel scheme
to lift « to a solution a (in Ky) of ¢,0*(x)+---+d = 0.

Consider Li(a,o(a),...,0" (a)). This is closed under o. But, noting for
example that 0~ !(c,0"(a)+- - -+d) = 0 we get 0~ '(a) € L(a,0(a), ...,o" ' (a)),
and see easily that Li(a, 0(a), . ..,0" '(a)) is closed under o~ .

Now we check the valuation structure of L;(a, o(a), ..., " '(a)). Consider

fla,0(a),...,0" Y (a)), f € Lilxo,...,x,—1] ~ {0}. Write, as usual, f = ¢ - f,
c € Ly, f1 over the valuation ring, one coefficient 1.

il é(),...,6" Ya) # 0, so
v fila,o(a),...,0" Y a) = 0, so
v(f(a,o(a),...,o" Ya))) = vlc).

So v is uniquely determined, the extension is unramified over L, and has residue
field /().

Now use saturation and the elementarity of v, to find a match 3 in k; for «.
Let b be an appropriate lifting. The existence of v’ is routine. O

LeEMMA 8.3. Let v: Ly — Ly be an admissible isomorphism, with L; small.
Suppose the L; henselian and the ; linearly difference closed.

(1) Let ¢ € Ly, then there exist a € Ky,b € K, such that v(c) € v(Fix(Li{(a)))
and 1) can be extended to an admissible isomorphism ' Ly{a) — Ly(b) such that

Y/(a) = b.
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(2) We can extend 1) to an admissible isomorphism 1)’ between small valued
subfields with isometry L} such that for all ¢ € L; there is a € L; such that o(a) = a
and v(c) = v(a).

Proof. Again, (2) follows from (1) using Lemmas 8.2 and 1.6. To prove (1),
this time our task is to take an element ¢ € L] and then obtain an extension
containing an element in the fixed field with the same valuation as c.

Pick a nonzero solution « of the equation &5(y) = (c/ O'(C)) -y over kj using
Axiom R. Use the o-Hensel scheme to lift « to a € K; with o(a) = (¢/o(c)) - a.

Then ca is in the fixed field, and v(ca) = v(c), since a #0.

So we consider L;(a), which contains an element solving our problem. L;(a)
is obviously closed under o and 0!,

If o is transcendental over /i, a by now routine argument shows that the
valuation on L{(a) is uniquely determined, and that L;(a) is unramified over L,
with residue field /;(«).

Can « be chosen transcendental? We can vary o by multiplying by an element
of Fix(&), so by saturation we can choose « transcendental, provided Fix(d) is
infinite.

If Fix(&) is infinite, the extension to ¢’ is by now routine.

Suppose however Fix(d) is finite, of characteristic p.

Go back to a. By Lemma 8.1, we may assume that /; is relatively alge-
braically closed in k; so the @ € [;. Let agp € L; be any lifting of «. If
o(ap) — c¢/o(c) - ap = 0, we are done (we need not extend). Otherwise, since
all linear 5-equations are solvable in /;, we may do Newton approximation in L,
to get a; with v(a; — ag) = v(o(ag) — ¢/o(c) - ap) and v(o(ay) — c/o(c) - ay) >
v(o(ap) —c/o(c)-ap). If a; is a root of o(x) — c¢/o(c) - x, we are done. Otherwise,
we generate a p.c. {a, tn<, in L; with

(ay, — a,) (for any m > n)

Tn

v(o(ay) — c/o(c) - ay)

and v(o(x) — ¢/o(c) - x) increasing on {a, }n<y-
Note that for any pseudolimit a,, (anywhere) of {ay,},<.

v(o(ay) —c/o(c) - ay) > v(o(ay) — c/o(c) - ap)
for each n.

Case 1. The series {a,} has no pseudolimit in L;. Since L; is henselian,
{an} is of transcendental type over L;, and for any pseudolimit a,, of {a,} the
isomorphism type of the valued field L(a,,) is uniquely determined.

If some a, is a solution of o(x) = ¢/o(c) - x, the field Li(a,) is closed
under 0,0~ and its isomorphism type as valued field with isometry is uniquely
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determined. Note that @, = «. In this case the existence of the required v’ is
routine.

If some a,, is not a solution, the o-Hensel scheme gives us a solution a,
with

ual, — a,) = v(o(ay,) —c/o(c) - ay)

> v(o(ap) —c/o(c) - ap)

each n, so @, is also a pseudolimit, and we go back to preceding paragraph.

Case 2. The series {ay},<. has a pseudolimit a,, in L;.
Newton approximate against a,,. We continue our seach until we are driven
into Case 1. O

LemMA 8.4. Let : Ly — Ly be an admissible isomorphism in the non-Witt-
Frobenius case. Then we can extend 1) to an admissible isomorphism 1)’ between
small valued subfields with isometry L] whose residue fields satisfy Axiom R4.

Proof. By saturation and Axiom R4 in K| we get a € kj, &-transcendental
over [;. Lift « to a. Then by now familiar arguments show that the valuation on
Li{a) is uniquely determined, and L;{a) is an unramified extension of L;, with
residue field /; («); a is o-transcendental over L;. Obviously /; (o) satisfies Axiom
R4. To lift ¢ to L;(a), we (as usual) use the fact that 1), is elementary to extend
¥, to an elementary map ): [j{a) «— L {3) for suitable 3 € ky, 9 () = .
Then lift 5 to b, and get ¢": Lj{a) «— L,(b) with the right behavior for 1’,,
etc. |

Finally, we obtain:

LEMMA 8.5. Let1p: Ly — Ly be an admissible isomorphism, with L; small. Then
we can extend 1) to an admissible isomorphism 1)’ between small valued subfields
with isometry L which are pliable with a linearly difference closed residue field.
Furthermore, we can also make the L] with no immediate c-extensions.

Proof. Witt-Frobenius case: by Lemmas 8.2 and 8.3, we can construct a
sequence of valued difference field extensions L; = Ljg € L;; C L;j» € ... and
isomorphisms ¥ = Yy, V1, Y, . .. such that

(1) v); is an admissible isomorphism of L;; onto L, j, and 141 extends vj;

(2) 1 is linearly difference closed if j is odd; and

(3) for all ¢ € L;; there is a € L;jy1 such that o(a) = a and v(c) = v(a) if
j>0is even.

Then Li = ;L;;j and ¢ = |J;4); yield the desired extensions. In the non-Witt-
Frobenius case, do the same dovetailing using in addition Lemma 8.4.

Assume now that each L; is pliable with a linearly difference closed residue
field. By Lemma 7.6, let L] be a copy in K; of the maximal immediate o-extension
of L;. By Theorem 7.5 we can now extend ¢ to the L!, which are also pliable
with a linearly difference closed residue field (since o-henselian). O
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8.2. Unramified extensions.

LeEMMA 8.6. Let ¢: Ly — L be an admissible isomorphism, with L; small.
Suppose L; are pliable and o-henselian. Let o € ki \ 1. Then there exists a €
Ki1,b € K> such that a = « and ) can be extended to an admissible isomorphism
W't Li{a) — Ly(b) such that 1)'(a) = b and L,{a) /L, is an unramified extension.

Proof. We want to extend v to L, whose residue field extends that of L;.

Case 1. The k; are of characteristic 0. Use Theorem 6.5 to select difference
subfields, lf.i representing /;, and then difference subfields kf D l? of K;, represent-
ing k;.

Then %), induces naturally zpﬁ: lﬁ — lg elementary in the setting of the
valued difference fields k? (under o).

Let a € k;\/;, and o the corresponding element of k'f. Consider L; (af). We
have to detect its isomorphism type and match it in Kj.

Pick a basis B of lq (a*) over lji. Then any element of L;{af) can be written
as a quotient of elements having the form x = > \; - b;, \; € Ly, b; € B, with
the b; distinct. As usual, if x # 0, x = X\, - > (\i/A;,) - b; for some iy, where
U()\i/)\,'o) > 0. Now )\,’/)\io =ui+e;, Ui € l?, v(g;) > 0. Also, Wiy = 1.

Thus > (A\i/Ai,) - bi has the same residue as > 4, - b;, and this is nonzero, by
the basis property of B. So v(x) = v(}\;,), so the valuation is uniquely determined
by B.

Also, o(x) =) a(\) - o(b;), again uniquely determined by B and /;{«).

Thus to extend to 1’ we let a! be sent to ¢§(aﬁ), and match B to wB(B).

The earlier calculations show that L;(af) is unramified over L;, and has
residue field (naturally isomorphic to) l% <ozu>. So (A), (B), (C), (D) are taken
care of.

Case 2. The k; are of characteristic p > 0. To simplify notation we can assume
w.l.o.g. that k; = kp, by taking suitable ultrapowers (see [23], p. 69).

We work with the coarse valuations 2, which are o-henselian on the L; and
K; by Lemma 6.6; v of course respects &, but we do not claim its reduction is
elementary on the residue fields of L; and L, for ©#. Now use Theorem 6.5 to get
a copy of i, l'ji say, as a difference subfield of L, and similarly a copy of ki, k?,
with 2 C .

By saturation Ié? is a complete discrete valued field whose residue field nat-
urally identifies with k;, so k? is isomorphic to W(k;) by a unique isomorphism
which is compatible with the residue map onto k;, and via this isomorphism o
identifies with the automorphism of W(k;) induced by & as in Example 1.3. Note
that this isomorphism sends (l'ti, o) onto a difference subfield.

Now let ¢ be an element of K| with v(c) > 0 so that ¢ £ [, and let cf be the
element of kq corresponding to the ¢ residue class of c. Note d=ec
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Then by the argument in Case 1, L; and l't} (ct) are linearly disjoint over l'q and
o on the compositum L;(c*) is determined by (l'? (c*), D). Also, o is determined,
and the © value group is not extended, so in fact the extension is unramified for 2.

Now we look more closely at the argument of Case 1. Note that in the present
case we may pick a basis B (for l'ti <cﬁ> over l't}) with (b) > 0 all b € B (for
o(b) =0, so v(b) € Z, and if v(b) = —m, m > 0, replace b by p™ - b). Now
consider x # 0 in L; <cﬁ>, of the form x =" \; - b;, b; € B, \; € L. Pick ip with
v(\j,) minimal among the v()\;). Then as before (since v > 0 — 2 > 0)

0(x) = 0(\;,), and
o (3 Ni/Aig) - bi) =0, s0

v(3-i/A0)-bi) €2, and is > 0.

Now we revert to the J-formalism, more precisely to the components of Witt

vectors.
We have (cf. Lemma 4.2)

v (Z (Ai/Xo) - bi) =n

—

On (3o i/A0) - bi) #0 and 95 (3" (Ni/20) - bi) =0 for 0 <j<n.

(Moreover, if v(y) > 0 then ¢(y) > 0 iff 9;(y) =0, =0,1,2,....) Now, by
[16], (for fixed p) O,,(x+y) and O, (x-y) are given by universal polynomials (over
Z) in the 0;(x), 9;(y),0 < j < n. So once one knows all W, one has determined
all 9, (3= (\i/ o) - bi), and so knows all v (3= (A\i/Ao) - b;), and thus v on L;{c?).

In fact, since by Lemma 4.1

On(a(y)) = 3(0u(y)

forally e k%, it is clear that one knows v on Ly {c*) once one knows the sequence
(Do(ct), ... Op(ch), . ..)

or, more precisely, its type over /;. Now we bring the elementarity of ¢, into play
(with saturation), to extend 1, to an elementary . defined on ;(9p(c?), . . . Ou(c?),
...). Again by saturation there is d* in K; with 2(d*) > 0 and 0,(d%) = ¥/ (Oa(ct))
for each n.

We now claim that 9 extends to ¥': L {c?) = Ly(d"), and ¢/, = 9.
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First, via the components of Witt vectors (J,) and the identifications above,
we have an isomorphism of difference fields

W' Bty =y (ah).

Consider an abstract o-polynomial G(x) over L;, and write G(x)=e-G1(x), e€
Ly, G over the valuation ring with one coefficient equal to 1. If G is over lﬂi and
G(ct) # 0 we know

A(G(ct)) =0, so
u(G(c*)) € Z and (Gy(c*)) > 0.

By the preceding analysis in terms of the d,, and the choice of d*, G¥(d") # 0
and

u(G¥(d) = v(G(ch) € Z.

So ¢ is 0 on ¢(Z§)<dﬁ>, and clearly the latter is a o-copy of the ¢ residue field.
Moreover we have at least extended ¢ on i to o': i () = (i*)(d?) preserving
o and valuation, and with ¢/ (") = d*. Now we use '(B) as a basis for w(l'?)<dﬁ>
over 1/;(1&), establish the linear disjointness from L, over ¢(l'§) , and again using
the data on the 9,(c*) and 9,(d*) we extend 1 to the required /': L (c!) = L, @@
preserving o and v. It is clear that the respective residue fields are /;(¢) and I, (d*),
and v’, = 1,. Also, the extensions are unramified, and we are done, since ¢ was
arbitrary with v(c) > 0. O

8.3. Totally ramified extensions.

LeEMMA 8.7. Let vp: Ly — L be an admissible isomorphism, with L; small.
Suppose L; are pliable and o-henselian. Let v € vKy \ vL. Then there exist
a € Ki,b € K, such that v(a) = v and ¥ can be extended to an admissible
isomorphism {': Ly(a) — Ly(b) with {/(a) = b and resL, {a) = I.

Proof. We want to extend v to L] whose value group extends that of L;.
The task here is to go from L; to some L, to introduce in L} an element a
so v(a) € T'y is prescribed.

Case 1. The element ~y € I'y is rationally independent of G; = ¢(L]). Choose
y € Ki,0(y) = y,v(y) = v (using the fact that K; has enough constants). Then
Li(y) is a difference subfield and because of the assumption on -y, 2( chyf) =
min v(c;) + jy for ¢; € L. Thus v is uniquely determined, and the new field has
value group generated by G; and -y, and the residue field is not extended. This
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time, use elementarity of 1), to extend it to (¢,) on the group generated by G,
and ~. It is routine to extend 1 to v’ with (¢), = (,)).

Finally, we deal with angular components. Earlier, we just had to choose /()
so that o(¢'(y)) = ¥'(y) and v(¥'(y)) = (¢,)(v(y)). To get angular components
to match up we need only ensure that v’(y) satisfies the extra constraints (recall
that the residue field is not extended, and therefore neither are the residue rings
modulo p" for n € N):

acy(P'(G(y) = P} (aca(G(y)))

for G a o-polynomial over L;. So by Lemma 1.12 we need just

W' a(aca(y)) = acy (W' ().

Thus in addition to fixing (1)'(y)) we need to fix ac,(1)'(y)) in the above com-
patible way. By this compatibility, and saturation, it is enough to get, for any n,
some y' in K with o(y') =y, v(y") = ¢/ ,(7) and ac,(y) = ¥, n(ac,(y)). But this
is always true, as ac, restricts to Fix(c) and we can always scale by elements of
value 0, and res,, is surjective.

Case 2. For some n € N, assumed minimal, n - v € G;. This time we use
ideas already familiar from quantifier-elimination in the valued field case (for
example, [3]). Let v =n - 7.

We exploit the remark which concluded Case 1. There is, for any m, an
element y,, in L; of value v with o(y,) = y, and with ac,(y,,) = 1. So by
Hensel’s lemma, for m > 2v(n) + 1 there is a unique wy, in K; with w/; =y,, and
ac,(wy,) = 1.

Now, by uniqueness, o(w,) = wy,. Fix m as above, and let w = w,,. Consider
the difference subfield L;(w) = Li[w]. By the minimality of n,

n—1
v (Z cr - w’)
r=0

say (for ¢, € Ly), and so is uniquely determined by v(w) = .
Also, the residue field is not extended. Now, Hensel’s lemma provides a
unique ¢ with #* = 1(y,,) and ac,(t) = 1. There is a unique 1)’ (extending )

min (v(c,) + ro(w))

U(Cr()) + rO : ’7,

Y’ Li(w) = Ly(t)

P'(w) =t.
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1)’ clearly satisfies (A),(B),(C). For (D), concerning angular components, we argue
that by uniqueness

aci(t) = Y, plac(w))

for all k > m. Then, by Lemma 1.12 again, we are done.

8.4. Epilogue. We can now conclude the proof of the Embedding Theorem.
We have an admissible isomorphism v: L; = L, the L; small.

An o € K| is now given, and we have to find an extension v’ of v, again
satisfying the above properties, with a € dom(z)’).

By Lemma 8.5 we can always assume that L; is pliable and o-henselian.
Then, by Lemma 8.6 and Lemma 8.7 we can define a sequence of small valued
difference field extensions L; = L;p C L;; C ... and isomorphisms ) = g, ¥1, . . .
such that

(1) v; is an admissible isomorphism of L;; onto L,; and vy extends 1); ;

(2) the residue field of L; J(a> is contained in the residue field of Lj ji1;

(3) the value group of L;j(c) is contained in the value group of Li j.1;

(4) Ly is pliable and o-henselian.

Let L;, = Uj L;j and ¢, = Uj 1j. Then L;, are pliable and o-henselian (so their
residue fields are linearly difference closed), 1, is an admissible isomorphism
of Lj,, onto Ly, and now L;,{«) is an immediate extension of L; . As in the
proof of Lemma 8.5, let L] be a maximal o-extension of L, inside K; and
containing «, and let L, be a maximal immediate o-extension of L, inside
K;. By Theorem 7.5, we can now extend 1), to an admissible isomorphism
Yt L} — L, and we are done. O

9. Completeness and model completeness. Recall that (K, v,k,T’, o) sat-
isfies the o-AEK axioms if it is an unramified valued difference field for which
the Embedding Theorem applies (Definition 2.3).

THEOREM 9.1. Suppose (K, v, k, T, o) satisfies the c-AEK axioms. Then the ele-
mentary theory of (K, v,k,1’,0) is determined by the elementary theory of (k, &)
and the elementary theory of T

Proof. 1t is clear that on any suitably saturated model there is a system
{acu}nen such that if k has characteristic p then ac,(p™) = 1 all m. Consider
(K;, U, ki, T, 00) i = 1,2 with (ky,71) = (kp,62) and '} =T, Let ¢ Q «— Q
be the identity, use the above ac,, and apply the Embedding Theorem. O

COROLLARY 9.2. Suppose (K,v,k,1,0) satisfies the o-AEK axioms. Then
(K, v,k,T',0) is decidable if and only if (k,5) and T are.

Example 9.3. The elementary theory of W(F%$) with the Witt Frobenius is
axiomatized by “Witt-Frobenius case,” the c-AEK axioms, residue field alge-
braically closed of characteristic p, value group a Z-group with unit v(p). Call
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this theory WF),. One actually has an axiomatization as a difference field since
the p-valuation is algebraically definable. So this theory of (valued) difference
field is decidable.

THEOREM 9.4. Let > be a set of sentences for a class of (K, v, k, T, o) satisfying
the o-AEK axioms, saying that (k, &) satisfies Y, and T satisfies Y _,, where ),
and ), are model-complete. Then ) is model-complete.

Proof. This is only a minor variant of Theorem 9.1. This time one has to
consider a small model L; and ¢: L; «— L; the identity, and extend ¢ to a
bigger model L} (all inside a suitably saturated K;). By blowing up we can put
a system ac, on L; without loss of generality (assuming L; 4 K;), and extend
the ac, to (a new) K suitably saturated. Then the Embedding Theorem gives the
result. O

Example 9.5. The elementary theory of W(F4%) with the Witt Frobenius.

We now know that WF),, the elementary theory of W(Ff,lg) with the Witt
Frobenius, is model-complete. The next proposition ensures that WF), is the model
companion of the theory of “Witt-Frobenius case” valued fields with isometry,
i.e. unramified satisfying &(x) = x”. Call this theory 7).

ProposITION 9.6. (Model Companion) Every model of T, embeds in a model
of WF),.

Proof. Let (K, v,0) be a model of T,. We have seen that we can go to
henselisations, so we can assume (K, v) is henselian. Using the ramification theory
of general valuations (see [30], chap. 3) we can pass to the maximal unramified
extension (K’, v) of (K, v) inside its algebraic closure. This is a Galois extension
whose residue field is the algebraic closure of the residue field of K, its value
group is the same as K, and o extends to K’ (see Lemma 8.1), v(o(x)) = v(x) is
automatically fulfilled. We are now in position to use the same arguments as in
Lemma 8.3 but now working inside the (unique) maximal immediate extension
of (K’, v): by uniqueness o extends and we will have a valued field with isometry
satisfying the o-Hensel scheme by Lemma 7.4. We have now extended (K, v, o)
to a model of T, which is henselian, has an algebraically closed residue field and
has enough constants. To get a Z-group, apply the argument as in p-adic fields
but with minor adjustments for o (see [25], §3, Thm. 3.1). Finally, to get the
o-Hensel scheme, go to the maximal immediate extension as before. O

10. Teichmiiller lifts. In this section we discuss an application of our main
results to the theory of Teichmiiller lifts. This material is not used in the sequel.
The reader may wish to consult [14] for background on formal groups.

The usual Teichmiiller map is a multiplicative section of the residue map for
the ring of Witt vectors of a perfect field. In terms of limits, if k is a perfect field
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of characteristic p > 0, then the Teichmiiller map 7: k — W[k] is defined by

7x) = lim @

n— oo

(" =x

where m: W[k] — k is the reduction map. The map 7 plays a central rdle in the
theory of the Witt vectors. For instance, every element of W[k] may be developed
(uniquely) as a power series in p with coefficients from the image of 7. That is,
for any x € W[k] there is a uniquely associated sequence (x;);c., of elements of
k for which x = 3" 7(x;)p".

Work of van den Dries [11] shows that the theory of (W(k),k, m, T,+, X) is
determined by the theory of k and is, in particular, decidable when k is decidable.

One can define 7, as well as other analogous Teichmiiller maps, using the
Witt-Frobenius. Indeed, if o: W[k] — W][k] is an automorphism lifting the Frobe-
nius, then 7 may be defined by

T) =y <= 71(y) =x & o(y) =)’.

So, the structure (W[k], k, 7, T, +, X) is interpretable in (W[k], v, o, +, X) and
van den Dries’ relative completeness and decidability theorems follow from our
main theorem (at least in the cases where our axioms on solutions of residual
linear difference equations hold).

There are other Teichmiiller maps interpretable in (W[k], v, o, +, X). Suppose,
for instance, that G is a semiabelian scheme over W[k].

We define the Teichmuller map 7G: Gi(k) — G(W[k]) by

76(x) = lim  [p"](X).
[p"Im(o)=x

It is not true that for every such G the map 7 is definable in the valued
difference field (W(k), o, v, +, X), but it is for sufficiently nice G. Suppose that
there is an isogeny 1: G — G which restricts to the Frobenius morphism
F: Gy — G,((p ) on the special fibre. Such an isogeny exists when G is the multi-
plicative group, in which case v is just x — x”, and more generally for canonical
lifts. In this case 7¢ may be defined by

T6(xX) =y == w(y) =x & a(y) = ().

Let us check that that this formula correctly defines 7. Using the limit
formula for 75 and the continuity of ¢ and 1, one sees that 7¢ commutes with
the o and v in the sense that 0 o 7 = 75w o F and that the Teichmuiller maps
are homomorphisms. It follows that for any x € Gy(k) that (¢ —g ¥)(76(x)) =
Tao(F — F)(x)) = 0. Conversely, we note that there is only one solution to
o(y) = ¥(y) and w(y) = 0. Indeed, as 1 restricts to the Frobenius, all of the
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eigenvalues of its differential have positive p-adic valuation. Using a formal group
law for G, we may express the kernel of reduction as G( pWIk)]) = (pW[k))8, Bg)
where g = dimG and &g is the formal group law. By the above observation,
relative to these coordinates, ¥(xip’,...,xp") = (0,...,0) (mod p™!) while
o(xip's. .., xp") = (dp, ..., xEp")  (mod p'!). Clearly, zero is the only solution
to o(y) = ¥(y) in the kernel of reduction. Thus, for any x € Gi(k), 76(y) is the
unique solution to w(y) = x and o(y) = ().

This example of an interpretable Teichmiiller map may be generalized slightly
to the case of quasi-canonical lifts for which there is an isogeny ¥: G — G
restricting to the p"-Frobenius on the special fibre.

11. Quantifier elimination. In this section we state precisely the quantifier
elimination theorems and point out some formal equivalences between them.

We have to look more closely at Denef’s angular components.

While some angular component functions are already definable in the lan-
guage of valued fields for some valued fields (e.g. Q,, cf. remark 1.11), there
are henselian valued fields in which these functions are not definable (take for
example C((7))). This issue is avoided in the work of Basarab and Kuhlmann by
considering “mixed structures” or “additive-multiplicative congruences” [3], [20].
If K is a valued field and I C Vi is a proper ideal (in our case the maximal ideal
m of V, or some p"m), then we set K; := K*/(1+1) and 7;: K* — K the quotient
map. The structure K; is more than just a group under multiplication. It continues
to carry the valuation of K and addition on K leaves a trace on K; in the form of
a ternary relation A;(x,y,z) < (A%, € K)m(X) =x & m(F) =y & m(X+7) =z
Quantifier elimination relative to the mixed structures (for an appropriate choice
of ideals) holds in fairly general henselian fields. There is a price to be paid for
working only with structures interpretable in the language of valued fields: the
structure of the class of definable sets in the mixed structures may be obscure.

Angular components and mixed structures adapt to valued difference fields
without any substantial changes. If (K, v, 0) is a valued difference field and I C
Vk is a proper ideal, then o induces an automorphism of K; which we continue
to denote by 0. We say that the angular component map ac;: K* — (Vg /I)* is
compatible with o if it commutes with o. A simple calculation as in section 1
shows that, in our context, this is equivalent to having ac restrict to Fix(o)
in the natural way. After stating precisely the elimination theorems for those
formalisms, we show how they follow from each other. Our embedding theorem
yielding elimination of quantifiers used the angular component maps.

We need to use many-sorted first-order logic, where variables, constant sym-
bols, function symbols and relation symbols have prescribed sorts. Terms and
formulas are built in the usual manner, and the classical results hold (see [19]).

Let 1+ be a multisorted signature and L£(u) the associated first-order language.
If f is a function symbol of p, let dom( f) designate the sequence of sorts for the
domain of f, and rng(f) the sort for the range of f. If R is a relation symbol,
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let fld(R) designate the sequence of sorts for the domain of R. Let X be a set of
p-sort symbols. We define a new signature ' := y1,r_s having the same constant,
function, and relation symbols plus new relation symbols Ry(c) for each ¢ € L(1)
whose free variables are all of sorts belonging to X. Fixing an ordering of the
free variables of ¢, x(Sig), ... ,xfg'z:l, we define fld(Ry) to be (So,...,Sm—1). The
theory T,r_,, 5 is generated by the (universal closures of) the formulas ¢ < Ry,
for ¢ € L(u) as above.

Definition 11.1. Let u be a multisorted signature, X a set of u-sort symbols,
and T an L(u)-theory. We say that T eliminates quantifiers relative to X if for
any formula ¢ € L(u1) there is a quantifier-free formula ¢ € L(p4¢—x) such that
TUTy 5, F o« .

We intend to prove not only relative quantifier elimination results in a fixed
language but rather such results for any expansion of the language of valued
difference fields by predicates on the mixed structures.

Definition 11.2. Let 1 be a multisorted signature, £ be a nonempty set of
u-sorts, and T an L(u)-theory. We say that T resplendently eliminates quantifiers
relative to X if for any model M | T and any signature 7 O (u|y) with exactly X
as sorts and only new predicates, and any expansion M’ of M|y to a T-structure
and any formula ¢ € L(x U 7), there is some quantifier-free ¢ € L((n U 7)4r—5)
such that T U Tyr_5 ,ur = ¢ < 2.

LEMMA 11.3. Let p C p' be multisorted signatures. Let X be a set of u-sort
symbols. We suppose that the only difference between i and 1’ is that there may
be new function symbols in 1. Let T be an L(u)-theory and T' O T a L(u') theory
which eliminates quantifiers in L(p') and with T = T' | ().

We make the following assumptions.

o If f is a new function symbol of p', then dom( f) € <“Z and rg(f) € .

o I[f R is a p-relation symbol, then either all sorts of its domain belong to X or
all do not.

o If't is a p-term with all sorts of its variables belonging to ¥, then rg(t) € X.

If in every model M = T every L(1)y-definable subset of (M |5)" is already
definable in L(1)yy) then T eliminates quantifiers in L(u) relative to X.

In what follows we write tp(a) for the type of the tuple a and qftp(a) for its
quantifier-free type.

Proof. Let ¢ € L(u) be a formula. By hypothesis, there is some quantifier-
free ¢» € L(y') such that T" = ¢ « 1. Write ¢ as ¢(x,y) with x a tuple of
variables ranging over sorts not in £ and y a tuple of variables ranging over
sorts in X. By our hypotheses on p and p/, up to equivalence over T’, we have
Px,y) = \/j'-’zl 0i(x,y) N Yi(a(t(x),y)), where §; € L(p) and 9¥; € L(1| Z) are
quantifier-free formulas, cv is a tuple of x/-terms, and #(x) is a tuple of L£(u)-terms
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with range in X. By considering each formula ¢ A 0; separately, it suffices to
work in the case that n = 1 so that we drop the subscripts from 6 and 9.

If O(x,y) A d(a(t(x),y)) is not equivalent (modulo 7" U Ty, 5) to a
quantifier-free £(p U pgr—s,;,)-formula, then it is consistent with T’ that there be
(', y") with tpﬁwz)(l‘(x), = tp,;(ulz)(t(x’), y) and qftpc(u)(x’ = qftpﬁ(m(x’,y’)
and ¢(x,y) A =o', y").

As no new structure is induced on X (relative to T), tp L(ij)(t(x)’ y) F
tpﬁ(u)(t(x), ¥)). Thus, we can find such x,y,x’,y" in some model M | T (which we
may presume to be a reduct to £(u) of a model of 7”) and a £(u)-automorphism
7: M — M with 7(t(x),y) = (t(x’),y’). If we suppose M E ¢(x,y), then as
(x,y), (x',y"), and (7(x), 7(y)) all have the same L-quantifier free type, we have
M E6O(x,y) N 0, y) N O((x),7(y)). We have then

o(x,y) = o(1(x), 7(y))
= 0(t(x), 7(y)) N Y a(T(t(x)), T(¥)))
= 0(x',y") A Haut(x'),y")

= o',y O

Let us return now to valued fields with isometry to explain how we shall
consider them as multisorted structures for the current discussion. The multisorted
signature of valued fields with isometry pisom is defined as follows. There are
sort symbols K, T', k, “as before”, viz. to be interpreted as the base valued field,
the value group, the residue field, and now extra sorts K, for each n € w, to be
interpreted, by abuse of notation, as the previous Ky, where p is a constant
symbol to designate the residue characteristic in the case of positive residue
characteristic and 1 when the residue characteristic is zero. There is a function
symbol ¢ for the distinguished automorphism, v for the valuation map. There
are the various required symbols for K construed as a ring, I' as an ordered
abelian group plus a constant co = (0), k as a ring plus a constant co to be
interpreted as the reduction of any element not in the valuation ring, and another
constant p for the reduction of p. The sort K,, is construed as the truncated ring
already described, with a full multiplication and a ternary predicate for addition
whenever it is defined and a constant p, for the reduction of p. We have extra
function symbols p for the previous reduction map ~ extended as just prescribed,
vy, for the induced valuation on K,,, & for the reduction of o, o, for the reduction
of o in K,,, m, for the quotient map K — K,,, 7, for the natural quotient map
K, — K, p, for the induced reduction map on K,. So, as pisom-Structures, our
valued fields with isometry can be presented, by abuse of notation, as follows
(K, kT, Ky, 0, Uy, 0, 3,04, P, Py Prs OO0, OO, 0, P> Tns Tnm) -

Let (L,v,k,T,0) be a valued field with isometry. In the case that p* is a
unit, the maps 7,,,: K- — KL are isomorphisms so that there is no need to go
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beyond the reduct to (K, I, Kp). In order to make a uniform statement, we do not
explicitly specify the value of p. However, in mixed characteristic, we require
that v(pr) is at least that of p, the residue characteristic.

For our discussion, we will construe angular component maps as splittings
of the exact sequences

1 — (V/p"m)* — K*/(1 +p"m) — T — 0

as in Section 1. We thus set the language of valued difference fields with angular

components by adjoining to L(uisom) function symbols ac, having domain sort

and range sort K,,, as the natural range of an angular component ac,, is the group

(V/p"m)* which is now definable as the kernel of the induced valuation v, on K.
We can now state the elimination theorems.

THEOREM 11.4. The theory of o-henselian fields satisfying the o-AEK axioms
with angular component functions resplendently eliminates quantifiers relative to
{T',k} (and also relative to {K,: n € w}).

We have a similar statement without angular component functions.

THEOREM 11.5. The theory of o-henselian fields satisfying the o-AEK axioms
resplendently eliminates quantifiers relative to {T',k} U {K,: n € w}.

For residue characteristic zero, we get quantifier elimination relative to
just Kj.

THEOREM 11.6. The theory of o-henselian fields satisfying the oc-AEK axioms
and of residue characteristic zero with an angular component function, in the
reduct to {K, Ko, k, T}, resplendently eliminates quantifiers relative to {T",k} (and
also relative to {Ko}).

Likewise, we have a better statement for residue characteristic zero without
angular components.

THEOREM 11.7. The theory of o-henselian fields satisfying the o-AEK axioms
and residue characteristic zero, in the reduct to {K, Ko, k,T'}, resplendently elimi-
nates quantifiers relative to K.

Theorems 11.4, 11.6 follow directly from the Embedding Theorem. More
general theorems are proved in [29] in the slightly different setting of valued
D-fields.

As the forms of Theorems 11.4 to 11.7 are so similar, it should come as no
surprise to the reader that there are formal implications between these statements.

Before proving the formal implications we need a lemma on expansions of
valued fields with isometry to valued fields with isometry with angular compo-
nents, which follows from the remarks in section 1 (or see [29]).
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LemMA 11.8. If K is a valued field with isometry and enough constants and
T Uncw Kn = Upnew Kn is an automorphism of the reduct to {K,: n € w}, then
there is an elementary extension (K*, ) of (K, T) which admits the structure of a
valued field with isometry with angular components with respect to which 7" is an
automorphism.

PRrOPOSITION 11.9. Theorem 11.4 implies Theorem 11.5 and Theorem 11.6 im-
plies Theorem 11.7.

Proof. We begin with Theorem 11.4 = Theorem 11.5. Let £ O L(isom)
be some expansion of the language of valued fields with isometry by relations
on {K,: n € w}. Let K be a o-henselian field satisfying the o-AEK axioms,
considered as an £’-structure. By Lemma 11.8 applied to 7 = id there is an
elementary extension K* > K which admits an expansion to £'({ac,: n € w}).

We check that the hypotheses of Lemma 11.3 apply. As K is a o-henselian
field satisfying the o-AEK axioms, the main point is that K induces no new
structure on {K,: n € w}. For this it suffices to show that every automorphism
of {K,: n € w} extends to an £'-automorphism of some elementary extension
of K.

Let K be considered as an L’-structure and let 7 be any automorphism of
K ’{Kni new}- By Lemma 11.8 there is a o-henselian field K* with angular com-
ponents considered as an £'({ac,: n € w})-structure such that K < (K*|.) and
there is some 7 € Autz/(fac,: newp)(K* |{k,: new)) With 7 2 7. By our hypothe-
ses and Theorem 11.4, there is an elementary extension L > K* on which 7*
extends to an automorphism of all of L. This automorphism is, of course, also an
automorphism of L|. Thus, every £’-automorphism of K |{an new) €xtends to
some £'-automorphism of some elementary extension of K. Thus, the implication
Theorem 11.4 = Theorem 11.5 now follows from Lemma 11.3.

The argument in the case of Theorem 11.6 = Theorem 11.7 is the same as
that in the case of Theorem 11.4 = Theorem 11.5 with the exception that we
talk only about Kj instead of all the mixed structures. O

We also observe that quantifier elimination with angular components also
follows from quantifier elimination with the mixed structures, in our unramified
case.

PropoSITION 11.10. Theorem 11.5 implies Theorem 11.4 and Theorem 11.7
implies Theorem 11.6 .

Proof. To see this we need to reinterpret the quantifier elimination with mixed
structures in terms of embeddings. Then, arguments as in [4] (Lemma 4.3 and
Theorem 5.3), apply mutatis mutandis to recover quantifier elimination with an-
gular components. The point is the interpretation of the angular component map
as a splitting of the corresponding exact sequence of the mixed structure. An
embedding of the underlying groups will then readily induce an embedding of
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the corresponding exact sequence. To take care of the extra structure one uses
finite ramification. In the end, the embedding of valued fields is compatible with
angular components by construction. O

Finally, we note that since in W(F;lg) angular components are existentially
definable relative to the fixed field QQ, (remark 1.11), if ©(x) is a “relative”
quantifier free formula given by Theorem 11.4, with base field free variables
x, then by replacing the ac,’s by their definition we get an equivalent formula
©(x,x’), where x’ are new base field variables and the ac,’s do not occur, but the
only occurences of base field quantifiers are of the form Ix'(c(x') =X’ A--+), i.e.,
3x' € Fix(o).

12. From characteristic p to characteristic 0. Fix a Witt-Frobenius case
(Kp, 1, kp, Iy, 0p) satisfying the o-AEK axioms for each prime p, and let
(K, v,k,I',0) be a nonprincipal ultraproduct of the (K, v, k,,I',,0,). Note that
(Kp, 1, kp, I, 0p) is elementarily equivalent to W(k,) with the Witt Frobenius.

LemmMma 12.1. The difference field (k, ) satisfies no G-identities.

Proof. It follows from our previous discussion on o-identities (section 3), but
in this case there is a simple direct argument: consider any putative &-identity

F(x,6(x),...6"x) =0, xe€k

1.€e.,

Fi,x,...x")=0, xek

Now if F(xg,...x,) =Y ¢ -x', and p > max |I|, F(x,x", .. .x"") is not the zero
polynomial over k,, so, since k, is infinite, doesn’t vanish identically. O

To get Axiom RG satisfied in the ultraproduct we (apparently) need to make
some assumptions on the k,. Since K, is o-henselian, k, is linearly difference
closed, and if we require Axiom R2 or Axiom R3 for each (k,, 5,,), by Propositions
3.9 and 3.6 this will make Axiom RG true in the ultraproduct. In particular:

LeEMMA 12.2. If the k, are algebraically closed, the ultraproduct satisfies Ax-
iom RG.

Now consider the characteristic p field (k,((?)), vp, kp, Z, 0p;) Where oy, is
genuine Frobenius on k,, and 0,,(f) = ¢, as in Example 1.4. The following
theorem subsumes the AEK theorem relating Q, and F,((#)) (by considering the
Fix(0)): taking ultraproducts we get fields satisfying the o-AEK axioms with
identical residue fields and value groups, whence elementarily equivalent.
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THEOREM 12.3. If D is any nonprincipal ultraproduct on the primes, then

T Wkp), tps ks Z ) = TT Gp(0)), tps ks Z 0.
D D

COROLLARY 12.4. Any sentence true in all ( W(F;lg ), 0p) is true in all but finitely
alg .
many (F,*° (1)), 0,,), and vice versa.

The model companion of the theory of difference fields of characteristic 0 is
known as ACFA( (“algebraically closed fields with an automorphism”, see [7]).
Nonprincipal ultraproducts of the (W(F;lg), UP,IF;lg,Z, 0p) lead to (K, v,k,T,0)
where k is algebraically closed of characteristic 0, and (k, &) | ACFA( (by unpub-
lished work of Hrushovski and Macintyre [15], [22]). Since ACFA is decidable
we get:

THEOREM 12.5. The theory of the class of all (W(leg )s Ups F;lg , L, 0p) is decid-
able.

Note. Using the (quite intricate) quantifier-elimination for ACFA(y given
in [21], one can give one for the class of all (W(IE‘,“,lg), vp,IFf,lg,Z, o)), but in

view of the complexity of this we omit the details.
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