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Generating sequences and semigroups of valuations on
2-dimensional normal local rings

ArpPAN DuTTA (M

ABSTRACT. — In this paper we develop a method for computing valuation semi-
groups for valuations dominating the ring of a two dimensional quotient singularity.
Suppose that K is an algebraically closed field of characteristic zero, K[X,Y] is a
polynomial ring over K and v is a rational rank 1 non discrete valuation of the
field K(X,Y) which dominates K[X,Y]x,y). Given a finite abelian group H acting
diagonally on K[X,Y], and a generating sequence of v in K[X,Y] whose members
are eigenfunctions for the action of H, we compute the semigroup SK[X’Y]H(V) of
values of elements of K[X,Y]#. We further determine when SKIX:Y](1) is a finitely
generated SEPCYH (v)-module.

RESUME. — Dans cet article, nous développons une méthode de calcul de se-
migroupes d’évaluation pour les évaluations dominant ’anneau d’une singularité de
quotient a deux dimensions. Supposons que K est un corps algébriquement clos de
caractéristique zéro, K[X,Y] est un anneau polynomial sur K et v est une évalua-
tion rationnelle non discréte de rang 1 du corps K(X,Y) qui domine K[X, Y] x,y)-
Etant donné un groupe H abelien fini agissant en diagonale sur K [X,Y] et une suite
génératrice de v dans K[X,Y] dont les membres sont des fonctions propres pour
I’action de H, nous calculons le semigroupe SKIX,Y1H (v) de valeurs d’éléments de
’anneau invariant K[X,Y]*. Nous déterminons en outre quand SKIX:Y1(1) est un

H
SEIXYT™ (1)-module de type fini.

Notations

Let N denotes the natural numbers {0,1,2,---}. We denote the pos-
itive integers by Z-o and the positive rational numbers by Qs¢. If the
greatest common divisor of two positive integers a and b is d, this is de-
noted by (a,b) = d. If {v}r>0 is a set of rational numbers, we define
G0, ) = Do wZ and G(0,71,- ) = Dz V2. Similarly we

define S(707 T 77”) = ZZ:O ’YkN and S(’Y()a'yh o ) = Zk}o rYkN Ifa group
G is generated by g1, , gn, we denote this by G =< g1, -, gn >.
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Introduction

Let R be a local domain with maximal ideal mp and quotient field L, and
v be a valuation of K which dominates R. Let V,, be the valuation ring of v,
with maximal ideal m, and ®, be the valuation group of v. The associated
graded ring of R along the valuation v, defined by Teissier in [[14]] and [[15]],
is
= P P.(R)/PS(R) (0.1)
yeP,

where

Py(R)={f € R|v(f) >~} and P{(R) ={f € R|v(f) >~}

In general, gr, (R) is not Noetherian. The valuation semigroup of v on R is

Stw) = {v(f) | fe R\ (0)}. (0.2)

If R/mgr =V, /m, then gr,(R) is the group algebra of S¥(v) over R/mpg,
so that gr,(R) is completely determined by ST(v).

A generating sequence of v in R is a set of elements of R whose classes
in gr,(R) generate gr,(R) as an R/mp-algebra. An important problem is
to construct a generating sequence of v in R which gives explicit formulas
for the value of an arbitrary element of R, and gives explicit computations
of the algebra (0.1) and the semigroup (0.2). For regular local rings R of
dimension 2, the construction of generating sequences is realized in a very
satisfactory way by Spivakovsky [[13]] (with the assumption that R/mp is
algebraically closed) and by Cutkosky and Vinh [[6]] for arbitrary regular
local rings of dimension 2. A consequence of this theory is a simple classifi-
cation of the semigroups which occur as a valuation semigroup on a regular
local ring of dimension 2. There has been some success in constructing gen-
erating sequences in Noetherian local rings of dimension > 3, for instance
in [[7]], [[10]], [[11]] and [[15]], but the general situation is very complicated
and is not well understood.

Another direction is to construct generating sequences in normal 2 dimen-
sional Noetherian local rings. This is also extremely difficult. In Section 9 of
[[6]], & generating sequence is constructed for a rational rank 1 non discrete
valuation in the ring R = k[u, v, w]/(uv — w?), from which the semigroup is
constructed. The example shows that the valuation semigroups of valuations
dominating a normal two dimensional Noetherian local ring are much more
complicated than those of valuations dominating a two dimensional regu-
lar local ring. In this thesis, we develop the method of this example into a
general theory.
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If R is a 2 dimensional Noetherian local domain, and v is a valuation of
the quotient field L of R which dominates R, it follows from Abhyankar’s
inequality [[1]] that the valuation group ®, of v is a finitely generated group,
except in the case when the rational rank of v is 1 (®, ® Q 2 Q) and @, is
non discrete. As this is the essentially difficult case in dimension 2, we will
restrict to such valuations.

Let K be an algebraically closed field of characteristic 0 and K[X,Y] be a
polynomial ring in two variables, which has the maximal ideal m = (X,Y).
Let a € K be a primitive m-th root of unity and § € K be a primitive
n-th root of unity. Now the group U,, x U, acts on K[X,Y] by K-algebra
isomorphisms, where

(', )X = a'X and (o, F)Y = p7Y.
In Theorem 1.2, we give a classification of the subgroups H; ;¢ , of Uy, X U,.

In Remark 1.3 we observe that without any loss of generality, we can assume
i=j=1and H = Hj 14+, is a subdirect product of U, x U,. Let

A=K[X, Y] and n=mn A.

We say that f € K[X,Y] is an eigenfunction for the action of H on K[X,Y]
if for all ¢ € H, gf = Agf for some A\, € K. Throughout the paper, we
use the expression V b = ax(mod t) as an abbreviation for the following
expression,

¥ a,b € Z such that b = ax(mod t).

Let v be a rational rank 1 non discrete valuation dominating the regu-
lar local ring K[X,Y],. Using the algorithm of [13] or [6], we construct a
generating sequence

Qo=X,01=Y,Qs,... (0.3)
of v in K[X,Y]. Let v* be the restriction of v to the quotient field of A. In
Theorem 3.1, we give an explicit computation of the valuation semigroups
S4n (v), when the members of the generating sequence (0.3) are eigenfunc-
tions for the action of H on K[X,Y].

Suppose that a Noetherian local domain B dominates a Noetherian local
domain A. Let L be the quotient field of A, M be the quotient field of B
and suppose that M is finite over L. Suppose that w is a valuation of L
which dominates A and w* is an extension of w to M which dominates B.
We can ask if gr_.(B) is a finitely generated gr(A)-module or if SZ(w*)
is a finitely generated S“(w)-module. In general, gr_.(B) is not a finitely
generated gr, (A)-algebra, so is certainly not a finitely generated gr,(A)-
module. However, is is shown in Theorem 1.5. [[5]] that if A and B are
essentially of finite type over a field characteristic zero, then there exists
a birational extension A; of A and a birational extension B; of B such
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that w* dominates B, w dominates Ay, B; dominates A; and gr,.(B)
is a finitely generated gr,(A;)-module (so SP1(w*) is a finitely generated
5§41 (w)-module).

The situation is much more subtle in positive characteristic and mixed
characteristic. In Theorem 1 [[4]], it is shown that If A and B are excellent of
dimension two and L. — M is separable, then there exist birational extension
Ay of A and B; of B such that A; and B; are regular, By dominates Ay,
w* dominates B; and gr . (Bi) is a finitely generated gr,,(A;)-algebra if and
only if the valued field extension L — M is without defect. For a discussion
of defect in a finite extension of valued fields, see [[8]].

In this paper, we completely answer the question of finite generation of
SEXYIm (1) as a S4» (v)-module (and hence of gr, (K[X,Y]n) as a gr,, (Ay)-
module) for valuations with a generating sequence of eigenfunctions. We
obtain the following results in Section 4.

PROPOSITION 0.1. — Let Ry = KI[X,Y](x,y) and H be a subdirect
product of U,, x U,. Let v be a rational rank 1 non discrete valuation v
dominating Ry with a generating sequence (0.3) of eigenfunctions for H.
Then ST~ (v) is finitely generated over the subsemigroup S~ (v) if and only
if 3 N € Zsg such that Q, € A Y r > N. Further, if Qn € A, then
QueAY M>N>1.

THEOREM 0.2. — Let Ry = K[X,Y](x,y) and H be a subdirect product
of Up, x Uy,.

1) 3 a rational rank 1 non discrete valuation v dominating Ry with a
generating sequence (0.3) of eigenfunctions for H <= (m,n) = t.

2) If (m,n) =t =1, then STim (v) is a finitely generated S“» (v)-module
for all rational rank 1 non discrete valuations v which dominate Ry,
and have a generating sequence (0.3) of eigenfunctions for H.

3) If (m,n) =t > 1, then ST~ (v) is not a finitely generated S4»(v)-
module for all rational rank 1 non discrete valuations v which dom-
inate Ry and have a generating sequence (0.3) of eigenfunctions for
H.

In Section 5, we show that for the valuations we consider, the restriction
of v to the quotient field of A does not split in K[X,Y]n. The failure of non
splitting can be an obstruction to finite generation of SZ(w*) as an S4(w)-
module (Theorem 5 [[4]]), but our result shows that it is not a sufficient
condition.
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1. Subgroups of U,, x U,

Let K be an algebraically closed field of characteristic zero. Let a be a
primitive m-th root of unity, and 8 be a primitive n-th root of unity, in K.
We denote U,, =< a >, and U,, =< § >, which are multiplicative cyclic
groups of orders m and n respectively.

LEMMA 1.1 (Goursat). — Let A and B be two groups. There is a bijective
correspondence between subgroups G < Ax B, and 5-tuples {G1, G1, G2, G2, 0},
where

G, Gy
Gi1<dGI <A, Gy <G, <B,86: 1 22 s an isomorphism.
G, Go
THEOREM 1.2. — Given positive integers i,j,t,x satisfying the given
conditions mn
i|mv ]|n7 t|7-» t|*-a (x»t) =L 1<zt
g J
let

Hijio={(a" )| b= ax(mod t)}. (1.1)
Then the H; j i, are subgroups of Uy, x U,. And given any subgroup G of
U,, x Uy, there exist unique i, j, t, x satisfying the above conditions such that
G = Hi,j,t,:rz'

Proof. — We first show that the condition b = az(mod t) is well defined
under the given conditions on 4, j, ¢, z. Suppose (a®?, g017) = (2% Bb27)
that is, a1 = azi(mod m), and b1j = byj(mod n). Then, " | (a1 — az) and
% ‘ (bl—bz). Thus, t ‘ (al—ag) and ¢ | (bl—bg), hence ¢ | (bl—bg)—(al—ag)a:.
So, [b1 — a1z] = [b2 — azx](mod t).

We now show H; ;; . is a subgroup of U,, x U,. Taking a = b = 0, we
have (1,1) € H; j ;.. Let (a®, 8%), (a, %) € H; ;. be distinct elements.
Then b = axz(mod t), and d = cz(mod t). Hence (b — d) = (a — ¢)a( mod t).
So, (ale=9t, gl=di)y — (g i) (%, BY)~1 € H,; ;i Hence H; ;.. is a
subgroup.

By Goursat’s Lemma, the subgroups of U,, x U,, are in bijective corre-
spondence with the 5-tuples {G1,G1, G2, Go, 0}, where G; < G; < U,,, , G2 <
Gy, <U,,0: % ~ % Now any subgroup of U,, =< « > is of the form
H; =< o' >= Uz, where i|m. Since H; is an abelian group, any subgroup
is normal. Any subgroup of H; is of the form H;;, =< o' >= U%, where
t;|%*. Similarly, any subgroup of U, is of the form H; =< B >= U?, where
Jjln. And any subgroup of H; is of the form Hj;, =< piti >= U_z, where

Um Un Um Un ]]
tj|%. Now, 5= = Uy, and 2= ~ Uy,. So, 05 : gt ~ g < ;i = {;.

U
ity Jt; ity 7t;
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Define ¢t = t; = t;. Thus the subgroups of U,, x U, are in bijective corre-
spondence with the set of 5-tuples,

(<a > <a > < B> < B> 0,)
<a'> <p> (1.2)
<att > < pit >

where i|m, j|n, t|ﬂ,, 15|E and 0;; :
1 J

Any such isomorphism is given by 6;; (i) = B3, where (z,t) =1,1< 2z < t,

and T denotes the residue of an element v €< a* > in %;i, or the residue
i i, <BI>
of an element v €< 57 > in =57

If Gy,; denotes the graph of 6;;, then Gy,; = {(ar?, g7*i)|r € N}. Denoting
<a'> o <BT>

Zats X Ths, we have

the natural surjection p :< o’ > x < 7 >—

P~ (Go,)) = {(a™, ) | a® = o™, 3% = %, for some r € N}
={(a®, )| " M e<qa’ >, O < 7> for some r € N}
= {(a®, %) | a = r(mod t),b = rz(mod t), for some r € N}.

We now show that,

a = r(mod t),b = ra(mod t), for some r € N <= b = az(mod t). (1.3)

If a = r(mod t),b = rz(mod t), then a — r = td for some integer d. Then

b—axr=b— (td+r)x = b—raz(mod t) = 0(mod t) = b = az(mod t). Con-

versely if b = axz(mod t), and a = r(mod t) for some 7, then b = rz(mod t).

Thus we have established (1.3). So, p~!(Gy,,) = {(a®, %) | b = ax(mod t)}.
Thus we have that any subgroup of U, x U, is of the form

Hi o= {(@, 3%)|b= az(mod t); ijm, jln, t|?, t\g, (z,t) =1,

1<z <t}

We now establish uniqueness. Let (i1, j1,t1,21) and (ia, jo, ta, 2) be two
distinct quadruples satisfying the conditions of the theorem, such that
Hil,jhtl,m = ig,gota,0- From (1'2)7 we observe Hilvjl’tlxifl = g, otz
implies

(<alth > <alt > < it > < i > g

i 1 1 1 2
= (< a®? > <a® > < pPt > < g2 > 0P )

» Yi2g2
Now, < 't >=< a2 >= | < a® > | =|<a® > | = m/i; = m/is =
11 = 19 = 1. And, < a't >=< a2 >= m/ztl = m/ZtQ =1t = ty =
t.Similarly j = j, = jo. Now, 6 = 62 = 01 (a?) = 6.7 (ai) = Fo1i =

3727 in <</§f77>> Thus, ¢ | |z1 —x2|. Since 0 < z1, 22 < t, we have |21 —z2| = 0,
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i.e. Tr1 = Tg. Let x = Tr1 = Tg. Then (i,j,t,l‘) = (il,j17t171'1) = (ig,jg,tz, 132)
is unique. O
We observe H; j ¢ . = {((a")*, (87)") | b= ax(mod t)} < Um x Usx. Since
(z,t) = 1, H;j+o is a subdirect product of Uz x Uz. So without loss of
generality we can assume ¢ = j = 1, that is, H; 1+, is a subdirect product
of U,, x U,. For the rest of the paper, we adopt the following notation,
Remark 1.3. — H = Hjy 1.4, is a subdirect product of U,, x U,. Thus
H ={(a % | b=ax(mod t)}, where t |m, t|n, (v,t)=1and 1 <z < t.

PROPOSITION 1.4. — Let H be as in Remark 1.5. Write m = Mt and
n = Nt where M,N € Z~q. Then |H| = M Nt.

Proof. — Recall, H = {(a®, %) | b = az(mod t)}. We observe, as ele-
ments of H, (a®, %) = (a2, %) if and only if a; = az(mod Mt) and
by = ba(mod Nt). Thus every element of H has an unique representation,

H=1{("p% |b=azx(modt),0<a< Mt 0<b< Nt}. (1.4)
Hence there is a bijective correspondence,
H+— {(a,b) | b=azx(mod t),0 < a < Mt, 0<b< Nt,a,beZ}
— {(a,az+Xt) |0 < a< Mt,0<ax+ M < Nt,a,\€Z}

<—>{(a,A)|0<a<Mt,o<A+%<N,a,AeZ}.

Hence there are Mt possible choices for a. And for each choice of a, there
are N possible choices for A. Thus |[H| = M Nt. O

2. Generating Sequences

In this section we establish notation which will be used throughout the
paper. Let R = K[X,Y] be a polynomial ring in two variables over an
algebraically closed field K of characteristic zero. Let m = (X,Y) be the
maximal ideal of R. Then U,, x U, acts on R by K-algebra isomorphisms
satisfying

(@®,BY) - (X"Y?) =B X"Y?". (2.1)
Thus, R = 2 XY €R| a3 =1V r s,V b=axr(mod t)}.
f € R is defined to be an eigenfunction of H if (a®,3%) - f = A f for
some A\, € K, for all (a%,3%) € H. Eigenfunctions of H are of the form
f= ZCT’SXTYS € R such that a"*3%® is a common constant V , s such

7,8

that ¢, s # 0,V b = ax(mod t).



Arpan Dutta

Let v be a rational rank 1 non discrete valuation of K(X,Y’) which dom-
inates Rm. The algorithm of Theorem 4.2 of [[6]] (as refined in Section (8)
of [[6]]) produces a generating sequence

QOZX5Q1:Y7Q27“' (22)

of elements in R which have the following properties.

1) Let v = v(Q) ¥V 1 =0 and m; = [G(y0, -+ ,) : G(v0, s Yi-1)]
=min {qg € Zso | gu € G(y0,--+,m-1)} V I > 1. Then v 41 >
my Vi>1

2) Set d(l) = degy (Q;) ¥V I € Zsg. Then, Q; = YD +Q(X,Y), where
degy (Q; (X,Y)) < d(I). We have that, d(1) =1, d(I) = Hﬁc 11Wk v
I > 2. In particular, 1 < I3 <l = d(l1) | d(l2).

3) Every f € R with degy (f) = d has a unique expression

= Z Zblm le "Qir(m)]

where by, € K,0 < ji(m) <7y ¥ 1 > 1, and degy [Q{l(m) e Qi}'(m)]
=m Y m. Writing f,, = (3, bl,le)QJll(m) e fo(m), we have that

V(fm) =v(fn) <= m =n. So, v(f) = min,,{v(fm)}.
4) From 3) we have that the semigroup S%=(v) = {v(f) | 0 # f €
R} =S(n|1>0).

Suppose that v is a rational rank 1 non discrete valuation dominating
Ry,. We will say that v has a generating sequence of eigenfunctions for H if
all @ in the generating sequence (2.2) of Section 2 are eigenfunctions for H.

3. Valuation Semigroups of Invariant Subrings

THEOREM 3.1. — Let H < U,,, x U, be as in Remark 1.3. Suppose that
v is a rational rank 1 non discrete valuation dominating R, where R =
K[X,Y], and m = (X,Y). Suppose that v has a generating sequence (2.2)
QO = Xan :Y7Q27"'
such that each Q; € R is an eigenfunction for H. Let notation be as in
Section 2. Then denoting A = RY | and defining n = m N A we have
leN,reN, 0<jpx<my V k=1,-
SA“ (V): l70+j171+' e alaﬂbzkzl[]kd( )] =1
YV b= ax(mod t)
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Proof. — Let 0 # f(X,Y) € R, with degy (f) = d. By (2.1), (a®, %) -
ydm) = gdlm)byd(m) Gince (,, is an eigenfunction of H, we conclude that
for m > 0,

(aa’ﬂb) . Qm _ 6d(m)me _ Bdegy(Q,n)me’ v (aa’ﬂb) c H. (32)
We also have, (a®,8%) - Qo = (a?,%) - X = a®X,V (a?,p’) € H. Now f
has an expansion of the form 3) of Section 2. So,

(a®,8) - f = (a® Z Zblm QI L irm)]
m=0

—Z Zal“b X! ﬁbzk 1Lk (m )(kf)]Qﬂl'l(m)...Qgr(m)].

m=0
Now, f € A «<— al“BbZkzl[]k(m)d(k)] =1,V b = ax(mod t), V [, such
that by, # 0.
So,
{w(NN0# feAn} ={v(f)|0#f € A}

leN,reN,O<Ljp<mp VEk=1,---,r
C by +jim + o+ e | ade gtk lird (k)] — 4
YV b = ax(mod t)
Conversely, suppose we have [ e N, r e N, 0 < jp <my V k= 1,--- ,7r such
that V b = az(mod t) we have al“ﬂbzkﬂbkd(k)] = 1. Define f(X7Y) =
X!'Q7 - Qir € R. For any (a%, %) € H we have, (a®, (%) - f = (a®,B°) -
(X!Q - Qir) = aleptik= ikd(B) x1Qi .. Qi = £, that is, f € A. So
v(f) =lvo + j1y1 + -+ + jryr € S4°(v). Hence we conclude,
leN,reN, 0L jpr<my V k=1,
S () =1 o+t +irw al“ﬁbzk:1[ﬂkd( N1
V b= ax(mod t)

4. Finite and Non-Finite Generation

In this section we study the finite and non-finite generation of the valu-
ation semigroup S (v) over the subsemigroup S4»(v). A semigroup S is
said to be finitely generated over a subsemigroup 7' if there are finitely many
elements sq,- -, 8, in S such that S = {s1,--- ,s,} + T.

At the end of this section we will prove the following theorem.
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THEOREM 4.1. — Let Ry = K[X,Y](xy) and H < Uy, x Uy, be as in
Remark 1.3.

1) 3 a rational rank 1 non discrete valuation v dominating Ry with a
generating sequence (2.2) of eigenfunctions for H <= (m,n) =t.

2) If (m,n) =t =1, then STim (v) is a finitely generated S (v)-module
for all rational rank 1 non discrete valuations v which dominate Ry,
and have a generating sequence (2.2) of eigenfunctions for H.

3) If (m,n) =t > 1, then ST~ (v) is not a finitely generated S4»(v)-
module for all rational rank 1 non discrete valuations v which dom-
inate Ry and have a generating sequence (2.2) of eigenfunctions for
H.

We introduce some notation. Let ¢(0) = 0, o(l) = min {j|j > o(l —
1) and m; > 1}. Let P, = Qo’(l) and 5 = v(P) = Yo (l) V120 Let m;y =
(G(Bo, -+, B1) : G(Bo, -+, Bi—1)] = min{q € Z>o|gB € G(Bo,--+,1-1)} ¥
l = 1. Thenﬁl:m. SR‘“(V) = S(’yo,’)q,' . ) = S(ﬂo,ﬂh' . ) and {51}7;0
form a minimal generating set of ST (1), that is, m; > 1 V [ > 1.

We first make a general observation. Suppose for some d > 1, j,. # 0 and
l,j1,-++ ,jr € N, we have an expression of the form, 84 =18y + 7161 + - +
3rBr. If r > d then 5.5, > B, > B4 which is a contradiction. If » < d then
Ba € G(Bo, -+ ,Bda—1) => g = 1. This is a contradiction as n; > 1 V [ > 1.
Thus, 8, =180 + 181 + - + jrBp. If jr > 1, then j.f. > 3. If j, =0, then
Br € G(Bo, -+ ,Br—1) = Ty = 1. So, j» = 1. Since B; > 0 V 4, we then have
l=0,5;=0V i%#r. Thus, forl,51,--- ,j- € Nand d > 1,

Ba=1bo+i1b1+ +ifr=17Ja=11=0,5, =0V i#d. (4.1)

PROPOSITION 4.2. — Let Ry = K[X,Y](x,y) and H < U, xU, be as in
Remark 1.3. Let assumptions be as in Theorem 3.1. Then ST (v) is finitely

generated over the subsemigroup S (v) if and only if 3 N € Z~q such that
Qr €AY r>N. Further, if Qn € A, then Qu € AV M > N > 1.

Proof. — We first show that, for any r > 1, v, € S (v) <= Q, € A.
It is enough to show the implication 7, € S4»(v) = Q, € A. From (3.1)
we have, v, € 4" (v) = v, = lyo + j171 + - + Js7Ys, where l € N, s € N,

0 < ji < 5 and al2g* 22 9440 — 1y b = az(mod ¢).

Since I, j1, -+ ,js € Ny v <7viy1 Vi>1and v >0V 4, we have r > s. If
r=s, then v, = lyo + Y p_y JkVk = JrYr = Yr. Since j, # 0 and j, € N we
have j, = 1. And v; > 0 V 4 implies | = j; = --- = j,_; = 0. Then 4" =

1V b= az(mod t). So from (3.2), (a%, %) Q, = Q, ¥ b= azx(mod t), that
is, @ € A.
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If r > s, then v, = Iy + Y7, jk vk = M, = 1. Since 0 < ji < Mg,
by Equation (8) in [[6]] we have Q.41 = Q, — AX'Y1QJ?---QJ* where
A € K\ {0}. Since each @y, is an eigenfunction for H, from (3.2) we have,
V b = ax(mod t),

ﬁbd(T—H)QrJrl _ Bbd(T)QT _ )\alaﬁb 22:1 Jrd(k) xlyri Q%Q . Qgs

Again by 2) in Section 2 we have d(r + 1) = my---m, = My -My_1 =
d(r), as 7y = 1. So the above expression yields g4 Q, ., = 4" QT
)\alaﬂbzkzl ’“d(k)XlelQ;Q---Qgs V b = ax(mod t). Since Q,11 is an
eigenfunction, this implies 4" = al“ﬂbzkzljkd(k) =1V b= azx(modt).
From (3.2), we then have Q, € A.

To prove the proposition, we now show S (1) is finitely generated over
the subsemigroup S4=(v) if and only if 3 N € Z+¢ such that V r > N, ~, €
S4n (v).

Suppose ST (v) is finitely generated over S4» (v). So, 3 xg,- -+ ,x; € STm (1)
such that S (v) = {x¢, -, 21} + S4"(v). Let L € N be the least natural
number such that S (v) = S(Bo, -+, Br)+ 5 (v), where §; = v,y V i >

0. Let M > L. Now s has an expression By = Ef:o a;B; +y where y €
S4n(v), a; € N. From (3.1) we have 8y = Zf 0 @iBit+(Ivo+tjivit+ - +isys)s

where 0 < j < Ty and al“ﬁbzk 1384E) — 1V p = az(mod ). We observe
my; = 1 = jir = 0. Thus the above expression can be rewritten as,

L
B =Y aifi+ (1fo + 11 + - + o)
e

where 0 < ji < 7 and o/“ﬁbz 1Jkdegy (P) — 1y p = gz (mod t). Since
L < M, from (4.1) we obtain jpr = 1,a;, =0V i=0,--- ,Land jp =0 V
k # M. Thus gbtdeey(Pm) = 1 V b = gz(mod t) = n | degy (Pys). Thus
n|d(c(M)) V M > L. From 2) in Section 2 we have n | d(r) V r > o(L+1).
So, B} =1 V b = axz(mod t). From (3.2) we conclude, Q, € A YV r >
o(L+1), that is, v, € S4(v) V r > o(L + 1).

Conversely, we assume S(Yn,Yni1,---) C S4°(v) for some N € Zwg.
Now v; € Qs V i implies V i # 7, 3 di,dj € Zxo such that d;y; = djv;.
We thus have d;v; = dinyy V 1 =0,- N — 1. We will now show that,
SBu(y) =T + S4(v), where T = {Z o Y@ | 0 < @ < di}. Now, v €
Shm(yy Vi=0,---,N—-1= T+S’A (v) € SB=(v). So it is enough to

— 11 -
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show Sftm(v) C T 4 S4=(v).

2

$GSR‘“(V) = x = Z az’}/z“‘zaz%

N-1
:xzzai +Zbdz’71+za271
i=0

wherealfalqtbdl,O a; <d;, b; €N

ZbdzN’yN'i_Zal’Yz

:
“Mf

2
L

— = @;v; +vy, wherey € SA"(V).

M

<.

g

Thus we have shown S (v) C T + S4n(v). Since T is a finite set, we have
SEm () is finitely generated over S4n(v).

From (3.2), (o (%) - Qy = BUNPQyn V b = az(mod t). So, Qn €
A = pINb = 1V b = az(mod t). Again from 2) of Section 2 we have
d(N) | d(M) V M > N > 1. Hence we obtain, Qn € A = Qu € A V
M > N > 1. So, Sfi= (v) is not finitely generated over S4»(v) if and only if
Q- ¢AVr=1 O

LEMMA 4.3. — Let H < U, xU,, be as in Remark 1.5. Let assumptions
be as in Theorem 3.1. Then ST~ (v) is not finitely generated over S~ (v) if
and only if ntd(l) V1> 2.

Proof. — Suppose that ST (v) is not finitely generated over S4-(v).
Then Q; ¢ AV 1> 1. From (3.2), if n | d(l), then, (a®, 8°)-Q; = B*VPQ, =
Qi that is Q; € A, which is a contradiction. So, n{d(l) V I > 2.

Conversely, suppose n t d(l) V | > 2, that is, n t d(I) V | > 1. Now,
(xz,t) = 1 = az = 1(mod t) for some a € Z, so, (a*, ) € H. From (3.2),
(@, B)-Q; = B¥Q; # Q; for all I > 1, as n t d(l). So we have Q; ¢ A V
> 1 Hence SEn (1) is not finitely generated over S4» (v). O

ProrosiTioN 4.4. — Let H < U,, x U,, be as in Remark 1.3, such
that (m,n) > t > 1. Suppose that v is a rational rank 1 non discrete
valuation dominating Ry, with a generating sequence (2.2) {Qi}1>0, where
Qo =X,Q1 =Y as in Section 2. Then {Q;}1>0 is not a sequence of eigen-
functions for H.

Proof. — Let d = (m,n). Then 1 < t < d < min {m,n}. So, t <
m and t < n. We recall, H = {(a?, %) | b = az(mod t)}. Thus (a*, 1), (1,3
€ H. Let {Q;}1>0 be the generating sequence (2.2) with Qo = X, Q1 =Y

- 12 —
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Let v(Q;) =y V¥ | = 0. By Equation (8) in [[6]], Q2 = Y* — AX", where
A€ K\ {0}, sy1 =79, and s = min {q € Z~o | ¢71 € VZ}. From (2.1), we
have,

(@ 1) Q2= (o' 1) [Y* = AX"]=Y* — A" X",
(1,BY) Q2= (1,8") - [Y* — AX"] = B*Y* — AX".

If Q2 was an eigenfunction of H, then m | rt = r = r1 3, where r; € Z-.
Similarly, n | st = s = s1%, where s1 € Z~o. And, s71 =1y = 51571 =
r1%%0. So, 51571 = r173v0. Now, d|n implies s1%5 € Z~¢. Similarly, r17 €
Z~q. Thus, 51%71 € YZ. But t < d implies 31% < 51% = s, and this
contradicts the minimality of s. Thus @2 is not an eigenfunction of H. So,
{Qi}i1>0 is not a generating sequence of eigenfunctions for H. O

We know, if w is a primitive I-th root of unity in K, then {w* | 1 <
k < 1} is a complete list of all I-th roots of unity in K, and {w* | 1 < k <
I and (k,l) = 1} is a complete list of all primitive I-th roots of unity in K.
We have, « is a primitive m-th root of unity and ( is a primitive n-th root
of unity in K. Let § be a primitive mn-th root of unity in K. Then 6" is a
primitive m-th root of unity. Now, S, = {a* | 1 <k < m and (k,m) = 1} is
a complete list of all primitive m-th roots of unity in K. And, Ss» = {0*" |
1<k <mand (k,m) =1} is also a complete list of all primitive m-th roots
of unity. Thus, o = §“*" where (w1,m) = 1 and 1 < w; < m. Similarly,
B = 0“2"™ where (wq,n) =1 and 1 < we < n.

Remark 4.5. — Let p,q € 7Z. With the notation introduced above,
pP=al = B2 T c 7,

Proof. — We have, § = 0*2™ and o = 01", where § is a primitive mn-th
root of unity.
Thus, P = a9 <= §"2"P = 01" <= mn | (wemp — wing) <= 22 —
L e 7. O
m

PROPOSITION 4.6. — Let H < U,, x U, be as in Remark 1.3, such that
(m,n) = t,t > 1. Set m = Mt, and n = Nt, where M\N € Z~( and
(M,N) = 1. Suppose that 3 a prime number p such that p | t but p t N.
Suppose that v is a rational rank 1 non discrete valuation dominating Ry
with a generating sequence (2.2) of eigenfunctions for H. Then ST~ (v) is
not finitely generated over S4(v).

Proof. — Let {Q;}1>0 be the generating sequence (2.2) of the valuation
v, where Qo = X,Q1 = Y, and each @Q; is an eigenfunction for H. Let
v =v(Q;) ¥V I > 0. Without any loss of generality, we can assume vy = 1.
Since v is a rational valuation, we can write v, = ‘;—’; V k > 1, where
(ag,br) = 1. We have, p | t, and p f N for a prime p. So (p, N) = 1. So
3 N1 € Z such that NN; = 1(mod p). Let wy and ws be as in Remark 4.5.

~13 -
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Now (m,w;) = 1and t | m. So (t,w1) = 1. So (p,w;) = 1. So 3 wy € Z such
that wiwy = 1(mod p).
We now use induction to show the following V k > 1,

(p,mx) =1, (p, bx) = 1

4.2
ay, = b M N1zwswid(k) (mod p). (42)

We have y1 = g%, where (a1,b1) = 1. So my = b;. By Equation (8) in [[6]],
we have Qo = Y1 — \; X% for some \; € K \{0}. Again («,3%) € H. Now,
(o, %) - Qo = B*YPr — X\ja® X . Since ), is an eigenfunction for H, we

have

bizws  ajwy

o = a® = € Z by Remark 4.5

n m
bizws  ajwy
— eZ
Nt Mt

— MNt | [bll'M’LUQ — alel]
= by M Nyzwowy = aq(mod p) as p | t.

If (p,by1) # 1, then p | by = p | a;. But this contradicts (a1,b1) = 1. So,
(p,b1) = 1. Since Ty = by, we thus have (p,7) = 1. Thus we have the
induction step for k = 1.

Suppose (4.2) is true for k = 1,--- 1 — 1. From (3.2) we have (a%, ) -
Qr = pURQL V k> 1,V (% %) € H. By Equation (8) in [[6]] we have,
Qi1 = Q" — N XY Q.- Q! where \; € K\ {0},0 < ¢, < g V
k=1,---,l—1 and myy :ZZ_:lock’yk.

—_ -1

(o, B5)-Qri1 = ﬁmﬁzd(l)@;"l_)\lamﬂf[zkzl crd(R)] yeoyer QL - - Qlcl_—ll, Since
Q+1 is an eigenfunction for H, we have

gEmd(l) — g0 grld T ced(®)]
. ﬁx[ﬁdm—zi; erd(k)] _ co

almid(l) — Yo ewd(B)ws  cows
Nt Mt
-1
= MNt | [Mzwymmd(l) — Maw, Y crd(k) — Negw, |
k=1
-1
=] [wazﬁld(l) — Maws Z crd(k) — Ncowl]
k=1

€ Z by Remark 4.5

-1
= M Nyzwowy myd(l) = [Mlewngckd(k) + co] (mod p).
k=1

— 14 —
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Now, p | My = ¢o = A\p — MNwwzlLTZZ_:ll crd(k), where A € Z. Let
m; = pM;, where M; € Zsgo. So, gy, = pMyy1 = co + 22;11 A
Ap + S5 ekl — MNvzwowrd(k)).

By our induction statement, V k = 1,---,l — 1, we have ap = typ +
b M N1 zwowid(k), where ¢, € Z. Thus,

-1 __

t by M N- d(k
My = dp+ Y e BT UMM T0ITdR) )
k=1 O
-1 1
=A t—.
D +p; Ck L

Now (ag,br) =1 =3 hy € Z such that hyar = 1(mod bg). Let hxar — 1 =
Crbe, where Gy € Z. So, & = fetr=thear=l) — b,y — ¢, Then, pM;y, =
Ap+p 0 extr by — G implies

-1

My = A+ Zthk[hWk — Gl € Gyo, -+ s m-1)-
k=1

But this contradicts the minimality of ;. So p{my. So (p,my;) = 1.
_ — — - .
Now, Ty = co + Yy Ck’Yk = Mg = c + S crgE
= ma; Hk 1bk = B + sz 1c;€b', where B = H2:1 by. From the
induction hypothesis, =B = [txp + by M N1zwowid(k )] 5+ S0,

-1 -1

B
mia; H b = coB + Z ckltep + bkMlewgw*ld(k)]a
k=1 k=1
-1 -1
= My H b = [co + MlewQWlZ crd(k)]B(mod p).
k=1 k=1

Since, M N1zwqowy myd(l) = [M Nyxwowy 22__11 crd(k)+co](mod p), we have
-1 1
myay H b, = M Nyzwowy myd(l H (mod p).
k=1 k=1
Since (p,/m;) = 1,(pbxy) = 1 V k = 1,---,1 — 1, we have
a = Mlewgwld(l b; (mod p). If p | b, then p | a; which contradicts
(ar,b1) = 1. So (p,b;) = 1. Thus we have the induction step for k = [.

In particular, by induction we have (p,mg) =1 V k > 1. Since d(k) =
my - -mr—1 (by 2), Section 2), we have (p,d(k)) =1V k>2.Sop1td(k)V
k>22=ttdk)V k>22=n=Nttd(k)V k> 2. Thus by Lemma 4.3,
we have S (1) is not finitely generated over S4= (v). O

~ 15 —
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ProrosiTioN 4.7. — Let H < U,, x U,, be as in Remark 1.3, such
that (m,n) =t and t > 1. Set m = Mt and n = Nt where M,N € Zxg
and (M, N) = 1. Suppose that for any prime number p which divides t, the
number p also divides N. Suppose that v is a rational rank 1 non discrete
valuation dominating Ry with a generating sequence (2.2) of eigenfunctions
for H. Then ST~ (v) is not finitely generated over S4»(v).

Proof. — Since (x,t) =1, 3 r € Z~¢ such that ra = 1(mod t). So (r,t) =
1. Recall, a« = 0"1", 3 = 6™2™, where § is a primitive mn-th root of unity,
and (wy,m) = 1,(we,n) = 1,1 < w3 < mand 1 < wy < n. Now, M |
m = (wy, M) = 1. Similarly, (we, N) = 1, (wy,t) = 1, (we,t) = 1. So
3 Wy, W3 € Zo such that w;wy = 1(mod t) and wewz = 1(mod t).
Write N = NN’, where N is the largest factor of N such that (N, z) = 1.
If N = 1, then for any prime p dividing N, we have p | . So in particular
p |t = p | z. But this is a contradiction as (t,#) = 1. So N > 1 if
N > 1. We will now show (N, N’) = 1. Suppose the contrary. Then 3 a
prime p such that p | N andp | N'. p | N = (p,z) = 1 = (Np,z) = 1.
And, NN’ = N = pN | N. This contradicts the maximality of N. So
(N,N’) = 1. Hence (N,z) = (N’,z). We will now show that (¢, N’) = 1.
Suppose 3 a prime p such that p |t and p | N’. Then p | ¢t,p | N and pt N.
Thus p | ¢t and p | 2, which is a contradiction as t and x are coprime. Thus
(t,N') = 1. Also (N,wsy) = 1 implies (N, ws) = 1.
Let {Q;}i>0 be the generating sequence (2.2) of the valuation v, where Qo =
X,Q1 =Y, and each Q; is an eigenfunction for H. Let v, = v(Q;) V I > 0.

Without any loss of generality, we can assume vy = 1. Let 1 = ‘;—11, where

(a1,b1) = 1. So 1 = by. By Equation (8) in [[6]], we have Qo = Y1 — (3 X
for some ¢; € K\ {0}. Now, (o, %) € H. By (3.2), (a?, 8°)-Qp = B4R Q, v
k=1, (a% %) € H. So, (a, f7)- Q2 = (a, %) - [Y" = X "] = 7Y™ —
(1a® X ™. Since )2 is an eigenfunction for H, we have

b1$WQ a1wq

Nt Mt
- MNt | [Mblscwg — Nalwl]

= M |a; and N | by as (N,wq) =1, (M,w;) = 1,
(M,N)=1, (N,z) =1.

N =" = € Z by Remark 4.5

Let a; = Ma) and by = Nb}. Then, M Nt | [M Nb,xws — NMajw;] implies

b, = rajw,wsN'(mod t) as rx = 1(mod t) and N = NN’. Now, v, = =

%Z}. (a1,b1) = 1 = (N,d}) = 1, (a},b}) = 1 and (M,b;) = 1. Rename
1 J—

ay = u and b} = 1". Then (u, N) = 1. If (u,?) # 1, then 3 a prime p such

that p | t and p | w. Thus p | t, p | N and p ¥ N, since for any prime p

dividing ¢, p also divides N. So p | t and p | N’. But we have established
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earlier that (¢, N') = 1. So (u,t) = 1. And, 7 = ruwwzN’'(mod t) =
'z = uwwiwa N’ (mod t). Thus,

M _
Y1 = Wiul where (U, N) = 17 (u7t> = 17 (U, T/) = 17 (M?rl) = 17
T

r" = ruw;waN'(mod t).  (4.3)
We will now use induction to show that V k& > 2,

MNtA
e = Mums - -mp_1 + 77]6 for some A\, € Z
my -y (4.4)

(t,my) = 1.

By Equation (8) in [[6]] we have, Q3 = Q;"T—ngol/cl where (o € K\{0}, ¢
€ Z=0, 0 < c1 <my. (o, %) - Q3 = B2 QLY? — (a0 B X0Y . Since
Q)3 is an eigenfunction for H, we have
BRI — 0 gTer —y prlmamI—al — o
x[Mma g — ¢1]ws _ Cowy
Nt Mt
= M Nt|[M N’ xwomz — Mazwscy; — Ncowy] as my=Nr’
= M |coand N |¢; as (M,N) =1, (M,w;) =1,
(N,ws) =1, (N,z) = 1.

€ Z by Remark 4.5

Let ¢ = Mcj and ¢; = N¢}. Plugging them in the above expression and
using (4.3), we obtain,

M Nt | [MNr' zwymz — MzwaNcy — N Mcjw]

= 1’ zwemy = [wicyN' + zwyc)](mod t)

= ww1mMaN' = [wicyN' + zwyc)](mod t)

= r'ums = [r' ¢, + uc](mod t).

So, Mgz = o+ c1m = Mcp + Nej Mo — M[SrFas] — y[rumpat)

1N v v
—— | MNt), _ MNt\>
Mums + e for some Ay € Z. Thus, 72 = Mu + -

We will now show (¢,mz) = 1. Suppose if possible 3 a prime p such that p | ¢

and p | mz. Let Tz = pMs. So, P)/QZMU—F@ — Taye = Mumg +

myims
M%Az — pMorys = pMubMl, + M%{V = 1’ Moy, = v’ MubMy + M)\Q%-

(wi,t) = 1. (N',t) = 1. ro = 1(mod t) implies (r,t) = 1. wowz = 1(mod t)
implies (wz,t) = 1. And, (u,t) =1 by (4.3). So, 7’ = ruwwzN'(mod t) =
(r';t) = 1. So 3 1 € Z such that r7/ = 1(mod ¢). So in particular, r17’ =
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1(mod p) V prime p dividing ¢. We then have,
/ / t
r™rr MQ")’Q =nmrmr MUMQ + TlM)\Q*
p

t

= (1 + pap)Mays = rir' MuMsy + r1 M Ay~ for some s € Z
p

= Mava + pafizy2 € Z C G(v0, 1) = May2 € G(v0,m)-

But this contradicts the minimality of 75. So for any prime p dividing ¢, we
have p { 3. Thus (¢,7mz) = 1. We now have the induction step for k = 2.
Suppose (4.4) is true for k = 3,--- ,1 — 1. By Equation (8) in [[6]] we have,
Qi1 = Q" — ClXCOYClQS2 Q)5 where ¢ € K\ {0}, co € Zs0, 0 <
g <mp ¥V k=1,---,1—1 and myy, = 22;10 ckyk. By 2) of Section 2
we have d(l) = Hk 1M V1 > 2. Again, my; = N1’ by (4.3). SoV | > 2
d(l) = Nv'd(l), where d(l) = d”) . Thus, V 1 > 3,d(l) = [[._, mr.

Now, ( . B® ) Ql+1 meld(l)Q;nl —QaCOB Z;:l de(k)]Xcoycl QSQ . ?L:ll'
Since ;41 is an eigenfunction for H we have

el =YD () _ e

zwald(I+1) = 33 erd(R)]  cown
= — Ntk : _R/It

€ Z by Remark 4.5

-1

= MNt | [MaxwyNr'd(l + 1) — Mawayc; — MawoNv' Z cxd(k) — Negw ]
k=2

= M |cpand N |c; as (M,N) =1, (M,w;) =1, (N,z) =1, (N,ws) = 1.

Let ¢ = Mc) and ¢; = Nc;. Plugging them in the above expression, and
using (4.3), we obtain

1-1
MNt | [MzwyNr'd(l + 1) — MawsNc) — MzwsNr' Z crd(k) — N Mw;cj)
k=2
=t | [rwar'd(l + 1) — zwac) — zwer’ Z cxd(k) — wicyN']
k=2
-1
= r'zwad(l + 1) = [chwi N’ + ¢jzws + ' zw, Z ckd(k)](mod t)
k=2
= r'ud(l+1) = [r'cy + ju+1'u Z ckd(k)](mod t).
k=2
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Now,

-1
myy =co+ v+ ch’wc
k=2

-1 ~F
Mu ——  MNt)\,
Mcy + N, — E Mud(k) + ———
ch+ ClNT'+k:20k[ ud( )+d(k+1)}

where A\ € Z, by induction hypothesis

cor’ + dhu+1r'u 22;12 crd(k) Nt@l]
! d(l)
for some 0, € Z, as i1 < ia = d(i1) | d(i2)

= M|

rud(l+ 1)+t Nto,

:M[ 7 d(l)]for some [ € Z
_— MNt/u MNt6, MNt\
= Mud(l+1 = Mud(l +1
ud(+ 1)+ — () ud(l+1) + =575
for some \; € Z
MNtA
:>712Mum72---m1_1+77i.
mlo-oml

By our induction hypothesis, (t,m;) =1V k=2,---,l —1. So (p,mg) =1

for any prime p dividing ¢,V k= 2,--- ,[—1, hence, (p@) = 1. Suppose if
possible 3 a prime p | t such that p | ;. Let m; = pM;. Now, (r',t) =1 =

(r',p) = 1. So (p,r'd(l)) = 1. So 3 r; € Z such that r;7’d(l) = 1(mod p). Let

rir'd(l) = 1+ pp for some p; € Z. Now,

MNtA
VI:MUWZ"'ml—1+TL
ml...ml
-1
Mt _
= pM;y;=Mums - - -Mj+—— as My=pM;, my=Nr', d(l)=| | mz
o/ 2 ) P 1 ) H

k=2

t
= r'd(l)Myy, = r'd(l)Mumz - - - ;1 M, + M)\lg as my; = pM,

t
— 7"[7’/ (l)Ml'yl = Tﬂ“/ (Z)MUWTQ M+ riMMN—- € Z
p

= 1+ wup)Myy € Z = Myyi + iy € Z C G(vo,- -+ ,i-1)
- Ml’Yl € G(Pyo> e a’Yl—l)-

But this contradicts the minimality of 72;. So for any prime p dividing ¢, we
have p t ;. Thus (¢,7;) = 1. We now have the induction step for k = I.
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(t,r") =1 = Nt { Nr' = Nt{ Nr' = n {m; = n{d(2). From
the induction we have (t,mg) =1V k 2. Thus (¢, Hi;lQ my) =1 =
(t,dl) =1V 1>23= (t,7d(l)) =1V 1>3tfrdl) VI>3=
NtJ(Nr’d()Vl>3:>Ntfm1d()Vl 3= mntd(l) V1=>=3. So
together we have, n t d(l) V [ > 2. Thus by Lemma 4.3, we have ST (v) is
not finitely generated over SA" (v). O

We are now ready to prove Theorem 4.1.

Proof. — Let H < U,,, x U,, be as in Remark 1.3 and suppose that v is
a rational rank 1 non dlscrete valuation dominating R, with a generating
sequence (2.2) of eigenfunctions for H. By Proposition 4.4, we have ¢ >
(m,n). Since t | m and ¢ | n, we have (m,n) = t.

Conversely, let H be as in Remark 1.3 and suppose that (m,n) = t. We
will show that 3 a rational rank 1 non discrete valuation dominating Ry
with a generating sequence (2.2) of eigenfunctions for H. We consider the
cases t = 1 and ¢t > 1 separately.

Suppose that (m,n) =t = 1. We will construct a rational rank 1 non
discrete valuation v dominating Ry, with a generating sequence (2.2) of
eigenfunctions for H. Let {¢;};>2 be an infinite family of distinct prime
numbers, such that (¢, m) = 1, (g,n) = 1 for all [ > 2. Let ¢ = n. Let
{c1}i>1 € Z>o be positive integers such that

cp=m,c=0modm) VIx>1

Cyr > qria VIZ21 (a,q)=1VIi>1

We define a sequence of positive rational numbers {y,};>0 as 0 =1, v =
o ¥V 1> 1 We will showm; = ¢ V [ > 1, where m; = min {q €
Zsolan € G(yo, -+ ,m-1)} Now, vy = & = I Since (m,n) = 1, we
have my = n = q. For l > 2, qqvy = ¢ € Z = 1 < m; < q. Sup-
pose ¢ € Zsq such that ¢v, = q% = 22;10 apYE = Zﬁ;oak— Then
a | ge Tz ar, that is, @i | gan JT—, ax- Now, (g,¢r) = 1 and (g, n) = 1.
Again, (qi,qx) = 1 V k # I, as they are distinct primes So, i |g. Thus
we have m; = ¢ V I > 1. And, Ty, = v = ¢ < Zii = Yit1-
Thus we have a sequence of positive rational numbers {v;};>0, such that
Yig1 > Mgy ¥V 1 = 1. By Theorem 1.2 of [[6]], since Ry, is a regular lo-
cal ring of dimension 2, there is a valuation v dominating Ry, such that
SEm(v) = S(v0,71,+-+). v is a rational rank 1 non discrete valuation by
the construction. By Theorem 4.2 of [[6]], 3 a generating sequence (2.2)
{Ql}l;o,QO = X,Ql = Y, ... such that Z/(Ql) = Vi>0.

From the recursive construction of the {7;};>0, we have the generating se-
quenceas Qo =X, Q1 =Y, Q2 =Y"—X\; X™, where A\ € K\{0}. Foralll >
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2, Qi1 = QI — XY QI where gy = ¢ = fo + ATy frve, 0 <
fe <mp V k=1 Now, (¢p,qr) =1V k> 1, and (qr,qn) =1V k # h.

l fen [, a
SO ¢ = f0+2k 1 kak 2011_[1@ 1Qk_f0Hk 1Qk+ lll;llk,1 k++

%, which implies g | fx V k& > 1. Since 0 < fr < Mg = qx,
this lmpheb ft =0V k > 1. So we have the generating sequence as,

Qu=X,Q1 =Y, Q=Y"-MX", Q1 =Q — X" VI=2
where \; € K\ {0} VI>1

We now show that each @ is an eigenfunction for H = {(a®, %) | a,b €
Z}. For all | > 2, d(l) = ch 1ME = @1+ qi—1 = ng2---q—1. We have,
(@, 3%)-Qq = ,Bb”Y” A1a®mX™ = Q5. So, Q2 is an eigenfunction. Suppose
Q3,- -+, Qq are eigenfunctions for H. We check for ;1. From (3.2), (a®, 8%)-
Qr = B9 Q, V 2 < k < 1. Since m | ¢; and n | d(1), we have (o, %) -
Q41 = Bbqld(Z)Q?‘ —Na* X% = Q41. Thus Q41 is an eigenfunction. Thus
by induction, {@Q;}i>0 is a generating sequence of eigenfunctions for H.

Now we consider the case (m,n) = t > 1. We will construct a ratio-
nal rank 1 non discrete valuation v dominating R,,, with a generating se-
quence (2.2) of eigenfunctions for H.

Since (t,z) = 1, there are positive integers r, s such that rz — st = 1. So
(r,t) = 1. From Lemma 3 in §2, Chapter 117 of [[12]], we have that if r, ¢ are
positive integers such that (r,t) = 1, then there are infinitely many prime
numbers of the form r 4 0¢, where 6 € N. Define the family R = {r*) 115
as ) = r, #(¥) = k-th prime in the above prime series. Any two elements
in the family 9% are coprime by construction. Also, ¥ = r + @t = r¥) =
r(mod ¢) V k. Since R is an infinite family such that any two elements in
R are mutually prime, it follows that there is an infinite ordered family of
distinct prime numbers § = {r;};>1 such that, 7, = r(mod t), (1, ) = 1,
(r,%) = 1, (r,wy) = 1, (r,ws) = 1 V [ > 1, where w; and wy are as
in Remark 4.5. Let d = (w1, ws). Thus (%}, ®?) = 1. Define two sequences
(ar)i>1 and (b;);>1 of non negative integers as follows,

b120,7‘1|bl Vl>27t|bl VZ>2

bigr >l b -t Vi1

a = S )2 V> L

w2
t d
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Here r; € § V | > 1. Define a sequence of positive rational numbers {; }1>0
as follows

m ws
=1, =—t4
Yo y N Tl%%’
l
a m . ' + by wa
=—=— — Vi=2
" T t [ T ] d -

We will show my = r13* and my = r; V [ > 2, where m; = min {q €
Zsolgm € G(yo,---sm-1)}. (%, %) = 1, (r,*#) = Land (},%) =1
implies (%,n%%) =1 Also, (%) = 1, (2,7) = Land (%, %) = 1
implies (%,7‘1%%) = 1. Thus, (25, m%%) = 1 hence my = r1 3.
NowVIiZzZ2,ry=qcZ=1<m<r Suppose Ja posmve inte-
ger q such that qn € G(y0,-++ ,%i-1). Then (m = a5 = co+ o1

2 gck—*", where ¢, € Z ¥V k = 0,---,1 — 1. Thus r; | qa; %+ Lzllrk.

Now, (r;, %) =1, and (r, 7)) =1V k ;é l, as they are distinct primes. Also,
(r, %) = 1. So,r; | ga;. And, r; >r = ritr =1t %[rl*l+bl]M = q; as
(r, %) =1, (r;, ) = 1and r; | by. Thus, r; | g. Hence we have my = 71 % “*
andm;=r VI>2.

Now, bjy1 > rip1[r! =t +b]—r" V I > 1 and by = 0 implies by > ro — 7. Thus,

az = r + bo] %2 >T2mw2:>72—f§ >%%=m17l For I > 2, we
have r! +bl+1 > T‘H_l[ - lerl] [ +bl+1] > Tl p [ = 1+bl}% E
Vit1 = Tllil > ap =my.

Thus we have a sequence of positive rational numbers {7;};>0 such that
Yit1 > My ¥ 1 > 1. By Theorem 1.2 of [[6]], since Ry, is a regular lo-
cal ring of dimension 2, there is a valuation v dominating Ry, such that
Sfm(v) = S(v0,71,-++). v is a rational rank 1 non discrete valuation by
the construction. By Theorem 4.2 of [[6]], 3 a generating sequence (2.2)
{Qi}1>0,Q0=X,Q1 =Y, --- such that v(Q;) =y VI>0.

From the recursive construction of the {7;};>0, we have the generating se-
quence as Qg = X, Q1 =Y, Q> = Yritad — \MXET. Forall | > 2,
Qi1 = Q' — NXToy /.. Qf’ , where 0 < fp < mp V k > 1 and

rn = ap = fo+ S fevee So, @ = fo+ St f%k- We observe, from
our construction, (Mg, mp) =1V k # h. Also, (Mg,ar) =1V k>1
-1
mp

Thus, a; [TL_} ™% = fo [Ta, mr + fllnkl b +%:>

mp—1

my | fr V k> 1. Since 0 < fk<mk,wehavefkf0Vk>1 Thus the
generating sequence is given as,
nw

Qo=X,Q1=Y,Q=Y"% 7 -\ X

Qu1=Q' =X VI=>2
where \y e K\ {0} VI>1

«3
=g
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This is a minimal generating sequence as m; > 1 V [ > 1. We now show that

ribn w1 n Wi

each @ is an eigenfunction for H. From (2.1), (%, 8%)-Qa = 7 @ Y%7 —
Mo T TXT T, Now, V b = ax(modt), b = a(modt), hence,
r1bn wy am

(rlbt a)(wi2) ¢ 7, Thus by Remark 4.5, 7% ¢ = TV b = ax(mod t),

that is, @2 is an eigenfunction for H.

Suppose @3, - ,Ql are eigenfunctions for H; ;... We check for Q1. We

note d(k) = my - -Mg_1 = 3 4rir2---rp—1. From (3.2) we have (a®, %) -
bnr “Tpw

Qr = "MQ, vV 1 <k <L Now, (a8 Qua = -+ 4Q] -

A X%, Since r, = r(mod ¢) ¥V k > 1, ra = 1(mod t) and ¢ | by, we have
1

brq .- U
ESi art €Z VY b= ax(mod )

t
.. lil
:>br1 ; re_alr t+ b €Z YV b= ax(mod t)
bri-- -1 wiws a[r'= + by wiwe
— Z, =
" ( 7 ) " ( 7 )€ Z VN b=ax(mod t)
bnry -1 wiwe am[r'=1 +by] wiw, _
; (dn) ; (dm)EZVb_cwc(modt)

b
yu&l)% - (aal)ﬂ €Z YV b= azx(mod t).
n

:}(
Thus, by Remark 4.5, Bbwl 3 = @ for all b = az(mod t), and hence
Qi+1 is an eigenfunction for H. Thus by induction, {Q;}i>0 is a minimal
generating sequence of eigenfunctions for H. This completes the proof of
part 1) of Theorem 4.1.

Now we suppose (m,n) =t = 1 and v is a rational rank 1 non discrete
valuation dominating Ry, with a generating sequence (2.2) of eigenfunctions
for H. Let v(Q;) = v V 1 € N. We have Qy = X,@Q; =Y. By Equation (8)
n [[6]], Q2 = Y* — AX" where A € K \ {0}, sy1 = 7. Since (m,n) =1, by
Chinese Remainder Theorem (Theorem 2.1, §2, [[9]]) we have H is a cyclic
group, generated by («, 5). By (2.1) we have (o, 8) - Q2 = 8°Y*® — Aa" X".
Since @) is an eigenfunction, we have

ﬂsza":@—@eZbyRemark 45

n
= m]|r and n|sas (mw) =1, (nwy) =1, (myn) =1.

So, Q2 =Y* —AX" € K[X™,Y"] C A. Thus by Proposition 4.2, we have

part 2) of Theorem 4.1.

We observe that the part 3) of Theorem 4.1 follows from Propositions 4.6
and 4.7. This completes the proof of Theorem 4.1. ]
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Ezample 4.8. — Let m > 1. Let (¢1,m) = 1 and (cg,m) = 1. Let U,
acts on R = K[X,Y] by the diagonal action given by K-algebra isomor-
phisms satisfying a - X"Y*® = 1" +<28 X"Y*. Suppose v is a rational rank
1 nondiscrete valuation dominating Ry. Let {Q;};>0 be the generating se-
quence (2.2) of the valuation v, where Qo = X, Q1 = Y, and suppose that
each @ is an eigenfunction for U,, under the diagonal action. Let B = RUn
and b = BN m. Then S%=(v) is not finitely generated over SP¢ (v).

Proof. — « is a primitive m-th root of unity, and (¢1,m) = (cz,m) = 1.
So U, =< a>=< a > =< a® >. Now, the subdirect product
H < U, xU,, is given by

H = {((a™)*, (@®)®) | b= a(mod m)} =< (a,a®) > .

From (2.1), we have H acts on R by K-algebra isomorphisms satisfying
(a,a%?) - XTY*® = "2 X7"YS. Thus we have, a - X"Y* = (a®,a) -
XTYs.

Now let {Q;};>0 be the generating sequence (2.2) of the valuation v, where
Qo = X,Q1 =Y, and each Q) is an eigenfunction for U,, under the diagonal
action. Hence each @ is thus an eigenfunction for H. And, B = RU» =
RE=A Alsob=BnNnm=ANm=n.

Using the same notation as in Theorem 4.1, we have ¢ = m. Since m > 1, by
Theorem 4.1 we have Sfm (1) is not finitely generated over S4»(v). Hence,
Sfim (1) is not finitely generated over SBe (v).

When m = 2, ¢; = ¢o = 1, this is Example 9.3 of [[6]]. O

5. Non-splitting

Suppose that a local domain B dominates a local domain A. Let L be
the quotient field of A and M be the quotient field of B. Suppose w is a
valuation of L which dominates A. We say that w does not split in B if there
is a unique extension w* of w to M which dominates B.

We use the same notation as in the previous sections.

THEOREM 5.1. — Let H < U,, x U,, be as in Remark 1.8 such that
(m,n) = t. Let assumptions be as in Theorem 3.1. Let U = v |ga) where
Q(A) denotes the quotient field of A. Then U does not split in Ry,.

Proof. — Let {Qr}r>0, {7k }r>0 and {7g}r>1 be as in Section 2. Thus
Qo = X and Q; =Y. Without any loss of generality, we can assume vy = 1.
Set m = Mt and n = Nt where M, N € Z~( and (M,N) = 1. From (3.1)
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we have

leNyreNO0<jp<myp Vk=1,-- 1
S4n ()= bo+im+-+ir alaﬁbZk:1de(k)] -1

YV b= ax(mod t)

Now, 7 = v |g(a). Thus S (v) = {v(f) | 0 # f € Ax} = S (¥). The
group generated by S4»(7) is I'y, the value group of 7 (1.2, [[3]]). Thus
'y = {s1 — 52| 81,82 € S (v)}.

Suppose 79 € I'z. Then we have a representation,

Yo= (11’70+Z hi,xv.) — (270 +Z ho.xve) = (L —12)’70+Z(h1,k —ha. 1) Vk
k=1 k=1 k=1

where 179 + ZZ=1 hirve € S4n(v), and loyg + 271;:1 ho ke € SAn(v).
Thus l;,lo € Nyr e Nand 0 < hy g, hop < ¥ k=1,---,7. So, |hyx —
hor| < mE ¥V k =1,---,r. Now (h1, — ha, )y € Gy, ,—1) and
|hi, — hoy| < My = h1, = hg,. With the same argument, we have
higx = hoy ¥V k =1,---,r. So in the representation of 7y, we have vy =
(lh = o)y = 11 — la = 1. Also,

i B sd(R)] _ g _ s gty e (b)]
= a(ll712)aﬁbZ;=1[(hl"“_h2"“)d(m =1V b=azx(mod t).

Since Iy —ly =1and hyy = hey, V k=1,---,7r, we have a* =1V b =
az(mod t). Thus a = 1, that is, m = 1. So we have obtained,

Yelp=M=1,t=1. (5.1)

Suppose 71 € I'. Then we have a representation,

T I T
=00+ Y duwve) =2y + > dawvk) = — l2)vo + Y (G1k = dou)
k=1 k=1 k=1

where 1170 + > p_; j1.67k € SA(v), and loyo + >y 2k € SA(v). So,
li,lo € Ny r € Nand 0 < ij,jgvk <mg ¥V k=1,---,r. So, |j1,k —
j2,k‘ <mr ¥V k=1, ,r. Now, (jl,r _j2,r)'7r € G(’VOa"' 777“71) and
l71.r — Jor| <y = j1., = jo.r. With the same argument, we have j; , =
Jo V k =2,---7r. Thus we have, 1 = (I1 — l2)y0 + (j1,1 — j2,1)71 where
0 < |j1,1 — J2,1| < ™M7. Again, ¥V b = ax(mod t) we have

ala gkt rd(R)] g — taa gbd Ty [,k (k)]

Since d(1) = degy(Y) = 1 and j1x = jor V k = 2,---,r, we have
alli=tz)agb(ii=521) = 1 for all b = axz(mod t). So if v; € Ty, we have a
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representation
v1 = lyo + j1iy1 where l € Z, 0 < |j1| < Ty
alepbit =1V b= ax(mod t).

In the above expression, (1 — j1)v1 = lv € Z = m1 | (1 — j1).
And 1 —j| <1+ |jpa|l <Tp = |1—-H]=0o0rm.1-—j; =0 =
I = 0,4 = 1. From the above expression we then have, f® = 1 V b =
azx(mod t) = n = 1. Now consider |1 — j;| = my1. If 1 — j; = —my then
j1 = 1+my which contradicts |j1| < 7. So 1—j1 =my, that is, j1 = 1-my.
And (1 — j1)y1 = My = . So Q2 = Q"' — AX! where A € K\{0}.
(aiﬁb) “Q2 = AU — Ma® X! Since Q7 is an eigenfunction, we have
B = a2 V¥ b = axr(mod t). Again from the above expression we have,
a¥pt = B Y b = ax(mod t), as j; = 1 —my. Thus, g =1 V b =
az(mod t), and hence n = 1. So we have obtained,

’}/1€FUZ>N:1,1€:1. (52)

For an element g € T',, let [g] denote the class of g in ll:—j Since % is a finite

group, [g] has finite order for each g € T',,.. Let e = [T, : T'5].

First we suppose vy € I'y and 71 € T'z. From (5.1) and (5.2) we have
M = N =t = 1. From Proposition 1.4 we have |H| = M Nt = 1. Thus,
MNt | e.

Now we suppose vy ¢ I'z and v; € I'z. From (5.2) we have N = ¢ = 1.
From Proposition 1.4 we have |H| = MNt = M. Let fy denote the order of
[v0]- Thus fovo € I'z. We thus have a representation

fovo = (o + D haww) — (20 + D ho ki)

k=1 k=1

=l —l2)v+ Z(hl,k — ho i)k
k=1
where l1y9 + 22:1 hikve € S4n(v), and loyg + 22:1 ho ke € SAn(v).
Thus l;,lo € Nyr e Nand 0 < hy g, hop < ¥ k=1,---,7. So, |h1x —
hor| <Mk V k=1,---,r. With the same arguments as above, we have
hl,k = hg’k V k= 1,--- 7. Thus fo’)/o = (ll — 12)’}/0 — fQ =11 —Is. And,
for all b = ax(mod t),

b gkl kd(R)] — g — laaged ey [ho kd (k)]

So, ath=k2) = ofo = 1 hence m = Mt | fo => Mt | e. Thus MNt |
eas MNt= M.

Now we suppose 79 € I'y and v ¢ I'y. From (5.1) we have M =1t = 1.
|H| = MNt = N. Let f; denote the order of [v1], that is fiy1 € I'z. We have
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a representation,

s T I
A=+ Y drem) = (evo+ Y dowyw) =11 — )0+ Y (1. —J2.k) %
k=1 k=1 k=1
where l170 + > p_; j1.67k € SA(v), and loyo + > ey J2kk € S (v). So,
ll,lg € N, r € Nand 0 < j17k,j27k < mp V k = 1,--- 7. SO, |j1,k —
Jok| <mr ¥V k =1,---,r. With the same arguments as above, we have
Jik =J2k ¥ k=2,---,r. So in the above representation, we have fivy; =
(ll_l2)'70+(j1,1_j271)71 where 0 < |j1’1—j2)1| <mq. Again, Vb= aa?(mod t)

we have . )
alra gt —r [ kd(R)] g — ylea gd iy [2.kd ()]

Since d(1) = 1and jy = jox ¥V k=2,--- ,7r, we have a(l1712)e gbln.1=72.1) —
1 for all b = az(mod t). So we have a representation,

fiv1 =1y + jiy where l € Z, 0 < [j1] <M1
Bt =1V b= azx(mod t).

(fi—71)m =lvw = m1 | (f1 —j1). Let fi — j1 = cmy where ¢ € Z. Let
miy1 = sy where s € Z~qg. Thus fiy1 = ey + i = Iy = esyy. Thus
| = cs. Since Miy1 = $70, we have Q2 = Q"' — AX* where A € K\{0}.
(%, B%) - Q2 = BY™1QT™ — Aa®* X*. Since @ is an eigenfunction we have,
B = % ¥ b = ax(mod t). Again, from the above expression of fiv1, we
have

alepblh=emi) — 1 ¥ p = az(mod t)

— %N = g Y b = ga(mod t) as | = cs

— B =1V b=ax(mod t) = n= Nt| fi = Nt|e.
Thus we have obtained, M Nt | e as MNt = N.

Now we consider the final case, 790 ¢ I'z and v ¢ I'z. Let fy denote
the order of [yo] and f; denote the order of [y;] in 1. With the same
arguments as before, we obtain Mt | fo and Nt | fi. Thus we have Mt | e
and Nt | e. Now (Mt, Nt) = t. So the lowest common multiple of M¢ and

Nt is MINE — ANt Thus, MNt | e.

t
Now, K(X,Y) is a Galois extension of Q(A) with Galois group H (Propo-
sition 1.1.1, [[2]]). Thus [K(X,Y) : Q(A)] = |H| = MNt from Proposi-
tion 1.4. Let v = 11, v, -+ , 14 be all the distinct extensions of 7 to K(X,Y).
Then (§12, Theorem 24, Corollary, [[16]]),
efr=[K(X,Y):Q(A)] = MNt.

Since M Nt | e, we have e = M Nt, r = 1. So v is the unique extension of 7
to K(X,Y). Thus 7 does not split in Ry,. O
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