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Generating sequences and semigroups of valuations on
2-dimensional normal local rings

Arpan Dutta (1)

ABSTRACT. — In this paper we develop a method for computing valuation semi-
groups for valuations dominating the ring of a two dimensional quotient singularity.
Suppose that K is an algebraically closed field of characteristic zero, K[X,Y ] is a
polynomial ring over K and ν is a rational rank 1 non discrete valuation of the
field K(X,Y ) which dominates K[X,Y ](X,Y ). Given a finite abelian group H acting
diagonally on K[X,Y ], and a generating sequence of ν in K[X,Y ] whose members
are eigenfunctions for the action of H, we compute the semigroup SK[X,Y ]H (ν) of
values of elements of K[X,Y ]H . We further determine when SK[X,Y ](ν) is a finitely
generated SK[X,Y ]H (ν)-module.

RÉSUMÉ. — Dans cet article, nous développons une méthode de calcul de se-
migroupes d’évaluation pour les évaluations dominant l’anneau d’une singularité de
quotient à deux dimensions. Supposons que K est un corps algébriquement clos de
caractéristique zéro, K[X,Y ] est un anneau polynomial sur K et ν est une évalua-
tion rationnelle non discrète de rang 1 du corps K(X,Y ) qui domine K[X,Y ](X,Y ).
Étant donné un groupe H abelien fini agissant en diagonale sur K[X,Y ] et une suite
génératrice de ν dans K[X,Y ] dont les membres sont des fonctions propres pour
l’action de H, nous calculons le semigroupe SK[X,Y ]H (ν) de valeurs d’éléments de
l’anneau invariant K[X,Y ]H . Nous déterminons en outre quand SK[X,Y ](ν) est un
SK[X,Y ]H (ν)-module de type fini.

Notations

Let N denotes the natural numbers {0, 1, 2, · · · }. We denote the pos-
itive integers by Z>0 and the positive rational numbers by Q>0. If the
greatest common divisor of two positive integers a and b is d, this is de-
noted by (a, b) = d. If {γk}k>0 is a set of rational numbers, we define
G(γ0, · · · , γn) =

∑n
k=0 γkZ and G(γ0, γ1, · · · ) =

∑
k>0 γkZ. Similarly we

define S(γ0, · · · , γn) =
∑n
k=0 γkN and S(γ0, γ1, · · · ) =

∑
k>0 γkN. If a group

G is generated by g1, · · · , gn, we denote this by G =< g1, · · · , gn >.
(1) Department of Mathematics, IISER Mohali, Knowledge City, Sector 81, Manauli

PO, SAS Nagar, Punjab, 140306 (India) — arpandutta@iisermohali.ac.in

– 1 –

mailto:arpandutta@iisermohali.ac.in


Arpan Dutta

Introduction

Let R be a local domain with maximal ideal mR and quotient field L, and
ν be a valuation of K which dominates R. Let Vν be the valuation ring of ν,
with maximal ideal mν and Φν be the valuation group of ν. The associated
graded ring of R along the valuation ν, defined by Teissier in [[14]] and [[15]],
is

grν(R) =
⊕
γ∈Φν

Pγ(R)/P+
γ (R) (0.1)

where

Pγ(R) = {f ∈ R | ν(f) > γ} and P+
γ (R) = {f ∈ R | ν(f) > γ}.

In general, grν(R) is not Noetherian. The valuation semigroup of ν on R is

SR(ν) = {ν(f) | f ∈ R \ (0)}. (0.2)

If R/mR = Vν/mν then grν(R) is the group algebra of SR(ν) over R/mR,
so that grν(R) is completely determined by SR(ν).

A generating sequence of ν in R is a set of elements of R whose classes
in grν(R) generate grν(R) as an R/mR-algebra. An important problem is
to construct a generating sequence of ν in R which gives explicit formulas
for the value of an arbitrary element of R, and gives explicit computations
of the algebra (0.1) and the semigroup (0.2). For regular local rings R of
dimension 2, the construction of generating sequences is realized in a very
satisfactory way by Spivakovsky [[13]] (with the assumption that R/mR is
algebraically closed) and by Cutkosky and Vinh [[6]] for arbitrary regular
local rings of dimension 2. A consequence of this theory is a simple classifi-
cation of the semigroups which occur as a valuation semigroup on a regular
local ring of dimension 2. There has been some success in constructing gen-
erating sequences in Noetherian local rings of dimension > 3, for instance
in [[7]], [[10]], [[11]] and [[15]], but the general situation is very complicated
and is not well understood.

Another direction is to construct generating sequences in normal 2 dimen-
sional Noetherian local rings. This is also extremely difficult. In Section 9 of
[[6]], a generating sequence is constructed for a rational rank 1 non discrete
valuation in the ring R = k[u, v, w]/(uv − w2), from which the semigroup is
constructed. The example shows that the valuation semigroups of valuations
dominating a normal two dimensional Noetherian local ring are much more
complicated than those of valuations dominating a two dimensional regu-
lar local ring. In this thesis, we develop the method of this example into a
general theory.

– 2 –



Generating sequences and semigroups of valuations on 2-dimensional normal local rings

If R is a 2 dimensional Noetherian local domain, and ν is a valuation of
the quotient field L of R which dominates R, it follows from Abhyankar’s
inequality [[1]] that the valuation group Φν of ν is a finitely generated group,
except in the case when the rational rank of ν is 1 (Φν ⊗Q ∼= Q) and Φν is
non discrete. As this is the essentially difficult case in dimension 2, we will
restrict to such valuations.

Let K be an algebraically closed field of characteristic 0 and K[X,Y ] be a
polynomial ring in two variables, which has the maximal ideal m = (X,Y ).
Let α ∈ K be a primitive m-th root of unity and β ∈ K be a primitive
n-th root of unity. Now the group Um × Un acts on K[X,Y ] by K-algebra
isomorphisms, where

(αi, βj)X = αiX and (αi, βj)Y = βjY.

In Theorem 1.2, we give a classification of the subgroups Hi,j,t,x of Um×Un.
In Remark 1.3 we observe that without any loss of generality, we can assume
i = j = 1 and H = H1,1,t,x is a subdirect product of Um × Un. Let

A = K[X,Y ]H and n = m ∩A.
We say that f ∈ K[X,Y ] is an eigenfunction for the action of H on K[X,Y ]
if for all g ∈ H, gf = λgf for some λg ∈ K. Throughout the paper, we
use the expression ∀ b ≡ ax(mod t) as an abbreviation for the following
expression,

∀ a, b ∈ Z such that b ≡ ax(mod t).

Let ν be a rational rank 1 non discrete valuation dominating the regu-
lar local ring K[X,Y ]m. Using the algorithm of [13] or [6], we construct a
generating sequence

Q0 = X,Q1 = Y,Q2, . . . (0.3)
of ν in K[X,Y ]. Let ν∗ be the restriction of ν to the quotient field of A. In
Theorem 3.1, we give an explicit computation of the valuation semigroups
SAn(ν), when the members of the generating sequence (0.3) are eigenfunc-
tions for the action of H on K[X,Y ].

Suppose that a Noetherian local domain B dominates a Noetherian local
domain A. Let L be the quotient field of A, M be the quotient field of B
and suppose that M is finite over L. Suppose that ω is a valuation of L
which dominates A and ω∗ is an extension of ω to M which dominates B.
We can ask if grω∗(B) is a finitely generated grω(A)-module or if SB(ω∗)
is a finitely generated SA(ω)-module. In general, grω∗(B) is not a finitely
generated grω(A)-algebra, so is certainly not a finitely generated grω(A)-
module. However, is is shown in Theorem 1.5. [[5]] that if A and B are
essentially of finite type over a field characteristic zero, then there exists
a birational extension A1 of A and a birational extension B1 of B such
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that ω∗ dominates B1, ω dominates A1, B1 dominates A1 and grω∗(B1)
is a finitely generated grω(A1)-module (so SB1(ω∗) is a finitely generated
SA1(ω)-module).

The situation is much more subtle in positive characteristic and mixed
characteristic. In Theorem 1 [[4]], it is shown that If A and B are excellent of
dimension two and L→M is separable, then there exist birational extension
A1 of A and B1 of B such that A1 and B1 are regular, B1 dominates A1,
ω∗ dominates B1 and grω∗(B1) is a finitely generated grω(A1)-algebra if and
only if the valued field extension L→M is without defect. For a discussion
of defect in a finite extension of valued fields, see [[8]].

In this paper, we completely answer the question of finite generation of
SK[X,Y ]m(ν) as a SAn(ν)-module (and hence of grν(K[X,Y ]m) as a grν(An)-
module) for valuations with a generating sequence of eigenfunctions. We
obtain the following results in Section 4.

Proposition 0.1. — Let Rm = K[X,Y ](X,Y ) and H be a subdirect
product of Um × Un. Let ν be a rational rank 1 non discrete valuation ν
dominating Rm with a generating sequence (0.3) of eigenfunctions for H.
Then SRm(ν) is finitely generated over the subsemigroup SAn(ν) if and only
if ∃ N ∈ Z>0 such that Qr ∈ A ∀ r > N . Further, if QN ∈ A, then
QM ∈ A ∀ M > N > 1.

Theorem 0.2. — Let Rm = K[X,Y ](X,Y ) and H be a subdirect product
of Um × Un.

1) ∃ a rational rank 1 non discrete valuation ν dominating Rm with a
generating sequence (0.3) of eigenfunctions for H ⇐⇒ (m,n) = t.

2) If (m,n) = t = 1, then SRm(ν) is a finitely generated SAn(ν)-module
for all rational rank 1 non discrete valuations ν which dominate Rm

and have a generating sequence (0.3) of eigenfunctions for H.
3) If (m,n) = t > 1, then SRm(ν) is not a finitely generated SAn(ν)-

module for all rational rank 1 non discrete valuations ν which dom-
inate Rm and have a generating sequence (0.3) of eigenfunctions for
H.

In Section 5, we show that for the valuations we consider, the restriction
of ν to the quotient field of A does not split in K[X,Y ]m. The failure of non
splitting can be an obstruction to finite generation of SB(ω∗) as an SA(ω)-
module (Theorem 5 [[4]]), but our result shows that it is not a sufficient
condition.
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Generating sequences and semigroups of valuations on 2-dimensional normal local rings

1. Subgroups of Um × Un

Let K be an algebraically closed field of characteristic zero. Let α be a
primitive m-th root of unity, and β be a primitive n-th root of unity, in K.
We denote Um =< α >, and Un =< β >, which are multiplicative cyclic
groups of orders m and n respectively.

Lemma 1.1 (Goursat). — Let A and B be two groups. There is a bijective
correspondence between subgroups G 6 A×B, and 5-tuples {G1, G1, G2, G2, θ},
where

G1 E G1 6 A , G2 E G2 6 B , θ : G1

G1
→ G2

G2
is an isomorphism.

Theorem 1.2. — Given positive integers i, j, t, x satisfying the given
conditions

i|m, j|n, t|m
i
, t|n

j
, (x, t) = 1, 1 6 x 6 t

let
Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t)}. (1.1)

Then the Hi,j,t,x are subgroups of Um × Un. And given any subgroup G of
Um×Un, there exist unique i, j, t, x satisfying the above conditions such that
G = Hi,j,t,x.

Proof. — We first show that the condition b ≡ ax(mod t) is well defined
under the given conditions on i, j, t, x. Suppose (αa1i, βb1j) = (αa2i, βb2j),
that is, a1i ≡ a2i(mod m), and b1j ≡ b2j(mod n). Then, mi | (a1 − a2) and
n
j | (b1−b2). Thus, t | (a1−a2) and t | (b1−b2), hence t | (b1−b2)−(a1−a2)x.
So, [b1 − a1x] ≡ [b2 − a2x](mod t).

We now show Hi,j,t,x is a subgroup of Um × Un. Taking a = b = 0, we
have (1, 1) ∈ Hi,j,t,x. Let (αai, βbj), (αci, βdj) ∈ Hi,j,t,x be distinct elements.
Then b ≡ ax(mod t), and d ≡ cx(mod t). Hence (b− d) ≡ (a− c)x( mod t).
So, (α(a−c)i, β(b−d)j) = (αai, βbj)(αci, βdj)−1 ∈ Hi,j,t,x. Hence Hi,j,t,x is a
subgroup.

By Goursat’s Lemma, the subgroups of Um × Un are in bijective corre-
spondence with the 5-tuples {G1, G1, G2, G2, θ}, whereG1 E G1 6 Um , G2 E

G2 6 Un , θ : G1
G1
' G2

G2
. Now any subgroup of Um =< α > is of the form

Hi =< αi >= Um
i
, where i|m. Since Hi is an abelian group, any subgroup

is normal. Any subgroup of Hi is of the form Hiti =< αiti >= U m
iti

, where
ti|mi . Similarly, any subgroup of Un is of the form Hj =< βj >= Un

j
, where

j|n. And any subgroup of Hj is of the form Hjtj =< βjtj >= U n
jtj

, where

tj |nj . Now,
Um
i

U m
iti

' Uti and
Un
j

U n
jtj

' Utj . So, θij :
Um
i

U m
iti

'
Un
j

U n
jtj

⇐⇒ ti = tj .
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Define t = ti = tj . Thus the subgroups of Um × Un are in bijective corre-
spondence with the set of 5-tuples,

(< αit >,< αi >,< βjt >, < βj >, θij)

where i|m, j|n, t|m
i
, t|n

j
and θij : < αi >

< αit >
' < βj >

< βjt >
.

(1.2)

Any such isomorphism is given by θij(αi) = βxj , where (x, t) = 1, 1 6 x 6 t,
and v denotes the residue of an element v ∈< αi > in <αi>

<αit> , or the residue
of an element v ∈< βj > in <βj>

<βjt> .
If Gθij denotes the graph of θij , then Gθij = {(αri, βrxj)| r ∈ N}. Denoting
the natural surjection p :< αi > × < βj >−→ <αi>

<αit> ×
<βj>
<βjt> , we have

p−1(Gθij ) = {(αai, βbj) |αai = αri, βbj = βrxj , for some r ∈ N}

= {(αai, βbj) |α(a−r)i∈<αit>, β(b−rx)j ∈<βjt>, for some r ∈ N}

= {(αai, βbj) | a ≡ r(mod t), b ≡ rx(mod t), for some r ∈ N}.

We now show that,

a ≡ r(mod t), b ≡ rx(mod t), for some r ∈ N⇐⇒ b ≡ ax(mod t). (1.3)

If a ≡ r(mod t), b ≡ rx(mod t), then a − r = td for some integer d. Then
b− ax = b− (td+ r)x ≡ b− rx(mod t) ≡ 0(mod t) =⇒ b ≡ ax(mod t). Con-
versely if b ≡ ax(mod t), and a ≡ r(mod t) for some r, then b ≡ rx(mod t).
Thus we have established (1.3). So, p−1(Gθij ) = {(αai, βbj) | b ≡ ax(mod t)}.
Thus we have that any subgroup of Um × Un is of the form

Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t) ; i|m, j|n, t|m
i
, t|n

j
, (x, t) = 1,

1 6 x 6 t}.

We now establish uniqueness. Let (i1, j1, t1, x1) and (i2, j2, t2, x2) be two
distinct quadruples satisfying the conditions of the theorem, such that
Hi1,j1,t1,x1 = Hi2,j2,t2,x2 . From (1.2), we observe Hi1,j1,t1,x1 = Hi2,j2,t2,x2

implies

(< αi1t1 >,< αi1 >,< βj1t1 >,< βj1 >, θ
(1)
i1j1

)

= (< αi2t2 >,< αi2 >,< βj2t2 >,< βj2 >, θ
(2)
i2j2

).

Now, < αi1 >=< αi2 >=⇒ | < αi1 > | = | < αi2 > | =⇒ m/i1 = m/i2 =⇒
i1 = i2 = i. And, < αit1 >=< αit2 >= m/it1 = m/it2 = t1 = t2 =
t.Similarly j = j1 = j2. Now, θ(1)

ij = θ
(2)
ij =⇒ θ

(1)
ij (αi) = θ

(2)
ij (αi) =⇒ βx1j =

βx2j in <βj>
<βtj> . Thus, t | |x1−x2|. Since 0 < x1, x2 6 t, we have |x1−x2| = 0,
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Generating sequences and semigroups of valuations on 2-dimensional normal local rings

i.e. x1 = x2. Let x = x1 = x2. Then (i, j, t, x) = (i1, j1, t1, x1) = (i2, j2, t2, x2)
is unique. �

We observe Hi,j,t,x = {((αi)a, (βj)b) | b ≡ ax(mod t)} 6 Um
i
×Un

j
. Since

(x, t) = 1, Hi,j,t,x is a subdirect product of Um
i
× Un

j
. So without loss of

generality we can assume i = j = 1, that is, H1,1,t,x is a subdirect product
of Um × Un. For the rest of the paper, we adopt the following notation,

Remark 1.3. — H = H1,1,t,x is a subdirect product of Um × Un. Thus
H = {(αa, βb) | b ≡ ax(mod t)}, where t | m, t | n, (x, t) = 1 and 1 6 x 6 t.

Proposition 1.4. — Let H be as in Remark 1.3. Write m = Mt and
n = Nt where M,N ∈ Z>0. Then |H| = MNt.

Proof. — Recall, H = {(αa, βb) | b ≡ ax(mod t)}. We observe, as ele-
ments of H, (αa1 , βb1) = (αa2 , βb2) if and only if a1 ≡ a2(mod Mt) and
b1 ≡ b2(mod Nt). Thus every element of H has an unique representation,

H = {(αa, βb) | b ≡ ax(mod t), 0 6 a < Mt, 0 6 b < Nt}. (1.4)

Hence there is a bijective correspondence,

H ←→ {(a, b) | b ≡ ax(mod t), 0 6 a < Mt, 0 6 b < Nt, a, b ∈ Z}
←→ {(a, ax+ λt) | 0 6 a < Mt, 0 6 ax+ λt < Nt, a, λ ∈ Z}

←→ {(a, λ) | 0 6 a < Mt, 0 6 λ+ ax

t
< N, a, λ ∈ Z}.

Hence there are Mt possible choices for a. And for each choice of a, there
are N possible choices for λ. Thus |H| = MNt. �

2. Generating Sequences

In this section we establish notation which will be used throughout the
paper. Let R = K[X,Y ] be a polynomial ring in two variables over an
algebraically closed field K of characteristic zero. Let m = (X,Y ) be the
maximal ideal of R. Then Um × Un acts on R by K-algebra isomorphisms
satisfying

(αx, βy) · (XrY s) = αrxβsyXrY s. (2.1)
Thus, RH = {

∑
r,s cr,sX

rY s ∈ R |αraβsb = 1 ∀ r, s, ∀ b ≡ ax(mod t)}.
f ∈ R is defined to be an eigenfunction of H if (αa, βb) · f = λabf for
some λab ∈ K, for all (αa, βb) ∈ H. Eigenfunctions of H are of the form
f =

∑
r,s

cr,sX
rY s ∈ R such that αraβsb is a common constant ∀ r, s such

that cr,s 6= 0,∀ b ≡ ax(mod t).
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Let ν be a rational rank 1 non discrete valuation of K(X,Y ) which dom-
inates Rm. The algorithm of Theorem 4.2 of [[6]] (as refined in Section (8)
of [[6]]) produces a generating sequence

Q0 = X,Q1 = Y,Q2, · · · (2.2)
of elements in R which have the following properties.

1) Let γl = ν(Ql) ∀ l > 0 and ml = [G(γ0, · · · , γl) : G(γ0, · · · , γl−1)]
= min {q ∈ Z>0 | qγl ∈ G(γ0, · · · , γl−1)} ∀ l > 1. Then γl+1 >
mlγl ∀ l > 1.

2) Set d(l) = degY (Ql) ∀ l ∈ Z>0. Then, Ql = Y d(l)+Q∗l (X,Y ), where
degY (Q∗l (X,Y )) < d(l). We have that, d(1) = 1, d(l) =

∏l−1
k=1mk ∀

l > 2. In particular, 1 6 l1 6 l2 =⇒ d(l1) | d(l2).
3) Every f ∈ R with degY (f) = d has a unique expression

f =
d∑

m=0
[(
∑
l

bl,mX
l)Qj1(m)

1 · · ·Qjr(m)
r ]

where bl,m ∈ K, 0 6 jl(m) < ml ∀ l > 1, and degY [Qj1(m)
1 · · ·Qjr(m)

r ]
= m ∀ m. Writing fm = (

∑
l bl,mX

l)Qj1(m)
1 · · ·Qjr(m)

r , we have that
ν(fm) = ν(fn)⇐⇒ m = n. So, ν(f) = minm{ν(fm)}.

4) From 3) we have that the semigroup SRm(ν) = {ν(f) | 0 6= f ∈
R} = S(γl | l > 0).

Suppose that ν is a rational rank 1 non discrete valuation dominating
Rm. We will say that ν has a generating sequence of eigenfunctions for H if
all Ql in the generating sequence (2.2) of Section 2 are eigenfunctions for H.

3. Valuation Semigroups of Invariant Subrings

Theorem 3.1. — Let H 6 Um ×Un be as in Remark 1.3. Suppose that
ν is a rational rank 1 non discrete valuation dominating Rm, where R =
K[X,Y ], and m = (X,Y ). Suppose that ν has a generating sequence (2.2)

Q0 = X,Q1 = Y,Q2, · · ·
such that each Ql ∈ R is an eigenfunction for H. Let notation be as in
Section 2. Then denoting A = RH , and defining n = m ∩A we have

SAn(ν)=

lγ0+j1γ1+· · ·+jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k=1, · · · , r
αlaβb

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

(3.1)
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Proof. — Let 0 6= f(X,Y ) ∈ R, with degY (f) = d. By (2.1), (αa, βb) ·
Y d(m) = βd(m)bY d(m). Since Qm is an eigenfunction of H, we conclude that
for m > 0,

(αa, βb) ·Qm = βd(m)bQm = βdegY (Qm)bQm , ∀ (αa, βb) ∈ H. (3.2)
We also have, (αa, βb) · Q0 = (αa, βb) · X = αaX , ∀ (αa, βb) ∈ H. Now f
has an expansion of the form 3) of Section 2. So,

(αa, βb) · f = (αa, βb) ·
d∑

m=0
[(
∑
l

bl,mX
l)Qj1(m)

1 · · ·Qjr(m)
r ]

=
d∑

m=0
[(
∑
l

αlabl,mX
l)βb

∑r
k=1[jk(m)d(k)]Qj1(m)

1 · · ·Qjr(m)
r ].

Now, f ∈ A ⇐⇒ αlaβb
∑r
k=1[jk(m)d(k)] = 1, ∀ b ≡ ax(mod t), ∀ l, such

that bl,m 6= 0.
So,

{ν(f) | 0 6= f ∈ An} = {ν(f) | 0 6= f ∈ A}

⊂

lγ0 + j1γ1 + · · ·+ jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r
αlaβb

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

Conversely, suppose we have l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r such
that ∀ b ≡ ax(mod t) we have αlaβb

∑r
k=1[jkd(k)] = 1. Define f(X,Y ) =

X lQj1
1 · · ·Qjrr ∈ R. For any (αa, βb) ∈ H we have, (αa, βb) · f = (αa, βb) ·

(X lQj1
1 · · ·Qjrr ) = αlaβb

∑r
k=1[jkd(k)]X lQj1

1 · · ·Qjrr = f , that is, f ∈ A. So
ν(f) = lγ0 + j1γ1 + · · ·+ jrγr ∈ SAn(ν). Hence we conclude,

SAn(ν)=

lγ0+j1γ1+· · ·+jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k=1,· · · ,r
αlaβb

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

�

4. Finite and Non-Finite Generation

In this section we study the finite and non-finite generation of the valu-
ation semigroup SRm(ν) over the subsemigroup SAn(ν). A semigroup S is
said to be finitely generated over a subsemigroup T if there are finitely many
elements s1, · · · , sn in S such that S = {s1, · · · , sn}+ T .

At the end of this section we will prove the following theorem.
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Theorem 4.1. — Let Rm = K[X,Y ](X,Y ) and H 6 Um × Un be as in
Remark 1.3.

1) ∃ a rational rank 1 non discrete valuation ν dominating Rm with a
generating sequence (2.2) of eigenfunctions for H ⇐⇒ (m,n) = t.

2) If (m,n) = t = 1, then SRm(ν) is a finitely generated SAn(ν)-module
for all rational rank 1 non discrete valuations ν which dominate Rm

and have a generating sequence (2.2) of eigenfunctions for H.
3) If (m,n) = t > 1, then SRm(ν) is not a finitely generated SAn(ν)-

module for all rational rank 1 non discrete valuations ν which dom-
inate Rm and have a generating sequence (2.2) of eigenfunctions for
H.

We introduce some notation. Let σ(0) = 0, σ(l) = min {j | j > σ(l −
1) and mj > 1}. Let Pl = Qσ(l) and βl = ν(Pl) = γσ(l) ∀ l > 0. Let nl =
[G(β0, · · · , βl) : G(β0, · · · , βl−1)] = min{q ∈ Z>0 | qβl ∈ G(β0, · · · , βl−1)} ∀
l > 1. Then nl = mσ(l). SRm(ν) = S(γ0, γ1, · · · ) = S(β0, β1, · · · ) and {βl}l>0
form a minimal generating set of SRm(ν), that is, nl > 1 ∀ l > 1.

We first make a general observation. Suppose for some d > 1, jr 6= 0 and
l, j1, · · · , jr ∈ N, we have an expression of the form, βd = lβ0 + j1β1 + · · ·+
jrβr. If r > d then jrβr > βr > βd which is a contradiction. If r < d then
βd ∈ G(β0, · · · , βd−1) =⇒ nd = 1. This is a contradiction as nl > 1 ∀ l > 1.
Thus, βr = lβ0 + j1β1 + · · ·+ jrβr. If jr > 1, then jrβr > βr. If jr = 0, then
βr ∈ G(β0, · · · , βr−1) =⇒ nr = 1. So, jr = 1. Since βi > 0 ∀ i, we then have
l = 0, ji = 0 ∀ i 6= r. Thus, for l, j1, · · · , jr ∈ N and d > 1,

βd = lβ0 + j1β1 + · · ·+ jrβr =⇒ jd = 1, l = 0, ji = 0 ∀ i 6= d. (4.1)

Proposition 4.2. — Let Rm = K[X,Y ](X,Y ) and H 6 Um×Un be as in
Remark 1.3. Let assumptions be as in Theorem 3.1. Then SRm(ν) is finitely
generated over the subsemigroup SAn(ν) if and only if ∃ N ∈ Z>0 such that
Qr ∈ A ∀ r > N . Further, if QN ∈ A, then QM ∈ A ∀ M > N > 1.

Proof. — We first show that, for any r > 1, γr ∈ SAn(ν) ⇐⇒ Qr ∈ A.
It is enough to show the implication γr ∈ SAn(ν) =⇒ Qr ∈ A. From (3.1)
we have, γr ∈ SAn(ν) =⇒ γr = lγ0 + j1γ1 + · · ·+ jsγs, where l ∈ N, s ∈ N,
0 6 jk < mk and αlaβb

∑s

k=1
jkd(k) = 1 ∀ b ≡ ax(mod t).

Since l, j1, · · · , js ∈ N, γi < γi+1 ∀ i > 1 and γi > 0 ∀ i, we have r > s. If
r = s, then γr = lγ0 +

∑r
k=1 jkγk > jrγr > γr. Since jr 6= 0 and jr ∈ N we

have jr = 1. And γi > 0 ∀ i implies l = j1 = · · · = jr−1 = 0. Then βbd(r) =
1 ∀ b ≡ ax(mod t). So from (3.2), (αa, βb) ·Qr = Qr ∀ b ≡ ax(mod t), that
is, Qr ∈ A.
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If r > s, then γr = lγ0 +
∑s
k=1 jkγk =⇒ mr = 1. Since 0 6 jk < mk,

by Equation (8) in [[6]] we have Qr+1 = Qr − λX lY j1Qj2
2 · · ·Qjss where

λ ∈ K \ {0}. Since each Qm is an eigenfunction for H, from (3.2) we have,
∀ b ≡ ax(mod t),

βbd(r+1)Qr+1 = βbd(r)Qr − λαlaβb
∑s

k=1
jkd(k)X lY j1Qj2

2 · · ·Qjss .

Again by 2) in Section 2 we have d(r + 1) = m1 · · ·mr = m1 · · ·mr−1 =
d(r), as mr = 1. So the above expression yields βbd(r)Qr+1 = βbd(r)Qr −
λαlaβb

∑s

k=1
jkd(k)X lY j1Qj2

2 · · ·Qjss ∀ b ≡ ax(mod t). Since Qr+1 is an
eigenfunction, this implies βbd(r) = αlaβb

∑s

k=1
jkd(k) = 1 ∀ b ≡ ax(mod t).

From (3.2), we then have Qr ∈ A.

To prove the proposition, we now show SRm(ν) is finitely generated over
the subsemigroup SAn(ν) if and only if ∃ N ∈ Z>0 such that ∀ r > N, γr ∈
SAn(ν).
Suppose SRm(ν) is finitely generated over SAn(ν). So, ∃ x0, · · · , xl ∈ SRm(ν)
such that SRm(ν) = {x0, · · · , xl} + SAn(ν). Let L ∈ N be the least natural
number such that SRm(ν) = S(β0, · · · , βL)+SAn(ν), where βi = γσ(i) ∀ i >
0. Let M > L. Now βM has an expression βM =

∑L
i=0 aiβi + y where y ∈

SAn(ν), ai ∈ N. From (3.1) we have βM =
∑L
i=0 aiβi+(lγ0+j1γ1+· · ·+jsγs),

where 0 6 jk < mk and αlaβb
∑s

k=1
jkd(k) = 1 ∀ b ≡ ax(mod t). We observe

mk = 1 =⇒ jk = 0. Thus the above expression can be rewritten as,

βM =
L∑
i=0

aiβi + (lβ0 + j1β1 + · · ·+ jpβp)

where 0 6 jk < nk and αlaβb
∑p

k=1
jkdegY (Pk) = 1 ∀ b ≡ ax(mod t). Since

L < M , from (4.1) we obtain jM = 1, ai = 0 ∀ i = 0, · · · , L and jk = 0 ∀
k 6= M . Thus βbdegY (PM ) = 1 ∀ b ≡ ax(mod t) =⇒ n | degY (PM ). Thus
n | d(σ(M)) ∀ M > L. From 2) in Section 2 we have n | d(r) ∀ r > σ(L+1).
So, βbd(r) = 1 ∀ b ≡ ax(mod t). From (3.2) we conclude, Qr ∈ A ∀ r >
σ(L+ 1), that is, γr ∈ SAn(ν) ∀ r > σ(L+ 1).

Conversely, we assume S(γN , γN+1, · · · ) ⊂ SAn(ν) for some N ∈ Z>0.
Now γi ∈ Q>0 ∀ i implies ∀ i 6= j, ∃ di, dj ∈ Z>0 such that diγi = djγj .
We thus have diγi = di,NγN ∀ i = 0, · · · , N − 1. We will now show that,
SRm(ν) = T + SAn(ν), where T = {

∑N−1
i=0 aiγi | 0 6 ai < di}. Now, γi ∈

SRm(ν) ∀ i = 0, · · · , N − 1 =⇒ T + SAn(ν) ⊂ SRm(ν). So it is enough to

– 11 –



Arpan Dutta

show SRm(ν) ⊂ T + SAn(ν).

x ∈ SRm(ν) =⇒ x =
N−1∑
i=0

aiγi +
l∑

i=N
aiγi

=⇒ x =
N−1∑
i=0

aiγi +
N−1∑
i=0

bidiγi +
l∑

i=N
aiγi

where ai = ai + bidi, 0 6 ai < di, bi ∈ N

=⇒ x =
N−1∑
i=0

aiγi +
N−1∑
i=0

bidi,NγN +
l∑

i=N
aiγi

=⇒ x =
N−1∑
i=0

aiγi + y, where y ∈ SAn(ν).

Thus we have shown SRm(ν) ⊂ T + SAn(ν). Since T is a finite set, we have
SRm(ν) is finitely generated over SAn(ν).

From (3.2), (αa, βb) · QN = βd(N)bQN ∀ b ≡ ax(mod t). So, QN ∈
A ⇐⇒ βd(N)b = 1 ∀ b ≡ ax(mod t). Again from 2) of Section 2 we have
d(N) | d(M) ∀ M > N > 1. Hence we obtain, QN ∈ A =⇒ QM ∈ A ∀
M > N > 1. So, SRm(ν) is not finitely generated over SAn(ν) if and only if
Qr /∈ A ∀ r > 1. �

Lemma 4.3. — Let H 6 Um×Un be as in Remark 1.3. Let assumptions
be as in Theorem 3.1. Then SRm(ν) is not finitely generated over SAn(ν) if
and only if n - d(l) ∀ l > 2.

Proof. — Suppose that SRm(ν) is not finitely generated over SAn(ν).
Then Ql /∈ A ∀ l > 1. From (3.2), if n | d(l), then, (αa, βb) ·Ql = βd(l)bQl =
Ql, that is Ql ∈ A, which is a contradiction. So, n - d(l) ∀ l > 2.

Conversely, suppose n - d(l) ∀ l > 2, that is, n - d(l) ∀ l > 1. Now,
(x, t) = 1 =⇒ ax ≡ 1(mod t) for some a ∈ Z, so, (αa, β) ∈ H. From (3.2),
(αa, β) · Ql = βd(l)Ql 6= Ql for all l > 1, as n - d(l). So we have Ql /∈ A ∀
l > 1. Hence SRm(ν) is not finitely generated over SAn(ν). �

Proposition 4.4. — Let H 6 Um × Un be as in Remark 1.3, such
that (m,n) > t > 1. Suppose that ν is a rational rank 1 non discrete
valuation dominating Rm, with a generating sequence (2.2) {Ql}l>0, where
Q0 = X,Q1 = Y as in Section 2. Then {Ql}l>0 is not a sequence of eigen-
functions for H.

Proof. — Let d = (m,n). Then 1 6 t < d 6 min {m,n}. So, t <
m and t < n. We recall, H = {(αa, βb) | b ≡ ax(mod t)}. Thus (αt, 1), (1, βt)
∈ H. Let {Ql}l>0 be the generating sequence (2.2) with Q0 = X, Q1 = Y .
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Let ν(Ql) = γl ∀ l > 0. By Equation (8) in [[6]], Q2 = Y s − λXr, where
λ ∈ K \ {0}, sγ1 = rγ0, and s = min {q ∈ Z>0 | qγ1 ∈ γ0Z}. From (2.1), we
have,

(αt, 1) ·Q2 = (αt, 1) · [Y s − λXr] = Y s − λαrtXr.

(1, βt) ·Q2 = (1, βt) · [Y s − λXr] = βstY s − λXr.

If Q2 was an eigenfunction of H, then m | rt =⇒ r = r1
m
t , where r1 ∈ Z>0.

Similarly, n | st =⇒ s = s1
n
t , where s1 ∈ Z>0. And, sγ1 = rγ0 =⇒ s1

n
t γ1 =

r1
m
t γ0. So, s1

n
d γ1 = r1

m
d γ0. Now, d |n implies s1

n
d ∈ Z>0. Similarly, r1

m
d ∈

Z>0. Thus, s1
n
d γ1 ∈ γ0Z. But t < d implies s1

n
d < s1

n
t = s, and this

contradicts the minimality of s. Thus Q2 is not an eigenfunction of H. So,
{Ql}l>0 is not a generating sequence of eigenfunctions for H. �

We know, if ω is a primitive l-th root of unity in K, then {ωk | 1 6
k 6 l} is a complete list of all l-th roots of unity in K, and {ωk | 1 6 k 6
l and (k, l) = 1} is a complete list of all primitive l-th roots of unity in K.
We have, α is a primitive m-th root of unity and β is a primitive n-th root
of unity in K. Let δ be a primitive mn-th root of unity in K. Then δn is a
primitive m-th root of unity. Now, Sα = {αk | 1 6 k 6 m and (k,m) = 1} is
a complete list of all primitive m-th roots of unity in K. And, Sδn = {δkn |
1 6 k 6 m and (k,m) = 1} is also a complete list of all primitive m-th roots
of unity. Thus, α = δw1n where (w1,m) = 1 and 1 6 w1 6 m. Similarly,
β = δw2m where (w2, n) = 1 and 1 6 w2 6 n.

Remark 4.5. — Let p, q ∈ Z. With the notation introduced above,
βp = αq ⇐⇒ pw2

n −
qw1
m ∈ Z.

Proof. — We have, β = δw2m and α = δw1n, where δ is a primitive mn-th
root of unity.
Thus, βp = αq ⇐⇒ δw2mp = δw1nq ⇐⇒ mn | (w2mp − w1nq) ⇐⇒ pw2

n −
qw1
m ∈ Z. �

Proposition 4.6. — Let H 6 Um ×Un be as in Remark 1.3, such that
(m,n) = t, t > 1. Set m = Mt, and n = Nt, where M,N ∈ Z>0 and
(M,N) = 1. Suppose that ∃ a prime number p such that p | t but p - N .
Suppose that ν is a rational rank 1 non discrete valuation dominating Rm

with a generating sequence (2.2) of eigenfunctions for H. Then SRm(ν) is
not finitely generated over SAn(ν).

Proof. — Let {Ql}l>0 be the generating sequence (2.2) of the valuation
ν, where Q0 = X,Q1 = Y , and each Ql is an eigenfunction for H. Let
γl = ν(Ql) ∀ l > 0. Without any loss of generality, we can assume γ0 = 1.
Since ν is a rational valuation, we can write γk = ak

bk
∀ k > 1, where

(ak, bk) = 1. We have, p | t, and p - N for a prime p. So (p,N) = 1. So
∃ N1 ∈ Z such that NN1 ≡ 1(mod p). Let w1 and w2 be as in Remark 4.5.
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Now (m,w1) = 1 and t | m. So (t, w1) = 1. So (p, w1) = 1. So ∃ w1 ∈ Z such
that w1w1 ≡ 1(mod p).
We now use induction to show the following ∀ k > 1,

(p,mk) = 1, (p, bk) = 1
ak ≡ bkMN1xw2w1d(k) (mod p).

(4.2)

We have γ1 = a1
b1
, where (a1, b1) = 1. So m1 = b1. By Equation (8) in [[6]],

we have Q2 = Y b1−λ1X
a1 , for some λ1 ∈ K \{0}. Again (α, βx) ∈ H. Now,

(α, βx) ·Q2 = βb1xY b1 − λ1α
a1Xa1 . Since Q2 is an eigenfunction for H, we

have

βb1x = αa1 =⇒ b1xw2

n
− a1w1

m
∈ Z by Remark 4.5

=⇒ b1xw2

Nt
− a1w1

Mt
∈ Z

=⇒MNt | [b1xMw2 − a1Nw1]
=⇒ b1MN1xw2w1 ≡ a1(mod p) as p | t.

If (p, b1) 6= 1, then p | b1 =⇒ p | a1. But this contradicts (a1, b1) = 1. So,
(p, b1) = 1. Since m1 = b1, we thus have (p,m1) = 1. Thus we have the
induction step for k = 1.
Suppose (4.2) is true for k = 1, · · · , l − 1. From (3.2) we have (αa, βb) ·
Qk = βd(k)bQk ∀ k > 1, ∀ (αa, βb) ∈ H. By Equation (8) in [[6]] we have,
Ql+1 = Qmll − λlXc0Y c1Qc2

2 · · ·Q
cl−1
l−1 where λl ∈ K \ {0}, 0 6 ck < mk ∀

k = 1, · · · , l − 1 and mlγl =
∑l−1
k=0 ckγk.

(α, βx)·Ql+1 = βxmld(l)Qmll −λlαc0βx[
∑l−1

k=1
ckd(k)]Xc0Y c1Qc2

2 · · ·Q
cl−1
l−1 . Since

Ql+1 is an eigenfunction for H, we have

βxmld(l) = αc0βx[
∑l−1

k=1
ckd(k)]

=⇒βx[mld(l)−
∑l−1

k=1
ckd(k)] = αc0

=⇒
x[mld(l)−

∑l−1
k=1 ckd(k)]w2

Nt
− c0w1

Mt
∈ Z by Remark 4.5

=⇒MNt | [Mxw2mld(l)−Mxw2

l−1∑
k=1

ckd(k)−Nc0w1]

=⇒p | [Mxw2mld(l)−Mxw2

l−1∑
k=1

ckd(k)−Nc0w1]

=⇒MN1xw2w1mld(l) ≡ [MN1xw2w1

l−1∑
k=1

ckd(k) + c0](mod p).
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Now, p | ml =⇒ c0 = λp − MN1xw2w1
∑l−1
k=1 ckd(k), where λ ∈ Z. Let

ml = pMl, where Ml ∈ Z>0. So, mlγl = pMlγ1 = c0 +
∑l−1
k=1 ckγk =

λp+
∑l−1
k=1 ck[γk −MN1xw2w1d(k)].

By our induction statement, ∀ k = 1, · · · , l − 1, we have ak = tkp +
bkMN1xw2w1d(k), where tk ∈ Z. Thus,

pMlγl = λp+
l−1∑
k=1

ck[ tkp+ bkMN1xw2w1d(k)
bk

−MN1xw2w1d(k)]

= λp+ p

l−1∑
k=1

cktk
1
bk
.

Now (ak, bk) = 1 =⇒∃ hk ∈ Z such that hkak ≡ 1(mod bk). Let hkak − 1 =
ζkbk, where ζk ∈ Z. So, 1

bk
= hkak−(hkak−1)

bk
= hkγk − ζk. Then, pMlγl =

λp+ p
∑l−1
k=1 cktk[hkγk − ζk] implies

Mlγl = λ+
l−1∑
k=1

cktk[hkγk − ζk] ∈ G(γ0, · · · , γl−1).

But this contradicts the minimality of ml. So p - ml. So (p,ml) = 1.

Now, mlγl = c0 +
∑l−1
k=1 ckγk =⇒ ml

al
bl

= c0 +
∑l−1
k=1 ck

ak
bk

=⇒ mlal
∏l−1
k=1 bk = c0B + B

∑l−1
k=1 ck

ak
bk
, where B =

∏l
k=1 bk. From the

induction hypothesis, akbkB = [tkp+ bkMN1xw2w1d(k)] Bbk . So,

mlal

l−1∏
k=1

bk = c0B +
l−1∑
k=1

ck[tkp+ bkMN1xw2w1d(k)]B
bk

=⇒ mlal

l−1∏
k=1

bk ≡ [c0 +MN1xw2w1

l−1∑
k=1

ckd(k)]B(mod p).

Since,MN1xw2w1mld(l) ≡ [MN1xw2w1
∑l−1
k=1 ckd(k)+c0](mod p), we have

mlal

l−1∏
k=1

bk ≡MN1xw2w1mld(l)
l∏

k=1
bk(mod p).

Since (p,ml) = 1, (p, bk) = 1 ∀ k = 1, · · · , l − 1, we have
al ≡ MN1xw2w1d(l)bl (mod p). If p | bl, then p | al which contradicts
(al, bl) = 1. So (p, bl) = 1. Thus we have the induction step for k = l.

In particular, by induction we have (p,mk) = 1 ∀ k > 1. Since d(k) =
m1 · · ·mk−1 (by 2), Section 2), we have (p, d(k)) = 1 ∀ k > 2. So p - d(k) ∀
k > 2 =⇒ t - d(k) ∀ k > 2 =⇒ n = Nt - d(k) ∀ k > 2. Thus by Lemma 4.3,
we have SRm(ν) is not finitely generated over SAn(ν). �
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Proposition 4.7. — Let H 6 Um × Un be as in Remark 1.3, such
that (m,n) = t and t > 1. Set m = Mt and n = Nt where M,N ∈ Z>0
and (M,N) = 1. Suppose that for any prime number p which divides t, the
number p also divides N . Suppose that ν is a rational rank 1 non discrete
valuation dominating Rm with a generating sequence (2.2) of eigenfunctions
for H. Then SRm(ν) is not finitely generated over SAn(ν).

Proof. — Since (x, t) = 1, ∃ r ∈ Z>0 such that rx ≡ 1(mod t). So (r, t) =
1. Recall, α = δw1n, β = δw2m, where δ is a primitive mn-th root of unity,
and (w1,m) = 1, (w2, n) = 1, 1 6 w1 6 m and 1 6 w2 6 n. Now, M |
m =⇒ (w1,M) = 1. Similarly, (w2, N) = 1, (w1, t) = 1, (w2, t) = 1. So
∃ w1, w2 ∈ Z>0 such that w1w1 ≡ 1(mod t) and w2w2 ≡ 1(mod t).
Write N = NN ′, where N is the largest factor of N such that (N, x) = 1.
If N = 1, then for any prime p dividing N , we have p | x. So in particular
p | t =⇒ p | x. But this is a contradiction as (t, x) = 1. So N > 1 if
N > 1. We will now show (N,N ′) = 1. Suppose the contrary. Then ∃ a
prime p such that p | N and p | N ′. p | N =⇒ (p, x) = 1 =⇒ (Np, x) = 1.
And, NN ′ = N =⇒ pN | N . This contradicts the maximality of N . So
(N,N ′) = 1. Hence (N, x) = (N ′, x). We will now show that (t,N ′) = 1.
Suppose ∃ a prime p such that p | t and p | N ′. Then p | t, p | N and p - N .
Thus p | t and p | x, which is a contradiction as t and x are coprime. Thus
(t,N ′) = 1. Also (N,w2) = 1 implies (N,w2) = 1.
Let {Ql}l>0 be the generating sequence (2.2) of the valuation ν, where Q0 =
X,Q1 = Y, and each Ql is an eigenfunction for H. Let γl = ν(Ql) ∀ l > 0.
Without any loss of generality, we can assume γ0 = 1. Let γ1 = a1

b1
, where

(a1, b1) = 1. So m1 = b1. By Equation (8) in [[6]], we have Q2 = Y b1−ζ1Xa1

for some ζ1 ∈ K \{0}. Now,(α, βx) ∈ H. By (3.2), (αa, βb) ·Qk = βd(k)bQk ∀
k > 1, ∀ (αa, βb) ∈ H. So, (α, βx) ·Q2 = (α, βx) · [Y b1 − ζ1Xa1 ] = βb1xY b1 −
ζ1α

a1Xa1 . Since Q2 is an eigenfunction for H, we have

βb1x = αa1 =⇒ b1xw2

Nt
− a1w1

Mt
∈ Z by Remark 4.5

=⇒MNt | [Mb1xw2 −Na1w1]
=⇒M | a1 and N | b1 as (N,w2) = 1, (M,w1) = 1,

(M,N) = 1, (N, x) = 1.

Let a1 = Ma′1 and b1 = Nb′1. Then, MNt | [MNb′1xw2 −NMa′1w1] implies
b′1 ≡ ra′1w1w2N

′(mod t) as rx ≡ 1(mod t) and N = NN ′. Now, γ1 = a1
b1

=
Ma′1
Nb′1

. (a1, b1) = 1 =⇒ (N, a′1) = 1, (a′1, b′1) = 1 and (M, b′1) = 1. Rename
a′1 = u and b′1 = r′. Then (u,N) = 1. If (u, t) 6= 1, then ∃ a prime p such
that p | t and p | u. Thus p | t, p | N and p - N , since for any prime p
dividing t, p also divides N . So p | t and p | N ′. But we have established
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earlier that (t,N ′) = 1. So (u, t) = 1. And, r′ ≡ ruw1w2N
′(mod t) =⇒

r′x ≡ uw1w2N
′(mod t). Thus,

γ1 = Mu

Nr′
where (u,N) = 1, (u, t) = 1, (u, r′) = 1, (M, r′) = 1,

r′ ≡ ruw1w2N
′(mod t). (4.3)

We will now use induction to show that ∀ k > 2,

γk = Mum2 · · ·mk−1 + MNtλk
m1 · · ·mk

for some λk ∈ Z

(t,mk) = 1.
(4.4)

By Equation (8) in [[6]] we have,Q3 = Qm2
2 −ζ2Xc0Y c1 where ζ2 ∈ K\{0}, c0

∈ Z>0, 0 6 c1 < m1. (α, βx) · Q3 = βxm2 m1Qm2
2 − ζ2αc0βxc1Xc0Y c1 . Since

Q3 is an eigenfunction for H, we have

βxm2 m1 = αc0βxc1 =⇒ βx[m2 m1−c1] = αc0

=⇒ x[m2m1 − c1]w2

Nt
− c0w1

Mt
∈ Z by Remark 4.5

=⇒MNt | [MNr′xw2m2−Mxw2c1−Nc0w1] as m1 =Nr′

=⇒M | c0 and N | c1 as (M,N) = 1, (M,w1) = 1,
(N,w2) = 1, (N, x) = 1.

Let c0 = Mc′0 and c1 = Nc′1. Plugging them in the above expression and
using (4.3), we obtain,

MNt | [MNr′xw2m2 −Mxw2Nc
′
1 −NMc′0w1]

=⇒ r′xw2m2 ≡ [w1c
′
0N
′ + xw2c

′
1](mod t)

=⇒ uw1m2N
′ ≡ [w1c

′
0N
′ + xw2c

′
1](mod t)

=⇒ r′um2 ≡ [r′c′0 + uc′1](mod t).

So, m2γ2 = c0 + c1γ1 = Mc′0 + Nc′1
Mu

Nr′
= M [ c

′
0r
′+c′1u
r′ ] = M [ r

′um2+λ2t
r′ ] =

Mum2 + MNtλ2
m1

for some λ2 ∈ Z. Thus, γ2 = Mu+ MNtλ2
m1 m2

.
We will now show (t,m2) = 1. Suppose if possible ∃ a prime p such that p | t
and p | m2. Let m2 = pM2. So, γ2 = Mu + MNtλ2

m1 m2
=⇒ m2γ2 = Mum2 +

MNtλ2
m1

=⇒ pM2γ2 = pMuM2 + Mtλ2
r′ =⇒ r′M2γ2 = r′MuM2 +Mλ2

t
p .

(w1, t) = 1. (N ′, t) = 1. rx ≡ 1(mod t) implies (r, t) = 1. w2w2 ≡ 1(mod t)
implies (w2, t) = 1. And, (u, t) = 1 by (4.3). So, r′ ≡ ruw1w2N

′(mod t) =⇒
(r′, t) = 1. So ∃ r1 ∈ Z such that r1r

′ ≡ 1(mod t). So in particular, r1r
′ ≡
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1(mod p) ∀ prime p dividing t. We then have,

r1r
′M2γ2 = r1r

′MuM2 + r1Mλ2
t

p

=⇒ (1 + µ2p)M2γ2 = r1r
′MuM2 + r1Mλ2

t

p
for some µ2 ∈ Z

=⇒M2γ2 + µ2m2γ2 ∈ Z ⊂ G(γ0, γ1) =⇒M2γ2 ∈ G(γ0, γ1).

But this contradicts the minimality of m2. So for any prime p dividing t, we
have p - m2. Thus (t,m2) = 1. We now have the induction step for k = 2.
Suppose (4.4) is true for k = 3, · · · , l − 1. By Equation (8) in [[6]] we have,
Ql+1 = Qmll − ζlX

c0Y c1Qc2
2 · · ·Q

cl−1
l−1 where ζl ∈ K \ {0}, c0 ∈ Z>0, 0 6

ck < mk ∀ k = 1, · · · , l − 1 and mlγl =
∑l−1
k=0 ckγk. By 2) of Section 2

we have d(l) =
∏l−1
k=1mk ∀ l > 2. Again, m1 = Nr′ by (4.3). So ∀ l > 2,

d(l) = Nr′d(l), where d(l) = d(l)
m1

. Thus, ∀ l > 3, d(l) =
∏l−1
k=2mk.

Now, (α, βx)·Ql+1 = βxmld(l)Qmll −ζlαc0βx[
∑l−1

k=1
ckd(k)]Xc0Y c1Qc2

2 · · ·Q
cl−1
l−1 .

Since Ql+1 is an eigenfunction for H we have

=⇒ βx[d(l+1)−
∑l−1

k=1
ckd(k)] = αc0

=⇒
xw2[d(l + 1)−

∑l−1
k=1 ckd(k)]

Nt
− c0w1

Mt
∈ Z by Remark 4.5

=⇒MNt | [Mxw2Nr
′d(l + 1)−Mxw2c1 −Mxw2Nr

′
l−1∑
k=2

ckd(k)−Nc0w1]

=⇒M | c0 and N | c1 as (M,N) = 1, (M,w1) = 1, (N, x) = 1, (N,w2) = 1.

Let c0 = Mc′0 and c1 = Nc′1. Plugging them in the above expression, and
using (4.3), we obtain

MNt | [Mxw2Nr
′d(l + 1)−Mxw2Nc

′
1 −Mxw2Nr

′
l−1∑
k=2

ckd(k)−NMw1c
′
0]

=⇒ t | [xw2r
′d(l + 1)− xw2c

′
1 − xw2r

′
l−1∑
k=2

ckd(k)− w1c
′
0N
′]

=⇒ r′xw2d(l + 1) ≡ [c′0w1N
′ + c′1xw2 + r′xw2

l−1∑
k=2

ckd(k)](mod t)

=⇒ r′ud(l + 1) ≡ [r′c′0 + c′1u+ r′u

l−1∑
k=2

ckd(k)](mod t).
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Now,

mlγl = c0 + c1γ1 +
l−1∑
k=2

ckγk

= Mc′0 +Nc′1
Mu

Nr′
+

l−1∑
k=2

ck[Mud(k) + MNtλk
d(k + 1) ]

where λk ∈ Z, by induction hypothesis

= M [c
′
0r
′ + c′1u+ r′u

∑l−1
k=2 ckd(k)

r′
+ Ntθl

d(l) ]

for some θl ∈ Z, as i1 6 i2 =⇒ d(i1) | d(i2)

= M [r
′ud(l + 1) + µlt

r′
+ Ntθl

d(l) ] for some µl ∈ Z

= Mud(l + 1) + MNtµl
m1

+ MNtθl
d(l) = Mud(l + 1) + MNtλl

d(l)
for some λl ∈ Z

=⇒ γl = Mum2 · · ·ml−1 + MNtλl
m1 · · ·ml

.

By our induction hypothesis, (t,mk) = 1 ∀ k = 2, · · · , l − 1. So (p,mk) = 1
for any prime p dividing t, ∀ k = 2, · · · , l−1, hence, (p, d(l)) = 1. Suppose if
possible ∃ a prime p | t such that p | ml. Let ml = pMl. Now, (r′, t) = 1 =⇒
(r′, p) = 1. So (p, r′d(l)) = 1. So ∃ rl ∈ Z such that rlr′d(l) ≡ 1(mod p). Let
rlr
′d(l) = 1 + µlp for some µl ∈ Z. Now,

γl = Mum2 · · ·ml−1 + MNtλl
m1 · · ·ml

=⇒ pMlγl=Mum2 · · ·ml+
Mtλl

r′d(l)
as ml=pMl, m1 =Nr′, d(l)=

l−1∏
k=2

mk

=⇒ r′d(l)Mlγl = r′d(l)Mum2 · · ·ml−1Ml +Mλl
t

p
as ml = pMl

=⇒ rlr
′d(l)Mlγl = rlr

′d(l)Mum2 · · ·ml−1Ml + rlMλl
t

p
∈ Z

=⇒ (1 + µlp)Mlγl ∈ Z =⇒Mlγl + µlmlγl ∈ Z ⊂ G(γ0, · · · , γl−1)
=⇒Mlγl ∈ G(γ0, · · · , γl−1).

But this contradicts the minimality of ml. So for any prime p dividing t, we
have p - ml. Thus (t,ml) = 1. We now have the induction step for k = l.
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(t, r′) = 1 =⇒ Nt - Nr′ =⇒ Nt - Nr′ =⇒ n - m1 =⇒ n - d(2). From
the induction we have (t,mk) = 1 ∀ k > 2. Thus (t,

∏l−1
k=2mk) = 1 =⇒

(t, d(l)) = 1 ∀ l > 3 =⇒ (t, r′d(l)) = 1 ∀ l > 3. t - r′d(l) ∀ l > 3 =⇒
Nt - Nr′d(l) ∀ l > 3 =⇒ Nt - m1d(l) ∀ l > 3 =⇒ n - d(l) ∀ l > 3. So
together we have, n - d(l) ∀ l > 2. Thus by Lemma 4.3, we have SRm(ν) is
not finitely generated over SAn(ν). �

We are now ready to prove Theorem 4.1.

Proof. — Let H 6 Um × Un be as in Remark 1.3 and suppose that ν is
a rational rank 1 non discrete valuation dominating Rm with a generating
sequence (2.2) of eigenfunctions for H. By Proposition 4.4, we have t >
(m,n). Since t | m and t | n, we have (m,n) = t.

Conversely, let H be as in Remark 1.3 and suppose that (m,n) = t. We
will show that ∃ a rational rank 1 non discrete valuation dominating Rm

with a generating sequence (2.2) of eigenfunctions for H. We consider the
cases t = 1 and t > 1 separately.

Suppose that (m,n) = t = 1. We will construct a rational rank 1 non
discrete valuation ν dominating Rm, with a generating sequence (2.2) of
eigenfunctions for H. Let {ql}l>2 be an infinite family of distinct prime
numbers, such that (ql,m) = 1, (ql, n) = 1 for all l > 2. Let q1 = n. Let
{cl}l>1 ∈ Z>0 be positive integers such that

c1 = m, cl ≡ 0(mod m) ∀ l > 1
cl+1 > ql+1cl ∀ l > 1, (cl, ql) = 1 ∀ l > 1.

We define a sequence of positive rational numbers {γl}l>0 as γ0 = 1, γl =
cl
ql
∀ l > 1. We will show ml = ql ∀ l > 1, where ml = min {q ∈

Z>0 | qγl ∈ G(γ0, · · · , γl−1)}. Now, γ1 = c1
q1

= m
n . Since (m,n) = 1, we

have m1 = n = q1. For l > 2, qlγl = cl ∈ Z =⇒ 1 6 ml 6 ql. Sup-
pose q ∈ Z>0 such that qγl = q clql =

∑l−1
k=0 akγk =

∑l−1
k=0 ak

ck
qk
. Then

ql | qcl
∏l−1
k=1 qk, that is, ql | qcln

∏l−1
k=2 qk. Now, (ql, cl) = 1 and (ql, n) = 1.

Again, (ql, qk) = 1 ∀ k 6= l, as they are distinct primes. So, ql | q. Thus
we have ml = ql ∀ l > 1. And, mlγl = qlγl = cl <

cl+1
ql+1

= γl+1.
Thus we have a sequence of positive rational numbers {γl}l>0, such that
γl+1 > mlγl ∀ l > 1. By Theorem 1.2 of [[6]], since Rm is a regular lo-
cal ring of dimension 2, there is a valuation ν dominating Rm, such that
SRm(ν) = S(γ0, γ1, · · · ). ν is a rational rank 1 non discrete valuation by
the construction. By Theorem 4.2 of [[6]], ∃ a generating sequence (2.2)
{Ql}l>0, Q0 = X,Q1 = Y, · · · such that ν(Ql) = γl ∀ l > 0.
From the recursive construction of the {γl}l>0, we have the generating se-
quence asQ0 = X, Q1 = Y, Q2 = Y n−λ1X

m, where λ1 ∈ K\{0}. For all l >
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2, Ql+1 = Qqll − λlXf0Y f1 · · ·Qfl−1
l−1 , where qlγl = cl = f0 +

∑l−1
k=1 fkγk, 0 6

fk < mk ∀ k > 1. Now, (ck, qk) = 1 ∀ k > 1, and (qk, qh) = 1 ∀ k 6= h.

So, cl = f0 +
∑l−1
k=1

fkck
qk

=⇒ cl
∏l−1
k=1 qk = f0

∏l−1
k=1 qk + f1c1

∏l−1
k=1

qk

q1
+ · · ·+

fl−1cl−1
∏l−1

k=1
qk

ql−1
, which implies qk | fk ∀ k > 1. Since 0 6 fk < mk = qk,

this implies fk = 0 ∀ k > 1. So we have the generating sequence as,

Q0 = X, Q1 = Y, Q2 = Y n − λ1X
m, Ql+1 = Qqll − λlX

cl ∀ l > 2
where λl ∈ K \ {0} ∀ l > 1.

We now show that each Ql is an eigenfunction for H = {(αa, βb) | a, b ∈
Z}. For all l > 2, d(l) =

∏l−1
k=1mk = q1 · · · ql−1 = nq2 · · · ql−1. We have,

(αa, βb)·Q2 = βbnY n−λ1α
amXm = Q2. So, Q2 is an eigenfunction. Suppose

Q3, · · · , Ql are eigenfunctions forH. We check for Ql+1. From (3.2), (αa, βb)·
Qk = βbd(k)Qk ∀ 2 6 k 6 l. Since m | cl and n | d(l), we have (αa, βb) ·
Ql+1 = βbqld(l)Qqll −λlαaclXcl = Ql+1. Thus Ql+1 is an eigenfunction. Thus
by induction, {Ql}l>0 is a generating sequence of eigenfunctions for H.

Now we consider the case (m,n) = t > 1. We will construct a ratio-
nal rank 1 non discrete valuation ν dominating Rm, with a generating se-
quence (2.2) of eigenfunctions for H.

Since (t, x) = 1, there are positive integers r, s such that rx− st = 1. So
(r, t) = 1. From Lemma 3 in §2, Chapter III of [[12]], we have that if r, t are
positive integers such that (r, t) = 1, then there are infinitely many prime
numbers of the form r + θt, where θ ∈ N. Define the family R = {r(k)}k>0
as r(0) = r, r(k) = k-th prime in the above prime series. Any two elements
in the family R are coprime by construction. Also, r(k) = r+ θkt =⇒ r(k) ≡
r(mod t) ∀ k. Since R is an infinite family such that any two elements in
R are mutually prime, it follows that there is an infinite ordered family of
distinct prime numbers F = {rl}l>1 such that, rl ≡ r(mod t), (rl, mt ) = 1,
(rl, nt ) = 1, (rl, w1) = 1, (rl, w2) = 1 ∀ l > 1, where w1 and w2 are as
in Remark 4.5. Let d = (w1, w2). Thus (w1

d ,
w2
d ) = 1. Define two sequences

(al)l>1 and (bl)l>1 of non negative integers as follows,

b1 = 0, rl | bl ∀ l > 2, t | bl ∀ l > 2
bl+1 > rl+1[rl−1 + bl]− rl ∀ l > 1

al = m

t
[rl−1 + bl]

w2

d
∀ l > 1.
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Here rl ∈ F ∀ l > 1. Define a sequence of positive rational numbers {γl}l>0
as follows

γ0 = 1, γ1 =
m
t
w2
d

r1
n
t
w1
d

,

γl = al
rl

= m

t
[r
l−1 + bl
rl

]w2

d
∀ l > 2.

We will show m1 = r1
n
t
w1
d and ml = rl ∀ l > 2, where ml = min {q ∈

Z>0 | qγl ∈ G(γ0, · · · , γl−1)}. (w1
d ,

w2
d ) = 1, (r1,

w2
d ) = 1 and (nt ,

w2
d ) = 1

implies (w2
d , r1

n
t
w1
d ) = 1. Also, (mt ,

n
t ) = 1, (mt , r1) = 1 and (mt ,

w1
d ) = 1

implies (mt , r1
n
t
w1
d ) = 1. Thus, (w2

d
m
t , r1

n
t
w1
d ) = 1, hence m1 = r1

n
t
w1
d .

Now ∀ l > 2, rlγl = al ∈ Z =⇒ 1 6 ml 6 rl. Suppose ∃ a positive inte-
ger q such that qγl ∈ G(γ0, · · · , γl−1). Then qγl = q alrl = c0 + c1

a1
r1
n
t
w1
d

+∑l−1
k=2 ck

ak
rk
, where ck ∈ Z ∀ k = 0, · · · , l − 1. Thus rl | qal nt

w1
d

∏l−1
k=1 rk.

Now, (rl, nt ) = 1, and (rl, rk) = 1 ∀ k 6= l, as they are distinct primes. Also,
(rl, w1

d ) = 1. So, rl | qal. And, rl > r =⇒ rl - r =⇒ rl - mt [rl−1+bl]w2
d = al as

(rl, w2
d ) = 1, (rl, mt ) = 1 and rl | bl. Thus, rl | q. Hence we have m1 = r1

n
t
w1
d

and ml = rl ∀ l > 2.
Now, bl+1 > rl+1[rl−1 +bl]−rl ∀ l > 1 and b1 = 0 implies b2 > r2−r. Thus,
a2 = m

t [r + b2]w2
d > r2

m
t
w2
d =⇒ γ2 = a2

r2
> m

t
w2
d = m1γ1. For l > 2, we

have rl + bl+1 > rl+1[rl−1 + bl] =⇒ m
t [rl + bl+1]w2

d > rl+1
m
t [rl−1 + bl]w2

d =⇒
γl+1 = al+1

rl+1
> al = mlγl.

Thus we have a sequence of positive rational numbers {γl}l>0 such that
γl+1 > mlγl ∀ l > 1. By Theorem 1.2 of [[6]], since Rm is a regular lo-
cal ring of dimension 2, there is a valuation ν dominating Rm, such that
SRm(ν) = S(γ0, γ1, · · · ). ν is a rational rank 1 non discrete valuation by
the construction. By Theorem 4.2 of [[6]], ∃ a generating sequence (2.2)
{Ql}l>0, Q0 = X,Q1 = Y, · · · such that ν(Ql) = γl ∀ l > 0.
From the recursive construction of the {γl}l>0, we have the generating se-
quence as Q0 = X, Q1 = Y, Q2 = Y r1

n
t
w1
d − λ1X

m
t
w2
d . For all l > 2,

Ql+1 = Qrll − λlX
f0Y f1 · · ·Qfl−1

l−1 , where 0 6 fk < mk ∀ k > 1 and
rlγl = al = f0 +

∑l−1
k=1 fkγk. So, al = f0 +

∑l−1
k=1

fkak
mk

. We observe, from
our construction, (mk,mh) = 1 ∀ k 6= h. Also, (mk, ak) = 1 ∀ k > 1.

Thus, al
∏l−1
k=1mk = f0

∏l−1
k=1mk + f1a1

∏l−1
k=1

mk

m1
+ · · ·+ fl−1al−1

∏l−1
k=1

mk

ml−1
=⇒

mk | fk ∀ k > 1. Since 0 6 fk < mk, we have fk = 0 ∀ k > 1. Thus the
generating sequence is given as,

Q0 =X, Q1 = Y, Q2 = Y r1
n
t
w1
d − λ1X

m
t
w2
d

Ql+1 = Qrll − λlX
al ∀ l > 2

where λl ∈ K \ {0} ∀ l > 1.
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This is a minimal generating sequence as ml > 1 ∀ l > 1. We now show that
eachQl is an eigenfunction forH. From (2.1), (αa, βb)·Q2 = β

r1bn
t

w1
d Y r1

n
t
w1
d −

λ1α
am
t
w2
d X

m
t
w2
d . Now, ∀ b ≡ ax(mod t), r1b ≡ a(mod t), hence,

( r1b−a
t )(w1w2

d ) ∈ Z. Thus by Remark 4.5, β
r1bn
t

w1
d = α

am
t
w2
d ∀ b ≡ ax(mod t),

that is, Q2 is an eigenfunction for H.
Suppose Q3, · · · , Ql are eigenfunctions for Hi,j,t,x. We check for Ql+1. We
note d(k) = m1 · · ·mk−1 = n

t
w1
d r1r2 · · · rk−1. From (3.2) we have, (αa, βb) ·

Qk = βbd(k)Qk ∀ 1 6 k 6 l. Now, (αa, βb) · Ql+1 = β
bnr1···rl

t
w1
d Qrll −

λlα
aalXal . Since rk ≡ r(mod t) ∀ k > 1, rx ≡ 1(mod t) and t | bl, we have

br1 · · · rl
t

− arl−1

t
∈ Z ∀ b ≡ ax(mod t)

=⇒br1 · · · rl
t

− a[rl−1 + bl]
t

∈ Z ∀ b ≡ ax(mod t)

=⇒br1 · · · rl
t

(w1w2

d
)− a[rl−1 + bl]

t
(w1w2

d
) ∈ Z ∀ b ≡ ax(mod t)

=⇒bnr1 · · · rl
t

(w1w2

dn
)− am[rl−1 + bl]

t
(w1w2

dm
) ∈ Z ∀ b ≡ ax(mod t)

=⇒(bnr1 · · · rl
t

w1

d
)w2

n
− (aal)

w1

m
∈ Z ∀ b ≡ ax(mod t).

Thus, by Remark 4.5, β
bnr1···rl

t
w1
d = αaal for all b ≡ ax(mod t), and hence

Ql+1 is an eigenfunction for H. Thus by induction, {Ql}l>0 is a minimal
generating sequence of eigenfunctions for H. This completes the proof of
part 1) of Theorem 4.1.

Now we suppose (m,n) = t = 1 and ν is a rational rank 1 non discrete
valuation dominating Rm with a generating sequence (2.2) of eigenfunctions
for H. Let ν(Ql) = γl ∀ l ∈ N. We have Q0 = X,Q1 = Y . By Equation (8)
in [[6]], Q2 = Y s − λXr where λ ∈ K \ {0}, sγ1 = rγ0. Since (m,n) = 1, by
Chinese Remainder Theorem (Theorem 2.1, §2, [[9]]) we have H is a cyclic
group, generated by (α, β). By (2.1) we have (α, β) · Q2 = βsY s − λαrXr.
Since Q2 is an eigenfunction, we have

βs = αr =⇒ sw2

n
− rw1

m
∈ Z by Remark 4.5

=⇒ m | r and n | s as (m,w1) = 1, (n,w2) = 1, (m,n) = 1.

So, Q2 = Y s − λXr ∈ K[Xm, Y n] ⊂ A. Thus by Proposition 4.2, we have
part 2) of Theorem 4.1.

We observe that the part 3) of Theorem 4.1 follows from Propositions 4.6
and 4.7. This completes the proof of Theorem 4.1. �
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Example 4.8. — Let m > 1. Let (c1,m) = 1 and (c2,m) = 1. Let Um
acts on R = K[X,Y ] by the diagonal action given by K-algebra isomor-
phisms satisfying α · XrY s = αc1r+c2sXrY s. Suppose ν is a rational rank
1 nondiscrete valuation dominating Rm. Let {Ql}l>0 be the generating se-
quence (2.2) of the valuation ν, where Q0 = X,Q1 = Y, and suppose that
each Ql is an eigenfunction for Um under the diagonal action. Let B = RUm

and b = B ∩m. Then SRm(ν) is not finitely generated over SBb(ν).

Proof. — α is a primitive m-th root of unity, and (c1,m) = (c2,m) = 1.
So Um = < α > = < αc1 > = < αc2 >. Now, the subdirect product
H 6 Um × Um is given by

H = {((αc1)a, (αc2)b) | b ≡ a(mod m)} =< (αc1 , αc2) > .

From (2.1), we have H acts on R by K-algebra isomorphisms satisfying
(αc1 , αc2) · XrY s = αc1r+c2sXrY s. Thus we have, α · XrY s = (αc1 , αc2) ·
XrY s.
Now let {Ql}l>0 be the generating sequence (2.2) of the valuation ν, where
Q0 = X,Q1 = Y , and each Ql is an eigenfunction for Um under the diagonal
action. Hence each Ql is thus an eigenfunction for H. And, B = RUm =
RH = A. Also b = B ∩m = A ∩m = n.
Using the same notation as in Theorem 4.1, we have t = m. Since m > 1, by
Theorem 4.1 we have SRm(ν) is not finitely generated over SAn(ν). Hence,
SRm(ν) is not finitely generated over SBb(ν).
When m = 2, c1 = c2 = 1, this is Example 9.3 of [[6]]. �

5. Non-splitting

Suppose that a local domain B dominates a local domain A. Let L be
the quotient field of A and M be the quotient field of B. Suppose ω is a
valuation of L which dominates A. We say that ω does not split in B if there
is a unique extension ω∗ of ω to M which dominates B.

We use the same notation as in the previous sections.

Theorem 5.1. — Let H 6 Um × Un be as in Remark 1.3 such that
(m,n) = t. Let assumptions be as in Theorem 3.1. Let ν = ν |Q(A) where
Q(A) denotes the quotient field of A. Then ν does not split in Rm.

Proof. — Let {Qk}k>0, {γk}k>0 and {mk}k>1 be as in Section 2. Thus
Q0 = X and Q1 = Y . Without any loss of generality, we can assume γ0 = 1.
Set m = Mt and n = Nt where M,N ∈ Z>0 and (M,N) = 1. From (3.1)
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we have

SAn(ν)=

lγ0+j1γ1+· · ·+jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k=1,· · · ,r
αlaβb

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

Now, ν = ν |Q(A). Thus SAn(ν) = {ν(f) | 0 6= f ∈ An} = SAn(ν). The
group generated by SAn(ν) is Γν , the value group of ν (1.2, [[3]]). Thus
Γν = {s1 − s2 | s1, s2 ∈ SAn(ν)}.

Suppose γ0 ∈ Γν . Then we have a representation,

γ0 =(l1γ0+
r∑

k=1
h1,kγk)−(l2γ0+

r∑
k=1

h2,kγk)=(l1−l2)γ0+
r∑

k=1
(h1,k−h2,k)γk

where l1γ0 +
∑r
k=1 h1,kγk ∈ SAn(ν), and l2γ0 +

∑r
k=1 h2,kγk ∈ SAn(ν).

Thus l1, l2 ∈ N, r ∈ N and 0 6 h1,k, h2,k < mk ∀ k = 1, · · · , r. So, |h1,k −
h2,k| < mk ∀ k = 1, · · · , r. Now (h1,r − h2,r)γr ∈ G(γ0, · · · , γr−1) and
|h1,r − h2,r| < mr =⇒ h1,r = h2,r. With the same argument, we have
h1,k = h2,k ∀ k = 1, · · · , r. So in the representation of γ0, we have γ0 =
(l1 − l2)γ0 =⇒ l1 − l2 = 1. Also,

αl1aβb
∑r
k=1[h1,kd(k)] = 1 = αl2aβb

∑r
k=1[h2,kd(k)]

=⇒ α(l1−l2)aβb
∑r

k=1
[(h1,k−h2,k)d(k)] = 1 ∀ b ≡ ax(mod t).

Since l1 − l2 = 1 and h1,k = h2,k ∀ k = 1, · · · , r, we have αa = 1 ∀ b ≡
ax(mod t). Thus α = 1, that is, m = 1. So we have obtained,

γ0 ∈ Γν =⇒M = 1, t = 1. (5.1)

Suppose γ1 ∈ Γν . Then we have a representation,

γ1 =(l1γ0 +
r∑

k=1
j1,kγk)−(l2γ0 +

r∑
k=1

j2,kγk)=(l1 − l2)γ0 +
r∑

k=1
(j1,k − j2,k)γk

where l1γ0 +
∑r
k=1 j1,kγk ∈ SAn(ν), and l2γ0 +

∑r
k=1 j2,kγk ∈ SAn(ν). So,

l1, l2 ∈ N, r ∈ N and 0 6 j1,k, j2,k < mk ∀ k = 1, · · · , r. So, |j1,k −
j2,k| < mk ∀ k = 1, · · · , r. Now, (j1,r − j2,r)γr ∈ G(γ0, · · · , γr−1) and
|j1,r − j2,r| < mr =⇒ j1,r = j2,r. With the same argument, we have j1,k =
j2,k ∀ k = 2, · · · r. Thus we have, γ1 = (l1 − l2)γ0 + (j1,1 − j2,1)γ1 where
0 6 |j1,1 − j2,1| < m1. Again, ∀ b ≡ ax(mod t) we have

αl1aβb
∑r
k=1[j1,kd(k)] = 1 = αl2aβb

∑r
k=1[j2,kd(k)].

Since d(1) = degY (Y ) = 1 and j1,k = j2,k ∀ k = 2, · · · , r, we have
α(l1−l2)aβb(j1,1−j2,1) = 1 for all b ≡ ax(mod t). So if γ1 ∈ Γν , we have a

– 25 –



Arpan Dutta

representation
γ1 = lγ0 + j1γ1 where l ∈ Z, 0 6 |j1| < m1

αlaβbj1 = 1 ∀ b ≡ ax(mod t).
In the above expression, (1− j1)γ1 = lγ0 ∈ γ0Z =⇒ m1 | (1− j1).
And |1 − j1| 6 1 + |j1| 6 m1 =⇒ |1 − j1| = 0 or m1. 1 − j1 = 0 =⇒
l = 0, j1 = 1. From the above expression we then have, βb = 1 ∀ b ≡
ax(mod t) =⇒ n = 1. Now consider |1 − j1| = m1. If 1 − j1 = −m1 then
j1 = 1+m1 which contradicts |j1| < m1. So 1−j1 = m1, that is, j1 = 1−m1.
And (1 − j1)γ1 = m1γ1 = lγ0. So Q2 = Qm1

1 − λX l where λ ∈ K\{0}.
(αa, βb) · Q2 = βbm1Qm1

1 − λαalX l. Since Q2 is an eigenfunction, we have
βbm1 = αal ∀ b ≡ ax(mod t). Again from the above expression we have,
αalβb = βbm1 ∀ b ≡ ax(mod t), as j1 = 1 − m1. Thus, βb = 1 ∀ b ≡
ax(mod t), and hence n = 1. So we have obtained,

γ1 ∈ Γν =⇒ N = 1, t = 1. (5.2)
For an element g ∈ Γν , let [g] denote the class of g in Γν

Γν
. Since Γν

Γν
is a finite

group, [g] has finite order for each g ∈ Γν . Let e = [Γν : Γν ].

First we suppose γ0 ∈ Γν and γ1 ∈ Γν . From (5.1) and (5.2) we have
M = N = t = 1. From Proposition 1.4 we have |H| = MNt = 1. Thus,
MNt | e.

Now we suppose γ0 /∈ Γν and γ1 ∈ Γν . From (5.2) we have N = t = 1.
From Proposition 1.4 we have |H| = MNt = M . Let f0 denote the order of
[γ0]. Thus f0γ0 ∈ Γν . We thus have a representation

f0γ0 = (l1γ0 +
r∑

k=1
h1,kγk)− (l2γ0 +

r∑
k=1

h2,kγk)

= (l1 − l2)γ0 +
r∑

k=1
(h1,k − h2,k)γk

where l1γ0 +
∑r
k=1 h1,kγk ∈ SAn(ν), and l2γ0 +

∑r
k=1 h2,kγk ∈ SAn(ν).

Thus l1, l2 ∈ N, r ∈ N and 0 6 h1,k, h2,k < mk ∀ k = 1, · · · , r. So, |h1,k −
h2,k| < mk ∀ k = 1, · · · , r. With the same arguments as above, we have
h1,k = h2,k ∀ k = 1, · · · , r. Thus f0γ0 = (l1 − l2)γ0 =⇒ f0 = l1 − l2. And,
for all b ≡ ax(mod t),

αl1aβb
∑r
k=1[h1,kd(k)] = 1 = αl2aβb

∑r
k=1[h2,kd(k)].

So, α(l1−l2) = αf0 = 1, hence m = Mt | f0 =⇒ Mt | e. Thus MNt |
e as MNt = M .

Now we suppose γ0 ∈ Γν and γ1 /∈ Γν . From (5.1) we have M = t = 1.
|H| = MNt = N . Let f1 denote the order of [γ1], that is f1γ1 ∈ Γν . We have
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a representation,

f1γ1 =(l1γ0+
r∑

k=1
j1,kγk)−(l2γ0+

r∑
k=1

j2,kγk)=(l1 − l2)γ0+
r∑

k=1
(j1,k−j2,k)γk

where l1γ0 +
∑r
k=1 j1,kγk ∈ SAn(ν), and l2γ0 +

∑r
k=1 j2,kγk ∈ SAn(ν). So,

l1, l2 ∈ N, r ∈ N and 0 6 j1,k, j2,k < mk ∀ k = 1, · · · , r. So, |j1,k −
j2,k| < mk ∀ k = 1, · · · , r. With the same arguments as above, we have
j1,k = j2,k ∀ k = 2, · · · , r. So in the above representation, we have f1γ1 =
(l1−l2)γ0+(j1,1−j2,1)γ1 where 0 6 |j1,1−j2,1| < m1. Again, ∀ b ≡ ax(mod t)
we have

αl1aβb
∑r
k=1[j1,kd(k)] = 1 = αl2aβb

∑r
k=1[j2,kd(k)].

Since d(1) = 1 and j1,k = j2,k ∀ k = 2, · · · , r, we have α(l1−l2)aβb(j1,1−j2,1) =
1 for all b ≡ ax(mod t). So we have a representation,

f1γ1 = lγ0 + j1γ1 where l ∈ Z, 0 6 |j1| < m1

αlaβbj1 = 1 ∀ b ≡ ax(mod t).

(f1 − j1)γ1 = lγ0 =⇒ m1 | (f1 − j1). Let f1 − j1 = cm1 where c ∈ Z. Let
m1γ1 = sγ0 where s ∈ Z>0. Thus f1γ1 = csγ0 + j1γ1 =⇒ lγ0 = csγ0. Thus
l = cs. Since m1γ1 = sγ0, we have Q2 = Qm1

1 − λXs where λ ∈ K\{0}.
(αa, βb) · Q2 = βbm1Qm1

1 − λαasXs. Since Q2 is an eigenfunction we have,
βbm1 = αas ∀ b ≡ ax(mod t). Again, from the above expression of f1γ1, we
have

αlaβb(f1−cm1) = 1 ∀ b ≡ ax(mod t)

=⇒ αcsaβbf1 = βbcm1 ∀ b ≡ ax(mod t) as l = cs

=⇒ βbf1 = 1 ∀ b ≡ ax(mod t) =⇒ n = Nt | f1 =⇒ Nt | e.

Thus we have obtained, MNt | e as MNt = N .

Now we consider the final case, γ0 /∈ Γν and γ1 /∈ Γν . Let f0 denote
the order of [γ0] and f1 denote the order of [γ1] in Γν

Γν
. With the same

arguments as before, we obtain Mt | f0 and Nt | f1. Thus we have Mt | e
and Nt | e. Now (Mt,Nt) = t. So the lowest common multiple of Mt and
Nt is MtNt

t = MNt. Thus, MNt | e.

Now,K(X,Y ) is a Galois extension of Q(A) with Galois groupH (Propo-
sition 1.1.1, [[2]]). Thus [K(X,Y ) : Q(A)] = |H| = MNt from Proposi-
tion 1.4. Let ν = ν1, ν2, · · · , νr be all the distinct extensions of ν to K(X,Y ).
Then (§12, Theorem 24, Corollary, [[16]]),

efr = [K(X,Y ) : Q(A)] = MNt.

Since MNt | e, we have e = MNt, r = 1. So ν is the unique extension of ν
to K(X,Y ). Thus ν does not split in Rm. �

– 27 –



Arpan Dutta

Bibliography

[1] S. Abhyankar, “On the valuations centered in a local domain”, Am. J. Math. 78
(1956), p. 321-348.

[2] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society
Lecture Note Series, vol. 190, Cambridge University Press, 1993, x+118 pages.

[3] S. D. Cutkosky, “Ramification of valuations and local rings in positive characteris-
tic”, Commun. Algebra 44 (2016), no. 7, p. 2828-2866.

[4] ———, “The role of defect and splitting in finite generation of extensions of asso-
ciated graded rings along a valuation”, Algebra Number Theory 11 (2017), no. 6,
p. 1461-1488.

[5] ———, “Finite generation of extensions of associated graded rings along a valuation”,
J. Lond. Math. Soc. 98 (2018), no. 1, p. 177-203.

[6] S. D. Cutkosky & P. A. Vinh, “Valuation semigroups of two-dimensional local
rings”, Proc. Lond. Math. Soc. 108 (2014), no. 2, p. 350-384.

[7] O. Kashcheyeva, “Constructing examples of semigroups of valuations”, J. Pure
Appl. Algebra 220 (2016), no. 12, p. 3826-3860.

[8] F.-V. Kuhlmann, “Valuation theoretic and model theoretic aspects of local uni-
formization”, in Resolution of singularities (Obergurgl, 1997), Progress in Mathe-
matics, vol. 181, Birkhäuser, Basel, 2000, p. 381-456.

[9] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer, 2002,
xvi+914 pages.

[10] M. Moghaddam, “A construction for a class of valuations of the field
k(X1, . . . , Xd, Y ) with large value group”, J. Algebra 319 (2008), no. 7, p. 2803-2829.

[11] J. Novacoski & M. Spivakovsky, “Key polynomials and pseudo-convergent se-
quences”, J. Algebra 495 (2018), p. 199-219.

[12] J.-P. Serre, A course in arithmetic, Springer, 1973, Translated from the French,
Graduate Texts in Mathematics, No. 7, viii+115 pages.

[13] M. Spivakovsky, “Valuations in function fields of surfaces”, Am. J. Math. 112
(1990), no. 1, p. 107-156.

[14] B. Teissier, “Valuations, deformations, and toric geometry”, in Valuation theory
and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun., vol. 33,
American Mathematical Society, 2003, p. 361-459.

[15] ———, “Overweight deformations of affine toric varieties and local uniformization”,
in Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich,
2014, p. 474-565.

[16] O. Zariski & P. Samuel, Commutative algebra. Vol. II, The University Series in
Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-
New York, 1960, x+414 pages.

– 28 –


	Notations
	Introduction
	1. Subgroups of Um x Un
	2. Generating Sequences
	3. Valuation Semigroups of Invariant Subrings
	4. Finite and Non-Finite Generation
	5.  Non-splitting
	Bibliography

